Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1/*
  2 *  Copyright (C) 1994 Linus Torvalds
  3 *
  4 *  Pentium III FXSR, SSE support
  5 *  General FPU state handling cleanups
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 */
  8#include <asm/fpu/internal.h>
  9#include <asm/fpu/regset.h>
 10#include <asm/fpu/signal.h>
 11#include <asm/traps.h>
 12
 13#include <linux/hardirq.h>
 14
 15/*
 16 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
 17 * depending on the FPU hardware format:
 18 */
 19union fpregs_state init_fpstate __read_mostly;
 20
 21/*
 22 * Track whether the kernel is using the FPU state
 23 * currently.
 24 *
 25 * This flag is used:
 26 *
 27 *   - by IRQ context code to potentially use the FPU
 28 *     if it's unused.
 29 *
 30 *   - to debug kernel_fpu_begin()/end() correctness
 31 */
 32static DEFINE_PER_CPU(bool, in_kernel_fpu);
 33
 34/*
 35 * Track which context is using the FPU on the CPU:
 36 */
 37DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
 38
 39static void kernel_fpu_disable(void)
 40{
 41	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
 42	this_cpu_write(in_kernel_fpu, true);
 43}
 44
 45static void kernel_fpu_enable(void)
 46{
 47	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
 48	this_cpu_write(in_kernel_fpu, false);
 49}
 50
 51static bool kernel_fpu_disabled(void)
 52{
 53	return this_cpu_read(in_kernel_fpu);
 54}
 55
 56/*
 57 * Were we in an interrupt that interrupted kernel mode?
 58 *
 59 * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
 60 * pair does nothing at all: the thread must not have fpu (so
 61 * that we don't try to save the FPU state), and TS must
 62 * be set (so that the clts/stts pair does nothing that is
 63 * visible in the interrupted kernel thread).
 64 *
 65 * Except for the eagerfpu case when we return true; in the likely case
 66 * the thread has FPU but we are not going to set/clear TS.
 67 */
 68static bool interrupted_kernel_fpu_idle(void)
 69{
 70	if (kernel_fpu_disabled())
 71		return false;
 72
 73	if (use_eager_fpu())
 74		return true;
 75
 76	return !current->thread.fpu.fpregs_active && (read_cr0() & X86_CR0_TS);
 77}
 78
 79/*
 80 * Were we in user mode (or vm86 mode) when we were
 81 * interrupted?
 82 *
 83 * Doing kernel_fpu_begin/end() is ok if we are running
 84 * in an interrupt context from user mode - we'll just
 85 * save the FPU state as required.
 86 */
 87static bool interrupted_user_mode(void)
 88{
 89	struct pt_regs *regs = get_irq_regs();
 90	return regs && user_mode(regs);
 91}
 92
 93/*
 94 * Can we use the FPU in kernel mode with the
 95 * whole "kernel_fpu_begin/end()" sequence?
 96 *
 97 * It's always ok in process context (ie "not interrupt")
 98 * but it is sometimes ok even from an irq.
 99 */
100bool irq_fpu_usable(void)
101{
102	return !in_interrupt() ||
103		interrupted_user_mode() ||
104		interrupted_kernel_fpu_idle();
105}
106EXPORT_SYMBOL(irq_fpu_usable);
107
108void __kernel_fpu_begin(void)
109{
110	struct fpu *fpu = &current->thread.fpu;
111
112	WARN_ON_FPU(!irq_fpu_usable());
113
114	kernel_fpu_disable();
115
116	if (fpu->fpregs_active) {
117		/*
118		 * Ignore return value -- we don't care if reg state
119		 * is clobbered.
120		 */
121		copy_fpregs_to_fpstate(fpu);
122	} else {
123		this_cpu_write(fpu_fpregs_owner_ctx, NULL);
124		__fpregs_activate_hw();
125	}
126}
127EXPORT_SYMBOL(__kernel_fpu_begin);
128
129void __kernel_fpu_end(void)
130{
131	struct fpu *fpu = &current->thread.fpu;
132
133	if (fpu->fpregs_active)
134		copy_kernel_to_fpregs(&fpu->state);
135	else
136		__fpregs_deactivate_hw();
137
138	kernel_fpu_enable();
139}
140EXPORT_SYMBOL(__kernel_fpu_end);
141
142void kernel_fpu_begin(void)
143{
144	preempt_disable();
145	__kernel_fpu_begin();
146}
147EXPORT_SYMBOL_GPL(kernel_fpu_begin);
148
149void kernel_fpu_end(void)
150{
151	__kernel_fpu_end();
152	preempt_enable();
153}
154EXPORT_SYMBOL_GPL(kernel_fpu_end);
155
156/*
157 * CR0::TS save/restore functions:
158 */
159int irq_ts_save(void)
160{
161	/*
162	 * If in process context and not atomic, we can take a spurious DNA fault.
163	 * Otherwise, doing clts() in process context requires disabling preemption
164	 * or some heavy lifting like kernel_fpu_begin()
165	 */
166	if (!in_atomic())
167		return 0;
168
169	if (read_cr0() & X86_CR0_TS) {
170		clts();
171		return 1;
172	}
173
174	return 0;
175}
176EXPORT_SYMBOL_GPL(irq_ts_save);
177
178void irq_ts_restore(int TS_state)
179{
180	if (TS_state)
181		stts();
182}
183EXPORT_SYMBOL_GPL(irq_ts_restore);
184
185/*
186 * Save the FPU state (mark it for reload if necessary):
187 *
188 * This only ever gets called for the current task.
189 */
190void fpu__save(struct fpu *fpu)
191{
192	WARN_ON_FPU(fpu != &current->thread.fpu);
193
194	preempt_disable();
195	if (fpu->fpregs_active) {
196		if (!copy_fpregs_to_fpstate(fpu)) {
197			if (use_eager_fpu())
198				copy_kernel_to_fpregs(&fpu->state);
199			else
200				fpregs_deactivate(fpu);
201		}
202	}
203	preempt_enable();
204}
205EXPORT_SYMBOL_GPL(fpu__save);
206
207/*
208 * Legacy x87 fpstate state init:
209 */
210static inline void fpstate_init_fstate(struct fregs_state *fp)
211{
212	fp->cwd = 0xffff037fu;
213	fp->swd = 0xffff0000u;
214	fp->twd = 0xffffffffu;
215	fp->fos = 0xffff0000u;
216}
217
218void fpstate_init(union fpregs_state *state)
219{
220	if (!cpu_has_fpu) {
221		fpstate_init_soft(&state->soft);
222		return;
223	}
224
225	memset(state, 0, xstate_size);
226
227	if (cpu_has_fxsr)
228		fpstate_init_fxstate(&state->fxsave);
229	else
230		fpstate_init_fstate(&state->fsave);
231}
232EXPORT_SYMBOL_GPL(fpstate_init);
233
234int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
235{
236	dst_fpu->counter = 0;
237	dst_fpu->fpregs_active = 0;
238	dst_fpu->last_cpu = -1;
239
240	if (!src_fpu->fpstate_active || !cpu_has_fpu)
241		return 0;
242
243	WARN_ON_FPU(src_fpu != &current->thread.fpu);
244
245	/*
246	 * Don't let 'init optimized' areas of the XSAVE area
247	 * leak into the child task:
248	 */
249	if (use_eager_fpu())
250		memset(&dst_fpu->state.xsave, 0, xstate_size);
251
252	/*
253	 * Save current FPU registers directly into the child
254	 * FPU context, without any memory-to-memory copying.
255	 * In lazy mode, if the FPU context isn't loaded into
256	 * fpregs, CR0.TS will be set and do_device_not_available
257	 * will load the FPU context.
258	 *
259	 * We have to do all this with preemption disabled,
260	 * mostly because of the FNSAVE case, because in that
261	 * case we must not allow preemption in the window
262	 * between the FNSAVE and us marking the context lazy.
263	 *
264	 * It shouldn't be an issue as even FNSAVE is plenty
265	 * fast in terms of critical section length.
266	 */
267	preempt_disable();
268	if (!copy_fpregs_to_fpstate(dst_fpu)) {
269		memcpy(&src_fpu->state, &dst_fpu->state, xstate_size);
270
271		if (use_eager_fpu())
272			copy_kernel_to_fpregs(&src_fpu->state);
273		else
274			fpregs_deactivate(src_fpu);
275	}
276	preempt_enable();
277
278	return 0;
279}
280
281/*
282 * Activate the current task's in-memory FPU context,
283 * if it has not been used before:
284 */
285void fpu__activate_curr(struct fpu *fpu)
286{
287	WARN_ON_FPU(fpu != &current->thread.fpu);
288
289	if (!fpu->fpstate_active) {
290		fpstate_init(&fpu->state);
291
292		/* Safe to do for the current task: */
293		fpu->fpstate_active = 1;
294	}
295}
296EXPORT_SYMBOL_GPL(fpu__activate_curr);
297
298/*
299 * This function must be called before we read a task's fpstate.
300 *
301 * If the task has not used the FPU before then initialize its
302 * fpstate.
303 *
304 * If the task has used the FPU before then save it.
305 */
306void fpu__activate_fpstate_read(struct fpu *fpu)
307{
308	/*
309	 * If fpregs are active (in the current CPU), then
310	 * copy them to the fpstate:
311	 */
312	if (fpu->fpregs_active) {
313		fpu__save(fpu);
314	} else {
315		if (!fpu->fpstate_active) {
316			fpstate_init(&fpu->state);
317
318			/* Safe to do for current and for stopped child tasks: */
319			fpu->fpstate_active = 1;
320		}
321	}
322}
323
324/*
325 * This function must be called before we write a task's fpstate.
326 *
327 * If the task has used the FPU before then unlazy it.
328 * If the task has not used the FPU before then initialize its fpstate.
329 *
330 * After this function call, after registers in the fpstate are
331 * modified and the child task has woken up, the child task will
332 * restore the modified FPU state from the modified context. If we
333 * didn't clear its lazy status here then the lazy in-registers
334 * state pending on its former CPU could be restored, corrupting
335 * the modifications.
336 */
337void fpu__activate_fpstate_write(struct fpu *fpu)
338{
339	/*
340	 * Only stopped child tasks can be used to modify the FPU
341	 * state in the fpstate buffer:
342	 */
343	WARN_ON_FPU(fpu == &current->thread.fpu);
344
345	if (fpu->fpstate_active) {
346		/* Invalidate any lazy state: */
347		fpu->last_cpu = -1;
348	} else {
349		fpstate_init(&fpu->state);
350
351		/* Safe to do for stopped child tasks: */
352		fpu->fpstate_active = 1;
353	}
354}
355
356/*
357 * This function must be called before we write the current
358 * task's fpstate.
359 *
360 * This call gets the current FPU register state and moves
361 * it in to the 'fpstate'.  Preemption is disabled so that
362 * no writes to the 'fpstate' can occur from context
363 * swiches.
364 *
365 * Must be followed by a fpu__current_fpstate_write_end().
366 */
367void fpu__current_fpstate_write_begin(void)
368{
369	struct fpu *fpu = &current->thread.fpu;
370
371	/*
372	 * Ensure that the context-switching code does not write
373	 * over the fpstate while we are doing our update.
374	 */
375	preempt_disable();
376
377	/*
378	 * Move the fpregs in to the fpu's 'fpstate'.
379	 */
380	fpu__activate_fpstate_read(fpu);
381
382	/*
383	 * The caller is about to write to 'fpu'.  Ensure that no
384	 * CPU thinks that its fpregs match the fpstate.  This
385	 * ensures we will not be lazy and skip a XRSTOR in the
386	 * future.
387	 */
388	fpu->last_cpu = -1;
389}
390
391/*
392 * This function must be paired with fpu__current_fpstate_write_begin()
393 *
394 * This will ensure that the modified fpstate gets placed back in
395 * the fpregs if necessary.
396 *
397 * Note: This function may be called whether or not an _actual_
398 * write to the fpstate occurred.
399 */
400void fpu__current_fpstate_write_end(void)
401{
402	struct fpu *fpu = &current->thread.fpu;
403
404	/*
405	 * 'fpu' now has an updated copy of the state, but the
406	 * registers may still be out of date.  Update them with
407	 * an XRSTOR if they are active.
408	 */
409	if (fpregs_active())
410		copy_kernel_to_fpregs(&fpu->state);
411
412	/*
413	 * Our update is done and the fpregs/fpstate are in sync
414	 * if necessary.  Context switches can happen again.
415	 */
416	preempt_enable();
417}
418
419/*
420 * 'fpu__restore()' is called to copy FPU registers from
421 * the FPU fpstate to the live hw registers and to activate
422 * access to the hardware registers, so that FPU instructions
423 * can be used afterwards.
424 *
425 * Must be called with kernel preemption disabled (for example
426 * with local interrupts disabled, as it is in the case of
427 * do_device_not_available()).
428 */
429void fpu__restore(struct fpu *fpu)
430{
431	fpu__activate_curr(fpu);
432
433	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
434	kernel_fpu_disable();
435	fpregs_activate(fpu);
436	copy_kernel_to_fpregs(&fpu->state);
437	fpu->counter++;
438	kernel_fpu_enable();
439}
440EXPORT_SYMBOL_GPL(fpu__restore);
441
442/*
443 * Drops current FPU state: deactivates the fpregs and
444 * the fpstate. NOTE: it still leaves previous contents
445 * in the fpregs in the eager-FPU case.
446 *
447 * This function can be used in cases where we know that
448 * a state-restore is coming: either an explicit one,
449 * or a reschedule.
450 */
451void fpu__drop(struct fpu *fpu)
452{
453	preempt_disable();
454	fpu->counter = 0;
455
456	if (fpu->fpregs_active) {
457		/* Ignore delayed exceptions from user space */
458		asm volatile("1: fwait\n"
459			     "2:\n"
460			     _ASM_EXTABLE(1b, 2b));
461		fpregs_deactivate(fpu);
462	}
463
464	fpu->fpstate_active = 0;
465
466	preempt_enable();
467}
468
469/*
470 * Clear FPU registers by setting them up from
471 * the init fpstate:
472 */
473static inline void copy_init_fpstate_to_fpregs(void)
474{
475	if (use_xsave())
476		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
477	else if (static_cpu_has(X86_FEATURE_FXSR))
478		copy_kernel_to_fxregs(&init_fpstate.fxsave);
479	else
480		copy_kernel_to_fregs(&init_fpstate.fsave);
481}
482
483/*
484 * Clear the FPU state back to init state.
485 *
486 * Called by sys_execve(), by the signal handler code and by various
487 * error paths.
488 */
489void fpu__clear(struct fpu *fpu)
490{
491	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
492
493	if (!use_eager_fpu() || !static_cpu_has(X86_FEATURE_FPU)) {
494		/* FPU state will be reallocated lazily at the first use. */
495		fpu__drop(fpu);
496	} else {
497		if (!fpu->fpstate_active) {
498			fpu__activate_curr(fpu);
499			user_fpu_begin();
500		}
501		copy_init_fpstate_to_fpregs();
502	}
503}
504
505/*
506 * x87 math exception handling:
507 */
508
509static inline unsigned short get_fpu_cwd(struct fpu *fpu)
510{
511	if (cpu_has_fxsr) {
512		return fpu->state.fxsave.cwd;
513	} else {
514		return (unsigned short)fpu->state.fsave.cwd;
515	}
516}
517
518static inline unsigned short get_fpu_swd(struct fpu *fpu)
519{
520	if (cpu_has_fxsr) {
521		return fpu->state.fxsave.swd;
522	} else {
523		return (unsigned short)fpu->state.fsave.swd;
524	}
525}
526
527static inline unsigned short get_fpu_mxcsr(struct fpu *fpu)
528{
529	if (cpu_has_xmm) {
530		return fpu->state.fxsave.mxcsr;
531	} else {
532		return MXCSR_DEFAULT;
533	}
534}
535
536int fpu__exception_code(struct fpu *fpu, int trap_nr)
537{
538	int err;
539
540	if (trap_nr == X86_TRAP_MF) {
541		unsigned short cwd, swd;
542		/*
543		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
544		 * status.  0x3f is the exception bits in these regs, 0x200 is the
545		 * C1 reg you need in case of a stack fault, 0x040 is the stack
546		 * fault bit.  We should only be taking one exception at a time,
547		 * so if this combination doesn't produce any single exception,
548		 * then we have a bad program that isn't synchronizing its FPU usage
549		 * and it will suffer the consequences since we won't be able to
550		 * fully reproduce the context of the exception
551		 */
552		cwd = get_fpu_cwd(fpu);
553		swd = get_fpu_swd(fpu);
554
555		err = swd & ~cwd;
556	} else {
557		/*
558		 * The SIMD FPU exceptions are handled a little differently, as there
559		 * is only a single status/control register.  Thus, to determine which
560		 * unmasked exception was caught we must mask the exception mask bits
561		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
562		 */
563		unsigned short mxcsr = get_fpu_mxcsr(fpu);
564		err = ~(mxcsr >> 7) & mxcsr;
565	}
566
567	if (err & 0x001) {	/* Invalid op */
568		/*
569		 * swd & 0x240 == 0x040: Stack Underflow
570		 * swd & 0x240 == 0x240: Stack Overflow
571		 * User must clear the SF bit (0x40) if set
572		 */
573		return FPE_FLTINV;
574	} else if (err & 0x004) { /* Divide by Zero */
575		return FPE_FLTDIV;
576	} else if (err & 0x008) { /* Overflow */
577		return FPE_FLTOVF;
578	} else if (err & 0x012) { /* Denormal, Underflow */
579		return FPE_FLTUND;
580	} else if (err & 0x020) { /* Precision */
581		return FPE_FLTRES;
582	}
583
584	/*
585	 * If we're using IRQ 13, or supposedly even some trap
586	 * X86_TRAP_MF implementations, it's possible
587	 * we get a spurious trap, which is not an error.
588	 */
589	return 0;
590}