Linux Audio

Check our new training course

Loading...
v3.5.6
 
 
  1#include <linux/errno.h>
  2#include <linux/kernel.h>
  3#include <linux/mm.h>
  4#include <linux/smp.h>
  5#include <linux/prctl.h>
  6#include <linux/slab.h>
  7#include <linux/sched.h>
  8#include <linux/module.h>
  9#include <linux/pm.h>
 10#include <linux/clockchips.h>
 11#include <linux/random.h>
 12#include <linux/user-return-notifier.h>
 13#include <linux/dmi.h>
 14#include <linux/utsname.h>
 15#include <linux/stackprotector.h>
 16#include <linux/tick.h>
 17#include <linux/cpuidle.h>
 18#include <trace/events/power.h>
 19#include <linux/hw_breakpoint.h>
 20#include <asm/cpu.h>
 21#include <asm/apic.h>
 22#include <asm/syscalls.h>
 23#include <asm/idle.h>
 24#include <asm/uaccess.h>
 25#include <asm/i387.h>
 26#include <asm/fpu-internal.h>
 27#include <asm/debugreg.h>
 28#include <asm/nmi.h>
 
 
 
 29
 30/*
 31 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 32 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 33 * so they are allowed to end up in the .data..cacheline_aligned
 34 * section. Since TSS's are completely CPU-local, we want them
 35 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 36 */
 37DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 38
 39#ifdef CONFIG_X86_64
 40static DEFINE_PER_CPU(unsigned char, is_idle);
 41static ATOMIC_NOTIFIER_HEAD(idle_notifier);
 42
 43void idle_notifier_register(struct notifier_block *n)
 44{
 45	atomic_notifier_chain_register(&idle_notifier, n);
 46}
 47EXPORT_SYMBOL_GPL(idle_notifier_register);
 48
 49void idle_notifier_unregister(struct notifier_block *n)
 50{
 51	atomic_notifier_chain_unregister(&idle_notifier, n);
 52}
 53EXPORT_SYMBOL_GPL(idle_notifier_unregister);
 54#endif
 55
 56struct kmem_cache *task_xstate_cachep;
 57EXPORT_SYMBOL_GPL(task_xstate_cachep);
 58
 59/*
 60 * this gets called so that we can store lazy state into memory and copy the
 61 * current task into the new thread.
 62 */
 63int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 64{
 65	int ret;
 66
 67	unlazy_fpu(src);
 68
 69	*dst = *src;
 70	if (fpu_allocated(&src->thread.fpu)) {
 71		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
 72		ret = fpu_alloc(&dst->thread.fpu);
 73		if (ret)
 74			return ret;
 75		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
 76	}
 77	return 0;
 78}
 79
 80void free_thread_xstate(struct task_struct *tsk)
 81{
 82	fpu_free(&tsk->thread.fpu);
 83}
 84
 85void arch_release_task_struct(struct task_struct *tsk)
 86{
 87	free_thread_xstate(tsk);
 88}
 89
 90void arch_task_cache_init(void)
 91{
 92        task_xstate_cachep =
 93        	kmem_cache_create("task_xstate", xstate_size,
 94				  __alignof__(union thread_xstate),
 95				  SLAB_PANIC | SLAB_NOTRACK, NULL);
 96}
 97
 98static inline void drop_fpu(struct task_struct *tsk)
 99{
100	/*
101	 * Forget coprocessor state..
102	 */
103	tsk->fpu_counter = 0;
104	clear_fpu(tsk);
105	clear_used_math();
106}
107
108/*
109 * Free current thread data structures etc..
110 */
111void exit_thread(void)
112{
113	struct task_struct *me = current;
114	struct thread_struct *t = &me->thread;
115	unsigned long *bp = t->io_bitmap_ptr;
 
116
117	if (bp) {
118		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
119
120		t->io_bitmap_ptr = NULL;
121		clear_thread_flag(TIF_IO_BITMAP);
122		/*
123		 * Careful, clear this in the TSS too:
124		 */
125		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
126		t->io_bitmap_max = 0;
127		put_cpu();
128		kfree(bp);
129	}
130
131	drop_fpu(me);
132}
133
134void show_regs_common(void)
135{
136	const char *vendor, *product, *board;
137
138	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
139	if (!vendor)
140		vendor = "";
141	product = dmi_get_system_info(DMI_PRODUCT_NAME);
142	if (!product)
143		product = "";
144
145	/* Board Name is optional */
146	board = dmi_get_system_info(DMI_BOARD_NAME);
147
148	printk(KERN_CONT "\n");
149	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
150		current->pid, current->comm, print_tainted(),
151		init_utsname()->release,
152		(int)strcspn(init_utsname()->version, " "),
153		init_utsname()->version);
154	printk(KERN_CONT " %s %s", vendor, product);
155	if (board)
156		printk(KERN_CONT "/%s", board);
157	printk(KERN_CONT "\n");
158}
159
160void flush_thread(void)
161{
162	struct task_struct *tsk = current;
163
164	flush_ptrace_hw_breakpoint(tsk);
165	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
166	drop_fpu(tsk);
 
167}
168
169static void hard_disable_TSC(void)
170{
171	write_cr4(read_cr4() | X86_CR4_TSD);
172}
173
174void disable_TSC(void)
175{
176	preempt_disable();
177	if (!test_and_set_thread_flag(TIF_NOTSC))
178		/*
179		 * Must flip the CPU state synchronously with
180		 * TIF_NOTSC in the current running context.
181		 */
182		hard_disable_TSC();
183	preempt_enable();
184}
185
186static void hard_enable_TSC(void)
187{
188	write_cr4(read_cr4() & ~X86_CR4_TSD);
189}
190
191static void enable_TSC(void)
192{
193	preempt_disable();
194	if (test_and_clear_thread_flag(TIF_NOTSC))
195		/*
196		 * Must flip the CPU state synchronously with
197		 * TIF_NOTSC in the current running context.
198		 */
199		hard_enable_TSC();
200	preempt_enable();
201}
202
203int get_tsc_mode(unsigned long adr)
204{
205	unsigned int val;
206
207	if (test_thread_flag(TIF_NOTSC))
208		val = PR_TSC_SIGSEGV;
209	else
210		val = PR_TSC_ENABLE;
211
212	return put_user(val, (unsigned int __user *)adr);
213}
214
215int set_tsc_mode(unsigned int val)
216{
217	if (val == PR_TSC_SIGSEGV)
218		disable_TSC();
219	else if (val == PR_TSC_ENABLE)
220		enable_TSC();
221	else
222		return -EINVAL;
223
224	return 0;
225}
226
227void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
228		      struct tss_struct *tss)
229{
230	struct thread_struct *prev, *next;
231
232	prev = &prev_p->thread;
233	next = &next_p->thread;
234
235	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
236	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
237		unsigned long debugctl = get_debugctlmsr();
238
239		debugctl &= ~DEBUGCTLMSR_BTF;
240		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
241			debugctl |= DEBUGCTLMSR_BTF;
242
243		update_debugctlmsr(debugctl);
244	}
245
246	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
247	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
248		/* prev and next are different */
249		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
250			hard_disable_TSC();
251		else
252			hard_enable_TSC();
253	}
254
255	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
256		/*
257		 * Copy the relevant range of the IO bitmap.
258		 * Normally this is 128 bytes or less:
259		 */
260		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
261		       max(prev->io_bitmap_max, next->io_bitmap_max));
262	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
263		/*
264		 * Clear any possible leftover bits:
265		 */
266		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
267	}
268	propagate_user_return_notify(prev_p, next_p);
269}
270
271int sys_fork(struct pt_regs *regs)
272{
273	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
274}
275
276/*
277 * This is trivial, and on the face of it looks like it
278 * could equally well be done in user mode.
279 *
280 * Not so, for quite unobvious reasons - register pressure.
281 * In user mode vfork() cannot have a stack frame, and if
282 * done by calling the "clone()" system call directly, you
283 * do not have enough call-clobbered registers to hold all
284 * the information you need.
285 */
286int sys_vfork(struct pt_regs *regs)
287{
288	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
289		       NULL, NULL);
290}
291
292long
293sys_clone(unsigned long clone_flags, unsigned long newsp,
294	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
295{
296	if (!newsp)
297		newsp = regs->sp;
298	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
299}
300
301/*
302 * This gets run with %si containing the
303 * function to call, and %di containing
304 * the "args".
305 */
306extern void kernel_thread_helper(void);
307
308/*
309 * Create a kernel thread
310 */
311int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
312{
313	struct pt_regs regs;
314
315	memset(&regs, 0, sizeof(regs));
316
317	regs.si = (unsigned long) fn;
318	regs.di = (unsigned long) arg;
319
320#ifdef CONFIG_X86_32
321	regs.ds = __USER_DS;
322	regs.es = __USER_DS;
323	regs.fs = __KERNEL_PERCPU;
324	regs.gs = __KERNEL_STACK_CANARY;
325#else
326	regs.ss = __KERNEL_DS;
327#endif
328
329	regs.orig_ax = -1;
330	regs.ip = (unsigned long) kernel_thread_helper;
331	regs.cs = __KERNEL_CS | get_kernel_rpl();
332	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
333
334	/* Ok, create the new process.. */
335	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
336}
337EXPORT_SYMBOL(kernel_thread);
338
339/*
340 * sys_execve() executes a new program.
341 */
342long sys_execve(const char __user *name,
343		const char __user *const __user *argv,
344		const char __user *const __user *envp, struct pt_regs *regs)
345{
346	long error;
347	char *filename;
348
349	filename = getname(name);
350	error = PTR_ERR(filename);
351	if (IS_ERR(filename))
352		return error;
353	error = do_execve(filename, argv, envp, regs);
354
355#ifdef CONFIG_X86_32
356	if (error == 0) {
357		/* Make sure we don't return using sysenter.. */
358                set_thread_flag(TIF_IRET);
359        }
360#endif
361
362	putname(filename);
363	return error;
364}
365
366/*
367 * Idle related variables and functions
368 */
369unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
370EXPORT_SYMBOL(boot_option_idle_override);
371
372/*
373 * Powermanagement idle function, if any..
374 */
375void (*pm_idle)(void);
376#ifdef CONFIG_APM_MODULE
377EXPORT_SYMBOL(pm_idle);
378#endif
379
380static inline int hlt_use_halt(void)
381{
382	return 1;
383}
384
385#ifndef CONFIG_SMP
386static inline void play_dead(void)
387{
388	BUG();
389}
390#endif
391
392#ifdef CONFIG_X86_64
393void enter_idle(void)
394{
395	this_cpu_write(is_idle, 1);
396	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
397}
398
399static void __exit_idle(void)
400{
401	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
402		return;
403	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
404}
405
406/* Called from interrupts to signify idle end */
407void exit_idle(void)
408{
409	/* idle loop has pid 0 */
410	if (current->pid)
411		return;
412	__exit_idle();
413}
414#endif
415
416/*
417 * The idle thread. There's no useful work to be
418 * done, so just try to conserve power and have a
419 * low exit latency (ie sit in a loop waiting for
420 * somebody to say that they'd like to reschedule)
421 */
422void cpu_idle(void)
423{
424	/*
425	 * If we're the non-boot CPU, nothing set the stack canary up
426	 * for us.  CPU0 already has it initialized but no harm in
427	 * doing it again.  This is a good place for updating it, as
428	 * we wont ever return from this function (so the invalid
429	 * canaries already on the stack wont ever trigger).
430	 */
431	boot_init_stack_canary();
432	current_thread_info()->status |= TS_POLLING;
433
434	while (1) {
435		tick_nohz_idle_enter();
436
437		while (!need_resched()) {
438			rmb();
439
440			if (cpu_is_offline(smp_processor_id()))
441				play_dead();
442
443			/*
444			 * Idle routines should keep interrupts disabled
445			 * from here on, until they go to idle.
446			 * Otherwise, idle callbacks can misfire.
447			 */
448			local_touch_nmi();
449			local_irq_disable();
450
451			enter_idle();
452
453			/* Don't trace irqs off for idle */
454			stop_critical_timings();
455
456			/* enter_idle() needs rcu for notifiers */
457			rcu_idle_enter();
458
459			if (cpuidle_idle_call())
460				pm_idle();
461
462			rcu_idle_exit();
463			start_critical_timings();
 
 
464
465			/* In many cases the interrupt that ended idle
466			   has already called exit_idle. But some idle
467			   loops can be woken up without interrupt. */
468			__exit_idle();
469		}
470
471		tick_nohz_idle_exit();
472		preempt_enable_no_resched();
473		schedule();
474		preempt_disable();
475	}
 
476}
477
478/*
479 * We use this if we don't have any better
480 * idle routine..
481 */
482void default_idle(void)
483{
484	if (hlt_use_halt()) {
485		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
486		trace_cpu_idle_rcuidle(1, smp_processor_id());
487		current_thread_info()->status &= ~TS_POLLING;
488		/*
489		 * TS_POLLING-cleared state must be visible before we
490		 * test NEED_RESCHED:
491		 */
492		smp_mb();
493
494		if (!need_resched())
495			safe_halt();	/* enables interrupts racelessly */
496		else
497			local_irq_enable();
498		current_thread_info()->status |= TS_POLLING;
499		trace_power_end_rcuidle(smp_processor_id());
500		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
501	} else {
502		local_irq_enable();
503		/* loop is done by the caller */
504		cpu_relax();
505	}
506}
507#ifdef CONFIG_APM_MODULE
508EXPORT_SYMBOL(default_idle);
509#endif
510
511bool set_pm_idle_to_default(void)
 
512{
513	bool ret = !!pm_idle;
514
515	pm_idle = default_idle;
516
517	return ret;
518}
 
519void stop_this_cpu(void *dummy)
520{
521	local_irq_disable();
522	/*
523	 * Remove this CPU:
524	 */
525	set_cpu_online(smp_processor_id(), false);
526	disable_local_APIC();
 
527
528	for (;;) {
529		if (hlt_works(smp_processor_id()))
530			halt();
531	}
532}
533
534/* Default MONITOR/MWAIT with no hints, used for default C1 state */
535static void mwait_idle(void)
536{
537	if (!need_resched()) {
538		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
539		trace_cpu_idle_rcuidle(1, smp_processor_id());
540		if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
541			clflush((void *)&current_thread_info()->flags);
542
543		__monitor((void *)&current_thread_info()->flags, 0, 0);
544		smp_mb();
545		if (!need_resched())
546			__sti_mwait(0, 0);
547		else
548			local_irq_enable();
549		trace_power_end_rcuidle(smp_processor_id());
550		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
551	} else
552		local_irq_enable();
553}
554
555/*
556 * On SMP it's slightly faster (but much more power-consuming!)
557 * to poll the ->work.need_resched flag instead of waiting for the
558 * cross-CPU IPI to arrive. Use this option with caution.
559 */
560static void poll_idle(void)
561{
562	trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
563	trace_cpu_idle_rcuidle(0, smp_processor_id());
564	local_irq_enable();
565	while (!need_resched())
566		cpu_relax();
567	trace_power_end_rcuidle(smp_processor_id());
568	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
569}
570
571/*
572 * mwait selection logic:
573 *
574 * It depends on the CPU. For AMD CPUs that support MWAIT this is
575 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
576 * then depend on a clock divisor and current Pstate of the core. If
577 * all cores of a processor are in halt state (C1) the processor can
578 * enter the C1E (C1 enhanced) state. If mwait is used this will never
579 * happen.
580 *
581 * idle=mwait overrides this decision and forces the usage of mwait.
582 */
583
584#define MWAIT_INFO			0x05
585#define MWAIT_ECX_EXTENDED_INFO		0x01
586#define MWAIT_EDX_C1			0xf0
587
588int mwait_usable(const struct cpuinfo_x86 *c)
589{
590	u32 eax, ebx, ecx, edx;
591
592	/* Use mwait if idle=mwait boot option is given */
593	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
594		return 1;
595
596	/*
597	 * Any idle= boot option other than idle=mwait means that we must not
598	 * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
599	 */
600	if (boot_option_idle_override != IDLE_NO_OVERRIDE)
601		return 0;
602
603	if (c->cpuid_level < MWAIT_INFO)
604		return 0;
605
606	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
607	/* Check, whether EDX has extended info about MWAIT */
608	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
609		return 1;
610
611	/*
612	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
613	 * C1  supports MWAIT
614	 */
615	return (edx & MWAIT_EDX_C1);
616}
617
618bool amd_e400_c1e_detected;
619EXPORT_SYMBOL(amd_e400_c1e_detected);
620
621static cpumask_var_t amd_e400_c1e_mask;
622
623void amd_e400_remove_cpu(int cpu)
624{
625	if (amd_e400_c1e_mask != NULL)
626		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
627}
628
629/*
630 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
631 * pending message MSR. If we detect C1E, then we handle it the same
632 * way as C3 power states (local apic timer and TSC stop)
633 */
634static void amd_e400_idle(void)
635{
636	if (need_resched())
637		return;
638
639	if (!amd_e400_c1e_detected) {
640		u32 lo, hi;
641
642		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
643
644		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
645			amd_e400_c1e_detected = true;
646			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
647				mark_tsc_unstable("TSC halt in AMD C1E");
648			printk(KERN_INFO "System has AMD C1E enabled\n");
649		}
650	}
651
652	if (amd_e400_c1e_detected) {
653		int cpu = smp_processor_id();
654
655		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
656			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
657			/*
658			 * Force broadcast so ACPI can not interfere.
659			 */
660			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
661					   &cpu);
662			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
663			       cpu);
664		}
665		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
666
667		default_idle();
668
669		/*
670		 * The switch back from broadcast mode needs to be
671		 * called with interrupts disabled.
672		 */
673		 local_irq_disable();
674		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
675		 local_irq_enable();
676	} else
677		default_idle();
678}
679
680void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
 
 
 
 
 
 
 
 
 
 
681{
682#ifdef CONFIG_SMP
683	if (pm_idle == poll_idle && smp_num_siblings > 1) {
684		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
685			" performance may degrade.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686	}
 
 
 
 
 
 
 
 
687#endif
688	if (pm_idle)
689		return;
690
691	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
692		/*
693		 * One CPU supports mwait => All CPUs supports mwait
694		 */
695		printk(KERN_INFO "using mwait in idle threads.\n");
696		pm_idle = mwait_idle;
697	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
698		/* E400: APIC timer interrupt does not wake up CPU from C1e */
699		printk(KERN_INFO "using AMD E400 aware idle routine\n");
700		pm_idle = amd_e400_idle;
 
 
 
701	} else
702		pm_idle = default_idle;
703}
704
705void __init init_amd_e400_c1e_mask(void)
706{
707	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
708	if (pm_idle == amd_e400_idle)
709		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
710}
711
712static int __init idle_setup(char *str)
713{
714	if (!str)
715		return -EINVAL;
716
717	if (!strcmp(str, "poll")) {
718		printk("using polling idle threads.\n");
719		pm_idle = poll_idle;
720		boot_option_idle_override = IDLE_POLL;
721	} else if (!strcmp(str, "mwait")) {
722		boot_option_idle_override = IDLE_FORCE_MWAIT;
723		WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
724	} else if (!strcmp(str, "halt")) {
725		/*
726		 * When the boot option of idle=halt is added, halt is
727		 * forced to be used for CPU idle. In such case CPU C2/C3
728		 * won't be used again.
729		 * To continue to load the CPU idle driver, don't touch
730		 * the boot_option_idle_override.
731		 */
732		pm_idle = default_idle;
733		boot_option_idle_override = IDLE_HALT;
734	} else if (!strcmp(str, "nomwait")) {
735		/*
736		 * If the boot option of "idle=nomwait" is added,
737		 * it means that mwait will be disabled for CPU C2/C3
738		 * states. In such case it won't touch the variable
739		 * of boot_option_idle_override.
740		 */
741		boot_option_idle_override = IDLE_NOMWAIT;
742	} else
743		return -1;
744
745	return 0;
746}
747early_param("idle", idle_setup);
748
749unsigned long arch_align_stack(unsigned long sp)
750{
751	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
752		sp -= get_random_int() % 8192;
753	return sp & ~0xf;
754}
755
756unsigned long arch_randomize_brk(struct mm_struct *mm)
757{
758	unsigned long range_end = mm->brk + 0x02000000;
759	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
760}
761
v4.6
  1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2
  3#include <linux/errno.h>
  4#include <linux/kernel.h>
  5#include <linux/mm.h>
  6#include <linux/smp.h>
  7#include <linux/prctl.h>
  8#include <linux/slab.h>
  9#include <linux/sched.h>
 10#include <linux/module.h>
 11#include <linux/pm.h>
 12#include <linux/tick.h>
 13#include <linux/random.h>
 14#include <linux/user-return-notifier.h>
 15#include <linux/dmi.h>
 16#include <linux/utsname.h>
 17#include <linux/stackprotector.h>
 18#include <linux/tick.h>
 19#include <linux/cpuidle.h>
 20#include <trace/events/power.h>
 21#include <linux/hw_breakpoint.h>
 22#include <asm/cpu.h>
 23#include <asm/apic.h>
 24#include <asm/syscalls.h>
 25#include <asm/idle.h>
 26#include <asm/uaccess.h>
 27#include <asm/mwait.h>
 28#include <asm/fpu/internal.h>
 29#include <asm/debugreg.h>
 30#include <asm/nmi.h>
 31#include <asm/tlbflush.h>
 32#include <asm/mce.h>
 33#include <asm/vm86.h>
 34
 35/*
 36 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 37 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 38 * so they are allowed to end up in the .data..cacheline_aligned
 39 * section. Since TSS's are completely CPU-local, we want them
 40 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 41 */
 42__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
 43	.x86_tss = {
 44		.sp0 = TOP_OF_INIT_STACK,
 45#ifdef CONFIG_X86_32
 46		.ss0 = __KERNEL_DS,
 47		.ss1 = __KERNEL_CS,
 48		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
 49#endif
 50	 },
 51#ifdef CONFIG_X86_32
 52	 /*
 53	  * Note that the .io_bitmap member must be extra-big. This is because
 54	  * the CPU will access an additional byte beyond the end of the IO
 55	  * permission bitmap. The extra byte must be all 1 bits, and must
 56	  * be within the limit.
 57	  */
 58	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
 59#endif
 60#ifdef CONFIG_X86_32
 61	.SYSENTER_stack_canary	= STACK_END_MAGIC,
 62#endif
 63};
 64EXPORT_PER_CPU_SYMBOL(cpu_tss);
 65
 66#ifdef CONFIG_X86_64
 67static DEFINE_PER_CPU(unsigned char, is_idle);
 68static ATOMIC_NOTIFIER_HEAD(idle_notifier);
 69
 70void idle_notifier_register(struct notifier_block *n)
 71{
 72	atomic_notifier_chain_register(&idle_notifier, n);
 73}
 74EXPORT_SYMBOL_GPL(idle_notifier_register);
 75
 76void idle_notifier_unregister(struct notifier_block *n)
 77{
 78	atomic_notifier_chain_unregister(&idle_notifier, n);
 79}
 80EXPORT_SYMBOL_GPL(idle_notifier_unregister);
 81#endif
 82
 
 
 
 83/*
 84 * this gets called so that we can store lazy state into memory and copy the
 85 * current task into the new thread.
 86 */
 87int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 88{
 89	memcpy(dst, src, arch_task_struct_size);
 90#ifdef CONFIG_VM86
 91	dst->thread.vm86 = NULL;
 92#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 93
 94	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 95}
 96
 97/*
 98 * Free current thread data structures etc..
 99 */
100void exit_thread(void)
101{
102	struct task_struct *me = current;
103	struct thread_struct *t = &me->thread;
104	unsigned long *bp = t->io_bitmap_ptr;
105	struct fpu *fpu = &t->fpu;
106
107	if (bp) {
108		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
109
110		t->io_bitmap_ptr = NULL;
111		clear_thread_flag(TIF_IO_BITMAP);
112		/*
113		 * Careful, clear this in the TSS too:
114		 */
115		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116		t->io_bitmap_max = 0;
117		put_cpu();
118		kfree(bp);
119	}
120
121	free_vm86(t);
 
 
 
 
 
122
123	fpu__drop(fpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124}
125
126void flush_thread(void)
127{
128	struct task_struct *tsk = current;
129
130	flush_ptrace_hw_breakpoint(tsk);
131	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
132
133	fpu__clear(&tsk->thread.fpu);
134}
135
136static void hard_disable_TSC(void)
137{
138	cr4_set_bits(X86_CR4_TSD);
139}
140
141void disable_TSC(void)
142{
143	preempt_disable();
144	if (!test_and_set_thread_flag(TIF_NOTSC))
145		/*
146		 * Must flip the CPU state synchronously with
147		 * TIF_NOTSC in the current running context.
148		 */
149		hard_disable_TSC();
150	preempt_enable();
151}
152
153static void hard_enable_TSC(void)
154{
155	cr4_clear_bits(X86_CR4_TSD);
156}
157
158static void enable_TSC(void)
159{
160	preempt_disable();
161	if (test_and_clear_thread_flag(TIF_NOTSC))
162		/*
163		 * Must flip the CPU state synchronously with
164		 * TIF_NOTSC in the current running context.
165		 */
166		hard_enable_TSC();
167	preempt_enable();
168}
169
170int get_tsc_mode(unsigned long adr)
171{
172	unsigned int val;
173
174	if (test_thread_flag(TIF_NOTSC))
175		val = PR_TSC_SIGSEGV;
176	else
177		val = PR_TSC_ENABLE;
178
179	return put_user(val, (unsigned int __user *)adr);
180}
181
182int set_tsc_mode(unsigned int val)
183{
184	if (val == PR_TSC_SIGSEGV)
185		disable_TSC();
186	else if (val == PR_TSC_ENABLE)
187		enable_TSC();
188	else
189		return -EINVAL;
190
191	return 0;
192}
193
194void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
195		      struct tss_struct *tss)
196{
197	struct thread_struct *prev, *next;
198
199	prev = &prev_p->thread;
200	next = &next_p->thread;
201
202	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
203	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
204		unsigned long debugctl = get_debugctlmsr();
205
206		debugctl &= ~DEBUGCTLMSR_BTF;
207		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
208			debugctl |= DEBUGCTLMSR_BTF;
209
210		update_debugctlmsr(debugctl);
211	}
212
213	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
214	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
215		/* prev and next are different */
216		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
217			hard_disable_TSC();
218		else
219			hard_enable_TSC();
220	}
221
222	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
223		/*
224		 * Copy the relevant range of the IO bitmap.
225		 * Normally this is 128 bytes or less:
226		 */
227		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
228		       max(prev->io_bitmap_max, next->io_bitmap_max));
229	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
230		/*
231		 * Clear any possible leftover bits:
232		 */
233		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
234	}
235	propagate_user_return_notify(prev_p, next_p);
236}
237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238/*
239 * Idle related variables and functions
240 */
241unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
242EXPORT_SYMBOL(boot_option_idle_override);
243
244static void (*x86_idle)(void);
 
 
 
 
 
 
 
 
 
 
 
245
246#ifndef CONFIG_SMP
247static inline void play_dead(void)
248{
249	BUG();
250}
251#endif
252
253#ifdef CONFIG_X86_64
254void enter_idle(void)
255{
256	this_cpu_write(is_idle, 1);
257	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
258}
259
260static void __exit_idle(void)
261{
262	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
263		return;
264	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
265}
266
267/* Called from interrupts to signify idle end */
268void exit_idle(void)
269{
270	/* idle loop has pid 0 */
271	if (current->pid)
272		return;
273	__exit_idle();
274}
275#endif
276
277void arch_cpu_idle_enter(void)
 
 
 
 
 
 
278{
279	local_touch_nmi();
280	enter_idle();
281}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282
283void arch_cpu_idle_exit(void)
284{
285	__exit_idle();
286}
287
288void arch_cpu_idle_dead(void)
289{
290	play_dead();
291}
 
292
293/*
294 * Called from the generic idle code.
295 */
296void arch_cpu_idle(void)
297{
298	x86_idle();
299}
300
301/*
302 * We use this if we don't have any better idle routine..
 
303 */
304void default_idle(void)
305{
306	trace_cpu_idle_rcuidle(1, smp_processor_id());
307	safe_halt();
308	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
309}
310#ifdef CONFIG_APM_MODULE
311EXPORT_SYMBOL(default_idle);
312#endif
313
314#ifdef CONFIG_XEN
315bool xen_set_default_idle(void)
316{
317	bool ret = !!x86_idle;
318
319	x86_idle = default_idle;
320
321	return ret;
322}
323#endif
324void stop_this_cpu(void *dummy)
325{
326	local_irq_disable();
327	/*
328	 * Remove this CPU:
329	 */
330	set_cpu_online(smp_processor_id(), false);
331	disable_local_APIC();
332	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
333
334	for (;;)
335		halt();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336}
337
338bool amd_e400_c1e_detected;
339EXPORT_SYMBOL(amd_e400_c1e_detected);
340
341static cpumask_var_t amd_e400_c1e_mask;
342
343void amd_e400_remove_cpu(int cpu)
344{
345	if (amd_e400_c1e_mask != NULL)
346		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
347}
348
349/*
350 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
351 * pending message MSR. If we detect C1E, then we handle it the same
352 * way as C3 power states (local apic timer and TSC stop)
353 */
354static void amd_e400_idle(void)
355{
 
 
 
356	if (!amd_e400_c1e_detected) {
357		u32 lo, hi;
358
359		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
360
361		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
362			amd_e400_c1e_detected = true;
363			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
364				mark_tsc_unstable("TSC halt in AMD C1E");
365			pr_info("System has AMD C1E enabled\n");
366		}
367	}
368
369	if (amd_e400_c1e_detected) {
370		int cpu = smp_processor_id();
371
372		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
373			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
374			/* Force broadcast so ACPI can not interfere. */
375			tick_broadcast_force();
376			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
 
 
 
 
377		}
378		tick_broadcast_enter();
379
380		default_idle();
381
382		/*
383		 * The switch back from broadcast mode needs to be
384		 * called with interrupts disabled.
385		 */
386		local_irq_disable();
387		tick_broadcast_exit();
388		local_irq_enable();
389	} else
390		default_idle();
391}
392
393/*
394 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
395 * We can't rely on cpuidle installing MWAIT, because it will not load
396 * on systems that support only C1 -- so the boot default must be MWAIT.
397 *
398 * Some AMD machines are the opposite, they depend on using HALT.
399 *
400 * So for default C1, which is used during boot until cpuidle loads,
401 * use MWAIT-C1 on Intel HW that has it, else use HALT.
402 */
403static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
404{
405	if (c->x86_vendor != X86_VENDOR_INTEL)
406		return 0;
407
408	if (!cpu_has(c, X86_FEATURE_MWAIT))
409		return 0;
410
411	return 1;
412}
413
414/*
415 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
416 * with interrupts enabled and no flags, which is backwards compatible with the
417 * original MWAIT implementation.
418 */
419static void mwait_idle(void)
420{
421	if (!current_set_polling_and_test()) {
422		trace_cpu_idle_rcuidle(1, smp_processor_id());
423		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
424			mb(); /* quirk */
425			clflush((void *)&current_thread_info()->flags);
426			mb(); /* quirk */
427		}
428
429		__monitor((void *)&current_thread_info()->flags, 0, 0);
430		if (!need_resched())
431			__sti_mwait(0, 0);
432		else
433			local_irq_enable();
434		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
435	} else {
436		local_irq_enable();
437	}
438	__current_clr_polling();
439}
440
441void select_idle_routine(const struct cpuinfo_x86 *c)
442{
443#ifdef CONFIG_SMP
444	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
445		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
446#endif
447	if (x86_idle || boot_option_idle_override == IDLE_POLL)
448		return;
449
450	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
 
 
 
 
 
 
451		/* E400: APIC timer interrupt does not wake up CPU from C1e */
452		pr_info("using AMD E400 aware idle routine\n");
453		x86_idle = amd_e400_idle;
454	} else if (prefer_mwait_c1_over_halt(c)) {
455		pr_info("using mwait in idle threads\n");
456		x86_idle = mwait_idle;
457	} else
458		x86_idle = default_idle;
459}
460
461void __init init_amd_e400_c1e_mask(void)
462{
463	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
464	if (x86_idle == amd_e400_idle)
465		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
466}
467
468static int __init idle_setup(char *str)
469{
470	if (!str)
471		return -EINVAL;
472
473	if (!strcmp(str, "poll")) {
474		pr_info("using polling idle threads\n");
 
475		boot_option_idle_override = IDLE_POLL;
476		cpu_idle_poll_ctrl(true);
 
 
477	} else if (!strcmp(str, "halt")) {
478		/*
479		 * When the boot option of idle=halt is added, halt is
480		 * forced to be used for CPU idle. In such case CPU C2/C3
481		 * won't be used again.
482		 * To continue to load the CPU idle driver, don't touch
483		 * the boot_option_idle_override.
484		 */
485		x86_idle = default_idle;
486		boot_option_idle_override = IDLE_HALT;
487	} else if (!strcmp(str, "nomwait")) {
488		/*
489		 * If the boot option of "idle=nomwait" is added,
490		 * it means that mwait will be disabled for CPU C2/C3
491		 * states. In such case it won't touch the variable
492		 * of boot_option_idle_override.
493		 */
494		boot_option_idle_override = IDLE_NOMWAIT;
495	} else
496		return -1;
497
498	return 0;
499}
500early_param("idle", idle_setup);
501
502unsigned long arch_align_stack(unsigned long sp)
503{
504	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
505		sp -= get_random_int() % 8192;
506	return sp & ~0xf;
507}
508
509unsigned long arch_randomize_brk(struct mm_struct *mm)
510{
511	unsigned long range_end = mm->brk + 0x02000000;
512	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
513}
514
515/*
516 * Called from fs/proc with a reference on @p to find the function
517 * which called into schedule(). This needs to be done carefully
518 * because the task might wake up and we might look at a stack
519 * changing under us.
520 */
521unsigned long get_wchan(struct task_struct *p)
522{
523	unsigned long start, bottom, top, sp, fp, ip;
524	int count = 0;
525
526	if (!p || p == current || p->state == TASK_RUNNING)
527		return 0;
528
529	start = (unsigned long)task_stack_page(p);
530	if (!start)
531		return 0;
532
533	/*
534	 * Layout of the stack page:
535	 *
536	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
537	 * PADDING
538	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
539	 * stack
540	 * ----------- bottom = start + sizeof(thread_info)
541	 * thread_info
542	 * ----------- start
543	 *
544	 * The tasks stack pointer points at the location where the
545	 * framepointer is stored. The data on the stack is:
546	 * ... IP FP ... IP FP
547	 *
548	 * We need to read FP and IP, so we need to adjust the upper
549	 * bound by another unsigned long.
550	 */
551	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
552	top -= 2 * sizeof(unsigned long);
553	bottom = start + sizeof(struct thread_info);
554
555	sp = READ_ONCE(p->thread.sp);
556	if (sp < bottom || sp > top)
557		return 0;
558
559	fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
560	do {
561		if (fp < bottom || fp > top)
562			return 0;
563		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
564		if (!in_sched_functions(ip))
565			return ip;
566		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
567	} while (count++ < 16 && p->state != TASK_RUNNING);
568	return 0;
569}