Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * SPARC64 Huge TLB page support.
  3 *
  4 * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
  5 */
  6
  7#include <linux/init.h>
  8#include <linux/fs.h>
  9#include <linux/mm.h>
 10#include <linux/hugetlb.h>
 11#include <linux/pagemap.h>
 12#include <linux/sysctl.h>
 13
 14#include <asm/mman.h>
 15#include <asm/pgalloc.h>
 16#include <asm/tlb.h>
 17#include <asm/tlbflush.h>
 18#include <asm/cacheflush.h>
 19#include <asm/mmu_context.h>
 20
 21/* Slightly simplified from the non-hugepage variant because by
 22 * definition we don't have to worry about any page coloring stuff
 23 */
 24#define VA_EXCLUDE_START (0x0000080000000000UL - (1UL << 32UL))
 25#define VA_EXCLUDE_END   (0xfffff80000000000UL + (1UL << 32UL))
 26
 27static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *filp,
 28							unsigned long addr,
 29							unsigned long len,
 30							unsigned long pgoff,
 31							unsigned long flags)
 32{
 33	struct mm_struct *mm = current->mm;
 34	struct vm_area_struct * vma;
 35	unsigned long task_size = TASK_SIZE;
 36	unsigned long start_addr;
 37
 38	if (test_thread_flag(TIF_32BIT))
 39		task_size = STACK_TOP32;
 40	if (unlikely(len >= VA_EXCLUDE_START))
 41		return -ENOMEM;
 42
 43	if (len > mm->cached_hole_size) {
 44	        start_addr = addr = mm->free_area_cache;
 45	} else {
 46	        start_addr = addr = TASK_UNMAPPED_BASE;
 47	        mm->cached_hole_size = 0;
 
 
 
 
 
 
 
 
 48	}
 49
 50	task_size -= len;
 51
 52full_search:
 53	addr = ALIGN(addr, HPAGE_SIZE);
 54
 55	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
 56		/* At this point:  (!vma || addr < vma->vm_end). */
 57		if (addr < VA_EXCLUDE_START &&
 58		    (addr + len) >= VA_EXCLUDE_START) {
 59			addr = VA_EXCLUDE_END;
 60			vma = find_vma(mm, VA_EXCLUDE_END);
 61		}
 62		if (unlikely(task_size < addr)) {
 63			if (start_addr != TASK_UNMAPPED_BASE) {
 64				start_addr = addr = TASK_UNMAPPED_BASE;
 65				mm->cached_hole_size = 0;
 66				goto full_search;
 67			}
 68			return -ENOMEM;
 69		}
 70		if (likely(!vma || addr + len <= vma->vm_start)) {
 71			/*
 72			 * Remember the place where we stopped the search:
 73			 */
 74			mm->free_area_cache = addr + len;
 75			return addr;
 76		}
 77		if (addr + mm->cached_hole_size < vma->vm_start)
 78		        mm->cached_hole_size = vma->vm_start - addr;
 79
 80		addr = ALIGN(vma->vm_end, HPAGE_SIZE);
 81	}
 82}
 83
 84static unsigned long
 85hugetlb_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
 86				  const unsigned long len,
 87				  const unsigned long pgoff,
 88				  const unsigned long flags)
 89{
 90	struct vm_area_struct *vma;
 91	struct mm_struct *mm = current->mm;
 92	unsigned long addr = addr0;
 
 93
 94	/* This should only ever run for 32-bit processes.  */
 95	BUG_ON(!test_thread_flag(TIF_32BIT));
 96
 97	/* check if free_area_cache is useful for us */
 98	if (len <= mm->cached_hole_size) {
 99 	        mm->cached_hole_size = 0;
100 		mm->free_area_cache = mm->mmap_base;
101 	}
102
103	/* either no address requested or can't fit in requested address hole */
104	addr = mm->free_area_cache & HPAGE_MASK;
105
106	/* make sure it can fit in the remaining address space */
107	if (likely(addr > len)) {
108		vma = find_vma(mm, addr-len);
109		if (!vma || addr <= vma->vm_start) {
110			/* remember the address as a hint for next time */
111			return (mm->free_area_cache = addr-len);
112		}
113	}
114
115	if (unlikely(mm->mmap_base < len))
116		goto bottomup;
117
118	addr = (mm->mmap_base-len) & HPAGE_MASK;
119
120	do {
121		/*
122		 * Lookup failure means no vma is above this address,
123		 * else if new region fits below vma->vm_start,
124		 * return with success:
125		 */
126		vma = find_vma(mm, addr);
127		if (likely(!vma || addr+len <= vma->vm_start)) {
128			/* remember the address as a hint for next time */
129			return (mm->free_area_cache = addr);
130		}
131
132 		/* remember the largest hole we saw so far */
133 		if (addr + mm->cached_hole_size < vma->vm_start)
134 		        mm->cached_hole_size = vma->vm_start - addr;
135
136		/* try just below the current vma->vm_start */
137		addr = (vma->vm_start-len) & HPAGE_MASK;
138	} while (likely(len < vma->vm_start));
139
140bottomup:
141	/*
142	 * A failed mmap() very likely causes application failure,
143	 * so fall back to the bottom-up function here. This scenario
144	 * can happen with large stack limits and large mmap()
145	 * allocations.
146	 */
147	mm->cached_hole_size = ~0UL;
148  	mm->free_area_cache = TASK_UNMAPPED_BASE;
149	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
150	/*
151	 * Restore the topdown base:
152	 */
153	mm->free_area_cache = mm->mmap_base;
154	mm->cached_hole_size = ~0UL;
155
156	return addr;
157}
158
159unsigned long
160hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
161		unsigned long len, unsigned long pgoff, unsigned long flags)
162{
163	struct mm_struct *mm = current->mm;
164	struct vm_area_struct *vma;
165	unsigned long task_size = TASK_SIZE;
166
167	if (test_thread_flag(TIF_32BIT))
168		task_size = STACK_TOP32;
169
170	if (len & ~HPAGE_MASK)
171		return -EINVAL;
172	if (len > task_size)
173		return -ENOMEM;
174
175	if (flags & MAP_FIXED) {
176		if (prepare_hugepage_range(file, addr, len))
177			return -EINVAL;
178		return addr;
179	}
180
181	if (addr) {
182		addr = ALIGN(addr, HPAGE_SIZE);
183		vma = find_vma(mm, addr);
184		if (task_size - len >= addr &&
185		    (!vma || addr + len <= vma->vm_start))
186			return addr;
187	}
188	if (mm->get_unmapped_area == arch_get_unmapped_area)
189		return hugetlb_get_unmapped_area_bottomup(file, addr, len,
190				pgoff, flags);
191	else
192		return hugetlb_get_unmapped_area_topdown(file, addr, len,
193				pgoff, flags);
194}
195
196pte_t *huge_pte_alloc(struct mm_struct *mm,
197			unsigned long addr, unsigned long sz)
198{
199	pgd_t *pgd;
200	pud_t *pud;
201	pmd_t *pmd;
202	pte_t *pte = NULL;
203
204	/* We must align the address, because our caller will run
205	 * set_huge_pte_at() on whatever we return, which writes out
206	 * all of the sub-ptes for the hugepage range.  So we have
207	 * to give it the first such sub-pte.
208	 */
209	addr &= HPAGE_MASK;
210
211	pgd = pgd_offset(mm, addr);
212	pud = pud_alloc(mm, pgd, addr);
213	if (pud) {
214		pmd = pmd_alloc(mm, pud, addr);
215		if (pmd)
216			pte = pte_alloc_map(mm, NULL, pmd, addr);
217	}
218	return pte;
219}
220
221pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
222{
223	pgd_t *pgd;
224	pud_t *pud;
225	pmd_t *pmd;
226	pte_t *pte = NULL;
227
228	addr &= HPAGE_MASK;
229
230	pgd = pgd_offset(mm, addr);
231	if (!pgd_none(*pgd)) {
232		pud = pud_offset(pgd, addr);
233		if (!pud_none(*pud)) {
234			pmd = pmd_offset(pud, addr);
235			if (!pmd_none(*pmd))
236				pte = pte_offset_map(pmd, addr);
237		}
238	}
239	return pte;
240}
241
242int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
243{
244	return 0;
245}
246
247void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
248		     pte_t *ptep, pte_t entry)
249{
250	int i;
251
252	if (!pte_present(*ptep) && pte_present(entry))
253		mm->context.huge_pte_count++;
254
255	addr &= HPAGE_MASK;
256	for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
257		set_pte_at(mm, addr, ptep, entry);
258		ptep++;
259		addr += PAGE_SIZE;
260		pte_val(entry) += PAGE_SIZE;
261	}
262}
263
264pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
265			      pte_t *ptep)
266{
267	pte_t entry;
268	int i;
269
270	entry = *ptep;
271	if (pte_present(entry))
272		mm->context.huge_pte_count--;
273
274	addr &= HPAGE_MASK;
275
276	for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
277		pte_clear(mm, addr, ptep);
278		addr += PAGE_SIZE;
279		ptep++;
280	}
281
282	return entry;
283}
284
285struct page *follow_huge_addr(struct mm_struct *mm,
286			      unsigned long address, int write)
287{
288	return ERR_PTR(-EINVAL);
289}
290
291int pmd_huge(pmd_t pmd)
292{
293	return 0;
294}
295
296int pud_huge(pud_t pud)
297{
298	return 0;
299}
300
301struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
302			     pmd_t *pmd, int write)
303{
304	return NULL;
305}
306
307static void context_reload(void *__data)
308{
309	struct mm_struct *mm = __data;
310
311	if (mm == current->mm)
312		load_secondary_context(mm);
313}
314
315void hugetlb_prefault_arch_hook(struct mm_struct *mm)
316{
317	struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
318
319	if (likely(tp->tsb != NULL))
320		return;
321
322	tsb_grow(mm, MM_TSB_HUGE, 0);
323	tsb_context_switch(mm);
324	smp_tsb_sync(mm);
325
326	/* On UltraSPARC-III+ and later, configure the second half of
327	 * the Data-TLB for huge pages.
328	 */
329	if (tlb_type == cheetah_plus) {
330		unsigned long ctx;
331
332		spin_lock(&ctx_alloc_lock);
333		ctx = mm->context.sparc64_ctx_val;
334		ctx &= ~CTX_PGSZ_MASK;
335		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
336		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
337
338		if (ctx != mm->context.sparc64_ctx_val) {
339			/* When changing the page size fields, we
340			 * must perform a context flush so that no
341			 * stale entries match.  This flush must
342			 * occur with the original context register
343			 * settings.
344			 */
345			do_flush_tlb_mm(mm);
346
347			/* Reload the context register of all processors
348			 * also executing in this address space.
349			 */
350			mm->context.sparc64_ctx_val = ctx;
351			on_each_cpu(context_reload, mm, 0);
352		}
353		spin_unlock(&ctx_alloc_lock);
354	}
355}
v4.6
  1/*
  2 * SPARC64 Huge TLB page support.
  3 *
  4 * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
  5 */
  6
 
  7#include <linux/fs.h>
  8#include <linux/mm.h>
  9#include <linux/hugetlb.h>
 10#include <linux/pagemap.h>
 11#include <linux/sysctl.h>
 12
 13#include <asm/mman.h>
 14#include <asm/pgalloc.h>
 15#include <asm/tlb.h>
 16#include <asm/tlbflush.h>
 17#include <asm/cacheflush.h>
 18#include <asm/mmu_context.h>
 19
 20/* Slightly simplified from the non-hugepage variant because by
 21 * definition we don't have to worry about any page coloring stuff
 22 */
 
 
 23
 24static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *filp,
 25							unsigned long addr,
 26							unsigned long len,
 27							unsigned long pgoff,
 28							unsigned long flags)
 29{
 
 
 30	unsigned long task_size = TASK_SIZE;
 31	struct vm_unmapped_area_info info;
 32
 33	if (test_thread_flag(TIF_32BIT))
 34		task_size = STACK_TOP32;
 
 
 35
 36	info.flags = 0;
 37	info.length = len;
 38	info.low_limit = TASK_UNMAPPED_BASE;
 39	info.high_limit = min(task_size, VA_EXCLUDE_START);
 40	info.align_mask = PAGE_MASK & ~HPAGE_MASK;
 41	info.align_offset = 0;
 42	addr = vm_unmapped_area(&info);
 43
 44	if ((addr & ~PAGE_MASK) && task_size > VA_EXCLUDE_END) {
 45		VM_BUG_ON(addr != -ENOMEM);
 46		info.low_limit = VA_EXCLUDE_END;
 47		info.high_limit = task_size;
 48		addr = vm_unmapped_area(&info);
 49	}
 50
 51	return addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 52}
 53
 54static unsigned long
 55hugetlb_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
 56				  const unsigned long len,
 57				  const unsigned long pgoff,
 58				  const unsigned long flags)
 59{
 
 60	struct mm_struct *mm = current->mm;
 61	unsigned long addr = addr0;
 62	struct vm_unmapped_area_info info;
 63
 64	/* This should only ever run for 32-bit processes.  */
 65	BUG_ON(!test_thread_flag(TIF_32BIT));
 66
 67	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
 68	info.length = len;
 69	info.low_limit = PAGE_SIZE;
 70	info.high_limit = mm->mmap_base;
 71	info.align_mask = PAGE_MASK & ~HPAGE_MASK;
 72	info.align_offset = 0;
 73	addr = vm_unmapped_area(&info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74
 
 75	/*
 76	 * A failed mmap() very likely causes application failure,
 77	 * so fall back to the bottom-up function here. This scenario
 78	 * can happen with large stack limits and large mmap()
 79	 * allocations.
 80	 */
 81	if (addr & ~PAGE_MASK) {
 82		VM_BUG_ON(addr != -ENOMEM);
 83		info.flags = 0;
 84		info.low_limit = TASK_UNMAPPED_BASE;
 85		info.high_limit = STACK_TOP32;
 86		addr = vm_unmapped_area(&info);
 87	}
 
 88
 89	return addr;
 90}
 91
 92unsigned long
 93hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 94		unsigned long len, unsigned long pgoff, unsigned long flags)
 95{
 96	struct mm_struct *mm = current->mm;
 97	struct vm_area_struct *vma;
 98	unsigned long task_size = TASK_SIZE;
 99
100	if (test_thread_flag(TIF_32BIT))
101		task_size = STACK_TOP32;
102
103	if (len & ~HPAGE_MASK)
104		return -EINVAL;
105	if (len > task_size)
106		return -ENOMEM;
107
108	if (flags & MAP_FIXED) {
109		if (prepare_hugepage_range(file, addr, len))
110			return -EINVAL;
111		return addr;
112	}
113
114	if (addr) {
115		addr = ALIGN(addr, HPAGE_SIZE);
116		vma = find_vma(mm, addr);
117		if (task_size - len >= addr &&
118		    (!vma || addr + len <= vma->vm_start))
119			return addr;
120	}
121	if (mm->get_unmapped_area == arch_get_unmapped_area)
122		return hugetlb_get_unmapped_area_bottomup(file, addr, len,
123				pgoff, flags);
124	else
125		return hugetlb_get_unmapped_area_topdown(file, addr, len,
126				pgoff, flags);
127}
128
129pte_t *huge_pte_alloc(struct mm_struct *mm,
130			unsigned long addr, unsigned long sz)
131{
132	pgd_t *pgd;
133	pud_t *pud;
134	pmd_t *pmd;
135	pte_t *pte = NULL;
136
137	/* We must align the address, because our caller will run
138	 * set_huge_pte_at() on whatever we return, which writes out
139	 * all of the sub-ptes for the hugepage range.  So we have
140	 * to give it the first such sub-pte.
141	 */
142	addr &= HPAGE_MASK;
143
144	pgd = pgd_offset(mm, addr);
145	pud = pud_alloc(mm, pgd, addr);
146	if (pud) {
147		pmd = pmd_alloc(mm, pud, addr);
148		if (pmd)
149			pte = pte_alloc_map(mm, pmd, addr);
150	}
151	return pte;
152}
153
154pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
155{
156	pgd_t *pgd;
157	pud_t *pud;
158	pmd_t *pmd;
159	pte_t *pte = NULL;
160
161	addr &= HPAGE_MASK;
162
163	pgd = pgd_offset(mm, addr);
164	if (!pgd_none(*pgd)) {
165		pud = pud_offset(pgd, addr);
166		if (!pud_none(*pud)) {
167			pmd = pmd_offset(pud, addr);
168			if (!pmd_none(*pmd))
169				pte = pte_offset_map(pmd, addr);
170		}
171	}
172	return pte;
173}
174
 
 
 
 
 
175void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
176		     pte_t *ptep, pte_t entry)
177{
178	int i;
179
180	if (!pte_present(*ptep) && pte_present(entry))
181		mm->context.huge_pte_count++;
182
183	addr &= HPAGE_MASK;
184	for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
185		set_pte_at(mm, addr, ptep, entry);
186		ptep++;
187		addr += PAGE_SIZE;
188		pte_val(entry) += PAGE_SIZE;
189	}
190}
191
192pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
193			      pte_t *ptep)
194{
195	pte_t entry;
196	int i;
197
198	entry = *ptep;
199	if (pte_present(entry))
200		mm->context.huge_pte_count--;
201
202	addr &= HPAGE_MASK;
203
204	for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
205		pte_clear(mm, addr, ptep);
206		addr += PAGE_SIZE;
207		ptep++;
208	}
209
210	return entry;
211}
212
 
 
 
 
 
 
213int pmd_huge(pmd_t pmd)
214{
215	return 0;
216}
217
218int pud_huge(pud_t pud)
219{
220	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221}