Loading...
1/*
2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License as published by the
4 * Free Software Foundation; either version 2, or (at your option) any
5 * later version.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
11 *
12 */
13
14/*
15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16 * Copyright (C) 2000-2001 VERITAS Software Corporation.
17 * Copyright (C) 2002 Andi Kleen, SuSE Labs
18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19 * Copyright (C) 2007 MontaVista Software, Inc.
20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21 */
22/****************************************************************************
23 * Contributor: Lake Stevens Instrument Division$
24 * Written by: Glenn Engel $
25 * Updated by: Amit Kale<akale@veritas.com>
26 * Updated by: Tom Rini <trini@kernel.crashing.org>
27 * Updated by: Jason Wessel <jason.wessel@windriver.com>
28 * Modified for 386 by Jim Kingdon, Cygnus Support.
29 * Origianl kgdb, compatibility with 2.1.xx kernel by
30 * David Grothe <dave@gcom.com>
31 * Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32 * X86_64 changes from Andi Kleen's patch merged by Jim Houston
33 */
34#include <linux/spinlock.h>
35#include <linux/kdebug.h>
36#include <linux/string.h>
37#include <linux/kernel.h>
38#include <linux/ptrace.h>
39#include <linux/sched.h>
40#include <linux/delay.h>
41#include <linux/kgdb.h>
42#include <linux/init.h>
43#include <linux/smp.h>
44#include <linux/nmi.h>
45#include <linux/hw_breakpoint.h>
46#include <linux/uaccess.h>
47#include <linux/memory.h>
48
49#include <asm/debugreg.h>
50#include <asm/apicdef.h>
51#include <asm/apic.h>
52#include <asm/nmi.h>
53
54struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
55{
56#ifdef CONFIG_X86_32
57 { "ax", 4, offsetof(struct pt_regs, ax) },
58 { "cx", 4, offsetof(struct pt_regs, cx) },
59 { "dx", 4, offsetof(struct pt_regs, dx) },
60 { "bx", 4, offsetof(struct pt_regs, bx) },
61 { "sp", 4, offsetof(struct pt_regs, sp) },
62 { "bp", 4, offsetof(struct pt_regs, bp) },
63 { "si", 4, offsetof(struct pt_regs, si) },
64 { "di", 4, offsetof(struct pt_regs, di) },
65 { "ip", 4, offsetof(struct pt_regs, ip) },
66 { "flags", 4, offsetof(struct pt_regs, flags) },
67 { "cs", 4, offsetof(struct pt_regs, cs) },
68 { "ss", 4, offsetof(struct pt_regs, ss) },
69 { "ds", 4, offsetof(struct pt_regs, ds) },
70 { "es", 4, offsetof(struct pt_regs, es) },
71#else
72 { "ax", 8, offsetof(struct pt_regs, ax) },
73 { "bx", 8, offsetof(struct pt_regs, bx) },
74 { "cx", 8, offsetof(struct pt_regs, cx) },
75 { "dx", 8, offsetof(struct pt_regs, dx) },
76 { "si", 8, offsetof(struct pt_regs, dx) },
77 { "di", 8, offsetof(struct pt_regs, di) },
78 { "bp", 8, offsetof(struct pt_regs, bp) },
79 { "sp", 8, offsetof(struct pt_regs, sp) },
80 { "r8", 8, offsetof(struct pt_regs, r8) },
81 { "r9", 8, offsetof(struct pt_regs, r9) },
82 { "r10", 8, offsetof(struct pt_regs, r10) },
83 { "r11", 8, offsetof(struct pt_regs, r11) },
84 { "r12", 8, offsetof(struct pt_regs, r12) },
85 { "r13", 8, offsetof(struct pt_regs, r13) },
86 { "r14", 8, offsetof(struct pt_regs, r14) },
87 { "r15", 8, offsetof(struct pt_regs, r15) },
88 { "ip", 8, offsetof(struct pt_regs, ip) },
89 { "flags", 4, offsetof(struct pt_regs, flags) },
90 { "cs", 4, offsetof(struct pt_regs, cs) },
91 { "ss", 4, offsetof(struct pt_regs, ss) },
92 { "ds", 4, -1 },
93 { "es", 4, -1 },
94#endif
95 { "fs", 4, -1 },
96 { "gs", 4, -1 },
97};
98
99int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
100{
101 if (
102#ifdef CONFIG_X86_32
103 regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
104#endif
105 regno == GDB_SP || regno == GDB_ORIG_AX)
106 return 0;
107
108 if (dbg_reg_def[regno].offset != -1)
109 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
110 dbg_reg_def[regno].size);
111 return 0;
112}
113
114char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
115{
116 if (regno == GDB_ORIG_AX) {
117 memcpy(mem, ®s->orig_ax, sizeof(regs->orig_ax));
118 return "orig_ax";
119 }
120 if (regno >= DBG_MAX_REG_NUM || regno < 0)
121 return NULL;
122
123 if (dbg_reg_def[regno].offset != -1)
124 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
125 dbg_reg_def[regno].size);
126
127#ifdef CONFIG_X86_32
128 switch (regno) {
129 case GDB_SS:
130 if (!user_mode_vm(regs))
131 *(unsigned long *)mem = __KERNEL_DS;
132 break;
133 case GDB_SP:
134 if (!user_mode_vm(regs))
135 *(unsigned long *)mem = kernel_stack_pointer(regs);
136 break;
137 case GDB_GS:
138 case GDB_FS:
139 *(unsigned long *)mem = 0xFFFF;
140 break;
141 }
142#endif
143 return dbg_reg_def[regno].name;
144}
145
146/**
147 * sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
148 * @gdb_regs: A pointer to hold the registers in the order GDB wants.
149 * @p: The &struct task_struct of the desired process.
150 *
151 * Convert the register values of the sleeping process in @p to
152 * the format that GDB expects.
153 * This function is called when kgdb does not have access to the
154 * &struct pt_regs and therefore it should fill the gdb registers
155 * @gdb_regs with what has been saved in &struct thread_struct
156 * thread field during switch_to.
157 */
158void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
159{
160#ifndef CONFIG_X86_32
161 u32 *gdb_regs32 = (u32 *)gdb_regs;
162#endif
163 gdb_regs[GDB_AX] = 0;
164 gdb_regs[GDB_BX] = 0;
165 gdb_regs[GDB_CX] = 0;
166 gdb_regs[GDB_DX] = 0;
167 gdb_regs[GDB_SI] = 0;
168 gdb_regs[GDB_DI] = 0;
169 gdb_regs[GDB_BP] = *(unsigned long *)p->thread.sp;
170#ifdef CONFIG_X86_32
171 gdb_regs[GDB_DS] = __KERNEL_DS;
172 gdb_regs[GDB_ES] = __KERNEL_DS;
173 gdb_regs[GDB_PS] = 0;
174 gdb_regs[GDB_CS] = __KERNEL_CS;
175 gdb_regs[GDB_PC] = p->thread.ip;
176 gdb_regs[GDB_SS] = __KERNEL_DS;
177 gdb_regs[GDB_FS] = 0xFFFF;
178 gdb_regs[GDB_GS] = 0xFFFF;
179#else
180 gdb_regs32[GDB_PS] = *(unsigned long *)(p->thread.sp + 8);
181 gdb_regs32[GDB_CS] = __KERNEL_CS;
182 gdb_regs32[GDB_SS] = __KERNEL_DS;
183 gdb_regs[GDB_PC] = 0;
184 gdb_regs[GDB_R8] = 0;
185 gdb_regs[GDB_R9] = 0;
186 gdb_regs[GDB_R10] = 0;
187 gdb_regs[GDB_R11] = 0;
188 gdb_regs[GDB_R12] = 0;
189 gdb_regs[GDB_R13] = 0;
190 gdb_regs[GDB_R14] = 0;
191 gdb_regs[GDB_R15] = 0;
192#endif
193 gdb_regs[GDB_SP] = p->thread.sp;
194}
195
196static struct hw_breakpoint {
197 unsigned enabled;
198 unsigned long addr;
199 int len;
200 int type;
201 struct perf_event * __percpu *pev;
202} breakinfo[HBP_NUM];
203
204static unsigned long early_dr7;
205
206static void kgdb_correct_hw_break(void)
207{
208 int breakno;
209
210 for (breakno = 0; breakno < HBP_NUM; breakno++) {
211 struct perf_event *bp;
212 struct arch_hw_breakpoint *info;
213 int val;
214 int cpu = raw_smp_processor_id();
215 if (!breakinfo[breakno].enabled)
216 continue;
217 if (dbg_is_early) {
218 set_debugreg(breakinfo[breakno].addr, breakno);
219 early_dr7 |= encode_dr7(breakno,
220 breakinfo[breakno].len,
221 breakinfo[breakno].type);
222 set_debugreg(early_dr7, 7);
223 continue;
224 }
225 bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
226 info = counter_arch_bp(bp);
227 if (bp->attr.disabled != 1)
228 continue;
229 bp->attr.bp_addr = breakinfo[breakno].addr;
230 bp->attr.bp_len = breakinfo[breakno].len;
231 bp->attr.bp_type = breakinfo[breakno].type;
232 info->address = breakinfo[breakno].addr;
233 info->len = breakinfo[breakno].len;
234 info->type = breakinfo[breakno].type;
235 val = arch_install_hw_breakpoint(bp);
236 if (!val)
237 bp->attr.disabled = 0;
238 }
239 if (!dbg_is_early)
240 hw_breakpoint_restore();
241}
242
243static int hw_break_reserve_slot(int breakno)
244{
245 int cpu;
246 int cnt = 0;
247 struct perf_event **pevent;
248
249 if (dbg_is_early)
250 return 0;
251
252 for_each_online_cpu(cpu) {
253 cnt++;
254 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
255 if (dbg_reserve_bp_slot(*pevent))
256 goto fail;
257 }
258
259 return 0;
260
261fail:
262 for_each_online_cpu(cpu) {
263 cnt--;
264 if (!cnt)
265 break;
266 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
267 dbg_release_bp_slot(*pevent);
268 }
269 return -1;
270}
271
272static int hw_break_release_slot(int breakno)
273{
274 struct perf_event **pevent;
275 int cpu;
276
277 if (dbg_is_early)
278 return 0;
279
280 for_each_online_cpu(cpu) {
281 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
282 if (dbg_release_bp_slot(*pevent))
283 /*
284 * The debugger is responsible for handing the retry on
285 * remove failure.
286 */
287 return -1;
288 }
289 return 0;
290}
291
292static int
293kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
294{
295 int i;
296
297 for (i = 0; i < HBP_NUM; i++)
298 if (breakinfo[i].addr == addr && breakinfo[i].enabled)
299 break;
300 if (i == HBP_NUM)
301 return -1;
302
303 if (hw_break_release_slot(i)) {
304 printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
305 return -1;
306 }
307 breakinfo[i].enabled = 0;
308
309 return 0;
310}
311
312static void kgdb_remove_all_hw_break(void)
313{
314 int i;
315 int cpu = raw_smp_processor_id();
316 struct perf_event *bp;
317
318 for (i = 0; i < HBP_NUM; i++) {
319 if (!breakinfo[i].enabled)
320 continue;
321 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
322 if (!bp->attr.disabled) {
323 arch_uninstall_hw_breakpoint(bp);
324 bp->attr.disabled = 1;
325 continue;
326 }
327 if (dbg_is_early)
328 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
329 breakinfo[i].type);
330 else if (hw_break_release_slot(i))
331 printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
332 breakinfo[i].addr);
333 breakinfo[i].enabled = 0;
334 }
335}
336
337static int
338kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
339{
340 int i;
341
342 for (i = 0; i < HBP_NUM; i++)
343 if (!breakinfo[i].enabled)
344 break;
345 if (i == HBP_NUM)
346 return -1;
347
348 switch (bptype) {
349 case BP_HARDWARE_BREAKPOINT:
350 len = 1;
351 breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
352 break;
353 case BP_WRITE_WATCHPOINT:
354 breakinfo[i].type = X86_BREAKPOINT_WRITE;
355 break;
356 case BP_ACCESS_WATCHPOINT:
357 breakinfo[i].type = X86_BREAKPOINT_RW;
358 break;
359 default:
360 return -1;
361 }
362 switch (len) {
363 case 1:
364 breakinfo[i].len = X86_BREAKPOINT_LEN_1;
365 break;
366 case 2:
367 breakinfo[i].len = X86_BREAKPOINT_LEN_2;
368 break;
369 case 4:
370 breakinfo[i].len = X86_BREAKPOINT_LEN_4;
371 break;
372#ifdef CONFIG_X86_64
373 case 8:
374 breakinfo[i].len = X86_BREAKPOINT_LEN_8;
375 break;
376#endif
377 default:
378 return -1;
379 }
380 breakinfo[i].addr = addr;
381 if (hw_break_reserve_slot(i)) {
382 breakinfo[i].addr = 0;
383 return -1;
384 }
385 breakinfo[i].enabled = 1;
386
387 return 0;
388}
389
390/**
391 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
392 * @regs: Current &struct pt_regs.
393 *
394 * This function will be called if the particular architecture must
395 * disable hardware debugging while it is processing gdb packets or
396 * handling exception.
397 */
398static void kgdb_disable_hw_debug(struct pt_regs *regs)
399{
400 int i;
401 int cpu = raw_smp_processor_id();
402 struct perf_event *bp;
403
404 /* Disable hardware debugging while we are in kgdb: */
405 set_debugreg(0UL, 7);
406 for (i = 0; i < HBP_NUM; i++) {
407 if (!breakinfo[i].enabled)
408 continue;
409 if (dbg_is_early) {
410 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
411 breakinfo[i].type);
412 continue;
413 }
414 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
415 if (bp->attr.disabled == 1)
416 continue;
417 arch_uninstall_hw_breakpoint(bp);
418 bp->attr.disabled = 1;
419 }
420}
421
422#ifdef CONFIG_SMP
423/**
424 * kgdb_roundup_cpus - Get other CPUs into a holding pattern
425 * @flags: Current IRQ state
426 *
427 * On SMP systems, we need to get the attention of the other CPUs
428 * and get them be in a known state. This should do what is needed
429 * to get the other CPUs to call kgdb_wait(). Note that on some arches,
430 * the NMI approach is not used for rounding up all the CPUs. For example,
431 * in case of MIPS, smp_call_function() is used to roundup CPUs. In
432 * this case, we have to make sure that interrupts are enabled before
433 * calling smp_call_function(). The argument to this function is
434 * the flags that will be used when restoring the interrupts. There is
435 * local_irq_save() call before kgdb_roundup_cpus().
436 *
437 * On non-SMP systems, this is not called.
438 */
439void kgdb_roundup_cpus(unsigned long flags)
440{
441 apic->send_IPI_allbutself(APIC_DM_NMI);
442}
443#endif
444
445/**
446 * kgdb_arch_handle_exception - Handle architecture specific GDB packets.
447 * @e_vector: The error vector of the exception that happened.
448 * @signo: The signal number of the exception that happened.
449 * @err_code: The error code of the exception that happened.
450 * @remcomInBuffer: The buffer of the packet we have read.
451 * @remcomOutBuffer: The buffer of %BUFMAX bytes to write a packet into.
452 * @linux_regs: The &struct pt_regs of the current process.
453 *
454 * This function MUST handle the 'c' and 's' command packets,
455 * as well packets to set / remove a hardware breakpoint, if used.
456 * If there are additional packets which the hardware needs to handle,
457 * they are handled here. The code should return -1 if it wants to
458 * process more packets, and a %0 or %1 if it wants to exit from the
459 * kgdb callback.
460 */
461int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
462 char *remcomInBuffer, char *remcomOutBuffer,
463 struct pt_regs *linux_regs)
464{
465 unsigned long addr;
466 char *ptr;
467
468 switch (remcomInBuffer[0]) {
469 case 'c':
470 case 's':
471 /* try to read optional parameter, pc unchanged if no parm */
472 ptr = &remcomInBuffer[1];
473 if (kgdb_hex2long(&ptr, &addr))
474 linux_regs->ip = addr;
475 case 'D':
476 case 'k':
477 /* clear the trace bit */
478 linux_regs->flags &= ~X86_EFLAGS_TF;
479 atomic_set(&kgdb_cpu_doing_single_step, -1);
480
481 /* set the trace bit if we're stepping */
482 if (remcomInBuffer[0] == 's') {
483 linux_regs->flags |= X86_EFLAGS_TF;
484 atomic_set(&kgdb_cpu_doing_single_step,
485 raw_smp_processor_id());
486 }
487
488 return 0;
489 }
490
491 /* this means that we do not want to exit from the handler: */
492 return -1;
493}
494
495static inline int
496single_step_cont(struct pt_regs *regs, struct die_args *args)
497{
498 /*
499 * Single step exception from kernel space to user space so
500 * eat the exception and continue the process:
501 */
502 printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
503 "resuming...\n");
504 kgdb_arch_handle_exception(args->trapnr, args->signr,
505 args->err, "c", "", regs);
506 /*
507 * Reset the BS bit in dr6 (pointed by args->err) to
508 * denote completion of processing
509 */
510 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
511
512 return NOTIFY_STOP;
513}
514
515static int was_in_debug_nmi[NR_CPUS];
516
517static int kgdb_nmi_handler(unsigned int cmd, struct pt_regs *regs)
518{
519 switch (cmd) {
520 case NMI_LOCAL:
521 if (atomic_read(&kgdb_active) != -1) {
522 /* KGDB CPU roundup */
523 kgdb_nmicallback(raw_smp_processor_id(), regs);
524 was_in_debug_nmi[raw_smp_processor_id()] = 1;
525 touch_nmi_watchdog();
526 return NMI_HANDLED;
527 }
528 break;
529
530 case NMI_UNKNOWN:
531 if (was_in_debug_nmi[raw_smp_processor_id()]) {
532 was_in_debug_nmi[raw_smp_processor_id()] = 0;
533 return NMI_HANDLED;
534 }
535 break;
536 default:
537 /* do nothing */
538 break;
539 }
540 return NMI_DONE;
541}
542
543static int __kgdb_notify(struct die_args *args, unsigned long cmd)
544{
545 struct pt_regs *regs = args->regs;
546
547 switch (cmd) {
548 case DIE_DEBUG:
549 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
550 if (user_mode(regs))
551 return single_step_cont(regs, args);
552 break;
553 } else if (test_thread_flag(TIF_SINGLESTEP))
554 /* This means a user thread is single stepping
555 * a system call which should be ignored
556 */
557 return NOTIFY_DONE;
558 /* fall through */
559 default:
560 if (user_mode(regs))
561 return NOTIFY_DONE;
562 }
563
564 if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
565 return NOTIFY_DONE;
566
567 /* Must touch watchdog before return to normal operation */
568 touch_nmi_watchdog();
569 return NOTIFY_STOP;
570}
571
572int kgdb_ll_trap(int cmd, const char *str,
573 struct pt_regs *regs, long err, int trap, int sig)
574{
575 struct die_args args = {
576 .regs = regs,
577 .str = str,
578 .err = err,
579 .trapnr = trap,
580 .signr = sig,
581
582 };
583
584 if (!kgdb_io_module_registered)
585 return NOTIFY_DONE;
586
587 return __kgdb_notify(&args, cmd);
588}
589
590static int
591kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
592{
593 unsigned long flags;
594 int ret;
595
596 local_irq_save(flags);
597 ret = __kgdb_notify(ptr, cmd);
598 local_irq_restore(flags);
599
600 return ret;
601}
602
603static struct notifier_block kgdb_notifier = {
604 .notifier_call = kgdb_notify,
605};
606
607/**
608 * kgdb_arch_init - Perform any architecture specific initalization.
609 *
610 * This function will handle the initalization of any architecture
611 * specific callbacks.
612 */
613int kgdb_arch_init(void)
614{
615 int retval;
616
617 retval = register_die_notifier(&kgdb_notifier);
618 if (retval)
619 goto out;
620
621 retval = register_nmi_handler(NMI_LOCAL, kgdb_nmi_handler,
622 0, "kgdb");
623 if (retval)
624 goto out1;
625
626 retval = register_nmi_handler(NMI_UNKNOWN, kgdb_nmi_handler,
627 0, "kgdb");
628
629 if (retval)
630 goto out2;
631
632 return retval;
633
634out2:
635 unregister_nmi_handler(NMI_LOCAL, "kgdb");
636out1:
637 unregister_die_notifier(&kgdb_notifier);
638out:
639 return retval;
640}
641
642static void kgdb_hw_overflow_handler(struct perf_event *event,
643 struct perf_sample_data *data, struct pt_regs *regs)
644{
645 struct task_struct *tsk = current;
646 int i;
647
648 for (i = 0; i < 4; i++)
649 if (breakinfo[i].enabled)
650 tsk->thread.debugreg6 |= (DR_TRAP0 << i);
651}
652
653void kgdb_arch_late(void)
654{
655 int i, cpu;
656 struct perf_event_attr attr;
657 struct perf_event **pevent;
658
659 /*
660 * Pre-allocate the hw breakpoint structions in the non-atomic
661 * portion of kgdb because this operation requires mutexs to
662 * complete.
663 */
664 hw_breakpoint_init(&attr);
665 attr.bp_addr = (unsigned long)kgdb_arch_init;
666 attr.bp_len = HW_BREAKPOINT_LEN_1;
667 attr.bp_type = HW_BREAKPOINT_W;
668 attr.disabled = 1;
669 for (i = 0; i < HBP_NUM; i++) {
670 if (breakinfo[i].pev)
671 continue;
672 breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
673 if (IS_ERR((void * __force)breakinfo[i].pev)) {
674 printk(KERN_ERR "kgdb: Could not allocate hw"
675 "breakpoints\nDisabling the kernel debugger\n");
676 breakinfo[i].pev = NULL;
677 kgdb_arch_exit();
678 return;
679 }
680 for_each_online_cpu(cpu) {
681 pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
682 pevent[0]->hw.sample_period = 1;
683 pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
684 if (pevent[0]->destroy != NULL) {
685 pevent[0]->destroy = NULL;
686 release_bp_slot(*pevent);
687 }
688 }
689 }
690}
691
692/**
693 * kgdb_arch_exit - Perform any architecture specific uninitalization.
694 *
695 * This function will handle the uninitalization of any architecture
696 * specific callbacks, for dynamic registration and unregistration.
697 */
698void kgdb_arch_exit(void)
699{
700 int i;
701 for (i = 0; i < 4; i++) {
702 if (breakinfo[i].pev) {
703 unregister_wide_hw_breakpoint(breakinfo[i].pev);
704 breakinfo[i].pev = NULL;
705 }
706 }
707 unregister_nmi_handler(NMI_UNKNOWN, "kgdb");
708 unregister_nmi_handler(NMI_LOCAL, "kgdb");
709 unregister_die_notifier(&kgdb_notifier);
710}
711
712/**
713 *
714 * kgdb_skipexception - Bail out of KGDB when we've been triggered.
715 * @exception: Exception vector number
716 * @regs: Current &struct pt_regs.
717 *
718 * On some architectures we need to skip a breakpoint exception when
719 * it occurs after a breakpoint has been removed.
720 *
721 * Skip an int3 exception when it occurs after a breakpoint has been
722 * removed. Backtrack eip by 1 since the int3 would have caused it to
723 * increment by 1.
724 */
725int kgdb_skipexception(int exception, struct pt_regs *regs)
726{
727 if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
728 regs->ip -= 1;
729 return 1;
730 }
731 return 0;
732}
733
734unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
735{
736 if (exception == 3)
737 return instruction_pointer(regs) - 1;
738 return instruction_pointer(regs);
739}
740
741void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
742{
743 regs->ip = ip;
744}
745
746int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
747{
748 int err;
749 char opc[BREAK_INSTR_SIZE];
750
751 bpt->type = BP_BREAKPOINT;
752 err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
753 BREAK_INSTR_SIZE);
754 if (err)
755 return err;
756 err = probe_kernel_write((char *)bpt->bpt_addr,
757 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
758#ifdef CONFIG_DEBUG_RODATA
759 if (!err)
760 return err;
761 /*
762 * It is safe to call text_poke() because normal kernel execution
763 * is stopped on all cores, so long as the text_mutex is not locked.
764 */
765 if (mutex_is_locked(&text_mutex))
766 return -EBUSY;
767 text_poke((void *)bpt->bpt_addr, arch_kgdb_ops.gdb_bpt_instr,
768 BREAK_INSTR_SIZE);
769 err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
770 if (err)
771 return err;
772 if (memcmp(opc, arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE))
773 return -EINVAL;
774 bpt->type = BP_POKE_BREAKPOINT;
775#endif /* CONFIG_DEBUG_RODATA */
776 return err;
777}
778
779int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
780{
781#ifdef CONFIG_DEBUG_RODATA
782 int err;
783 char opc[BREAK_INSTR_SIZE];
784
785 if (bpt->type != BP_POKE_BREAKPOINT)
786 goto knl_write;
787 /*
788 * It is safe to call text_poke() because normal kernel execution
789 * is stopped on all cores, so long as the text_mutex is not locked.
790 */
791 if (mutex_is_locked(&text_mutex))
792 goto knl_write;
793 text_poke((void *)bpt->bpt_addr, bpt->saved_instr, BREAK_INSTR_SIZE);
794 err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
795 if (err || memcmp(opc, bpt->saved_instr, BREAK_INSTR_SIZE))
796 goto knl_write;
797 return err;
798knl_write:
799#endif /* CONFIG_DEBUG_RODATA */
800 return probe_kernel_write((char *)bpt->bpt_addr,
801 (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
802}
803
804struct kgdb_arch arch_kgdb_ops = {
805 /* Breakpoint instruction: */
806 .gdb_bpt_instr = { 0xcc },
807 .flags = KGDB_HW_BREAKPOINT,
808 .set_hw_breakpoint = kgdb_set_hw_break,
809 .remove_hw_breakpoint = kgdb_remove_hw_break,
810 .disable_hw_break = kgdb_disable_hw_debug,
811 .remove_all_hw_break = kgdb_remove_all_hw_break,
812 .correct_hw_break = kgdb_correct_hw_break,
813};
1/*
2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License as published by the
4 * Free Software Foundation; either version 2, or (at your option) any
5 * later version.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
11 *
12 */
13
14/*
15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16 * Copyright (C) 2000-2001 VERITAS Software Corporation.
17 * Copyright (C) 2002 Andi Kleen, SuSE Labs
18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19 * Copyright (C) 2007 MontaVista Software, Inc.
20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21 */
22/****************************************************************************
23 * Contributor: Lake Stevens Instrument Division$
24 * Written by: Glenn Engel $
25 * Updated by: Amit Kale<akale@veritas.com>
26 * Updated by: Tom Rini <trini@kernel.crashing.org>
27 * Updated by: Jason Wessel <jason.wessel@windriver.com>
28 * Modified for 386 by Jim Kingdon, Cygnus Support.
29 * Origianl kgdb, compatibility with 2.1.xx kernel by
30 * David Grothe <dave@gcom.com>
31 * Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32 * X86_64 changes from Andi Kleen's patch merged by Jim Houston
33 */
34#include <linux/spinlock.h>
35#include <linux/kdebug.h>
36#include <linux/string.h>
37#include <linux/kernel.h>
38#include <linux/ptrace.h>
39#include <linux/sched.h>
40#include <linux/delay.h>
41#include <linux/kgdb.h>
42#include <linux/smp.h>
43#include <linux/nmi.h>
44#include <linux/hw_breakpoint.h>
45#include <linux/uaccess.h>
46#include <linux/memory.h>
47
48#include <asm/debugreg.h>
49#include <asm/apicdef.h>
50#include <asm/apic.h>
51#include <asm/nmi.h>
52
53struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
54{
55#ifdef CONFIG_X86_32
56 { "ax", 4, offsetof(struct pt_regs, ax) },
57 { "cx", 4, offsetof(struct pt_regs, cx) },
58 { "dx", 4, offsetof(struct pt_regs, dx) },
59 { "bx", 4, offsetof(struct pt_regs, bx) },
60 { "sp", 4, offsetof(struct pt_regs, sp) },
61 { "bp", 4, offsetof(struct pt_regs, bp) },
62 { "si", 4, offsetof(struct pt_regs, si) },
63 { "di", 4, offsetof(struct pt_regs, di) },
64 { "ip", 4, offsetof(struct pt_regs, ip) },
65 { "flags", 4, offsetof(struct pt_regs, flags) },
66 { "cs", 4, offsetof(struct pt_regs, cs) },
67 { "ss", 4, offsetof(struct pt_regs, ss) },
68 { "ds", 4, offsetof(struct pt_regs, ds) },
69 { "es", 4, offsetof(struct pt_regs, es) },
70#else
71 { "ax", 8, offsetof(struct pt_regs, ax) },
72 { "bx", 8, offsetof(struct pt_regs, bx) },
73 { "cx", 8, offsetof(struct pt_regs, cx) },
74 { "dx", 8, offsetof(struct pt_regs, dx) },
75 { "si", 8, offsetof(struct pt_regs, si) },
76 { "di", 8, offsetof(struct pt_regs, di) },
77 { "bp", 8, offsetof(struct pt_regs, bp) },
78 { "sp", 8, offsetof(struct pt_regs, sp) },
79 { "r8", 8, offsetof(struct pt_regs, r8) },
80 { "r9", 8, offsetof(struct pt_regs, r9) },
81 { "r10", 8, offsetof(struct pt_regs, r10) },
82 { "r11", 8, offsetof(struct pt_regs, r11) },
83 { "r12", 8, offsetof(struct pt_regs, r12) },
84 { "r13", 8, offsetof(struct pt_regs, r13) },
85 { "r14", 8, offsetof(struct pt_regs, r14) },
86 { "r15", 8, offsetof(struct pt_regs, r15) },
87 { "ip", 8, offsetof(struct pt_regs, ip) },
88 { "flags", 4, offsetof(struct pt_regs, flags) },
89 { "cs", 4, offsetof(struct pt_regs, cs) },
90 { "ss", 4, offsetof(struct pt_regs, ss) },
91 { "ds", 4, -1 },
92 { "es", 4, -1 },
93#endif
94 { "fs", 4, -1 },
95 { "gs", 4, -1 },
96};
97
98int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
99{
100 if (
101#ifdef CONFIG_X86_32
102 regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
103#endif
104 regno == GDB_SP || regno == GDB_ORIG_AX)
105 return 0;
106
107 if (dbg_reg_def[regno].offset != -1)
108 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
109 dbg_reg_def[regno].size);
110 return 0;
111}
112
113char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
114{
115 if (regno == GDB_ORIG_AX) {
116 memcpy(mem, ®s->orig_ax, sizeof(regs->orig_ax));
117 return "orig_ax";
118 }
119 if (regno >= DBG_MAX_REG_NUM || regno < 0)
120 return NULL;
121
122 if (dbg_reg_def[regno].offset != -1)
123 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
124 dbg_reg_def[regno].size);
125
126#ifdef CONFIG_X86_32
127 switch (regno) {
128 case GDB_SS:
129 if (!user_mode(regs))
130 *(unsigned long *)mem = __KERNEL_DS;
131 break;
132 case GDB_SP:
133 if (!user_mode(regs))
134 *(unsigned long *)mem = kernel_stack_pointer(regs);
135 break;
136 case GDB_GS:
137 case GDB_FS:
138 *(unsigned long *)mem = 0xFFFF;
139 break;
140 }
141#endif
142 return dbg_reg_def[regno].name;
143}
144
145/**
146 * sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
147 * @gdb_regs: A pointer to hold the registers in the order GDB wants.
148 * @p: The &struct task_struct of the desired process.
149 *
150 * Convert the register values of the sleeping process in @p to
151 * the format that GDB expects.
152 * This function is called when kgdb does not have access to the
153 * &struct pt_regs and therefore it should fill the gdb registers
154 * @gdb_regs with what has been saved in &struct thread_struct
155 * thread field during switch_to.
156 */
157void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
158{
159#ifndef CONFIG_X86_32
160 u32 *gdb_regs32 = (u32 *)gdb_regs;
161#endif
162 gdb_regs[GDB_AX] = 0;
163 gdb_regs[GDB_BX] = 0;
164 gdb_regs[GDB_CX] = 0;
165 gdb_regs[GDB_DX] = 0;
166 gdb_regs[GDB_SI] = 0;
167 gdb_regs[GDB_DI] = 0;
168 gdb_regs[GDB_BP] = *(unsigned long *)p->thread.sp;
169#ifdef CONFIG_X86_32
170 gdb_regs[GDB_DS] = __KERNEL_DS;
171 gdb_regs[GDB_ES] = __KERNEL_DS;
172 gdb_regs[GDB_PS] = 0;
173 gdb_regs[GDB_CS] = __KERNEL_CS;
174 gdb_regs[GDB_PC] = p->thread.ip;
175 gdb_regs[GDB_SS] = __KERNEL_DS;
176 gdb_regs[GDB_FS] = 0xFFFF;
177 gdb_regs[GDB_GS] = 0xFFFF;
178#else
179 gdb_regs32[GDB_PS] = *(unsigned long *)(p->thread.sp + 8);
180 gdb_regs32[GDB_CS] = __KERNEL_CS;
181 gdb_regs32[GDB_SS] = __KERNEL_DS;
182 gdb_regs[GDB_PC] = 0;
183 gdb_regs[GDB_R8] = 0;
184 gdb_regs[GDB_R9] = 0;
185 gdb_regs[GDB_R10] = 0;
186 gdb_regs[GDB_R11] = 0;
187 gdb_regs[GDB_R12] = 0;
188 gdb_regs[GDB_R13] = 0;
189 gdb_regs[GDB_R14] = 0;
190 gdb_regs[GDB_R15] = 0;
191#endif
192 gdb_regs[GDB_SP] = p->thread.sp;
193}
194
195static struct hw_breakpoint {
196 unsigned enabled;
197 unsigned long addr;
198 int len;
199 int type;
200 struct perf_event * __percpu *pev;
201} breakinfo[HBP_NUM];
202
203static unsigned long early_dr7;
204
205static void kgdb_correct_hw_break(void)
206{
207 int breakno;
208
209 for (breakno = 0; breakno < HBP_NUM; breakno++) {
210 struct perf_event *bp;
211 struct arch_hw_breakpoint *info;
212 int val;
213 int cpu = raw_smp_processor_id();
214 if (!breakinfo[breakno].enabled)
215 continue;
216 if (dbg_is_early) {
217 set_debugreg(breakinfo[breakno].addr, breakno);
218 early_dr7 |= encode_dr7(breakno,
219 breakinfo[breakno].len,
220 breakinfo[breakno].type);
221 set_debugreg(early_dr7, 7);
222 continue;
223 }
224 bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
225 info = counter_arch_bp(bp);
226 if (bp->attr.disabled != 1)
227 continue;
228 bp->attr.bp_addr = breakinfo[breakno].addr;
229 bp->attr.bp_len = breakinfo[breakno].len;
230 bp->attr.bp_type = breakinfo[breakno].type;
231 info->address = breakinfo[breakno].addr;
232 info->len = breakinfo[breakno].len;
233 info->type = breakinfo[breakno].type;
234 val = arch_install_hw_breakpoint(bp);
235 if (!val)
236 bp->attr.disabled = 0;
237 }
238 if (!dbg_is_early)
239 hw_breakpoint_restore();
240}
241
242static int hw_break_reserve_slot(int breakno)
243{
244 int cpu;
245 int cnt = 0;
246 struct perf_event **pevent;
247
248 if (dbg_is_early)
249 return 0;
250
251 for_each_online_cpu(cpu) {
252 cnt++;
253 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
254 if (dbg_reserve_bp_slot(*pevent))
255 goto fail;
256 }
257
258 return 0;
259
260fail:
261 for_each_online_cpu(cpu) {
262 cnt--;
263 if (!cnt)
264 break;
265 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
266 dbg_release_bp_slot(*pevent);
267 }
268 return -1;
269}
270
271static int hw_break_release_slot(int breakno)
272{
273 struct perf_event **pevent;
274 int cpu;
275
276 if (dbg_is_early)
277 return 0;
278
279 for_each_online_cpu(cpu) {
280 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
281 if (dbg_release_bp_slot(*pevent))
282 /*
283 * The debugger is responsible for handing the retry on
284 * remove failure.
285 */
286 return -1;
287 }
288 return 0;
289}
290
291static int
292kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
293{
294 int i;
295
296 for (i = 0; i < HBP_NUM; i++)
297 if (breakinfo[i].addr == addr && breakinfo[i].enabled)
298 break;
299 if (i == HBP_NUM)
300 return -1;
301
302 if (hw_break_release_slot(i)) {
303 printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
304 return -1;
305 }
306 breakinfo[i].enabled = 0;
307
308 return 0;
309}
310
311static void kgdb_remove_all_hw_break(void)
312{
313 int i;
314 int cpu = raw_smp_processor_id();
315 struct perf_event *bp;
316
317 for (i = 0; i < HBP_NUM; i++) {
318 if (!breakinfo[i].enabled)
319 continue;
320 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
321 if (!bp->attr.disabled) {
322 arch_uninstall_hw_breakpoint(bp);
323 bp->attr.disabled = 1;
324 continue;
325 }
326 if (dbg_is_early)
327 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
328 breakinfo[i].type);
329 else if (hw_break_release_slot(i))
330 printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
331 breakinfo[i].addr);
332 breakinfo[i].enabled = 0;
333 }
334}
335
336static int
337kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
338{
339 int i;
340
341 for (i = 0; i < HBP_NUM; i++)
342 if (!breakinfo[i].enabled)
343 break;
344 if (i == HBP_NUM)
345 return -1;
346
347 switch (bptype) {
348 case BP_HARDWARE_BREAKPOINT:
349 len = 1;
350 breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
351 break;
352 case BP_WRITE_WATCHPOINT:
353 breakinfo[i].type = X86_BREAKPOINT_WRITE;
354 break;
355 case BP_ACCESS_WATCHPOINT:
356 breakinfo[i].type = X86_BREAKPOINT_RW;
357 break;
358 default:
359 return -1;
360 }
361 switch (len) {
362 case 1:
363 breakinfo[i].len = X86_BREAKPOINT_LEN_1;
364 break;
365 case 2:
366 breakinfo[i].len = X86_BREAKPOINT_LEN_2;
367 break;
368 case 4:
369 breakinfo[i].len = X86_BREAKPOINT_LEN_4;
370 break;
371#ifdef CONFIG_X86_64
372 case 8:
373 breakinfo[i].len = X86_BREAKPOINT_LEN_8;
374 break;
375#endif
376 default:
377 return -1;
378 }
379 breakinfo[i].addr = addr;
380 if (hw_break_reserve_slot(i)) {
381 breakinfo[i].addr = 0;
382 return -1;
383 }
384 breakinfo[i].enabled = 1;
385
386 return 0;
387}
388
389/**
390 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
391 * @regs: Current &struct pt_regs.
392 *
393 * This function will be called if the particular architecture must
394 * disable hardware debugging while it is processing gdb packets or
395 * handling exception.
396 */
397static void kgdb_disable_hw_debug(struct pt_regs *regs)
398{
399 int i;
400 int cpu = raw_smp_processor_id();
401 struct perf_event *bp;
402
403 /* Disable hardware debugging while we are in kgdb: */
404 set_debugreg(0UL, 7);
405 for (i = 0; i < HBP_NUM; i++) {
406 if (!breakinfo[i].enabled)
407 continue;
408 if (dbg_is_early) {
409 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
410 breakinfo[i].type);
411 continue;
412 }
413 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
414 if (bp->attr.disabled == 1)
415 continue;
416 arch_uninstall_hw_breakpoint(bp);
417 bp->attr.disabled = 1;
418 }
419}
420
421#ifdef CONFIG_SMP
422/**
423 * kgdb_roundup_cpus - Get other CPUs into a holding pattern
424 * @flags: Current IRQ state
425 *
426 * On SMP systems, we need to get the attention of the other CPUs
427 * and get them be in a known state. This should do what is needed
428 * to get the other CPUs to call kgdb_wait(). Note that on some arches,
429 * the NMI approach is not used for rounding up all the CPUs. For example,
430 * in case of MIPS, smp_call_function() is used to roundup CPUs. In
431 * this case, we have to make sure that interrupts are enabled before
432 * calling smp_call_function(). The argument to this function is
433 * the flags that will be used when restoring the interrupts. There is
434 * local_irq_save() call before kgdb_roundup_cpus().
435 *
436 * On non-SMP systems, this is not called.
437 */
438void kgdb_roundup_cpus(unsigned long flags)
439{
440 apic->send_IPI_allbutself(APIC_DM_NMI);
441}
442#endif
443
444/**
445 * kgdb_arch_handle_exception - Handle architecture specific GDB packets.
446 * @e_vector: The error vector of the exception that happened.
447 * @signo: The signal number of the exception that happened.
448 * @err_code: The error code of the exception that happened.
449 * @remcomInBuffer: The buffer of the packet we have read.
450 * @remcomOutBuffer: The buffer of %BUFMAX bytes to write a packet into.
451 * @linux_regs: The &struct pt_regs of the current process.
452 *
453 * This function MUST handle the 'c' and 's' command packets,
454 * as well packets to set / remove a hardware breakpoint, if used.
455 * If there are additional packets which the hardware needs to handle,
456 * they are handled here. The code should return -1 if it wants to
457 * process more packets, and a %0 or %1 if it wants to exit from the
458 * kgdb callback.
459 */
460int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
461 char *remcomInBuffer, char *remcomOutBuffer,
462 struct pt_regs *linux_regs)
463{
464 unsigned long addr;
465 char *ptr;
466
467 switch (remcomInBuffer[0]) {
468 case 'c':
469 case 's':
470 /* try to read optional parameter, pc unchanged if no parm */
471 ptr = &remcomInBuffer[1];
472 if (kgdb_hex2long(&ptr, &addr))
473 linux_regs->ip = addr;
474 case 'D':
475 case 'k':
476 /* clear the trace bit */
477 linux_regs->flags &= ~X86_EFLAGS_TF;
478 atomic_set(&kgdb_cpu_doing_single_step, -1);
479
480 /* set the trace bit if we're stepping */
481 if (remcomInBuffer[0] == 's') {
482 linux_regs->flags |= X86_EFLAGS_TF;
483 atomic_set(&kgdb_cpu_doing_single_step,
484 raw_smp_processor_id());
485 }
486
487 return 0;
488 }
489
490 /* this means that we do not want to exit from the handler: */
491 return -1;
492}
493
494static inline int
495single_step_cont(struct pt_regs *regs, struct die_args *args)
496{
497 /*
498 * Single step exception from kernel space to user space so
499 * eat the exception and continue the process:
500 */
501 printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
502 "resuming...\n");
503 kgdb_arch_handle_exception(args->trapnr, args->signr,
504 args->err, "c", "", regs);
505 /*
506 * Reset the BS bit in dr6 (pointed by args->err) to
507 * denote completion of processing
508 */
509 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
510
511 return NOTIFY_STOP;
512}
513
514static DECLARE_BITMAP(was_in_debug_nmi, NR_CPUS);
515
516static int kgdb_nmi_handler(unsigned int cmd, struct pt_regs *regs)
517{
518 int cpu;
519
520 switch (cmd) {
521 case NMI_LOCAL:
522 if (atomic_read(&kgdb_active) != -1) {
523 /* KGDB CPU roundup */
524 cpu = raw_smp_processor_id();
525 kgdb_nmicallback(cpu, regs);
526 set_bit(cpu, was_in_debug_nmi);
527 touch_nmi_watchdog();
528
529 return NMI_HANDLED;
530 }
531 break;
532
533 case NMI_UNKNOWN:
534 cpu = raw_smp_processor_id();
535
536 if (__test_and_clear_bit(cpu, was_in_debug_nmi))
537 return NMI_HANDLED;
538
539 break;
540 default:
541 /* do nothing */
542 break;
543 }
544 return NMI_DONE;
545}
546
547static int __kgdb_notify(struct die_args *args, unsigned long cmd)
548{
549 struct pt_regs *regs = args->regs;
550
551 switch (cmd) {
552 case DIE_DEBUG:
553 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
554 if (user_mode(regs))
555 return single_step_cont(regs, args);
556 break;
557 } else if (test_thread_flag(TIF_SINGLESTEP))
558 /* This means a user thread is single stepping
559 * a system call which should be ignored
560 */
561 return NOTIFY_DONE;
562 /* fall through */
563 default:
564 if (user_mode(regs))
565 return NOTIFY_DONE;
566 }
567
568 if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
569 return NOTIFY_DONE;
570
571 /* Must touch watchdog before return to normal operation */
572 touch_nmi_watchdog();
573 return NOTIFY_STOP;
574}
575
576int kgdb_ll_trap(int cmd, const char *str,
577 struct pt_regs *regs, long err, int trap, int sig)
578{
579 struct die_args args = {
580 .regs = regs,
581 .str = str,
582 .err = err,
583 .trapnr = trap,
584 .signr = sig,
585
586 };
587
588 if (!kgdb_io_module_registered)
589 return NOTIFY_DONE;
590
591 return __kgdb_notify(&args, cmd);
592}
593
594static int
595kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
596{
597 unsigned long flags;
598 int ret;
599
600 local_irq_save(flags);
601 ret = __kgdb_notify(ptr, cmd);
602 local_irq_restore(flags);
603
604 return ret;
605}
606
607static struct notifier_block kgdb_notifier = {
608 .notifier_call = kgdb_notify,
609};
610
611/**
612 * kgdb_arch_init - Perform any architecture specific initialization.
613 *
614 * This function will handle the initialization of any architecture
615 * specific callbacks.
616 */
617int kgdb_arch_init(void)
618{
619 int retval;
620
621 retval = register_die_notifier(&kgdb_notifier);
622 if (retval)
623 goto out;
624
625 retval = register_nmi_handler(NMI_LOCAL, kgdb_nmi_handler,
626 0, "kgdb");
627 if (retval)
628 goto out1;
629
630 retval = register_nmi_handler(NMI_UNKNOWN, kgdb_nmi_handler,
631 0, "kgdb");
632
633 if (retval)
634 goto out2;
635
636 return retval;
637
638out2:
639 unregister_nmi_handler(NMI_LOCAL, "kgdb");
640out1:
641 unregister_die_notifier(&kgdb_notifier);
642out:
643 return retval;
644}
645
646static void kgdb_hw_overflow_handler(struct perf_event *event,
647 struct perf_sample_data *data, struct pt_regs *regs)
648{
649 struct task_struct *tsk = current;
650 int i;
651
652 for (i = 0; i < 4; i++)
653 if (breakinfo[i].enabled)
654 tsk->thread.debugreg6 |= (DR_TRAP0 << i);
655}
656
657void kgdb_arch_late(void)
658{
659 int i, cpu;
660 struct perf_event_attr attr;
661 struct perf_event **pevent;
662
663 /*
664 * Pre-allocate the hw breakpoint structions in the non-atomic
665 * portion of kgdb because this operation requires mutexs to
666 * complete.
667 */
668 hw_breakpoint_init(&attr);
669 attr.bp_addr = (unsigned long)kgdb_arch_init;
670 attr.bp_len = HW_BREAKPOINT_LEN_1;
671 attr.bp_type = HW_BREAKPOINT_W;
672 attr.disabled = 1;
673 for (i = 0; i < HBP_NUM; i++) {
674 if (breakinfo[i].pev)
675 continue;
676 breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
677 if (IS_ERR((void * __force)breakinfo[i].pev)) {
678 printk(KERN_ERR "kgdb: Could not allocate hw"
679 "breakpoints\nDisabling the kernel debugger\n");
680 breakinfo[i].pev = NULL;
681 kgdb_arch_exit();
682 return;
683 }
684 for_each_online_cpu(cpu) {
685 pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
686 pevent[0]->hw.sample_period = 1;
687 pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
688 if (pevent[0]->destroy != NULL) {
689 pevent[0]->destroy = NULL;
690 release_bp_slot(*pevent);
691 }
692 }
693 }
694}
695
696/**
697 * kgdb_arch_exit - Perform any architecture specific uninitalization.
698 *
699 * This function will handle the uninitalization of any architecture
700 * specific callbacks, for dynamic registration and unregistration.
701 */
702void kgdb_arch_exit(void)
703{
704 int i;
705 for (i = 0; i < 4; i++) {
706 if (breakinfo[i].pev) {
707 unregister_wide_hw_breakpoint(breakinfo[i].pev);
708 breakinfo[i].pev = NULL;
709 }
710 }
711 unregister_nmi_handler(NMI_UNKNOWN, "kgdb");
712 unregister_nmi_handler(NMI_LOCAL, "kgdb");
713 unregister_die_notifier(&kgdb_notifier);
714}
715
716/**
717 *
718 * kgdb_skipexception - Bail out of KGDB when we've been triggered.
719 * @exception: Exception vector number
720 * @regs: Current &struct pt_regs.
721 *
722 * On some architectures we need to skip a breakpoint exception when
723 * it occurs after a breakpoint has been removed.
724 *
725 * Skip an int3 exception when it occurs after a breakpoint has been
726 * removed. Backtrack eip by 1 since the int3 would have caused it to
727 * increment by 1.
728 */
729int kgdb_skipexception(int exception, struct pt_regs *regs)
730{
731 if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
732 regs->ip -= 1;
733 return 1;
734 }
735 return 0;
736}
737
738unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
739{
740 if (exception == 3)
741 return instruction_pointer(regs) - 1;
742 return instruction_pointer(regs);
743}
744
745void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
746{
747 regs->ip = ip;
748}
749
750int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
751{
752 int err;
753 char opc[BREAK_INSTR_SIZE];
754
755 bpt->type = BP_BREAKPOINT;
756 err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
757 BREAK_INSTR_SIZE);
758 if (err)
759 return err;
760 err = probe_kernel_write((char *)bpt->bpt_addr,
761 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
762 if (!err)
763 return err;
764 /*
765 * It is safe to call text_poke() because normal kernel execution
766 * is stopped on all cores, so long as the text_mutex is not locked.
767 */
768 if (mutex_is_locked(&text_mutex))
769 return -EBUSY;
770 text_poke((void *)bpt->bpt_addr, arch_kgdb_ops.gdb_bpt_instr,
771 BREAK_INSTR_SIZE);
772 err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
773 if (err)
774 return err;
775 if (memcmp(opc, arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE))
776 return -EINVAL;
777 bpt->type = BP_POKE_BREAKPOINT;
778
779 return err;
780}
781
782int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
783{
784 int err;
785 char opc[BREAK_INSTR_SIZE];
786
787 if (bpt->type != BP_POKE_BREAKPOINT)
788 goto knl_write;
789 /*
790 * It is safe to call text_poke() because normal kernel execution
791 * is stopped on all cores, so long as the text_mutex is not locked.
792 */
793 if (mutex_is_locked(&text_mutex))
794 goto knl_write;
795 text_poke((void *)bpt->bpt_addr, bpt->saved_instr, BREAK_INSTR_SIZE);
796 err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
797 if (err || memcmp(opc, bpt->saved_instr, BREAK_INSTR_SIZE))
798 goto knl_write;
799 return err;
800
801knl_write:
802 return probe_kernel_write((char *)bpt->bpt_addr,
803 (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
804}
805
806struct kgdb_arch arch_kgdb_ops = {
807 /* Breakpoint instruction: */
808 .gdb_bpt_instr = { 0xcc },
809 .flags = KGDB_HW_BREAKPOINT,
810 .set_hw_breakpoint = kgdb_set_hw_break,
811 .remove_hw_breakpoint = kgdb_remove_hw_break,
812 .disable_hw_break = kgdb_disable_hw_debug,
813 .remove_all_hw_break = kgdb_remove_all_hw_break,
814 .correct_hw_break = kgdb_correct_hw_break,
815};