Linux Audio

Check our new training course

Loading...
v3.5.6
  1/* arch/sparc64/mm/tsb.c
  2 *
  3 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
  4 */
  5
  6#include <linux/kernel.h>
  7#include <linux/preempt.h>
  8#include <linux/slab.h>
  9#include <asm/page.h>
 10#include <asm/tlbflush.h>
 11#include <asm/tlb.h>
 12#include <asm/mmu_context.h>
 13#include <asm/pgtable.h>
 
 
 14#include <asm/tsb.h>
 
 15#include <asm/oplib.h>
 16
 17extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
 18
 19static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
 20{
 21	vaddr >>= hash_shift;
 22	return vaddr & (nentries - 1);
 23}
 24
 25static inline int tag_compare(unsigned long tag, unsigned long vaddr)
 26{
 27	return (tag == (vaddr >> 22));
 28}
 29
 30/* TSB flushes need only occur on the processor initiating the address
 31 * space modification, not on each cpu the address space has run on.
 32 * Only the TLB flush needs that treatment.
 33 */
 34
 35void flush_tsb_kernel_range(unsigned long start, unsigned long end)
 36{
 37	unsigned long v;
 38
 39	for (v = start; v < end; v += PAGE_SIZE) {
 40		unsigned long hash = tsb_hash(v, PAGE_SHIFT,
 41					      KERNEL_TSB_NENTRIES);
 42		struct tsb *ent = &swapper_tsb[hash];
 43
 44		if (tag_compare(ent->tag, v))
 45			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
 46	}
 47}
 48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 49static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
 50			    unsigned long tsb, unsigned long nentries)
 51{
 52	unsigned long i;
 53
 54	for (i = 0; i < tb->tlb_nr; i++) {
 55		unsigned long v = tb->vaddrs[i];
 56		unsigned long tag, ent, hash;
 57
 58		v &= ~0x1UL;
 
 
 
 59
 60		hash = tsb_hash(v, hash_shift, nentries);
 61		ent = tsb + (hash * sizeof(struct tsb));
 62		tag = (v >> 22UL);
 63
 64		tsb_flush(ent, tag);
 
 
 
 
 
 
 
 
 
 
 
 
 65	}
 
 
 66}
 67
 68void flush_tsb_user(struct tlb_batch *tb)
 69{
 70	struct mm_struct *mm = tb->mm;
 71	unsigned long nentries, base, flags;
 72
 73	spin_lock_irqsave(&mm->context.lock, flags);
 74
 75	base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
 76	nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
 77	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 78		base = __pa(base);
 79	__flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
 80
 81#ifdef CONFIG_HUGETLB_PAGE
 82	if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
 83		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
 84		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
 85		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 86			base = __pa(base);
 87		__flush_tsb_one(tb, HPAGE_SHIFT, base, nentries);
 88	}
 89#endif
 90	spin_unlock_irqrestore(&mm->context.lock, flags);
 91}
 92
 93#if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
 94#define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_8K
 95#define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_8K
 96#elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
 97#define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_64K
 98#define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_64K
 99#else
100#error Broken base page size setting...
101#endif
102
103#ifdef CONFIG_HUGETLB_PAGE
104#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
105#define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_64K
106#define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_64K
107#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
108#define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_512K
109#define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_512K
110#elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
111#define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_4MB
112#define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_4MB
113#else
114#error Broken huge page size setting...
115#endif
116#endif
117
118static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
119{
120	unsigned long tsb_reg, base, tsb_paddr;
121	unsigned long page_sz, tte;
122
123	mm->context.tsb_block[tsb_idx].tsb_nentries =
124		tsb_bytes / sizeof(struct tsb);
125
126	base = TSBMAP_BASE;
 
 
 
 
 
 
 
 
 
 
 
 
127	tte = pgprot_val(PAGE_KERNEL_LOCKED);
128	tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
129	BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
130
131	/* Use the smallest page size that can map the whole TSB
132	 * in one TLB entry.
133	 */
134	switch (tsb_bytes) {
135	case 8192 << 0:
136		tsb_reg = 0x0UL;
137#ifdef DCACHE_ALIASING_POSSIBLE
138		base += (tsb_paddr & 8192);
139#endif
140		page_sz = 8192;
141		break;
142
143	case 8192 << 1:
144		tsb_reg = 0x1UL;
145		page_sz = 64 * 1024;
146		break;
147
148	case 8192 << 2:
149		tsb_reg = 0x2UL;
150		page_sz = 64 * 1024;
151		break;
152
153	case 8192 << 3:
154		tsb_reg = 0x3UL;
155		page_sz = 64 * 1024;
156		break;
157
158	case 8192 << 4:
159		tsb_reg = 0x4UL;
160		page_sz = 512 * 1024;
161		break;
162
163	case 8192 << 5:
164		tsb_reg = 0x5UL;
165		page_sz = 512 * 1024;
166		break;
167
168	case 8192 << 6:
169		tsb_reg = 0x6UL;
170		page_sz = 512 * 1024;
171		break;
172
173	case 8192 << 7:
174		tsb_reg = 0x7UL;
175		page_sz = 4 * 1024 * 1024;
176		break;
177
178	default:
179		printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
180		       current->comm, current->pid, tsb_bytes);
181		do_exit(SIGSEGV);
182	}
183	tte |= pte_sz_bits(page_sz);
184
185	if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
186		/* Physical mapping, no locked TLB entry for TSB.  */
187		tsb_reg |= tsb_paddr;
188
189		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
190		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
191		mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
192	} else {
193		tsb_reg |= base;
194		tsb_reg |= (tsb_paddr & (page_sz - 1UL));
195		tte |= (tsb_paddr & ~(page_sz - 1UL));
196
197		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
198		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
199		mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
200	}
201
202	/* Setup the Hypervisor TSB descriptor.  */
203	if (tlb_type == hypervisor) {
204		struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
205
206		switch (tsb_idx) {
207		case MM_TSB_BASE:
208			hp->pgsz_idx = HV_PGSZ_IDX_BASE;
209			break;
210#ifdef CONFIG_HUGETLB_PAGE
211		case MM_TSB_HUGE:
212			hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
213			break;
214#endif
215		default:
216			BUG();
217		}
218		hp->assoc = 1;
219		hp->num_ttes = tsb_bytes / 16;
220		hp->ctx_idx = 0;
221		switch (tsb_idx) {
222		case MM_TSB_BASE:
223			hp->pgsz_mask = HV_PGSZ_MASK_BASE;
224			break;
225#ifdef CONFIG_HUGETLB_PAGE
226		case MM_TSB_HUGE:
227			hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
228			break;
229#endif
230		default:
231			BUG();
232		}
233		hp->tsb_base = tsb_paddr;
234		hp->resv = 0;
235	}
236}
237
238struct kmem_cache *pgtable_cache __read_mostly;
239
240static struct kmem_cache *tsb_caches[8] __read_mostly;
241
242static const char *tsb_cache_names[8] = {
243	"tsb_8KB",
244	"tsb_16KB",
245	"tsb_32KB",
246	"tsb_64KB",
247	"tsb_128KB",
248	"tsb_256KB",
249	"tsb_512KB",
250	"tsb_1MB",
251};
252
253void __init pgtable_cache_init(void)
254{
255	unsigned long i;
256
257	pgtable_cache = kmem_cache_create("pgtable_cache",
258					  PAGE_SIZE, PAGE_SIZE,
259					  0,
260					  _clear_page);
261	if (!pgtable_cache) {
262		prom_printf("pgtable_cache_init(): Could not create!\n");
263		prom_halt();
264	}
265
266	for (i = 0; i < 8; i++) {
267		unsigned long size = 8192 << i;
268		const char *name = tsb_cache_names[i];
269
270		tsb_caches[i] = kmem_cache_create(name,
271						  size, size,
272						  0, NULL);
273		if (!tsb_caches[i]) {
274			prom_printf("Could not create %s cache\n", name);
275			prom_halt();
276		}
277	}
278}
279
280int sysctl_tsb_ratio = -2;
281
282static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
283{
284	unsigned long num_ents = (new_size / sizeof(struct tsb));
285
286	if (sysctl_tsb_ratio < 0)
287		return num_ents - (num_ents >> -sysctl_tsb_ratio);
288	else
289		return num_ents + (num_ents >> sysctl_tsb_ratio);
290}
291
292/* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
293 * do_sparc64_fault() invokes this routine to try and grow it.
294 *
295 * When we reach the maximum TSB size supported, we stick ~0UL into
296 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
297 * will not trigger any longer.
298 *
299 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
300 * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
301 * must be 512K aligned.  It also must be physically contiguous, so we
302 * cannot use vmalloc().
303 *
304 * The idea here is to grow the TSB when the RSS of the process approaches
305 * the number of entries that the current TSB can hold at once.  Currently,
306 * we trigger when the RSS hits 3/4 of the TSB capacity.
307 */
308void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
309{
310	unsigned long max_tsb_size = 1 * 1024 * 1024;
311	unsigned long new_size, old_size, flags;
312	struct tsb *old_tsb, *new_tsb;
313	unsigned long new_cache_index, old_cache_index;
314	unsigned long new_rss_limit;
315	gfp_t gfp_flags;
316
317	if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
318		max_tsb_size = (PAGE_SIZE << MAX_ORDER);
319
320	new_cache_index = 0;
321	for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
322		new_rss_limit = tsb_size_to_rss_limit(new_size);
323		if (new_rss_limit > rss)
324			break;
325		new_cache_index++;
326	}
327
328	if (new_size == max_tsb_size)
329		new_rss_limit = ~0UL;
330
331retry_tsb_alloc:
332	gfp_flags = GFP_KERNEL;
333	if (new_size > (PAGE_SIZE * 2))
334		gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
335
336	new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
337					gfp_flags, numa_node_id());
338	if (unlikely(!new_tsb)) {
339		/* Not being able to fork due to a high-order TSB
340		 * allocation failure is very bad behavior.  Just back
341		 * down to a 0-order allocation and force no TSB
342		 * growing for this address space.
343		 */
344		if (mm->context.tsb_block[tsb_index].tsb == NULL &&
345		    new_cache_index > 0) {
346			new_cache_index = 0;
347			new_size = 8192;
348			new_rss_limit = ~0UL;
349			goto retry_tsb_alloc;
350		}
351
352		/* If we failed on a TSB grow, we are under serious
353		 * memory pressure so don't try to grow any more.
354		 */
355		if (mm->context.tsb_block[tsb_index].tsb != NULL)
356			mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
357		return;
358	}
359
360	/* Mark all tags as invalid.  */
361	tsb_init(new_tsb, new_size);
362
363	/* Ok, we are about to commit the changes.  If we are
364	 * growing an existing TSB the locking is very tricky,
365	 * so WATCH OUT!
366	 *
367	 * We have to hold mm->context.lock while committing to the
368	 * new TSB, this synchronizes us with processors in
369	 * flush_tsb_user() and switch_mm() for this address space.
370	 *
371	 * But even with that lock held, processors run asynchronously
372	 * accessing the old TSB via TLB miss handling.  This is OK
373	 * because those actions are just propagating state from the
374	 * Linux page tables into the TSB, page table mappings are not
375	 * being changed.  If a real fault occurs, the processor will
376	 * synchronize with us when it hits flush_tsb_user(), this is
377	 * also true for the case where vmscan is modifying the page
378	 * tables.  The only thing we need to be careful with is to
379	 * skip any locked TSB entries during copy_tsb().
380	 *
381	 * When we finish committing to the new TSB, we have to drop
382	 * the lock and ask all other cpus running this address space
383	 * to run tsb_context_switch() to see the new TSB table.
384	 */
385	spin_lock_irqsave(&mm->context.lock, flags);
386
387	old_tsb = mm->context.tsb_block[tsb_index].tsb;
388	old_cache_index =
389		(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
390	old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
391		    sizeof(struct tsb));
392
393
394	/* Handle multiple threads trying to grow the TSB at the same time.
395	 * One will get in here first, and bump the size and the RSS limit.
396	 * The others will get in here next and hit this check.
397	 */
398	if (unlikely(old_tsb &&
399		     (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
400		spin_unlock_irqrestore(&mm->context.lock, flags);
401
402		kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
403		return;
404	}
405
406	mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
407
408	if (old_tsb) {
409		extern void copy_tsb(unsigned long old_tsb_base,
410				     unsigned long old_tsb_size,
411				     unsigned long new_tsb_base,
412				     unsigned long new_tsb_size);
413		unsigned long old_tsb_base = (unsigned long) old_tsb;
414		unsigned long new_tsb_base = (unsigned long) new_tsb;
415
416		if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
417			old_tsb_base = __pa(old_tsb_base);
418			new_tsb_base = __pa(new_tsb_base);
419		}
420		copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
421	}
422
423	mm->context.tsb_block[tsb_index].tsb = new_tsb;
424	setup_tsb_params(mm, tsb_index, new_size);
425
426	spin_unlock_irqrestore(&mm->context.lock, flags);
427
428	/* If old_tsb is NULL, we're being invoked for the first time
429	 * from init_new_context().
430	 */
431	if (old_tsb) {
432		/* Reload it on the local cpu.  */
433		tsb_context_switch(mm);
434
435		/* Now force other processors to do the same.  */
436		preempt_disable();
437		smp_tsb_sync(mm);
438		preempt_enable();
439
440		/* Now it is safe to free the old tsb.  */
441		kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
442	}
443}
444
445int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
446{
447#ifdef CONFIG_HUGETLB_PAGE
448	unsigned long huge_pte_count;
449#endif
450	unsigned int i;
451
452	spin_lock_init(&mm->context.lock);
453
454	mm->context.sparc64_ctx_val = 0UL;
455
456#ifdef CONFIG_HUGETLB_PAGE
457	/* We reset it to zero because the fork() page copying
458	 * will re-increment the counters as the parent PTEs are
459	 * copied into the child address space.
460	 */
461	huge_pte_count = mm->context.huge_pte_count;
462	mm->context.huge_pte_count = 0;
463#endif
464
465	/* copy_mm() copies over the parent's mm_struct before calling
466	 * us, so we need to zero out the TSB pointer or else tsb_grow()
467	 * will be confused and think there is an older TSB to free up.
468	 */
469	for (i = 0; i < MM_NUM_TSBS; i++)
470		mm->context.tsb_block[i].tsb = NULL;
471
472	/* If this is fork, inherit the parent's TSB size.  We would
473	 * grow it to that size on the first page fault anyways.
474	 */
475	tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
476
477#ifdef CONFIG_HUGETLB_PAGE
478	if (unlikely(huge_pte_count))
479		tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
480#endif
481
482	if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
483		return -ENOMEM;
484
485	return 0;
486}
487
488static void tsb_destroy_one(struct tsb_config *tp)
489{
490	unsigned long cache_index;
491
492	if (!tp->tsb)
493		return;
494	cache_index = tp->tsb_reg_val & 0x7UL;
495	kmem_cache_free(tsb_caches[cache_index], tp->tsb);
496	tp->tsb = NULL;
497	tp->tsb_reg_val = 0UL;
498}
499
500void destroy_context(struct mm_struct *mm)
501{
502	unsigned long flags, i;
503
504	for (i = 0; i < MM_NUM_TSBS; i++)
505		tsb_destroy_one(&mm->context.tsb_block[i]);
506
507	spin_lock_irqsave(&ctx_alloc_lock, flags);
508
509	if (CTX_VALID(mm->context)) {
510		unsigned long nr = CTX_NRBITS(mm->context);
511		mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
512	}
513
514	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
515}
v4.6
  1/* arch/sparc64/mm/tsb.c
  2 *
  3 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
  4 */
  5
  6#include <linux/kernel.h>
  7#include <linux/preempt.h>
  8#include <linux/slab.h>
  9#include <asm/page.h>
 
 
 
 10#include <asm/pgtable.h>
 11#include <asm/mmu_context.h>
 12#include <asm/setup.h>
 13#include <asm/tsb.h>
 14#include <asm/tlb.h>
 15#include <asm/oplib.h>
 16
 17extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
 18
 19static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
 20{
 21	vaddr >>= hash_shift;
 22	return vaddr & (nentries - 1);
 23}
 24
 25static inline int tag_compare(unsigned long tag, unsigned long vaddr)
 26{
 27	return (tag == (vaddr >> 22));
 28}
 29
 30/* TSB flushes need only occur on the processor initiating the address
 31 * space modification, not on each cpu the address space has run on.
 32 * Only the TLB flush needs that treatment.
 33 */
 34
 35void flush_tsb_kernel_range(unsigned long start, unsigned long end)
 36{
 37	unsigned long v;
 38
 39	for (v = start; v < end; v += PAGE_SIZE) {
 40		unsigned long hash = tsb_hash(v, PAGE_SHIFT,
 41					      KERNEL_TSB_NENTRIES);
 42		struct tsb *ent = &swapper_tsb[hash];
 43
 44		if (tag_compare(ent->tag, v))
 45			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
 46	}
 47}
 48
 49static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
 50				  unsigned long hash_shift,
 51				  unsigned long nentries)
 52{
 53	unsigned long tag, ent, hash;
 54
 55	v &= ~0x1UL;
 56	hash = tsb_hash(v, hash_shift, nentries);
 57	ent = tsb + (hash * sizeof(struct tsb));
 58	tag = (v >> 22UL);
 59
 60	tsb_flush(ent, tag);
 61}
 62
 63static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
 64			    unsigned long tsb, unsigned long nentries)
 65{
 66	unsigned long i;
 67
 68	for (i = 0; i < tb->tlb_nr; i++)
 69		__flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
 70}
 71
 72void flush_tsb_user(struct tlb_batch *tb)
 73{
 74	struct mm_struct *mm = tb->mm;
 75	unsigned long nentries, base, flags;
 76
 77	spin_lock_irqsave(&mm->context.lock, flags);
 
 
 78
 79	base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
 80	nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
 81	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 82		base = __pa(base);
 83	__flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
 84
 85#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 86	if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
 87		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
 88		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
 89		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 90			base = __pa(base);
 91		__flush_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries);
 92	}
 93#endif
 94	spin_unlock_irqrestore(&mm->context.lock, flags);
 95}
 96
 97void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr)
 98{
 
 99	unsigned long nentries, base, flags;
100
101	spin_lock_irqsave(&mm->context.lock, flags);
102
103	base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
104	nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
105	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
106		base = __pa(base);
107	__flush_tsb_one_entry(base, vaddr, PAGE_SHIFT, nentries);
108
109#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
110	if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
111		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
112		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
113		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
114			base = __pa(base);
115		__flush_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT, nentries);
116	}
117#endif
118	spin_unlock_irqrestore(&mm->context.lock, flags);
119}
120
 
121#define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_8K
122#define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_8K
 
 
 
 
 
 
123
124#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 
 
 
 
 
 
 
125#define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_4MB
126#define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_4MB
 
 
 
127#endif
128
129static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
130{
131	unsigned long tsb_reg, base, tsb_paddr;
132	unsigned long page_sz, tte;
133
134	mm->context.tsb_block[tsb_idx].tsb_nentries =
135		tsb_bytes / sizeof(struct tsb);
136
137	switch (tsb_idx) {
138	case MM_TSB_BASE:
139		base = TSBMAP_8K_BASE;
140		break;
141#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
142	case MM_TSB_HUGE:
143		base = TSBMAP_4M_BASE;
144		break;
145#endif
146	default:
147		BUG();
148	}
149
150	tte = pgprot_val(PAGE_KERNEL_LOCKED);
151	tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
152	BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
153
154	/* Use the smallest page size that can map the whole TSB
155	 * in one TLB entry.
156	 */
157	switch (tsb_bytes) {
158	case 8192 << 0:
159		tsb_reg = 0x0UL;
160#ifdef DCACHE_ALIASING_POSSIBLE
161		base += (tsb_paddr & 8192);
162#endif
163		page_sz = 8192;
164		break;
165
166	case 8192 << 1:
167		tsb_reg = 0x1UL;
168		page_sz = 64 * 1024;
169		break;
170
171	case 8192 << 2:
172		tsb_reg = 0x2UL;
173		page_sz = 64 * 1024;
174		break;
175
176	case 8192 << 3:
177		tsb_reg = 0x3UL;
178		page_sz = 64 * 1024;
179		break;
180
181	case 8192 << 4:
182		tsb_reg = 0x4UL;
183		page_sz = 512 * 1024;
184		break;
185
186	case 8192 << 5:
187		tsb_reg = 0x5UL;
188		page_sz = 512 * 1024;
189		break;
190
191	case 8192 << 6:
192		tsb_reg = 0x6UL;
193		page_sz = 512 * 1024;
194		break;
195
196	case 8192 << 7:
197		tsb_reg = 0x7UL;
198		page_sz = 4 * 1024 * 1024;
199		break;
200
201	default:
202		printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
203		       current->comm, current->pid, tsb_bytes);
204		do_exit(SIGSEGV);
205	}
206	tte |= pte_sz_bits(page_sz);
207
208	if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
209		/* Physical mapping, no locked TLB entry for TSB.  */
210		tsb_reg |= tsb_paddr;
211
212		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
213		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
214		mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
215	} else {
216		tsb_reg |= base;
217		tsb_reg |= (tsb_paddr & (page_sz - 1UL));
218		tte |= (tsb_paddr & ~(page_sz - 1UL));
219
220		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
221		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
222		mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
223	}
224
225	/* Setup the Hypervisor TSB descriptor.  */
226	if (tlb_type == hypervisor) {
227		struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
228
229		switch (tsb_idx) {
230		case MM_TSB_BASE:
231			hp->pgsz_idx = HV_PGSZ_IDX_BASE;
232			break;
233#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
234		case MM_TSB_HUGE:
235			hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
236			break;
237#endif
238		default:
239			BUG();
240		}
241		hp->assoc = 1;
242		hp->num_ttes = tsb_bytes / 16;
243		hp->ctx_idx = 0;
244		switch (tsb_idx) {
245		case MM_TSB_BASE:
246			hp->pgsz_mask = HV_PGSZ_MASK_BASE;
247			break;
248#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
249		case MM_TSB_HUGE:
250			hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
251			break;
252#endif
253		default:
254			BUG();
255		}
256		hp->tsb_base = tsb_paddr;
257		hp->resv = 0;
258	}
259}
260
261struct kmem_cache *pgtable_cache __read_mostly;
262
263static struct kmem_cache *tsb_caches[8] __read_mostly;
264
265static const char *tsb_cache_names[8] = {
266	"tsb_8KB",
267	"tsb_16KB",
268	"tsb_32KB",
269	"tsb_64KB",
270	"tsb_128KB",
271	"tsb_256KB",
272	"tsb_512KB",
273	"tsb_1MB",
274};
275
276void __init pgtable_cache_init(void)
277{
278	unsigned long i;
279
280	pgtable_cache = kmem_cache_create("pgtable_cache",
281					  PAGE_SIZE, PAGE_SIZE,
282					  0,
283					  _clear_page);
284	if (!pgtable_cache) {
285		prom_printf("pgtable_cache_init(): Could not create!\n");
286		prom_halt();
287	}
288
289	for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) {
290		unsigned long size = 8192 << i;
291		const char *name = tsb_cache_names[i];
292
293		tsb_caches[i] = kmem_cache_create(name,
294						  size, size,
295						  0, NULL);
296		if (!tsb_caches[i]) {
297			prom_printf("Could not create %s cache\n", name);
298			prom_halt();
299		}
300	}
301}
302
303int sysctl_tsb_ratio = -2;
304
305static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
306{
307	unsigned long num_ents = (new_size / sizeof(struct tsb));
308
309	if (sysctl_tsb_ratio < 0)
310		return num_ents - (num_ents >> -sysctl_tsb_ratio);
311	else
312		return num_ents + (num_ents >> sysctl_tsb_ratio);
313}
314
315/* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
316 * do_sparc64_fault() invokes this routine to try and grow it.
317 *
318 * When we reach the maximum TSB size supported, we stick ~0UL into
319 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
320 * will not trigger any longer.
321 *
322 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
323 * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
324 * must be 512K aligned.  It also must be physically contiguous, so we
325 * cannot use vmalloc().
326 *
327 * The idea here is to grow the TSB when the RSS of the process approaches
328 * the number of entries that the current TSB can hold at once.  Currently,
329 * we trigger when the RSS hits 3/4 of the TSB capacity.
330 */
331void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
332{
333	unsigned long max_tsb_size = 1 * 1024 * 1024;
334	unsigned long new_size, old_size, flags;
335	struct tsb *old_tsb, *new_tsb;
336	unsigned long new_cache_index, old_cache_index;
337	unsigned long new_rss_limit;
338	gfp_t gfp_flags;
339
340	if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
341		max_tsb_size = (PAGE_SIZE << MAX_ORDER);
342
343	new_cache_index = 0;
344	for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
345		new_rss_limit = tsb_size_to_rss_limit(new_size);
346		if (new_rss_limit > rss)
347			break;
348		new_cache_index++;
349	}
350
351	if (new_size == max_tsb_size)
352		new_rss_limit = ~0UL;
353
354retry_tsb_alloc:
355	gfp_flags = GFP_KERNEL;
356	if (new_size > (PAGE_SIZE * 2))
357		gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
358
359	new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
360					gfp_flags, numa_node_id());
361	if (unlikely(!new_tsb)) {
362		/* Not being able to fork due to a high-order TSB
363		 * allocation failure is very bad behavior.  Just back
364		 * down to a 0-order allocation and force no TSB
365		 * growing for this address space.
366		 */
367		if (mm->context.tsb_block[tsb_index].tsb == NULL &&
368		    new_cache_index > 0) {
369			new_cache_index = 0;
370			new_size = 8192;
371			new_rss_limit = ~0UL;
372			goto retry_tsb_alloc;
373		}
374
375		/* If we failed on a TSB grow, we are under serious
376		 * memory pressure so don't try to grow any more.
377		 */
378		if (mm->context.tsb_block[tsb_index].tsb != NULL)
379			mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
380		return;
381	}
382
383	/* Mark all tags as invalid.  */
384	tsb_init(new_tsb, new_size);
385
386	/* Ok, we are about to commit the changes.  If we are
387	 * growing an existing TSB the locking is very tricky,
388	 * so WATCH OUT!
389	 *
390	 * We have to hold mm->context.lock while committing to the
391	 * new TSB, this synchronizes us with processors in
392	 * flush_tsb_user() and switch_mm() for this address space.
393	 *
394	 * But even with that lock held, processors run asynchronously
395	 * accessing the old TSB via TLB miss handling.  This is OK
396	 * because those actions are just propagating state from the
397	 * Linux page tables into the TSB, page table mappings are not
398	 * being changed.  If a real fault occurs, the processor will
399	 * synchronize with us when it hits flush_tsb_user(), this is
400	 * also true for the case where vmscan is modifying the page
401	 * tables.  The only thing we need to be careful with is to
402	 * skip any locked TSB entries during copy_tsb().
403	 *
404	 * When we finish committing to the new TSB, we have to drop
405	 * the lock and ask all other cpus running this address space
406	 * to run tsb_context_switch() to see the new TSB table.
407	 */
408	spin_lock_irqsave(&mm->context.lock, flags);
409
410	old_tsb = mm->context.tsb_block[tsb_index].tsb;
411	old_cache_index =
412		(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
413	old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
414		    sizeof(struct tsb));
415
416
417	/* Handle multiple threads trying to grow the TSB at the same time.
418	 * One will get in here first, and bump the size and the RSS limit.
419	 * The others will get in here next and hit this check.
420	 */
421	if (unlikely(old_tsb &&
422		     (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
423		spin_unlock_irqrestore(&mm->context.lock, flags);
424
425		kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
426		return;
427	}
428
429	mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
430
431	if (old_tsb) {
432		extern void copy_tsb(unsigned long old_tsb_base,
433				     unsigned long old_tsb_size,
434				     unsigned long new_tsb_base,
435				     unsigned long new_tsb_size);
436		unsigned long old_tsb_base = (unsigned long) old_tsb;
437		unsigned long new_tsb_base = (unsigned long) new_tsb;
438
439		if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
440			old_tsb_base = __pa(old_tsb_base);
441			new_tsb_base = __pa(new_tsb_base);
442		}
443		copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
444	}
445
446	mm->context.tsb_block[tsb_index].tsb = new_tsb;
447	setup_tsb_params(mm, tsb_index, new_size);
448
449	spin_unlock_irqrestore(&mm->context.lock, flags);
450
451	/* If old_tsb is NULL, we're being invoked for the first time
452	 * from init_new_context().
453	 */
454	if (old_tsb) {
455		/* Reload it on the local cpu.  */
456		tsb_context_switch(mm);
457
458		/* Now force other processors to do the same.  */
459		preempt_disable();
460		smp_tsb_sync(mm);
461		preempt_enable();
462
463		/* Now it is safe to free the old tsb.  */
464		kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
465	}
466}
467
468int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
469{
470#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
471	unsigned long huge_pte_count;
472#endif
473	unsigned int i;
474
475	spin_lock_init(&mm->context.lock);
476
477	mm->context.sparc64_ctx_val = 0UL;
478
479#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
480	/* We reset it to zero because the fork() page copying
481	 * will re-increment the counters as the parent PTEs are
482	 * copied into the child address space.
483	 */
484	huge_pte_count = mm->context.huge_pte_count;
485	mm->context.huge_pte_count = 0;
486#endif
487
488	/* copy_mm() copies over the parent's mm_struct before calling
489	 * us, so we need to zero out the TSB pointer or else tsb_grow()
490	 * will be confused and think there is an older TSB to free up.
491	 */
492	for (i = 0; i < MM_NUM_TSBS; i++)
493		mm->context.tsb_block[i].tsb = NULL;
494
495	/* If this is fork, inherit the parent's TSB size.  We would
496	 * grow it to that size on the first page fault anyways.
497	 */
498	tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
499
500#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
501	if (unlikely(huge_pte_count))
502		tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
503#endif
504
505	if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
506		return -ENOMEM;
507
508	return 0;
509}
510
511static void tsb_destroy_one(struct tsb_config *tp)
512{
513	unsigned long cache_index;
514
515	if (!tp->tsb)
516		return;
517	cache_index = tp->tsb_reg_val & 0x7UL;
518	kmem_cache_free(tsb_caches[cache_index], tp->tsb);
519	tp->tsb = NULL;
520	tp->tsb_reg_val = 0UL;
521}
522
523void destroy_context(struct mm_struct *mm)
524{
525	unsigned long flags, i;
526
527	for (i = 0; i < MM_NUM_TSBS; i++)
528		tsb_destroy_one(&mm->context.tsb_block[i]);
529
530	spin_lock_irqsave(&ctx_alloc_lock, flags);
531
532	if (CTX_VALID(mm->context)) {
533		unsigned long nr = CTX_NRBITS(mm->context);
534		mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
535	}
536
537	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
538}