Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1#include <linux/perf_event.h>
  2#include <linux/types.h>
  3
  4#include <asm/perf_event.h>
  5#include <asm/msr.h>
  6#include <asm/insn.h>
  7
  8#include "perf_event.h"
  9
 10enum {
 11	LBR_FORMAT_32		= 0x00,
 12	LBR_FORMAT_LIP		= 0x01,
 13	LBR_FORMAT_EIP		= 0x02,
 14	LBR_FORMAT_EIP_FLAGS	= 0x03,
 15};
 16
 17/*
 18 * Intel LBR_SELECT bits
 19 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
 20 *
 21 * Hardware branch filter (not available on all CPUs)
 22 */
 23#define LBR_KERNEL_BIT		0 /* do not capture at ring0 */
 24#define LBR_USER_BIT		1 /* do not capture at ring > 0 */
 25#define LBR_JCC_BIT		2 /* do not capture conditional branches */
 26#define LBR_REL_CALL_BIT	3 /* do not capture relative calls */
 27#define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */
 28#define LBR_RETURN_BIT		5 /* do not capture near returns */
 29#define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */
 30#define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */
 31#define LBR_FAR_BIT		8 /* do not capture far branches */
 32
 33#define LBR_KERNEL	(1 << LBR_KERNEL_BIT)
 34#define LBR_USER	(1 << LBR_USER_BIT)
 35#define LBR_JCC		(1 << LBR_JCC_BIT)
 36#define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT)
 37#define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT)
 38#define LBR_RETURN	(1 << LBR_RETURN_BIT)
 39#define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT)
 40#define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT)
 41#define LBR_FAR		(1 << LBR_FAR_BIT)
 42
 43#define LBR_PLM (LBR_KERNEL | LBR_USER)
 44
 45#define LBR_SEL_MASK	0x1ff	/* valid bits in LBR_SELECT */
 46#define LBR_NOT_SUPP	-1	/* LBR filter not supported */
 47#define LBR_IGN		0	/* ignored */
 48
 49#define LBR_ANY		 \
 50	(LBR_JCC	|\
 51	 LBR_REL_CALL	|\
 52	 LBR_IND_CALL	|\
 53	 LBR_RETURN	|\
 54	 LBR_REL_JMP	|\
 55	 LBR_IND_JMP	|\
 56	 LBR_FAR)
 57
 58#define LBR_FROM_FLAG_MISPRED  (1ULL << 63)
 59
 60#define for_each_branch_sample_type(x) \
 61	for ((x) = PERF_SAMPLE_BRANCH_USER; \
 62	     (x) < PERF_SAMPLE_BRANCH_MAX; (x) <<= 1)
 63
 64/*
 65 * x86control flow change classification
 66 * x86control flow changes include branches, interrupts, traps, faults
 67 */
 68enum {
 69	X86_BR_NONE     = 0,      /* unknown */
 70
 71	X86_BR_USER     = 1 << 0, /* branch target is user */
 72	X86_BR_KERNEL   = 1 << 1, /* branch target is kernel */
 73
 74	X86_BR_CALL     = 1 << 2, /* call */
 75	X86_BR_RET      = 1 << 3, /* return */
 76	X86_BR_SYSCALL  = 1 << 4, /* syscall */
 77	X86_BR_SYSRET   = 1 << 5, /* syscall return */
 78	X86_BR_INT      = 1 << 6, /* sw interrupt */
 79	X86_BR_IRET     = 1 << 7, /* return from interrupt */
 80	X86_BR_JCC      = 1 << 8, /* conditional */
 81	X86_BR_JMP      = 1 << 9, /* jump */
 82	X86_BR_IRQ      = 1 << 10,/* hw interrupt or trap or fault */
 83	X86_BR_IND_CALL = 1 << 11,/* indirect calls */
 84};
 85
 86#define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
 87
 88#define X86_BR_ANY       \
 89	(X86_BR_CALL    |\
 90	 X86_BR_RET     |\
 91	 X86_BR_SYSCALL |\
 92	 X86_BR_SYSRET  |\
 93	 X86_BR_INT     |\
 94	 X86_BR_IRET    |\
 95	 X86_BR_JCC     |\
 96	 X86_BR_JMP	 |\
 97	 X86_BR_IRQ	 |\
 98	 X86_BR_IND_CALL)
 99
100#define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
101
102#define X86_BR_ANY_CALL		 \
103	(X86_BR_CALL		|\
104	 X86_BR_IND_CALL	|\
105	 X86_BR_SYSCALL		|\
106	 X86_BR_IRQ		|\
107	 X86_BR_INT)
108
109static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
110
111/*
112 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
113 * otherwise it becomes near impossible to get a reliable stack.
114 */
115
116static void __intel_pmu_lbr_enable(void)
117{
118	u64 debugctl;
119	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
120
121	if (cpuc->lbr_sel)
122		wrmsrl(MSR_LBR_SELECT, cpuc->lbr_sel->config);
123
124	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
125	debugctl |= (DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
126	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
127}
128
129static void __intel_pmu_lbr_disable(void)
130{
131	u64 debugctl;
132
133	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
134	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
135	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
136}
137
138static void intel_pmu_lbr_reset_32(void)
139{
140	int i;
141
142	for (i = 0; i < x86_pmu.lbr_nr; i++)
143		wrmsrl(x86_pmu.lbr_from + i, 0);
144}
145
146static void intel_pmu_lbr_reset_64(void)
147{
148	int i;
149
150	for (i = 0; i < x86_pmu.lbr_nr; i++) {
151		wrmsrl(x86_pmu.lbr_from + i, 0);
152		wrmsrl(x86_pmu.lbr_to   + i, 0);
153	}
154}
155
156void intel_pmu_lbr_reset(void)
157{
158	if (!x86_pmu.lbr_nr)
159		return;
160
161	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
162		intel_pmu_lbr_reset_32();
163	else
164		intel_pmu_lbr_reset_64();
165}
166
167void intel_pmu_lbr_enable(struct perf_event *event)
168{
169	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
170
171	if (!x86_pmu.lbr_nr)
172		return;
173
174	/*
175	 * Reset the LBR stack if we changed task context to
176	 * avoid data leaks.
177	 */
178	if (event->ctx->task && cpuc->lbr_context != event->ctx) {
179		intel_pmu_lbr_reset();
180		cpuc->lbr_context = event->ctx;
181	}
182	cpuc->br_sel = event->hw.branch_reg.reg;
183
184	cpuc->lbr_users++;
185}
186
187void intel_pmu_lbr_disable(struct perf_event *event)
188{
189	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
190
191	if (!x86_pmu.lbr_nr)
192		return;
193
194	cpuc->lbr_users--;
195	WARN_ON_ONCE(cpuc->lbr_users < 0);
196
197	if (cpuc->enabled && !cpuc->lbr_users) {
198		__intel_pmu_lbr_disable();
199		/* avoid stale pointer */
200		cpuc->lbr_context = NULL;
201	}
202}
203
204void intel_pmu_lbr_enable_all(void)
205{
206	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
207
208	if (cpuc->lbr_users)
209		__intel_pmu_lbr_enable();
210}
211
212void intel_pmu_lbr_disable_all(void)
213{
214	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
215
216	if (cpuc->lbr_users)
217		__intel_pmu_lbr_disable();
218}
219
220/*
221 * TOS = most recently recorded branch
222 */
223static inline u64 intel_pmu_lbr_tos(void)
224{
225	u64 tos;
226
227	rdmsrl(x86_pmu.lbr_tos, tos);
228
229	return tos;
230}
231
232static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
233{
234	unsigned long mask = x86_pmu.lbr_nr - 1;
235	u64 tos = intel_pmu_lbr_tos();
236	int i;
237
238	for (i = 0; i < x86_pmu.lbr_nr; i++) {
239		unsigned long lbr_idx = (tos - i) & mask;
240		union {
241			struct {
242				u32 from;
243				u32 to;
244			};
245			u64     lbr;
246		} msr_lastbranch;
247
248		rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
249
250		cpuc->lbr_entries[i].from	= msr_lastbranch.from;
251		cpuc->lbr_entries[i].to		= msr_lastbranch.to;
252		cpuc->lbr_entries[i].mispred	= 0;
253		cpuc->lbr_entries[i].predicted	= 0;
254		cpuc->lbr_entries[i].reserved	= 0;
255	}
256	cpuc->lbr_stack.nr = i;
257}
258
259/*
260 * Due to lack of segmentation in Linux the effective address (offset)
261 * is the same as the linear address, allowing us to merge the LIP and EIP
262 * LBR formats.
263 */
264static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
265{
266	unsigned long mask = x86_pmu.lbr_nr - 1;
267	int lbr_format = x86_pmu.intel_cap.lbr_format;
268	u64 tos = intel_pmu_lbr_tos();
269	int i;
270
271	for (i = 0; i < x86_pmu.lbr_nr; i++) {
272		unsigned long lbr_idx = (tos - i) & mask;
273		u64 from, to, mis = 0, pred = 0;
274
275		rdmsrl(x86_pmu.lbr_from + lbr_idx, from);
276		rdmsrl(x86_pmu.lbr_to   + lbr_idx, to);
277
278		if (lbr_format == LBR_FORMAT_EIP_FLAGS) {
279			mis = !!(from & LBR_FROM_FLAG_MISPRED);
280			pred = !mis;
281			from = (u64)((((s64)from) << 1) >> 1);
282		}
283
284		cpuc->lbr_entries[i].from	= from;
285		cpuc->lbr_entries[i].to		= to;
286		cpuc->lbr_entries[i].mispred	= mis;
287		cpuc->lbr_entries[i].predicted	= pred;
288		cpuc->lbr_entries[i].reserved	= 0;
289	}
290	cpuc->lbr_stack.nr = i;
291}
292
293void intel_pmu_lbr_read(void)
294{
295	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
296
297	if (!cpuc->lbr_users)
298		return;
299
300	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
301		intel_pmu_lbr_read_32(cpuc);
302	else
303		intel_pmu_lbr_read_64(cpuc);
304
305	intel_pmu_lbr_filter(cpuc);
306}
307
308/*
309 * SW filter is used:
310 * - in case there is no HW filter
311 * - in case the HW filter has errata or limitations
312 */
313static void intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
314{
315	u64 br_type = event->attr.branch_sample_type;
316	int mask = 0;
317
318	if (br_type & PERF_SAMPLE_BRANCH_USER)
319		mask |= X86_BR_USER;
320
321	if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
322		mask |= X86_BR_KERNEL;
323
324	/* we ignore BRANCH_HV here */
325
326	if (br_type & PERF_SAMPLE_BRANCH_ANY)
327		mask |= X86_BR_ANY;
328
329	if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
330		mask |= X86_BR_ANY_CALL;
331
332	if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
333		mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
334
335	if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
336		mask |= X86_BR_IND_CALL;
337	/*
338	 * stash actual user request into reg, it may
339	 * be used by fixup code for some CPU
340	 */
341	event->hw.branch_reg.reg = mask;
342}
343
344/*
345 * setup the HW LBR filter
346 * Used only when available, may not be enough to disambiguate
347 * all branches, may need the help of the SW filter
348 */
349static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
350{
351	struct hw_perf_event_extra *reg;
352	u64 br_type = event->attr.branch_sample_type;
353	u64 mask = 0, m;
354	u64 v;
355
356	for_each_branch_sample_type(m) {
357		if (!(br_type & m))
358			continue;
359
360		v = x86_pmu.lbr_sel_map[m];
361		if (v == LBR_NOT_SUPP)
362			return -EOPNOTSUPP;
363
364		if (v != LBR_IGN)
365			mask |= v;
366	}
367	reg = &event->hw.branch_reg;
368	reg->idx = EXTRA_REG_LBR;
369
370	/* LBR_SELECT operates in suppress mode so invert mask */
371	reg->config = ~mask & x86_pmu.lbr_sel_mask;
372
373	return 0;
374}
375
376int intel_pmu_setup_lbr_filter(struct perf_event *event)
377{
378	int ret = 0;
379
380	/*
381	 * no LBR on this PMU
382	 */
383	if (!x86_pmu.lbr_nr)
384		return -EOPNOTSUPP;
385
386	/*
387	 * setup SW LBR filter
388	 */
389	intel_pmu_setup_sw_lbr_filter(event);
390
391	/*
392	 * setup HW LBR filter, if any
393	 */
394	if (x86_pmu.lbr_sel_map)
395		ret = intel_pmu_setup_hw_lbr_filter(event);
396
397	return ret;
398}
399
400/*
401 * return the type of control flow change at address "from"
402 * intruction is not necessarily a branch (in case of interrupt).
403 *
404 * The branch type returned also includes the priv level of the
405 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
406 *
407 * If a branch type is unknown OR the instruction cannot be
408 * decoded (e.g., text page not present), then X86_BR_NONE is
409 * returned.
410 */
411static int branch_type(unsigned long from, unsigned long to)
412{
413	struct insn insn;
414	void *addr;
415	int bytes, size = MAX_INSN_SIZE;
416	int ret = X86_BR_NONE;
417	int ext, to_plm, from_plm;
418	u8 buf[MAX_INSN_SIZE];
419	int is64 = 0;
420
421	to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
422	from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
423
424	/*
425	 * maybe zero if lbr did not fill up after a reset by the time
426	 * we get a PMU interrupt
427	 */
428	if (from == 0 || to == 0)
429		return X86_BR_NONE;
430
431	if (from_plm == X86_BR_USER) {
432		/*
433		 * can happen if measuring at the user level only
434		 * and we interrupt in a kernel thread, e.g., idle.
435		 */
436		if (!current->mm)
437			return X86_BR_NONE;
438
439		/* may fail if text not present */
440		bytes = copy_from_user_nmi(buf, (void __user *)from, size);
441		if (bytes != size)
442			return X86_BR_NONE;
443
444		addr = buf;
445	} else
446		addr = (void *)from;
447
448	/*
449	 * decoder needs to know the ABI especially
450	 * on 64-bit systems running 32-bit apps
451	 */
452#ifdef CONFIG_X86_64
453	is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
454#endif
455	insn_init(&insn, addr, is64);
456	insn_get_opcode(&insn);
457
458	switch (insn.opcode.bytes[0]) {
459	case 0xf:
460		switch (insn.opcode.bytes[1]) {
461		case 0x05: /* syscall */
462		case 0x34: /* sysenter */
463			ret = X86_BR_SYSCALL;
464			break;
465		case 0x07: /* sysret */
466		case 0x35: /* sysexit */
467			ret = X86_BR_SYSRET;
468			break;
469		case 0x80 ... 0x8f: /* conditional */
470			ret = X86_BR_JCC;
471			break;
472		default:
473			ret = X86_BR_NONE;
474		}
475		break;
476	case 0x70 ... 0x7f: /* conditional */
477		ret = X86_BR_JCC;
478		break;
479	case 0xc2: /* near ret */
480	case 0xc3: /* near ret */
481	case 0xca: /* far ret */
482	case 0xcb: /* far ret */
483		ret = X86_BR_RET;
484		break;
485	case 0xcf: /* iret */
486		ret = X86_BR_IRET;
487		break;
488	case 0xcc ... 0xce: /* int */
489		ret = X86_BR_INT;
490		break;
491	case 0xe8: /* call near rel */
492	case 0x9a: /* call far absolute */
493		ret = X86_BR_CALL;
494		break;
495	case 0xe0 ... 0xe3: /* loop jmp */
496		ret = X86_BR_JCC;
497		break;
498	case 0xe9 ... 0xeb: /* jmp */
499		ret = X86_BR_JMP;
500		break;
501	case 0xff: /* call near absolute, call far absolute ind */
502		insn_get_modrm(&insn);
503		ext = (insn.modrm.bytes[0] >> 3) & 0x7;
504		switch (ext) {
505		case 2: /* near ind call */
506		case 3: /* far ind call */
507			ret = X86_BR_IND_CALL;
508			break;
509		case 4:
510		case 5:
511			ret = X86_BR_JMP;
512			break;
513		}
514		break;
515	default:
516		ret = X86_BR_NONE;
517	}
518	/*
519	 * interrupts, traps, faults (and thus ring transition) may
520	 * occur on any instructions. Thus, to classify them correctly,
521	 * we need to first look at the from and to priv levels. If they
522	 * are different and to is in the kernel, then it indicates
523	 * a ring transition. If the from instruction is not a ring
524	 * transition instr (syscall, systenter, int), then it means
525	 * it was a irq, trap or fault.
526	 *
527	 * we have no way of detecting kernel to kernel faults.
528	 */
529	if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
530	    && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
531		ret = X86_BR_IRQ;
532
533	/*
534	 * branch priv level determined by target as
535	 * is done by HW when LBR_SELECT is implemented
536	 */
537	if (ret != X86_BR_NONE)
538		ret |= to_plm;
539
540	return ret;
541}
542
543/*
544 * implement actual branch filter based on user demand.
545 * Hardware may not exactly satisfy that request, thus
546 * we need to inspect opcodes. Mismatched branches are
547 * discarded. Therefore, the number of branches returned
548 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
549 */
550static void
551intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
552{
553	u64 from, to;
554	int br_sel = cpuc->br_sel;
555	int i, j, type;
556	bool compress = false;
557
558	/* if sampling all branches, then nothing to filter */
559	if ((br_sel & X86_BR_ALL) == X86_BR_ALL)
560		return;
561
562	for (i = 0; i < cpuc->lbr_stack.nr; i++) {
563
564		from = cpuc->lbr_entries[i].from;
565		to = cpuc->lbr_entries[i].to;
566
567		type = branch_type(from, to);
568
569		/* if type does not correspond, then discard */
570		if (type == X86_BR_NONE || (br_sel & type) != type) {
571			cpuc->lbr_entries[i].from = 0;
572			compress = true;
573		}
574	}
575
576	if (!compress)
577		return;
578
579	/* remove all entries with from=0 */
580	for (i = 0; i < cpuc->lbr_stack.nr; ) {
581		if (!cpuc->lbr_entries[i].from) {
582			j = i;
583			while (++j < cpuc->lbr_stack.nr)
584				cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
585			cpuc->lbr_stack.nr--;
586			if (!cpuc->lbr_entries[i].from)
587				continue;
588		}
589		i++;
590	}
591}
592
593/*
594 * Map interface branch filters onto LBR filters
595 */
596static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX] = {
597	[PERF_SAMPLE_BRANCH_ANY]	= LBR_ANY,
598	[PERF_SAMPLE_BRANCH_USER]	= LBR_USER,
599	[PERF_SAMPLE_BRANCH_KERNEL]	= LBR_KERNEL,
600	[PERF_SAMPLE_BRANCH_HV]		= LBR_IGN,
601	[PERF_SAMPLE_BRANCH_ANY_RETURN]	= LBR_RETURN | LBR_REL_JMP
602					| LBR_IND_JMP | LBR_FAR,
603	/*
604	 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
605	 */
606	[PERF_SAMPLE_BRANCH_ANY_CALL] =
607	 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
608	/*
609	 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
610	 */
611	[PERF_SAMPLE_BRANCH_IND_CALL] = LBR_IND_CALL | LBR_IND_JMP,
612};
613
614static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX] = {
615	[PERF_SAMPLE_BRANCH_ANY]	= LBR_ANY,
616	[PERF_SAMPLE_BRANCH_USER]	= LBR_USER,
617	[PERF_SAMPLE_BRANCH_KERNEL]	= LBR_KERNEL,
618	[PERF_SAMPLE_BRANCH_HV]		= LBR_IGN,
619	[PERF_SAMPLE_BRANCH_ANY_RETURN]	= LBR_RETURN | LBR_FAR,
620	[PERF_SAMPLE_BRANCH_ANY_CALL]	= LBR_REL_CALL | LBR_IND_CALL
621					| LBR_FAR,
622	[PERF_SAMPLE_BRANCH_IND_CALL]	= LBR_IND_CALL,
623};
624
625/* core */
626void intel_pmu_lbr_init_core(void)
627{
628	x86_pmu.lbr_nr     = 4;
629	x86_pmu.lbr_tos    = MSR_LBR_TOS;
630	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
631	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
632
633	/*
634	 * SW branch filter usage:
635	 * - compensate for lack of HW filter
636	 */
637	pr_cont("4-deep LBR, ");
638}
639
640/* nehalem/westmere */
641void intel_pmu_lbr_init_nhm(void)
642{
643	x86_pmu.lbr_nr     = 16;
644	x86_pmu.lbr_tos    = MSR_LBR_TOS;
645	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
646	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
647
648	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
649	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
650
651	/*
652	 * SW branch filter usage:
653	 * - workaround LBR_SEL errata (see above)
654	 * - support syscall, sysret capture.
655	 *   That requires LBR_FAR but that means far
656	 *   jmp need to be filtered out
657	 */
658	pr_cont("16-deep LBR, ");
659}
660
661/* sandy bridge */
662void intel_pmu_lbr_init_snb(void)
663{
664	x86_pmu.lbr_nr	 = 16;
665	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
666	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
667	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
668
669	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
670	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
671
672	/*
673	 * SW branch filter usage:
674	 * - support syscall, sysret capture.
675	 *   That requires LBR_FAR but that means far
676	 *   jmp need to be filtered out
677	 */
678	pr_cont("16-deep LBR, ");
679}
680
681/* atom */
682void intel_pmu_lbr_init_atom(void)
683{
684	/*
685	 * only models starting at stepping 10 seems
686	 * to have an operational LBR which can freeze
687	 * on PMU interrupt
688	 */
689	if (boot_cpu_data.x86_mask < 10) {
690		pr_cont("LBR disabled due to erratum");
691		return;
692	}
693
694	x86_pmu.lbr_nr	   = 8;
695	x86_pmu.lbr_tos    = MSR_LBR_TOS;
696	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
697	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
698
699	/*
700	 * SW branch filter usage:
701	 * - compensate for lack of HW filter
702	 */
703	pr_cont("8-deep LBR, ");
704}