Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v3.5.6
   1/* smp.c: Sparc64 SMP support.
   2 *
   3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   4 */
   5
   6#include <linux/export.h>
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/pagemap.h>
  11#include <linux/threads.h>
  12#include <linux/smp.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/cache.h>
  21#include <linux/jiffies.h>
  22#include <linux/profile.h>
  23#include <linux/bootmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ftrace.h>
  26#include <linux/cpu.h>
  27#include <linux/slab.h>
 
  28
  29#include <asm/head.h>
  30#include <asm/ptrace.h>
  31#include <linux/atomic.h>
  32#include <asm/tlbflush.h>
  33#include <asm/mmu_context.h>
  34#include <asm/cpudata.h>
  35#include <asm/hvtramp.h>
  36#include <asm/io.h>
  37#include <asm/timer.h>
 
  38
  39#include <asm/irq.h>
  40#include <asm/irq_regs.h>
  41#include <asm/page.h>
  42#include <asm/pgtable.h>
  43#include <asm/oplib.h>
  44#include <asm/uaccess.h>
  45#include <asm/starfire.h>
  46#include <asm/tlb.h>
  47#include <asm/sections.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/ldc.h>
  51#include <asm/hypervisor.h>
  52#include <asm/pcr.h>
  53
  54#include "cpumap.h"
  55
  56int sparc64_multi_core __read_mostly;
  57
  58DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  59cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  60	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  61
 
 
 
  62EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  63EXPORT_SYMBOL(cpu_core_map);
 
  64
  65static cpumask_t smp_commenced_mask;
  66
  67void smp_info(struct seq_file *m)
  68{
  69	int i;
  70	
  71	seq_printf(m, "State:\n");
  72	for_each_online_cpu(i)
  73		seq_printf(m, "CPU%d:\t\tonline\n", i);
  74}
  75
  76void smp_bogo(struct seq_file *m)
  77{
  78	int i;
  79	
  80	for_each_online_cpu(i)
  81		seq_printf(m,
  82			   "Cpu%dClkTck\t: %016lx\n",
  83			   i, cpu_data(i).clock_tick);
  84}
  85
  86extern void setup_sparc64_timer(void);
  87
  88static volatile unsigned long callin_flag = 0;
  89
  90void __cpuinit smp_callin(void)
  91{
  92	int cpuid = hard_smp_processor_id();
  93
  94	__local_per_cpu_offset = __per_cpu_offset(cpuid);
  95
  96	if (tlb_type == hypervisor)
  97		sun4v_ktsb_register();
  98
  99	__flush_tlb_all();
 100
 101	setup_sparc64_timer();
 102
 103	if (cheetah_pcache_forced_on)
 104		cheetah_enable_pcache();
 105
 106	local_irq_enable();
 107
 108	callin_flag = 1;
 109	__asm__ __volatile__("membar #Sync\n\t"
 110			     "flush  %%g6" : : : "memory");
 111
 112	/* Clear this or we will die instantly when we
 113	 * schedule back to this idler...
 114	 */
 115	current_thread_info()->new_child = 0;
 116
 117	/* Attach to the address space of init_task. */
 118	atomic_inc(&init_mm.mm_count);
 119	current->active_mm = &init_mm;
 120
 121	/* inform the notifiers about the new cpu */
 122	notify_cpu_starting(cpuid);
 123
 124	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 125		rmb();
 126
 127	ipi_call_lock_irq();
 128	set_cpu_online(cpuid, true);
 129	ipi_call_unlock_irq();
 130
 131	/* idle thread is expected to have preempt disabled */
 132	preempt_disable();
 
 
 
 
 133}
 134
 135void cpu_panic(void)
 136{
 137	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 138	panic("SMP bolixed\n");
 139}
 140
 141/* This tick register synchronization scheme is taken entirely from
 142 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 143 *
 144 * The only change I've made is to rework it so that the master
 145 * initiates the synchonization instead of the slave. -DaveM
 146 */
 147
 148#define MASTER	0
 149#define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
 150
 151#define NUM_ROUNDS	64	/* magic value */
 152#define NUM_ITERS	5	/* likewise */
 153
 154static DEFINE_SPINLOCK(itc_sync_lock);
 155static unsigned long go[SLAVE + 1];
 156
 157#define DEBUG_TICK_SYNC	0
 158
 159static inline long get_delta (long *rt, long *master)
 160{
 161	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 162	unsigned long tcenter, t0, t1, tm;
 163	unsigned long i;
 164
 165	for (i = 0; i < NUM_ITERS; i++) {
 166		t0 = tick_ops->get_tick();
 167		go[MASTER] = 1;
 168		membar_safe("#StoreLoad");
 169		while (!(tm = go[SLAVE]))
 170			rmb();
 171		go[SLAVE] = 0;
 172		wmb();
 173		t1 = tick_ops->get_tick();
 174
 175		if (t1 - t0 < best_t1 - best_t0)
 176			best_t0 = t0, best_t1 = t1, best_tm = tm;
 177	}
 178
 179	*rt = best_t1 - best_t0;
 180	*master = best_tm - best_t0;
 181
 182	/* average best_t0 and best_t1 without overflow: */
 183	tcenter = (best_t0/2 + best_t1/2);
 184	if (best_t0 % 2 + best_t1 % 2 == 2)
 185		tcenter++;
 186	return tcenter - best_tm;
 187}
 188
 189void smp_synchronize_tick_client(void)
 190{
 191	long i, delta, adj, adjust_latency = 0, done = 0;
 192	unsigned long flags, rt, master_time_stamp;
 193#if DEBUG_TICK_SYNC
 194	struct {
 195		long rt;	/* roundtrip time */
 196		long master;	/* master's timestamp */
 197		long diff;	/* difference between midpoint and master's timestamp */
 198		long lat;	/* estimate of itc adjustment latency */
 199	} t[NUM_ROUNDS];
 200#endif
 201
 202	go[MASTER] = 1;
 203
 204	while (go[MASTER])
 205		rmb();
 206
 207	local_irq_save(flags);
 208	{
 209		for (i = 0; i < NUM_ROUNDS; i++) {
 210			delta = get_delta(&rt, &master_time_stamp);
 211			if (delta == 0)
 212				done = 1;	/* let's lock on to this... */
 213
 214			if (!done) {
 215				if (i > 0) {
 216					adjust_latency += -delta;
 217					adj = -delta + adjust_latency/4;
 218				} else
 219					adj = -delta;
 220
 221				tick_ops->add_tick(adj);
 222			}
 223#if DEBUG_TICK_SYNC
 224			t[i].rt = rt;
 225			t[i].master = master_time_stamp;
 226			t[i].diff = delta;
 227			t[i].lat = adjust_latency/4;
 228#endif
 229		}
 230	}
 231	local_irq_restore(flags);
 232
 233#if DEBUG_TICK_SYNC
 234	for (i = 0; i < NUM_ROUNDS; i++)
 235		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 236		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 237#endif
 238
 239	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 240	       "(last diff %ld cycles, maxerr %lu cycles)\n",
 241	       smp_processor_id(), delta, rt);
 242}
 243
 244static void smp_start_sync_tick_client(int cpu);
 245
 246static void smp_synchronize_one_tick(int cpu)
 247{
 248	unsigned long flags, i;
 249
 250	go[MASTER] = 0;
 251
 252	smp_start_sync_tick_client(cpu);
 253
 254	/* wait for client to be ready */
 255	while (!go[MASTER])
 256		rmb();
 257
 258	/* now let the client proceed into his loop */
 259	go[MASTER] = 0;
 260	membar_safe("#StoreLoad");
 261
 262	spin_lock_irqsave(&itc_sync_lock, flags);
 263	{
 264		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 265			while (!go[MASTER])
 266				rmb();
 267			go[MASTER] = 0;
 268			wmb();
 269			go[SLAVE] = tick_ops->get_tick();
 270			membar_safe("#StoreLoad");
 271		}
 272	}
 273	spin_unlock_irqrestore(&itc_sync_lock, flags);
 274}
 275
 276#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 277/* XXX Put this in some common place. XXX */
 278static unsigned long kimage_addr_to_ra(void *p)
 279{
 280	unsigned long val = (unsigned long) p;
 281
 282	return kern_base + (val - KERNBASE);
 283}
 284
 285static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
 286{
 287	extern unsigned long sparc64_ttable_tl0;
 288	extern unsigned long kern_locked_tte_data;
 289	struct hvtramp_descr *hdesc;
 290	unsigned long trampoline_ra;
 291	struct trap_per_cpu *tb;
 292	u64 tte_vaddr, tte_data;
 293	unsigned long hv_err;
 294	int i;
 295
 296	hdesc = kzalloc(sizeof(*hdesc) +
 297			(sizeof(struct hvtramp_mapping) *
 298			 num_kernel_image_mappings - 1),
 299			GFP_KERNEL);
 300	if (!hdesc) {
 301		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 302		       "hvtramp_descr.\n");
 303		return;
 304	}
 305	*descrp = hdesc;
 306
 307	hdesc->cpu = cpu;
 308	hdesc->num_mappings = num_kernel_image_mappings;
 309
 310	tb = &trap_block[cpu];
 311
 312	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 313	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 314
 315	hdesc->thread_reg = thread_reg;
 316
 317	tte_vaddr = (unsigned long) KERNBASE;
 318	tte_data = kern_locked_tte_data;
 319
 320	for (i = 0; i < hdesc->num_mappings; i++) {
 321		hdesc->maps[i].vaddr = tte_vaddr;
 322		hdesc->maps[i].tte   = tte_data;
 323		tte_vaddr += 0x400000;
 324		tte_data  += 0x400000;
 325	}
 326
 327	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 328
 329	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 330				 kimage_addr_to_ra(&sparc64_ttable_tl0),
 331				 __pa(hdesc));
 332	if (hv_err)
 333		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 334		       "gives error %lu\n", hv_err);
 335}
 336#endif
 337
 338extern unsigned long sparc64_cpu_startup;
 339
 340/* The OBP cpu startup callback truncates the 3rd arg cookie to
 341 * 32-bits (I think) so to be safe we have it read the pointer
 342 * contained here so we work on >4GB machines. -DaveM
 343 */
 344static struct thread_info *cpu_new_thread = NULL;
 345
 346static int __cpuinit smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 347{
 348	unsigned long entry =
 349		(unsigned long)(&sparc64_cpu_startup);
 350	unsigned long cookie =
 351		(unsigned long)(&cpu_new_thread);
 352	void *descr = NULL;
 353	int timeout, ret;
 354
 355	callin_flag = 0;
 356	cpu_new_thread = task_thread_info(idle);
 357
 358	if (tlb_type == hypervisor) {
 359#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 360		if (ldom_domaining_enabled)
 361			ldom_startcpu_cpuid(cpu,
 362					    (unsigned long) cpu_new_thread,
 363					    &descr);
 364		else
 365#endif
 366			prom_startcpu_cpuid(cpu, entry, cookie);
 367	} else {
 368		struct device_node *dp = of_find_node_by_cpuid(cpu);
 369
 370		prom_startcpu(dp->phandle, entry, cookie);
 371	}
 372
 373	for (timeout = 0; timeout < 50000; timeout++) {
 374		if (callin_flag)
 375			break;
 376		udelay(100);
 377	}
 378
 379	if (callin_flag) {
 380		ret = 0;
 381	} else {
 382		printk("Processor %d is stuck.\n", cpu);
 383		ret = -ENODEV;
 384	}
 385	cpu_new_thread = NULL;
 386
 387	kfree(descr);
 388
 389	return ret;
 390}
 391
 392static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 393{
 394	u64 result, target;
 395	int stuck, tmp;
 396
 397	if (this_is_starfire) {
 398		/* map to real upaid */
 399		cpu = (((cpu & 0x3c) << 1) |
 400			((cpu & 0x40) >> 4) |
 401			(cpu & 0x3));
 402	}
 403
 404	target = (cpu << 14) | 0x70;
 405again:
 406	/* Ok, this is the real Spitfire Errata #54.
 407	 * One must read back from a UDB internal register
 408	 * after writes to the UDB interrupt dispatch, but
 409	 * before the membar Sync for that write.
 410	 * So we use the high UDB control register (ASI 0x7f,
 411	 * ADDR 0x20) for the dummy read. -DaveM
 412	 */
 413	tmp = 0x40;
 414	__asm__ __volatile__(
 415	"wrpr	%1, %2, %%pstate\n\t"
 416	"stxa	%4, [%0] %3\n\t"
 417	"stxa	%5, [%0+%8] %3\n\t"
 418	"add	%0, %8, %0\n\t"
 419	"stxa	%6, [%0+%8] %3\n\t"
 420	"membar	#Sync\n\t"
 421	"stxa	%%g0, [%7] %3\n\t"
 422	"membar	#Sync\n\t"
 423	"mov	0x20, %%g1\n\t"
 424	"ldxa	[%%g1] 0x7f, %%g0\n\t"
 425	"membar	#Sync"
 426	: "=r" (tmp)
 427	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 428	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
 429	  "r" (0x10), "0" (tmp)
 430        : "g1");
 431
 432	/* NOTE: PSTATE_IE is still clear. */
 433	stuck = 100000;
 434	do {
 435		__asm__ __volatile__("ldxa [%%g0] %1, %0"
 436			: "=r" (result)
 437			: "i" (ASI_INTR_DISPATCH_STAT));
 438		if (result == 0) {
 439			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 440					     : : "r" (pstate));
 441			return;
 442		}
 443		stuck -= 1;
 444		if (stuck == 0)
 445			break;
 446	} while (result & 0x1);
 447	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 448			     : : "r" (pstate));
 449	if (stuck == 0) {
 450		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 451		       smp_processor_id(), result);
 452	} else {
 453		udelay(2);
 454		goto again;
 455	}
 456}
 457
 458static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 459{
 460	u64 *mondo, data0, data1, data2;
 461	u16 *cpu_list;
 462	u64 pstate;
 463	int i;
 464
 465	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 466	cpu_list = __va(tb->cpu_list_pa);
 467	mondo = __va(tb->cpu_mondo_block_pa);
 468	data0 = mondo[0];
 469	data1 = mondo[1];
 470	data2 = mondo[2];
 471	for (i = 0; i < cnt; i++)
 472		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 473}
 474
 475/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 476 * packet, but we have no use for that.  However we do take advantage of
 477 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 478 */
 479static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 480{
 481	int nack_busy_id, is_jbus, need_more;
 482	u64 *mondo, pstate, ver, busy_mask;
 483	u16 *cpu_list;
 484
 485	cpu_list = __va(tb->cpu_list_pa);
 486	mondo = __va(tb->cpu_mondo_block_pa);
 487
 488	/* Unfortunately, someone at Sun had the brilliant idea to make the
 489	 * busy/nack fields hard-coded by ITID number for this Ultra-III
 490	 * derivative processor.
 491	 */
 492	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 493	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 494		   (ver >> 32) == __SERRANO_ID);
 495
 496	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 497
 498retry:
 499	need_more = 0;
 500	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 501			     : : "r" (pstate), "i" (PSTATE_IE));
 502
 503	/* Setup the dispatch data registers. */
 504	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
 505			     "stxa	%1, [%4] %6\n\t"
 506			     "stxa	%2, [%5] %6\n\t"
 507			     "membar	#Sync\n\t"
 508			     : /* no outputs */
 509			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 510			       "r" (0x40), "r" (0x50), "r" (0x60),
 511			       "i" (ASI_INTR_W));
 512
 513	nack_busy_id = 0;
 514	busy_mask = 0;
 515	{
 516		int i;
 517
 518		for (i = 0; i < cnt; i++) {
 519			u64 target, nr;
 520
 521			nr = cpu_list[i];
 522			if (nr == 0xffff)
 523				continue;
 524
 525			target = (nr << 14) | 0x70;
 526			if (is_jbus) {
 527				busy_mask |= (0x1UL << (nr * 2));
 528			} else {
 529				target |= (nack_busy_id << 24);
 530				busy_mask |= (0x1UL <<
 531					      (nack_busy_id * 2));
 532			}
 533			__asm__ __volatile__(
 534				"stxa	%%g0, [%0] %1\n\t"
 535				"membar	#Sync\n\t"
 536				: /* no outputs */
 537				: "r" (target), "i" (ASI_INTR_W));
 538			nack_busy_id++;
 539			if (nack_busy_id == 32) {
 540				need_more = 1;
 541				break;
 542			}
 543		}
 544	}
 545
 546	/* Now, poll for completion. */
 547	{
 548		u64 dispatch_stat, nack_mask;
 549		long stuck;
 550
 551		stuck = 100000 * nack_busy_id;
 552		nack_mask = busy_mask << 1;
 553		do {
 554			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
 555					     : "=r" (dispatch_stat)
 556					     : "i" (ASI_INTR_DISPATCH_STAT));
 557			if (!(dispatch_stat & (busy_mask | nack_mask))) {
 558				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 559						     : : "r" (pstate));
 560				if (unlikely(need_more)) {
 561					int i, this_cnt = 0;
 562					for (i = 0; i < cnt; i++) {
 563						if (cpu_list[i] == 0xffff)
 564							continue;
 565						cpu_list[i] = 0xffff;
 566						this_cnt++;
 567						if (this_cnt == 32)
 568							break;
 569					}
 570					goto retry;
 571				}
 572				return;
 573			}
 574			if (!--stuck)
 575				break;
 576		} while (dispatch_stat & busy_mask);
 577
 578		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 579				     : : "r" (pstate));
 580
 581		if (dispatch_stat & busy_mask) {
 582			/* Busy bits will not clear, continue instead
 583			 * of freezing up on this cpu.
 584			 */
 585			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 586			       smp_processor_id(), dispatch_stat);
 587		} else {
 588			int i, this_busy_nack = 0;
 589
 590			/* Delay some random time with interrupts enabled
 591			 * to prevent deadlock.
 592			 */
 593			udelay(2 * nack_busy_id);
 594
 595			/* Clear out the mask bits for cpus which did not
 596			 * NACK us.
 597			 */
 598			for (i = 0; i < cnt; i++) {
 599				u64 check_mask, nr;
 600
 601				nr = cpu_list[i];
 602				if (nr == 0xffff)
 603					continue;
 604
 605				if (is_jbus)
 606					check_mask = (0x2UL << (2*nr));
 607				else
 608					check_mask = (0x2UL <<
 609						      this_busy_nack);
 610				if ((dispatch_stat & check_mask) == 0)
 611					cpu_list[i] = 0xffff;
 612				this_busy_nack += 2;
 613				if (this_busy_nack == 64)
 614					break;
 615			}
 616
 617			goto retry;
 618		}
 619	}
 620}
 621
 622/* Multi-cpu list version.  */
 623static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 624{
 625	int retries, this_cpu, prev_sent, i, saw_cpu_error;
 626	unsigned long status;
 627	u16 *cpu_list;
 628
 629	this_cpu = smp_processor_id();
 630
 631	cpu_list = __va(tb->cpu_list_pa);
 632
 633	saw_cpu_error = 0;
 634	retries = 0;
 635	prev_sent = 0;
 636	do {
 637		int forward_progress, n_sent;
 638
 639		status = sun4v_cpu_mondo_send(cnt,
 640					      tb->cpu_list_pa,
 641					      tb->cpu_mondo_block_pa);
 642
 643		/* HV_EOK means all cpus received the xcall, we're done.  */
 644		if (likely(status == HV_EOK))
 645			break;
 646
 647		/* First, see if we made any forward progress.
 648		 *
 649		 * The hypervisor indicates successful sends by setting
 650		 * cpu list entries to the value 0xffff.
 651		 */
 652		n_sent = 0;
 653		for (i = 0; i < cnt; i++) {
 654			if (likely(cpu_list[i] == 0xffff))
 655				n_sent++;
 656		}
 657
 658		forward_progress = 0;
 659		if (n_sent > prev_sent)
 660			forward_progress = 1;
 661
 662		prev_sent = n_sent;
 663
 664		/* If we get a HV_ECPUERROR, then one or more of the cpus
 665		 * in the list are in error state.  Use the cpu_state()
 666		 * hypervisor call to find out which cpus are in error state.
 667		 */
 668		if (unlikely(status == HV_ECPUERROR)) {
 669			for (i = 0; i < cnt; i++) {
 670				long err;
 671				u16 cpu;
 672
 673				cpu = cpu_list[i];
 674				if (cpu == 0xffff)
 675					continue;
 676
 677				err = sun4v_cpu_state(cpu);
 678				if (err == HV_CPU_STATE_ERROR) {
 679					saw_cpu_error = (cpu + 1);
 680					cpu_list[i] = 0xffff;
 681				}
 682			}
 683		} else if (unlikely(status != HV_EWOULDBLOCK))
 684			goto fatal_mondo_error;
 685
 686		/* Don't bother rewriting the CPU list, just leave the
 687		 * 0xffff and non-0xffff entries in there and the
 688		 * hypervisor will do the right thing.
 689		 *
 690		 * Only advance timeout state if we didn't make any
 691		 * forward progress.
 692		 */
 693		if (unlikely(!forward_progress)) {
 694			if (unlikely(++retries > 10000))
 695				goto fatal_mondo_timeout;
 696
 697			/* Delay a little bit to let other cpus catch up
 698			 * on their cpu mondo queue work.
 699			 */
 700			udelay(2 * cnt);
 701		}
 702	} while (1);
 703
 704	if (unlikely(saw_cpu_error))
 705		goto fatal_mondo_cpu_error;
 706
 707	return;
 708
 709fatal_mondo_cpu_error:
 710	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 711	       "(including %d) were in error state\n",
 712	       this_cpu, saw_cpu_error - 1);
 713	return;
 714
 715fatal_mondo_timeout:
 716	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 717	       " progress after %d retries.\n",
 718	       this_cpu, retries);
 719	goto dump_cpu_list_and_out;
 720
 721fatal_mondo_error:
 722	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 723	       this_cpu, status);
 724	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 725	       "mondo_block_pa(%lx)\n",
 726	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 727
 728dump_cpu_list_and_out:
 729	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 730	for (i = 0; i < cnt; i++)
 731		printk("%u ", cpu_list[i]);
 732	printk("]\n");
 733}
 734
 735static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 736
 737static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 738{
 739	struct trap_per_cpu *tb;
 740	int this_cpu, i, cnt;
 741	unsigned long flags;
 742	u16 *cpu_list;
 743	u64 *mondo;
 744
 745	/* We have to do this whole thing with interrupts fully disabled.
 746	 * Otherwise if we send an xcall from interrupt context it will
 747	 * corrupt both our mondo block and cpu list state.
 748	 *
 749	 * One consequence of this is that we cannot use timeout mechanisms
 750	 * that depend upon interrupts being delivered locally.  So, for
 751	 * example, we cannot sample jiffies and expect it to advance.
 752	 *
 753	 * Fortunately, udelay() uses %stick/%tick so we can use that.
 754	 */
 755	local_irq_save(flags);
 756
 757	this_cpu = smp_processor_id();
 758	tb = &trap_block[this_cpu];
 759
 760	mondo = __va(tb->cpu_mondo_block_pa);
 761	mondo[0] = data0;
 762	mondo[1] = data1;
 763	mondo[2] = data2;
 764	wmb();
 765
 766	cpu_list = __va(tb->cpu_list_pa);
 767
 768	/* Setup the initial cpu list.  */
 769	cnt = 0;
 770	for_each_cpu(i, mask) {
 771		if (i == this_cpu || !cpu_online(i))
 772			continue;
 773		cpu_list[cnt++] = i;
 774	}
 775
 776	if (cnt)
 777		xcall_deliver_impl(tb, cnt);
 778
 779	local_irq_restore(flags);
 780}
 781
 782/* Send cross call to all processors mentioned in MASK_P
 783 * except self.  Really, there are only two cases currently,
 784 * "cpu_online_mask" and "mm_cpumask(mm)".
 785 */
 786static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 787{
 788	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 789
 790	xcall_deliver(data0, data1, data2, mask);
 791}
 792
 793/* Send cross call to all processors except self. */
 794static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 795{
 796	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 797}
 798
 799extern unsigned long xcall_sync_tick;
 800
 801static void smp_start_sync_tick_client(int cpu)
 802{
 803	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 804		      cpumask_of(cpu));
 805}
 806
 807extern unsigned long xcall_call_function;
 808
 809void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 810{
 811	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 812}
 813
 814extern unsigned long xcall_call_function_single;
 815
 816void arch_send_call_function_single_ipi(int cpu)
 817{
 818	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 819		      cpumask_of(cpu));
 820}
 821
 822void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 823{
 824	clear_softint(1 << irq);
 
 825	generic_smp_call_function_interrupt();
 
 826}
 827
 828void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 829{
 830	clear_softint(1 << irq);
 
 831	generic_smp_call_function_single_interrupt();
 
 832}
 833
 834static void tsb_sync(void *info)
 835{
 836	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 837	struct mm_struct *mm = info;
 838
 839	/* It is not valid to test "current->active_mm == mm" here.
 840	 *
 841	 * The value of "current" is not changed atomically with
 842	 * switch_mm().  But that's OK, we just need to check the
 843	 * current cpu's trap block PGD physical address.
 844	 */
 845	if (tp->pgd_paddr == __pa(mm->pgd))
 846		tsb_context_switch(mm);
 847}
 848
 849void smp_tsb_sync(struct mm_struct *mm)
 850{
 851	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 852}
 853
 854extern unsigned long xcall_flush_tlb_mm;
 855extern unsigned long xcall_flush_tlb_pending;
 856extern unsigned long xcall_flush_tlb_kernel_range;
 857extern unsigned long xcall_fetch_glob_regs;
 
 
 858extern unsigned long xcall_receive_signal;
 859extern unsigned long xcall_new_mmu_context_version;
 860#ifdef CONFIG_KGDB
 861extern unsigned long xcall_kgdb_capture;
 862#endif
 863
 864#ifdef DCACHE_ALIASING_POSSIBLE
 865extern unsigned long xcall_flush_dcache_page_cheetah;
 866#endif
 867extern unsigned long xcall_flush_dcache_page_spitfire;
 868
 869#ifdef CONFIG_DEBUG_DCFLUSH
 870extern atomic_t dcpage_flushes;
 871extern atomic_t dcpage_flushes_xcall;
 872#endif
 873
 874static inline void __local_flush_dcache_page(struct page *page)
 875{
 876#ifdef DCACHE_ALIASING_POSSIBLE
 877	__flush_dcache_page(page_address(page),
 878			    ((tlb_type == spitfire) &&
 879			     page_mapping(page) != NULL));
 880#else
 881	if (page_mapping(page) != NULL &&
 882	    tlb_type == spitfire)
 883		__flush_icache_page(__pa(page_address(page)));
 884#endif
 885}
 886
 887void smp_flush_dcache_page_impl(struct page *page, int cpu)
 888{
 889	int this_cpu;
 890
 891	if (tlb_type == hypervisor)
 892		return;
 893
 894#ifdef CONFIG_DEBUG_DCFLUSH
 895	atomic_inc(&dcpage_flushes);
 896#endif
 897
 898	this_cpu = get_cpu();
 899
 900	if (cpu == this_cpu) {
 901		__local_flush_dcache_page(page);
 902	} else if (cpu_online(cpu)) {
 903		void *pg_addr = page_address(page);
 904		u64 data0 = 0;
 905
 906		if (tlb_type == spitfire) {
 907			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 908			if (page_mapping(page) != NULL)
 909				data0 |= ((u64)1 << 32);
 910		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 911#ifdef DCACHE_ALIASING_POSSIBLE
 912			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
 913#endif
 914		}
 915		if (data0) {
 916			xcall_deliver(data0, __pa(pg_addr),
 917				      (u64) pg_addr, cpumask_of(cpu));
 918#ifdef CONFIG_DEBUG_DCFLUSH
 919			atomic_inc(&dcpage_flushes_xcall);
 920#endif
 921		}
 922	}
 923
 924	put_cpu();
 925}
 926
 927void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 928{
 929	void *pg_addr;
 930	u64 data0;
 931
 932	if (tlb_type == hypervisor)
 933		return;
 934
 935	preempt_disable();
 936
 937#ifdef CONFIG_DEBUG_DCFLUSH
 938	atomic_inc(&dcpage_flushes);
 939#endif
 940	data0 = 0;
 941	pg_addr = page_address(page);
 942	if (tlb_type == spitfire) {
 943		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 944		if (page_mapping(page) != NULL)
 945			data0 |= ((u64)1 << 32);
 946	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 947#ifdef DCACHE_ALIASING_POSSIBLE
 948		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 949#endif
 950	}
 951	if (data0) {
 952		xcall_deliver(data0, __pa(pg_addr),
 953			      (u64) pg_addr, cpu_online_mask);
 954#ifdef CONFIG_DEBUG_DCFLUSH
 955		atomic_inc(&dcpage_flushes_xcall);
 956#endif
 957	}
 958	__local_flush_dcache_page(page);
 959
 960	preempt_enable();
 961}
 962
 963void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 964{
 965	struct mm_struct *mm;
 966	unsigned long flags;
 967
 968	clear_softint(1 << irq);
 969
 970	/* See if we need to allocate a new TLB context because
 971	 * the version of the one we are using is now out of date.
 972	 */
 973	mm = current->active_mm;
 974	if (unlikely(!mm || (mm == &init_mm)))
 975		return;
 976
 977	spin_lock_irqsave(&mm->context.lock, flags);
 978
 979	if (unlikely(!CTX_VALID(mm->context)))
 980		get_new_mmu_context(mm);
 981
 982	spin_unlock_irqrestore(&mm->context.lock, flags);
 983
 984	load_secondary_context(mm);
 985	__flush_tlb_mm(CTX_HWBITS(mm->context),
 986		       SECONDARY_CONTEXT);
 987}
 988
 989void smp_new_mmu_context_version(void)
 990{
 991	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 992}
 993
 994#ifdef CONFIG_KGDB
 995void kgdb_roundup_cpus(unsigned long flags)
 996{
 997	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
 998}
 999#endif
1000
1001void smp_fetch_global_regs(void)
1002{
1003	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1004}
1005
 
 
 
 
 
 
 
 
 
1006/* We know that the window frames of the user have been flushed
1007 * to the stack before we get here because all callers of us
1008 * are flush_tlb_*() routines, and these run after flush_cache_*()
1009 * which performs the flushw.
1010 *
1011 * The SMP TLB coherency scheme we use works as follows:
1012 *
1013 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1014 *    space has (potentially) executed on, this is the heuristic
1015 *    we use to avoid doing cross calls.
1016 *
1017 *    Also, for flushing from kswapd and also for clones, we
1018 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1019 *
1020 * 2) TLB context numbers are shared globally across all processors
1021 *    in the system, this allows us to play several games to avoid
1022 *    cross calls.
1023 *
1024 *    One invariant is that when a cpu switches to a process, and
1025 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1026 *    current cpu's bit set, that tlb context is flushed locally.
1027 *
1028 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1029 *    cross calls when we want to flush the currently running process's
1030 *    tlb state.  This is done by clearing all cpu bits except the current
1031 *    processor's in current->mm->cpu_vm_mask and performing the
1032 *    flush locally only.  This will force any subsequent cpus which run
1033 *    this task to flush the context from the local tlb if the process
1034 *    migrates to another cpu (again).
1035 *
1036 * 3) For shared address spaces (threads) and swapping we bite the
1037 *    bullet for most cases and perform the cross call (but only to
1038 *    the cpus listed in cpu_vm_mask).
1039 *
1040 *    The performance gain from "optimizing" away the cross call for threads is
1041 *    questionable (in theory the big win for threads is the massive sharing of
1042 *    address space state across processors).
1043 */
1044
1045/* This currently is only used by the hugetlb arch pre-fault
1046 * hook on UltraSPARC-III+ and later when changing the pagesize
1047 * bits of the context register for an address space.
1048 */
1049void smp_flush_tlb_mm(struct mm_struct *mm)
1050{
1051	u32 ctx = CTX_HWBITS(mm->context);
1052	int cpu = get_cpu();
1053
1054	if (atomic_read(&mm->mm_users) == 1) {
1055		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1056		goto local_flush_and_out;
1057	}
1058
1059	smp_cross_call_masked(&xcall_flush_tlb_mm,
1060			      ctx, 0, 0,
1061			      mm_cpumask(mm));
1062
1063local_flush_and_out:
1064	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1065
1066	put_cpu();
1067}
1068
 
 
 
 
 
 
 
 
 
 
 
 
 
1069void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1070{
1071	u32 ctx = CTX_HWBITS(mm->context);
 
1072	int cpu = get_cpu();
1073
 
 
 
 
1074	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1075		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1076	else
1077		smp_cross_call_masked(&xcall_flush_tlb_pending,
1078				      ctx, nr, (unsigned long) vaddrs,
1079				      mm_cpumask(mm));
1080
1081	__flush_tlb_pending(ctx, nr, vaddrs);
1082
1083	put_cpu();
1084}
1085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1087{
1088	start &= PAGE_MASK;
1089	end    = PAGE_ALIGN(end);
1090	if (start != end) {
1091		smp_cross_call(&xcall_flush_tlb_kernel_range,
1092			       0, start, end);
1093
1094		__flush_tlb_kernel_range(start, end);
1095	}
1096}
1097
1098/* CPU capture. */
1099/* #define CAPTURE_DEBUG */
1100extern unsigned long xcall_capture;
1101
1102static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1103static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1104static unsigned long penguins_are_doing_time;
1105
1106void smp_capture(void)
1107{
1108	int result = atomic_add_ret(1, &smp_capture_depth);
1109
1110	if (result == 1) {
1111		int ncpus = num_online_cpus();
1112
1113#ifdef CAPTURE_DEBUG
1114		printk("CPU[%d]: Sending penguins to jail...",
1115		       smp_processor_id());
1116#endif
1117		penguins_are_doing_time = 1;
1118		atomic_inc(&smp_capture_registry);
1119		smp_cross_call(&xcall_capture, 0, 0, 0);
1120		while (atomic_read(&smp_capture_registry) != ncpus)
1121			rmb();
1122#ifdef CAPTURE_DEBUG
1123		printk("done\n");
1124#endif
1125	}
1126}
1127
1128void smp_release(void)
1129{
1130	if (atomic_dec_and_test(&smp_capture_depth)) {
1131#ifdef CAPTURE_DEBUG
1132		printk("CPU[%d]: Giving pardon to "
1133		       "imprisoned penguins\n",
1134		       smp_processor_id());
1135#endif
1136		penguins_are_doing_time = 0;
1137		membar_safe("#StoreLoad");
1138		atomic_dec(&smp_capture_registry);
1139	}
1140}
1141
1142/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1143 * set, so they can service tlb flush xcalls...
1144 */
1145extern void prom_world(int);
1146
1147void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1148{
1149	clear_softint(1 << irq);
1150
1151	preempt_disable();
1152
1153	__asm__ __volatile__("flushw");
1154	prom_world(1);
1155	atomic_inc(&smp_capture_registry);
1156	membar_safe("#StoreLoad");
1157	while (penguins_are_doing_time)
1158		rmb();
1159	atomic_dec(&smp_capture_registry);
1160	prom_world(0);
1161
1162	preempt_enable();
1163}
1164
1165/* /proc/profile writes can call this, don't __init it please. */
1166int setup_profiling_timer(unsigned int multiplier)
1167{
1168	return -EINVAL;
1169}
1170
1171void __init smp_prepare_cpus(unsigned int max_cpus)
1172{
1173}
1174
1175void __devinit smp_prepare_boot_cpu(void)
1176{
1177}
1178
1179void __init smp_setup_processor_id(void)
1180{
1181	if (tlb_type == spitfire)
1182		xcall_deliver_impl = spitfire_xcall_deliver;
1183	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1184		xcall_deliver_impl = cheetah_xcall_deliver;
1185	else
1186		xcall_deliver_impl = hypervisor_xcall_deliver;
1187}
1188
1189void __devinit smp_fill_in_sib_core_maps(void)
1190{
1191	unsigned int i;
1192
1193	for_each_present_cpu(i) {
1194		unsigned int j;
1195
1196		cpumask_clear(&cpu_core_map[i]);
1197		if (cpu_data(i).core_id == 0) {
1198			cpumask_set_cpu(i, &cpu_core_map[i]);
1199			continue;
1200		}
1201
1202		for_each_present_cpu(j) {
1203			if (cpu_data(i).core_id ==
1204			    cpu_data(j).core_id)
1205				cpumask_set_cpu(j, &cpu_core_map[i]);
1206		}
1207	}
1208
 
 
 
 
 
 
 
 
 
1209	for_each_present_cpu(i) {
1210		unsigned int j;
1211
1212		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1213		if (cpu_data(i).proc_id == -1) {
1214			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1215			continue;
1216		}
1217
1218		for_each_present_cpu(j) {
1219			if (cpu_data(i).proc_id ==
1220			    cpu_data(j).proc_id)
1221				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1222		}
1223	}
1224}
1225
1226int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
1227{
1228	int ret = smp_boot_one_cpu(cpu, tidle);
1229
1230	if (!ret) {
1231		cpumask_set_cpu(cpu, &smp_commenced_mask);
1232		while (!cpu_online(cpu))
1233			mb();
1234		if (!cpu_online(cpu)) {
1235			ret = -ENODEV;
1236		} else {
1237			/* On SUN4V, writes to %tick and %stick are
1238			 * not allowed.
1239			 */
1240			if (tlb_type != hypervisor)
1241				smp_synchronize_one_tick(cpu);
1242		}
1243	}
1244	return ret;
1245}
1246
1247#ifdef CONFIG_HOTPLUG_CPU
1248void cpu_play_dead(void)
1249{
1250	int cpu = smp_processor_id();
1251	unsigned long pstate;
1252
1253	idle_task_exit();
1254
1255	if (tlb_type == hypervisor) {
1256		struct trap_per_cpu *tb = &trap_block[cpu];
1257
1258		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1259				tb->cpu_mondo_pa, 0);
1260		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1261				tb->dev_mondo_pa, 0);
1262		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1263				tb->resum_mondo_pa, 0);
1264		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1265				tb->nonresum_mondo_pa, 0);
1266	}
1267
1268	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1269	membar_safe("#Sync");
1270
1271	local_irq_disable();
1272
1273	__asm__ __volatile__(
1274		"rdpr	%%pstate, %0\n\t"
1275		"wrpr	%0, %1, %%pstate"
1276		: "=r" (pstate)
1277		: "i" (PSTATE_IE));
1278
1279	while (1)
1280		barrier();
1281}
1282
1283int __cpu_disable(void)
1284{
1285	int cpu = smp_processor_id();
1286	cpuinfo_sparc *c;
1287	int i;
1288
1289	for_each_cpu(i, &cpu_core_map[cpu])
1290		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1291	cpumask_clear(&cpu_core_map[cpu]);
1292
1293	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1294		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1295	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1296
1297	c = &cpu_data(cpu);
1298
1299	c->core_id = 0;
1300	c->proc_id = -1;
1301
1302	smp_wmb();
1303
1304	/* Make sure no interrupts point to this cpu.  */
1305	fixup_irqs();
1306
1307	local_irq_enable();
1308	mdelay(1);
1309	local_irq_disable();
1310
1311	ipi_call_lock();
1312	set_cpu_online(cpu, false);
1313	ipi_call_unlock();
1314
1315	cpu_map_rebuild();
1316
1317	return 0;
1318}
1319
1320void __cpu_die(unsigned int cpu)
1321{
1322	int i;
1323
1324	for (i = 0; i < 100; i++) {
1325		smp_rmb();
1326		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1327			break;
1328		msleep(100);
1329	}
1330	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1331		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1332	} else {
1333#if defined(CONFIG_SUN_LDOMS)
1334		unsigned long hv_err;
1335		int limit = 100;
1336
1337		do {
1338			hv_err = sun4v_cpu_stop(cpu);
1339			if (hv_err == HV_EOK) {
1340				set_cpu_present(cpu, false);
1341				break;
1342			}
1343		} while (--limit > 0);
1344		if (limit <= 0) {
1345			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1346			       hv_err);
1347		}
1348#endif
1349	}
1350}
1351#endif
1352
1353void __init smp_cpus_done(unsigned int max_cpus)
1354{
1355	pcr_arch_init();
1356}
1357
1358void smp_send_reschedule(int cpu)
1359{
1360	xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1361		      cpumask_of(cpu));
 
 
 
 
 
1362}
1363
1364void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1365{
1366	clear_softint(1 << irq);
1367	scheduler_ipi();
1368}
1369
1370/* This is a nop because we capture all other cpus
1371 * anyways when making the PROM active.
1372 */
 
 
1373void smp_send_stop(void)
1374{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1375}
1376
1377/**
1378 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1379 * @cpu: cpu to allocate for
1380 * @size: size allocation in bytes
1381 * @align: alignment
1382 *
1383 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1384 * does the right thing for NUMA regardless of the current
1385 * configuration.
1386 *
1387 * RETURNS:
1388 * Pointer to the allocated area on success, NULL on failure.
1389 */
1390static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1391					size_t align)
1392{
1393	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1394#ifdef CONFIG_NEED_MULTIPLE_NODES
1395	int node = cpu_to_node(cpu);
1396	void *ptr;
1397
1398	if (!node_online(node) || !NODE_DATA(node)) {
1399		ptr = __alloc_bootmem(size, align, goal);
1400		pr_info("cpu %d has no node %d or node-local memory\n",
1401			cpu, node);
1402		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1403			 cpu, size, __pa(ptr));
1404	} else {
1405		ptr = __alloc_bootmem_node(NODE_DATA(node),
1406					   size, align, goal);
1407		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1408			 "%016lx\n", cpu, size, node, __pa(ptr));
1409	}
1410	return ptr;
1411#else
1412	return __alloc_bootmem(size, align, goal);
1413#endif
1414}
1415
1416static void __init pcpu_free_bootmem(void *ptr, size_t size)
1417{
1418	free_bootmem(__pa(ptr), size);
1419}
1420
1421static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1422{
1423	if (cpu_to_node(from) == cpu_to_node(to))
1424		return LOCAL_DISTANCE;
1425	else
1426		return REMOTE_DISTANCE;
1427}
1428
1429static void __init pcpu_populate_pte(unsigned long addr)
1430{
1431	pgd_t *pgd = pgd_offset_k(addr);
1432	pud_t *pud;
1433	pmd_t *pmd;
 
 
 
 
 
 
 
1434
1435	pud = pud_offset(pgd, addr);
1436	if (pud_none(*pud)) {
1437		pmd_t *new;
1438
1439		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1440		pud_populate(&init_mm, pud, new);
1441	}
1442
1443	pmd = pmd_offset(pud, addr);
1444	if (!pmd_present(*pmd)) {
1445		pte_t *new;
1446
1447		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1448		pmd_populate_kernel(&init_mm, pmd, new);
1449	}
1450}
1451
1452void __init setup_per_cpu_areas(void)
1453{
1454	unsigned long delta;
1455	unsigned int cpu;
1456	int rc = -EINVAL;
1457
1458	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1459		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1460					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1461					    pcpu_cpu_distance,
1462					    pcpu_alloc_bootmem,
1463					    pcpu_free_bootmem);
1464		if (rc)
1465			pr_warning("PERCPU: %s allocator failed (%d), "
1466				   "falling back to page size\n",
1467				   pcpu_fc_names[pcpu_chosen_fc], rc);
1468	}
1469	if (rc < 0)
1470		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1471					   pcpu_alloc_bootmem,
1472					   pcpu_free_bootmem,
1473					   pcpu_populate_pte);
1474	if (rc < 0)
1475		panic("cannot initialize percpu area (err=%d)", rc);
1476
1477	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1478	for_each_possible_cpu(cpu)
1479		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1480
1481	/* Setup %g5 for the boot cpu.  */
1482	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1483
1484	of_fill_in_cpu_data();
1485	if (tlb_type == hypervisor)
1486		mdesc_fill_in_cpu_data(cpu_all_mask);
1487}
v4.6
   1/* smp.c: Sparc64 SMP support.
   2 *
   3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   4 */
   5
   6#include <linux/export.h>
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/pagemap.h>
  11#include <linux/threads.h>
  12#include <linux/smp.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/cache.h>
  21#include <linux/jiffies.h>
  22#include <linux/profile.h>
  23#include <linux/bootmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ftrace.h>
  26#include <linux/cpu.h>
  27#include <linux/slab.h>
  28#include <linux/kgdb.h>
  29
  30#include <asm/head.h>
  31#include <asm/ptrace.h>
  32#include <linux/atomic.h>
  33#include <asm/tlbflush.h>
  34#include <asm/mmu_context.h>
  35#include <asm/cpudata.h>
  36#include <asm/hvtramp.h>
  37#include <asm/io.h>
  38#include <asm/timer.h>
  39#include <asm/setup.h>
  40
  41#include <asm/irq.h>
  42#include <asm/irq_regs.h>
  43#include <asm/page.h>
  44#include <asm/pgtable.h>
  45#include <asm/oplib.h>
  46#include <asm/uaccess.h>
  47#include <asm/starfire.h>
  48#include <asm/tlb.h>
  49#include <asm/sections.h>
  50#include <asm/prom.h>
  51#include <asm/mdesc.h>
  52#include <asm/ldc.h>
  53#include <asm/hypervisor.h>
  54#include <asm/pcr.h>
  55
  56#include "cpumap.h"
  57#include "kernel.h"
 
  58
  59DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  60cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  61	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  62
  63cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
  64	[0 ... NR_CPUS-1] = CPU_MASK_NONE };
  65
  66EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  67EXPORT_SYMBOL(cpu_core_map);
  68EXPORT_SYMBOL(cpu_core_sib_map);
  69
  70static cpumask_t smp_commenced_mask;
  71
  72void smp_info(struct seq_file *m)
  73{
  74	int i;
  75	
  76	seq_printf(m, "State:\n");
  77	for_each_online_cpu(i)
  78		seq_printf(m, "CPU%d:\t\tonline\n", i);
  79}
  80
  81void smp_bogo(struct seq_file *m)
  82{
  83	int i;
  84	
  85	for_each_online_cpu(i)
  86		seq_printf(m,
  87			   "Cpu%dClkTck\t: %016lx\n",
  88			   i, cpu_data(i).clock_tick);
  89}
  90
  91extern void setup_sparc64_timer(void);
  92
  93static volatile unsigned long callin_flag = 0;
  94
  95void smp_callin(void)
  96{
  97	int cpuid = hard_smp_processor_id();
  98
  99	__local_per_cpu_offset = __per_cpu_offset(cpuid);
 100
 101	if (tlb_type == hypervisor)
 102		sun4v_ktsb_register();
 103
 104	__flush_tlb_all();
 105
 106	setup_sparc64_timer();
 107
 108	if (cheetah_pcache_forced_on)
 109		cheetah_enable_pcache();
 110
 
 
 111	callin_flag = 1;
 112	__asm__ __volatile__("membar #Sync\n\t"
 113			     "flush  %%g6" : : : "memory");
 114
 115	/* Clear this or we will die instantly when we
 116	 * schedule back to this idler...
 117	 */
 118	current_thread_info()->new_child = 0;
 119
 120	/* Attach to the address space of init_task. */
 121	atomic_inc(&init_mm.mm_count);
 122	current->active_mm = &init_mm;
 123
 124	/* inform the notifiers about the new cpu */
 125	notify_cpu_starting(cpuid);
 126
 127	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 128		rmb();
 129
 
 130	set_cpu_online(cpuid, true);
 
 131
 132	/* idle thread is expected to have preempt disabled */
 133	preempt_disable();
 134
 135	local_irq_enable();
 136
 137	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 138}
 139
 140void cpu_panic(void)
 141{
 142	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 143	panic("SMP bolixed\n");
 144}
 145
 146/* This tick register synchronization scheme is taken entirely from
 147 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 148 *
 149 * The only change I've made is to rework it so that the master
 150 * initiates the synchonization instead of the slave. -DaveM
 151 */
 152
 153#define MASTER	0
 154#define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
 155
 156#define NUM_ROUNDS	64	/* magic value */
 157#define NUM_ITERS	5	/* likewise */
 158
 159static DEFINE_RAW_SPINLOCK(itc_sync_lock);
 160static unsigned long go[SLAVE + 1];
 161
 162#define DEBUG_TICK_SYNC	0
 163
 164static inline long get_delta (long *rt, long *master)
 165{
 166	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 167	unsigned long tcenter, t0, t1, tm;
 168	unsigned long i;
 169
 170	for (i = 0; i < NUM_ITERS; i++) {
 171		t0 = tick_ops->get_tick();
 172		go[MASTER] = 1;
 173		membar_safe("#StoreLoad");
 174		while (!(tm = go[SLAVE]))
 175			rmb();
 176		go[SLAVE] = 0;
 177		wmb();
 178		t1 = tick_ops->get_tick();
 179
 180		if (t1 - t0 < best_t1 - best_t0)
 181			best_t0 = t0, best_t1 = t1, best_tm = tm;
 182	}
 183
 184	*rt = best_t1 - best_t0;
 185	*master = best_tm - best_t0;
 186
 187	/* average best_t0 and best_t1 without overflow: */
 188	tcenter = (best_t0/2 + best_t1/2);
 189	if (best_t0 % 2 + best_t1 % 2 == 2)
 190		tcenter++;
 191	return tcenter - best_tm;
 192}
 193
 194void smp_synchronize_tick_client(void)
 195{
 196	long i, delta, adj, adjust_latency = 0, done = 0;
 197	unsigned long flags, rt, master_time_stamp;
 198#if DEBUG_TICK_SYNC
 199	struct {
 200		long rt;	/* roundtrip time */
 201		long master;	/* master's timestamp */
 202		long diff;	/* difference between midpoint and master's timestamp */
 203		long lat;	/* estimate of itc adjustment latency */
 204	} t[NUM_ROUNDS];
 205#endif
 206
 207	go[MASTER] = 1;
 208
 209	while (go[MASTER])
 210		rmb();
 211
 212	local_irq_save(flags);
 213	{
 214		for (i = 0; i < NUM_ROUNDS; i++) {
 215			delta = get_delta(&rt, &master_time_stamp);
 216			if (delta == 0)
 217				done = 1;	/* let's lock on to this... */
 218
 219			if (!done) {
 220				if (i > 0) {
 221					adjust_latency += -delta;
 222					adj = -delta + adjust_latency/4;
 223				} else
 224					adj = -delta;
 225
 226				tick_ops->add_tick(adj);
 227			}
 228#if DEBUG_TICK_SYNC
 229			t[i].rt = rt;
 230			t[i].master = master_time_stamp;
 231			t[i].diff = delta;
 232			t[i].lat = adjust_latency/4;
 233#endif
 234		}
 235	}
 236	local_irq_restore(flags);
 237
 238#if DEBUG_TICK_SYNC
 239	for (i = 0; i < NUM_ROUNDS; i++)
 240		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 241		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 242#endif
 243
 244	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 245	       "(last diff %ld cycles, maxerr %lu cycles)\n",
 246	       smp_processor_id(), delta, rt);
 247}
 248
 249static void smp_start_sync_tick_client(int cpu);
 250
 251static void smp_synchronize_one_tick(int cpu)
 252{
 253	unsigned long flags, i;
 254
 255	go[MASTER] = 0;
 256
 257	smp_start_sync_tick_client(cpu);
 258
 259	/* wait for client to be ready */
 260	while (!go[MASTER])
 261		rmb();
 262
 263	/* now let the client proceed into his loop */
 264	go[MASTER] = 0;
 265	membar_safe("#StoreLoad");
 266
 267	raw_spin_lock_irqsave(&itc_sync_lock, flags);
 268	{
 269		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 270			while (!go[MASTER])
 271				rmb();
 272			go[MASTER] = 0;
 273			wmb();
 274			go[SLAVE] = tick_ops->get_tick();
 275			membar_safe("#StoreLoad");
 276		}
 277	}
 278	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
 279}
 280
 281#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 282static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
 283				void **descrp)
 
 
 
 
 
 
 
 284{
 285	extern unsigned long sparc64_ttable_tl0;
 286	extern unsigned long kern_locked_tte_data;
 287	struct hvtramp_descr *hdesc;
 288	unsigned long trampoline_ra;
 289	struct trap_per_cpu *tb;
 290	u64 tte_vaddr, tte_data;
 291	unsigned long hv_err;
 292	int i;
 293
 294	hdesc = kzalloc(sizeof(*hdesc) +
 295			(sizeof(struct hvtramp_mapping) *
 296			 num_kernel_image_mappings - 1),
 297			GFP_KERNEL);
 298	if (!hdesc) {
 299		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 300		       "hvtramp_descr.\n");
 301		return;
 302	}
 303	*descrp = hdesc;
 304
 305	hdesc->cpu = cpu;
 306	hdesc->num_mappings = num_kernel_image_mappings;
 307
 308	tb = &trap_block[cpu];
 309
 310	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 311	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 312
 313	hdesc->thread_reg = thread_reg;
 314
 315	tte_vaddr = (unsigned long) KERNBASE;
 316	tte_data = kern_locked_tte_data;
 317
 318	for (i = 0; i < hdesc->num_mappings; i++) {
 319		hdesc->maps[i].vaddr = tte_vaddr;
 320		hdesc->maps[i].tte   = tte_data;
 321		tte_vaddr += 0x400000;
 322		tte_data  += 0x400000;
 323	}
 324
 325	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 326
 327	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 328				 kimage_addr_to_ra(&sparc64_ttable_tl0),
 329				 __pa(hdesc));
 330	if (hv_err)
 331		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 332		       "gives error %lu\n", hv_err);
 333}
 334#endif
 335
 336extern unsigned long sparc64_cpu_startup;
 337
 338/* The OBP cpu startup callback truncates the 3rd arg cookie to
 339 * 32-bits (I think) so to be safe we have it read the pointer
 340 * contained here so we work on >4GB machines. -DaveM
 341 */
 342static struct thread_info *cpu_new_thread = NULL;
 343
 344static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 345{
 346	unsigned long entry =
 347		(unsigned long)(&sparc64_cpu_startup);
 348	unsigned long cookie =
 349		(unsigned long)(&cpu_new_thread);
 350	void *descr = NULL;
 351	int timeout, ret;
 352
 353	callin_flag = 0;
 354	cpu_new_thread = task_thread_info(idle);
 355
 356	if (tlb_type == hypervisor) {
 357#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 358		if (ldom_domaining_enabled)
 359			ldom_startcpu_cpuid(cpu,
 360					    (unsigned long) cpu_new_thread,
 361					    &descr);
 362		else
 363#endif
 364			prom_startcpu_cpuid(cpu, entry, cookie);
 365	} else {
 366		struct device_node *dp = of_find_node_by_cpuid(cpu);
 367
 368		prom_startcpu(dp->phandle, entry, cookie);
 369	}
 370
 371	for (timeout = 0; timeout < 50000; timeout++) {
 372		if (callin_flag)
 373			break;
 374		udelay(100);
 375	}
 376
 377	if (callin_flag) {
 378		ret = 0;
 379	} else {
 380		printk("Processor %d is stuck.\n", cpu);
 381		ret = -ENODEV;
 382	}
 383	cpu_new_thread = NULL;
 384
 385	kfree(descr);
 386
 387	return ret;
 388}
 389
 390static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 391{
 392	u64 result, target;
 393	int stuck, tmp;
 394
 395	if (this_is_starfire) {
 396		/* map to real upaid */
 397		cpu = (((cpu & 0x3c) << 1) |
 398			((cpu & 0x40) >> 4) |
 399			(cpu & 0x3));
 400	}
 401
 402	target = (cpu << 14) | 0x70;
 403again:
 404	/* Ok, this is the real Spitfire Errata #54.
 405	 * One must read back from a UDB internal register
 406	 * after writes to the UDB interrupt dispatch, but
 407	 * before the membar Sync for that write.
 408	 * So we use the high UDB control register (ASI 0x7f,
 409	 * ADDR 0x20) for the dummy read. -DaveM
 410	 */
 411	tmp = 0x40;
 412	__asm__ __volatile__(
 413	"wrpr	%1, %2, %%pstate\n\t"
 414	"stxa	%4, [%0] %3\n\t"
 415	"stxa	%5, [%0+%8] %3\n\t"
 416	"add	%0, %8, %0\n\t"
 417	"stxa	%6, [%0+%8] %3\n\t"
 418	"membar	#Sync\n\t"
 419	"stxa	%%g0, [%7] %3\n\t"
 420	"membar	#Sync\n\t"
 421	"mov	0x20, %%g1\n\t"
 422	"ldxa	[%%g1] 0x7f, %%g0\n\t"
 423	"membar	#Sync"
 424	: "=r" (tmp)
 425	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 426	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
 427	  "r" (0x10), "0" (tmp)
 428        : "g1");
 429
 430	/* NOTE: PSTATE_IE is still clear. */
 431	stuck = 100000;
 432	do {
 433		__asm__ __volatile__("ldxa [%%g0] %1, %0"
 434			: "=r" (result)
 435			: "i" (ASI_INTR_DISPATCH_STAT));
 436		if (result == 0) {
 437			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 438					     : : "r" (pstate));
 439			return;
 440		}
 441		stuck -= 1;
 442		if (stuck == 0)
 443			break;
 444	} while (result & 0x1);
 445	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 446			     : : "r" (pstate));
 447	if (stuck == 0) {
 448		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 449		       smp_processor_id(), result);
 450	} else {
 451		udelay(2);
 452		goto again;
 453	}
 454}
 455
 456static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 457{
 458	u64 *mondo, data0, data1, data2;
 459	u16 *cpu_list;
 460	u64 pstate;
 461	int i;
 462
 463	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 464	cpu_list = __va(tb->cpu_list_pa);
 465	mondo = __va(tb->cpu_mondo_block_pa);
 466	data0 = mondo[0];
 467	data1 = mondo[1];
 468	data2 = mondo[2];
 469	for (i = 0; i < cnt; i++)
 470		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 471}
 472
 473/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 474 * packet, but we have no use for that.  However we do take advantage of
 475 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 476 */
 477static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 478{
 479	int nack_busy_id, is_jbus, need_more;
 480	u64 *mondo, pstate, ver, busy_mask;
 481	u16 *cpu_list;
 482
 483	cpu_list = __va(tb->cpu_list_pa);
 484	mondo = __va(tb->cpu_mondo_block_pa);
 485
 486	/* Unfortunately, someone at Sun had the brilliant idea to make the
 487	 * busy/nack fields hard-coded by ITID number for this Ultra-III
 488	 * derivative processor.
 489	 */
 490	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 491	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 492		   (ver >> 32) == __SERRANO_ID);
 493
 494	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 495
 496retry:
 497	need_more = 0;
 498	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 499			     : : "r" (pstate), "i" (PSTATE_IE));
 500
 501	/* Setup the dispatch data registers. */
 502	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
 503			     "stxa	%1, [%4] %6\n\t"
 504			     "stxa	%2, [%5] %6\n\t"
 505			     "membar	#Sync\n\t"
 506			     : /* no outputs */
 507			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 508			       "r" (0x40), "r" (0x50), "r" (0x60),
 509			       "i" (ASI_INTR_W));
 510
 511	nack_busy_id = 0;
 512	busy_mask = 0;
 513	{
 514		int i;
 515
 516		for (i = 0; i < cnt; i++) {
 517			u64 target, nr;
 518
 519			nr = cpu_list[i];
 520			if (nr == 0xffff)
 521				continue;
 522
 523			target = (nr << 14) | 0x70;
 524			if (is_jbus) {
 525				busy_mask |= (0x1UL << (nr * 2));
 526			} else {
 527				target |= (nack_busy_id << 24);
 528				busy_mask |= (0x1UL <<
 529					      (nack_busy_id * 2));
 530			}
 531			__asm__ __volatile__(
 532				"stxa	%%g0, [%0] %1\n\t"
 533				"membar	#Sync\n\t"
 534				: /* no outputs */
 535				: "r" (target), "i" (ASI_INTR_W));
 536			nack_busy_id++;
 537			if (nack_busy_id == 32) {
 538				need_more = 1;
 539				break;
 540			}
 541		}
 542	}
 543
 544	/* Now, poll for completion. */
 545	{
 546		u64 dispatch_stat, nack_mask;
 547		long stuck;
 548
 549		stuck = 100000 * nack_busy_id;
 550		nack_mask = busy_mask << 1;
 551		do {
 552			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
 553					     : "=r" (dispatch_stat)
 554					     : "i" (ASI_INTR_DISPATCH_STAT));
 555			if (!(dispatch_stat & (busy_mask | nack_mask))) {
 556				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 557						     : : "r" (pstate));
 558				if (unlikely(need_more)) {
 559					int i, this_cnt = 0;
 560					for (i = 0; i < cnt; i++) {
 561						if (cpu_list[i] == 0xffff)
 562							continue;
 563						cpu_list[i] = 0xffff;
 564						this_cnt++;
 565						if (this_cnt == 32)
 566							break;
 567					}
 568					goto retry;
 569				}
 570				return;
 571			}
 572			if (!--stuck)
 573				break;
 574		} while (dispatch_stat & busy_mask);
 575
 576		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 577				     : : "r" (pstate));
 578
 579		if (dispatch_stat & busy_mask) {
 580			/* Busy bits will not clear, continue instead
 581			 * of freezing up on this cpu.
 582			 */
 583			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 584			       smp_processor_id(), dispatch_stat);
 585		} else {
 586			int i, this_busy_nack = 0;
 587
 588			/* Delay some random time with interrupts enabled
 589			 * to prevent deadlock.
 590			 */
 591			udelay(2 * nack_busy_id);
 592
 593			/* Clear out the mask bits for cpus which did not
 594			 * NACK us.
 595			 */
 596			for (i = 0; i < cnt; i++) {
 597				u64 check_mask, nr;
 598
 599				nr = cpu_list[i];
 600				if (nr == 0xffff)
 601					continue;
 602
 603				if (is_jbus)
 604					check_mask = (0x2UL << (2*nr));
 605				else
 606					check_mask = (0x2UL <<
 607						      this_busy_nack);
 608				if ((dispatch_stat & check_mask) == 0)
 609					cpu_list[i] = 0xffff;
 610				this_busy_nack += 2;
 611				if (this_busy_nack == 64)
 612					break;
 613			}
 614
 615			goto retry;
 616		}
 617	}
 618}
 619
 620/* Multi-cpu list version.  */
 621static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 622{
 623	int retries, this_cpu, prev_sent, i, saw_cpu_error;
 624	unsigned long status;
 625	u16 *cpu_list;
 626
 627	this_cpu = smp_processor_id();
 628
 629	cpu_list = __va(tb->cpu_list_pa);
 630
 631	saw_cpu_error = 0;
 632	retries = 0;
 633	prev_sent = 0;
 634	do {
 635		int forward_progress, n_sent;
 636
 637		status = sun4v_cpu_mondo_send(cnt,
 638					      tb->cpu_list_pa,
 639					      tb->cpu_mondo_block_pa);
 640
 641		/* HV_EOK means all cpus received the xcall, we're done.  */
 642		if (likely(status == HV_EOK))
 643			break;
 644
 645		/* First, see if we made any forward progress.
 646		 *
 647		 * The hypervisor indicates successful sends by setting
 648		 * cpu list entries to the value 0xffff.
 649		 */
 650		n_sent = 0;
 651		for (i = 0; i < cnt; i++) {
 652			if (likely(cpu_list[i] == 0xffff))
 653				n_sent++;
 654		}
 655
 656		forward_progress = 0;
 657		if (n_sent > prev_sent)
 658			forward_progress = 1;
 659
 660		prev_sent = n_sent;
 661
 662		/* If we get a HV_ECPUERROR, then one or more of the cpus
 663		 * in the list are in error state.  Use the cpu_state()
 664		 * hypervisor call to find out which cpus are in error state.
 665		 */
 666		if (unlikely(status == HV_ECPUERROR)) {
 667			for (i = 0; i < cnt; i++) {
 668				long err;
 669				u16 cpu;
 670
 671				cpu = cpu_list[i];
 672				if (cpu == 0xffff)
 673					continue;
 674
 675				err = sun4v_cpu_state(cpu);
 676				if (err == HV_CPU_STATE_ERROR) {
 677					saw_cpu_error = (cpu + 1);
 678					cpu_list[i] = 0xffff;
 679				}
 680			}
 681		} else if (unlikely(status != HV_EWOULDBLOCK))
 682			goto fatal_mondo_error;
 683
 684		/* Don't bother rewriting the CPU list, just leave the
 685		 * 0xffff and non-0xffff entries in there and the
 686		 * hypervisor will do the right thing.
 687		 *
 688		 * Only advance timeout state if we didn't make any
 689		 * forward progress.
 690		 */
 691		if (unlikely(!forward_progress)) {
 692			if (unlikely(++retries > 10000))
 693				goto fatal_mondo_timeout;
 694
 695			/* Delay a little bit to let other cpus catch up
 696			 * on their cpu mondo queue work.
 697			 */
 698			udelay(2 * cnt);
 699		}
 700	} while (1);
 701
 702	if (unlikely(saw_cpu_error))
 703		goto fatal_mondo_cpu_error;
 704
 705	return;
 706
 707fatal_mondo_cpu_error:
 708	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 709	       "(including %d) were in error state\n",
 710	       this_cpu, saw_cpu_error - 1);
 711	return;
 712
 713fatal_mondo_timeout:
 714	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 715	       " progress after %d retries.\n",
 716	       this_cpu, retries);
 717	goto dump_cpu_list_and_out;
 718
 719fatal_mondo_error:
 720	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 721	       this_cpu, status);
 722	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 723	       "mondo_block_pa(%lx)\n",
 724	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 725
 726dump_cpu_list_and_out:
 727	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 728	for (i = 0; i < cnt; i++)
 729		printk("%u ", cpu_list[i]);
 730	printk("]\n");
 731}
 732
 733static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 734
 735static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 736{
 737	struct trap_per_cpu *tb;
 738	int this_cpu, i, cnt;
 739	unsigned long flags;
 740	u16 *cpu_list;
 741	u64 *mondo;
 742
 743	/* We have to do this whole thing with interrupts fully disabled.
 744	 * Otherwise if we send an xcall from interrupt context it will
 745	 * corrupt both our mondo block and cpu list state.
 746	 *
 747	 * One consequence of this is that we cannot use timeout mechanisms
 748	 * that depend upon interrupts being delivered locally.  So, for
 749	 * example, we cannot sample jiffies and expect it to advance.
 750	 *
 751	 * Fortunately, udelay() uses %stick/%tick so we can use that.
 752	 */
 753	local_irq_save(flags);
 754
 755	this_cpu = smp_processor_id();
 756	tb = &trap_block[this_cpu];
 757
 758	mondo = __va(tb->cpu_mondo_block_pa);
 759	mondo[0] = data0;
 760	mondo[1] = data1;
 761	mondo[2] = data2;
 762	wmb();
 763
 764	cpu_list = __va(tb->cpu_list_pa);
 765
 766	/* Setup the initial cpu list.  */
 767	cnt = 0;
 768	for_each_cpu(i, mask) {
 769		if (i == this_cpu || !cpu_online(i))
 770			continue;
 771		cpu_list[cnt++] = i;
 772	}
 773
 774	if (cnt)
 775		xcall_deliver_impl(tb, cnt);
 776
 777	local_irq_restore(flags);
 778}
 779
 780/* Send cross call to all processors mentioned in MASK_P
 781 * except self.  Really, there are only two cases currently,
 782 * "cpu_online_mask" and "mm_cpumask(mm)".
 783 */
 784static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 785{
 786	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 787
 788	xcall_deliver(data0, data1, data2, mask);
 789}
 790
 791/* Send cross call to all processors except self. */
 792static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 793{
 794	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 795}
 796
 797extern unsigned long xcall_sync_tick;
 798
 799static void smp_start_sync_tick_client(int cpu)
 800{
 801	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 802		      cpumask_of(cpu));
 803}
 804
 805extern unsigned long xcall_call_function;
 806
 807void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 808{
 809	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 810}
 811
 812extern unsigned long xcall_call_function_single;
 813
 814void arch_send_call_function_single_ipi(int cpu)
 815{
 816	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 817		      cpumask_of(cpu));
 818}
 819
 820void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 821{
 822	clear_softint(1 << irq);
 823	irq_enter();
 824	generic_smp_call_function_interrupt();
 825	irq_exit();
 826}
 827
 828void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 829{
 830	clear_softint(1 << irq);
 831	irq_enter();
 832	generic_smp_call_function_single_interrupt();
 833	irq_exit();
 834}
 835
 836static void tsb_sync(void *info)
 837{
 838	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 839	struct mm_struct *mm = info;
 840
 841	/* It is not valid to test "current->active_mm == mm" here.
 842	 *
 843	 * The value of "current" is not changed atomically with
 844	 * switch_mm().  But that's OK, we just need to check the
 845	 * current cpu's trap block PGD physical address.
 846	 */
 847	if (tp->pgd_paddr == __pa(mm->pgd))
 848		tsb_context_switch(mm);
 849}
 850
 851void smp_tsb_sync(struct mm_struct *mm)
 852{
 853	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 854}
 855
 856extern unsigned long xcall_flush_tlb_mm;
 857extern unsigned long xcall_flush_tlb_page;
 858extern unsigned long xcall_flush_tlb_kernel_range;
 859extern unsigned long xcall_fetch_glob_regs;
 860extern unsigned long xcall_fetch_glob_pmu;
 861extern unsigned long xcall_fetch_glob_pmu_n4;
 862extern unsigned long xcall_receive_signal;
 863extern unsigned long xcall_new_mmu_context_version;
 864#ifdef CONFIG_KGDB
 865extern unsigned long xcall_kgdb_capture;
 866#endif
 867
 868#ifdef DCACHE_ALIASING_POSSIBLE
 869extern unsigned long xcall_flush_dcache_page_cheetah;
 870#endif
 871extern unsigned long xcall_flush_dcache_page_spitfire;
 872
 
 
 
 
 
 873static inline void __local_flush_dcache_page(struct page *page)
 874{
 875#ifdef DCACHE_ALIASING_POSSIBLE
 876	__flush_dcache_page(page_address(page),
 877			    ((tlb_type == spitfire) &&
 878			     page_mapping(page) != NULL));
 879#else
 880	if (page_mapping(page) != NULL &&
 881	    tlb_type == spitfire)
 882		__flush_icache_page(__pa(page_address(page)));
 883#endif
 884}
 885
 886void smp_flush_dcache_page_impl(struct page *page, int cpu)
 887{
 888	int this_cpu;
 889
 890	if (tlb_type == hypervisor)
 891		return;
 892
 893#ifdef CONFIG_DEBUG_DCFLUSH
 894	atomic_inc(&dcpage_flushes);
 895#endif
 896
 897	this_cpu = get_cpu();
 898
 899	if (cpu == this_cpu) {
 900		__local_flush_dcache_page(page);
 901	} else if (cpu_online(cpu)) {
 902		void *pg_addr = page_address(page);
 903		u64 data0 = 0;
 904
 905		if (tlb_type == spitfire) {
 906			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 907			if (page_mapping(page) != NULL)
 908				data0 |= ((u64)1 << 32);
 909		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 910#ifdef DCACHE_ALIASING_POSSIBLE
 911			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
 912#endif
 913		}
 914		if (data0) {
 915			xcall_deliver(data0, __pa(pg_addr),
 916				      (u64) pg_addr, cpumask_of(cpu));
 917#ifdef CONFIG_DEBUG_DCFLUSH
 918			atomic_inc(&dcpage_flushes_xcall);
 919#endif
 920		}
 921	}
 922
 923	put_cpu();
 924}
 925
 926void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 927{
 928	void *pg_addr;
 929	u64 data0;
 930
 931	if (tlb_type == hypervisor)
 932		return;
 933
 934	preempt_disable();
 935
 936#ifdef CONFIG_DEBUG_DCFLUSH
 937	atomic_inc(&dcpage_flushes);
 938#endif
 939	data0 = 0;
 940	pg_addr = page_address(page);
 941	if (tlb_type == spitfire) {
 942		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 943		if (page_mapping(page) != NULL)
 944			data0 |= ((u64)1 << 32);
 945	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 946#ifdef DCACHE_ALIASING_POSSIBLE
 947		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 948#endif
 949	}
 950	if (data0) {
 951		xcall_deliver(data0, __pa(pg_addr),
 952			      (u64) pg_addr, cpu_online_mask);
 953#ifdef CONFIG_DEBUG_DCFLUSH
 954		atomic_inc(&dcpage_flushes_xcall);
 955#endif
 956	}
 957	__local_flush_dcache_page(page);
 958
 959	preempt_enable();
 960}
 961
 962void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 963{
 964	struct mm_struct *mm;
 965	unsigned long flags;
 966
 967	clear_softint(1 << irq);
 968
 969	/* See if we need to allocate a new TLB context because
 970	 * the version of the one we are using is now out of date.
 971	 */
 972	mm = current->active_mm;
 973	if (unlikely(!mm || (mm == &init_mm)))
 974		return;
 975
 976	spin_lock_irqsave(&mm->context.lock, flags);
 977
 978	if (unlikely(!CTX_VALID(mm->context)))
 979		get_new_mmu_context(mm);
 980
 981	spin_unlock_irqrestore(&mm->context.lock, flags);
 982
 983	load_secondary_context(mm);
 984	__flush_tlb_mm(CTX_HWBITS(mm->context),
 985		       SECONDARY_CONTEXT);
 986}
 987
 988void smp_new_mmu_context_version(void)
 989{
 990	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 991}
 992
 993#ifdef CONFIG_KGDB
 994void kgdb_roundup_cpus(unsigned long flags)
 995{
 996	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
 997}
 998#endif
 999
1000void smp_fetch_global_regs(void)
1001{
1002	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1003}
1004
1005void smp_fetch_global_pmu(void)
1006{
1007	if (tlb_type == hypervisor &&
1008	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1009		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1010	else
1011		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1012}
1013
1014/* We know that the window frames of the user have been flushed
1015 * to the stack before we get here because all callers of us
1016 * are flush_tlb_*() routines, and these run after flush_cache_*()
1017 * which performs the flushw.
1018 *
1019 * The SMP TLB coherency scheme we use works as follows:
1020 *
1021 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1022 *    space has (potentially) executed on, this is the heuristic
1023 *    we use to avoid doing cross calls.
1024 *
1025 *    Also, for flushing from kswapd and also for clones, we
1026 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1027 *
1028 * 2) TLB context numbers are shared globally across all processors
1029 *    in the system, this allows us to play several games to avoid
1030 *    cross calls.
1031 *
1032 *    One invariant is that when a cpu switches to a process, and
1033 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1034 *    current cpu's bit set, that tlb context is flushed locally.
1035 *
1036 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1037 *    cross calls when we want to flush the currently running process's
1038 *    tlb state.  This is done by clearing all cpu bits except the current
1039 *    processor's in current->mm->cpu_vm_mask and performing the
1040 *    flush locally only.  This will force any subsequent cpus which run
1041 *    this task to flush the context from the local tlb if the process
1042 *    migrates to another cpu (again).
1043 *
1044 * 3) For shared address spaces (threads) and swapping we bite the
1045 *    bullet for most cases and perform the cross call (but only to
1046 *    the cpus listed in cpu_vm_mask).
1047 *
1048 *    The performance gain from "optimizing" away the cross call for threads is
1049 *    questionable (in theory the big win for threads is the massive sharing of
1050 *    address space state across processors).
1051 */
1052
1053/* This currently is only used by the hugetlb arch pre-fault
1054 * hook on UltraSPARC-III+ and later when changing the pagesize
1055 * bits of the context register for an address space.
1056 */
1057void smp_flush_tlb_mm(struct mm_struct *mm)
1058{
1059	u32 ctx = CTX_HWBITS(mm->context);
1060	int cpu = get_cpu();
1061
1062	if (atomic_read(&mm->mm_users) == 1) {
1063		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1064		goto local_flush_and_out;
1065	}
1066
1067	smp_cross_call_masked(&xcall_flush_tlb_mm,
1068			      ctx, 0, 0,
1069			      mm_cpumask(mm));
1070
1071local_flush_and_out:
1072	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1073
1074	put_cpu();
1075}
1076
1077struct tlb_pending_info {
1078	unsigned long ctx;
1079	unsigned long nr;
1080	unsigned long *vaddrs;
1081};
1082
1083static void tlb_pending_func(void *info)
1084{
1085	struct tlb_pending_info *t = info;
1086
1087	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1088}
1089
1090void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1091{
1092	u32 ctx = CTX_HWBITS(mm->context);
1093	struct tlb_pending_info info;
1094	int cpu = get_cpu();
1095
1096	info.ctx = ctx;
1097	info.nr = nr;
1098	info.vaddrs = vaddrs;
1099
1100	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1101		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1102	else
1103		smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1104				       &info, 1);
 
1105
1106	__flush_tlb_pending(ctx, nr, vaddrs);
1107
1108	put_cpu();
1109}
1110
1111void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1112{
1113	unsigned long context = CTX_HWBITS(mm->context);
1114	int cpu = get_cpu();
1115
1116	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1117		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1118	else
1119		smp_cross_call_masked(&xcall_flush_tlb_page,
1120				      context, vaddr, 0,
1121				      mm_cpumask(mm));
1122	__flush_tlb_page(context, vaddr);
1123
1124	put_cpu();
1125}
1126
1127void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1128{
1129	start &= PAGE_MASK;
1130	end    = PAGE_ALIGN(end);
1131	if (start != end) {
1132		smp_cross_call(&xcall_flush_tlb_kernel_range,
1133			       0, start, end);
1134
1135		__flush_tlb_kernel_range(start, end);
1136	}
1137}
1138
1139/* CPU capture. */
1140/* #define CAPTURE_DEBUG */
1141extern unsigned long xcall_capture;
1142
1143static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1144static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1145static unsigned long penguins_are_doing_time;
1146
1147void smp_capture(void)
1148{
1149	int result = atomic_add_return(1, &smp_capture_depth);
1150
1151	if (result == 1) {
1152		int ncpus = num_online_cpus();
1153
1154#ifdef CAPTURE_DEBUG
1155		printk("CPU[%d]: Sending penguins to jail...",
1156		       smp_processor_id());
1157#endif
1158		penguins_are_doing_time = 1;
1159		atomic_inc(&smp_capture_registry);
1160		smp_cross_call(&xcall_capture, 0, 0, 0);
1161		while (atomic_read(&smp_capture_registry) != ncpus)
1162			rmb();
1163#ifdef CAPTURE_DEBUG
1164		printk("done\n");
1165#endif
1166	}
1167}
1168
1169void smp_release(void)
1170{
1171	if (atomic_dec_and_test(&smp_capture_depth)) {
1172#ifdef CAPTURE_DEBUG
1173		printk("CPU[%d]: Giving pardon to "
1174		       "imprisoned penguins\n",
1175		       smp_processor_id());
1176#endif
1177		penguins_are_doing_time = 0;
1178		membar_safe("#StoreLoad");
1179		atomic_dec(&smp_capture_registry);
1180	}
1181}
1182
1183/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1184 * set, so they can service tlb flush xcalls...
1185 */
1186extern void prom_world(int);
1187
1188void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1189{
1190	clear_softint(1 << irq);
1191
1192	preempt_disable();
1193
1194	__asm__ __volatile__("flushw");
1195	prom_world(1);
1196	atomic_inc(&smp_capture_registry);
1197	membar_safe("#StoreLoad");
1198	while (penguins_are_doing_time)
1199		rmb();
1200	atomic_dec(&smp_capture_registry);
1201	prom_world(0);
1202
1203	preempt_enable();
1204}
1205
1206/* /proc/profile writes can call this, don't __init it please. */
1207int setup_profiling_timer(unsigned int multiplier)
1208{
1209	return -EINVAL;
1210}
1211
1212void __init smp_prepare_cpus(unsigned int max_cpus)
1213{
1214}
1215
1216void smp_prepare_boot_cpu(void)
1217{
1218}
1219
1220void __init smp_setup_processor_id(void)
1221{
1222	if (tlb_type == spitfire)
1223		xcall_deliver_impl = spitfire_xcall_deliver;
1224	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1225		xcall_deliver_impl = cheetah_xcall_deliver;
1226	else
1227		xcall_deliver_impl = hypervisor_xcall_deliver;
1228}
1229
1230void smp_fill_in_sib_core_maps(void)
1231{
1232	unsigned int i;
1233
1234	for_each_present_cpu(i) {
1235		unsigned int j;
1236
1237		cpumask_clear(&cpu_core_map[i]);
1238		if (cpu_data(i).core_id == 0) {
1239			cpumask_set_cpu(i, &cpu_core_map[i]);
1240			continue;
1241		}
1242
1243		for_each_present_cpu(j) {
1244			if (cpu_data(i).core_id ==
1245			    cpu_data(j).core_id)
1246				cpumask_set_cpu(j, &cpu_core_map[i]);
1247		}
1248	}
1249
1250	for_each_present_cpu(i)  {
1251		unsigned int j;
1252
1253		for_each_present_cpu(j)  {
1254			if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1255				cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1256		}
1257	}
1258
1259	for_each_present_cpu(i) {
1260		unsigned int j;
1261
1262		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1263		if (cpu_data(i).proc_id == -1) {
1264			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1265			continue;
1266		}
1267
1268		for_each_present_cpu(j) {
1269			if (cpu_data(i).proc_id ==
1270			    cpu_data(j).proc_id)
1271				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1272		}
1273	}
1274}
1275
1276int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1277{
1278	int ret = smp_boot_one_cpu(cpu, tidle);
1279
1280	if (!ret) {
1281		cpumask_set_cpu(cpu, &smp_commenced_mask);
1282		while (!cpu_online(cpu))
1283			mb();
1284		if (!cpu_online(cpu)) {
1285			ret = -ENODEV;
1286		} else {
1287			/* On SUN4V, writes to %tick and %stick are
1288			 * not allowed.
1289			 */
1290			if (tlb_type != hypervisor)
1291				smp_synchronize_one_tick(cpu);
1292		}
1293	}
1294	return ret;
1295}
1296
1297#ifdef CONFIG_HOTPLUG_CPU
1298void cpu_play_dead(void)
1299{
1300	int cpu = smp_processor_id();
1301	unsigned long pstate;
1302
1303	idle_task_exit();
1304
1305	if (tlb_type == hypervisor) {
1306		struct trap_per_cpu *tb = &trap_block[cpu];
1307
1308		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1309				tb->cpu_mondo_pa, 0);
1310		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1311				tb->dev_mondo_pa, 0);
1312		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1313				tb->resum_mondo_pa, 0);
1314		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1315				tb->nonresum_mondo_pa, 0);
1316	}
1317
1318	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1319	membar_safe("#Sync");
1320
1321	local_irq_disable();
1322
1323	__asm__ __volatile__(
1324		"rdpr	%%pstate, %0\n\t"
1325		"wrpr	%0, %1, %%pstate"
1326		: "=r" (pstate)
1327		: "i" (PSTATE_IE));
1328
1329	while (1)
1330		barrier();
1331}
1332
1333int __cpu_disable(void)
1334{
1335	int cpu = smp_processor_id();
1336	cpuinfo_sparc *c;
1337	int i;
1338
1339	for_each_cpu(i, &cpu_core_map[cpu])
1340		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1341	cpumask_clear(&cpu_core_map[cpu]);
1342
1343	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1344		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1345	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1346
1347	c = &cpu_data(cpu);
1348
1349	c->core_id = 0;
1350	c->proc_id = -1;
1351
1352	smp_wmb();
1353
1354	/* Make sure no interrupts point to this cpu.  */
1355	fixup_irqs();
1356
1357	local_irq_enable();
1358	mdelay(1);
1359	local_irq_disable();
1360
 
1361	set_cpu_online(cpu, false);
 
1362
1363	cpu_map_rebuild();
1364
1365	return 0;
1366}
1367
1368void __cpu_die(unsigned int cpu)
1369{
1370	int i;
1371
1372	for (i = 0; i < 100; i++) {
1373		smp_rmb();
1374		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1375			break;
1376		msleep(100);
1377	}
1378	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1379		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1380	} else {
1381#if defined(CONFIG_SUN_LDOMS)
1382		unsigned long hv_err;
1383		int limit = 100;
1384
1385		do {
1386			hv_err = sun4v_cpu_stop(cpu);
1387			if (hv_err == HV_EOK) {
1388				set_cpu_present(cpu, false);
1389				break;
1390			}
1391		} while (--limit > 0);
1392		if (limit <= 0) {
1393			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1394			       hv_err);
1395		}
1396#endif
1397	}
1398}
1399#endif
1400
1401void __init smp_cpus_done(unsigned int max_cpus)
1402{
 
1403}
1404
1405void smp_send_reschedule(int cpu)
1406{
1407	if (cpu == smp_processor_id()) {
1408		WARN_ON_ONCE(preemptible());
1409		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1410	} else {
1411		xcall_deliver((u64) &xcall_receive_signal,
1412			      0, 0, cpumask_of(cpu));
1413	}
1414}
1415
1416void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1417{
1418	clear_softint(1 << irq);
1419	scheduler_ipi();
1420}
1421
1422static void stop_this_cpu(void *dummy)
1423{
1424	prom_stopself();
1425}
1426
1427void smp_send_stop(void)
1428{
1429	int cpu;
1430
1431	if (tlb_type == hypervisor) {
1432		for_each_online_cpu(cpu) {
1433			if (cpu == smp_processor_id())
1434				continue;
1435#ifdef CONFIG_SUN_LDOMS
1436			if (ldom_domaining_enabled) {
1437				unsigned long hv_err;
1438				hv_err = sun4v_cpu_stop(cpu);
1439				if (hv_err)
1440					printk(KERN_ERR "sun4v_cpu_stop() "
1441					       "failed err=%lu\n", hv_err);
1442			} else
1443#endif
1444				prom_stopcpu_cpuid(cpu);
1445		}
1446	} else
1447		smp_call_function(stop_this_cpu, NULL, 0);
1448}
1449
1450/**
1451 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1452 * @cpu: cpu to allocate for
1453 * @size: size allocation in bytes
1454 * @align: alignment
1455 *
1456 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1457 * does the right thing for NUMA regardless of the current
1458 * configuration.
1459 *
1460 * RETURNS:
1461 * Pointer to the allocated area on success, NULL on failure.
1462 */
1463static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1464					size_t align)
1465{
1466	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1467#ifdef CONFIG_NEED_MULTIPLE_NODES
1468	int node = cpu_to_node(cpu);
1469	void *ptr;
1470
1471	if (!node_online(node) || !NODE_DATA(node)) {
1472		ptr = __alloc_bootmem(size, align, goal);
1473		pr_info("cpu %d has no node %d or node-local memory\n",
1474			cpu, node);
1475		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1476			 cpu, size, __pa(ptr));
1477	} else {
1478		ptr = __alloc_bootmem_node(NODE_DATA(node),
1479					   size, align, goal);
1480		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1481			 "%016lx\n", cpu, size, node, __pa(ptr));
1482	}
1483	return ptr;
1484#else
1485	return __alloc_bootmem(size, align, goal);
1486#endif
1487}
1488
1489static void __init pcpu_free_bootmem(void *ptr, size_t size)
1490{
1491	free_bootmem(__pa(ptr), size);
1492}
1493
1494static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1495{
1496	if (cpu_to_node(from) == cpu_to_node(to))
1497		return LOCAL_DISTANCE;
1498	else
1499		return REMOTE_DISTANCE;
1500}
1501
1502static void __init pcpu_populate_pte(unsigned long addr)
1503{
1504	pgd_t *pgd = pgd_offset_k(addr);
1505	pud_t *pud;
1506	pmd_t *pmd;
1507
1508	if (pgd_none(*pgd)) {
1509		pud_t *new;
1510
1511		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1512		pgd_populate(&init_mm, pgd, new);
1513	}
1514
1515	pud = pud_offset(pgd, addr);
1516	if (pud_none(*pud)) {
1517		pmd_t *new;
1518
1519		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1520		pud_populate(&init_mm, pud, new);
1521	}
1522
1523	pmd = pmd_offset(pud, addr);
1524	if (!pmd_present(*pmd)) {
1525		pte_t *new;
1526
1527		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1528		pmd_populate_kernel(&init_mm, pmd, new);
1529	}
1530}
1531
1532void __init setup_per_cpu_areas(void)
1533{
1534	unsigned long delta;
1535	unsigned int cpu;
1536	int rc = -EINVAL;
1537
1538	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1539		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1540					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1541					    pcpu_cpu_distance,
1542					    pcpu_alloc_bootmem,
1543					    pcpu_free_bootmem);
1544		if (rc)
1545			pr_warning("PERCPU: %s allocator failed (%d), "
1546				   "falling back to page size\n",
1547				   pcpu_fc_names[pcpu_chosen_fc], rc);
1548	}
1549	if (rc < 0)
1550		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1551					   pcpu_alloc_bootmem,
1552					   pcpu_free_bootmem,
1553					   pcpu_populate_pte);
1554	if (rc < 0)
1555		panic("cannot initialize percpu area (err=%d)", rc);
1556
1557	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1558	for_each_possible_cpu(cpu)
1559		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1560
1561	/* Setup %g5 for the boot cpu.  */
1562	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1563
1564	of_fill_in_cpu_data();
1565	if (tlb_type == hypervisor)
1566		mdesc_fill_in_cpu_data(cpu_all_mask);
1567}