Linux Audio

Check our new training course

Loading...
v3.5.6
   1/* Performance event support for sparc64.
   2 *
   3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
   4 *
   5 * This code is based almost entirely upon the x86 perf event
   6 * code, which is:
   7 *
   8 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   9 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  10 *  Copyright (C) 2009 Jaswinder Singh Rajput
  11 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  12 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  13 */
  14
  15#include <linux/perf_event.h>
  16#include <linux/kprobes.h>
  17#include <linux/ftrace.h>
  18#include <linux/kernel.h>
  19#include <linux/kdebug.h>
  20#include <linux/mutex.h>
  21
  22#include <asm/stacktrace.h>
  23#include <asm/cpudata.h>
  24#include <asm/uaccess.h>
  25#include <linux/atomic.h>
  26#include <asm/nmi.h>
  27#include <asm/pcr.h>
  28#include <asm/perfctr.h>
  29#include <asm/cacheflush.h>
  30
  31#include "kernel.h"
  32#include "kstack.h"
  33
  34/* Sparc64 chips have two performance counters, 32-bits each, with
  35 * overflow interrupts generated on transition from 0xffffffff to 0.
  36 * The counters are accessed in one go using a 64-bit register.
  37 *
  38 * Both counters are controlled using a single control register.  The
  39 * only way to stop all sampling is to clear all of the context (user,
  40 * supervisor, hypervisor) sampling enable bits.  But these bits apply
  41 * to both counters, thus the two counters can't be enabled/disabled
  42 * individually.
  43 *
  44 * The control register has two event fields, one for each of the two
  45 * counters.  It's thus nearly impossible to have one counter going
  46 * while keeping the other one stopped.  Therefore it is possible to
  47 * get overflow interrupts for counters not currently "in use" and
  48 * that condition must be checked in the overflow interrupt handler.
 
 
 
 
 
 
 
  49 *
  50 * So we use a hack, in that we program inactive counters with the
  51 * "sw_count0" and "sw_count1" events.  These count how many times
  52 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
  53 * unusual way to encode a NOP and therefore will not trigger in
  54 * normal code.
 
 
 
 
 
 
 
  55 */
  56
  57#define MAX_HWEVENTS			2
 
  58#define MAX_PERIOD			((1UL << 32) - 1)
  59
  60#define PIC_UPPER_INDEX			0
  61#define PIC_LOWER_INDEX			1
  62#define PIC_NO_INDEX			-1
  63
  64struct cpu_hw_events {
  65	/* Number of events currently scheduled onto this cpu.
  66	 * This tells how many entries in the arrays below
  67	 * are valid.
  68	 */
  69	int			n_events;
  70
  71	/* Number of new events added since the last hw_perf_disable().
  72	 * This works because the perf event layer always adds new
  73	 * events inside of a perf_{disable,enable}() sequence.
  74	 */
  75	int			n_added;
  76
  77	/* Array of events current scheduled on this cpu.  */
  78	struct perf_event	*event[MAX_HWEVENTS];
  79
  80	/* Array of encoded longs, specifying the %pcr register
  81	 * encoding and the mask of PIC counters this even can
  82	 * be scheduled on.  See perf_event_encode() et al.
  83	 */
  84	unsigned long		events[MAX_HWEVENTS];
  85
  86	/* The current counter index assigned to an event.  When the
  87	 * event hasn't been programmed into the cpu yet, this will
  88	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
  89	 * we ought to schedule the event.
  90	 */
  91	int			current_idx[MAX_HWEVENTS];
  92
  93	/* Software copy of %pcr register on this cpu.  */
  94	u64			pcr;
  95
  96	/* Enabled/disable state.  */
  97	int			enabled;
  98
  99	unsigned int		group_flag;
 100};
 101DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 102
 103/* An event map describes the characteristics of a performance
 104 * counter event.  In particular it gives the encoding as well as
 105 * a mask telling which counters the event can be measured on.
 
 
 106 */
 107struct perf_event_map {
 108	u16	encoding;
 109	u8	pic_mask;
 110#define PIC_NONE	0x00
 111#define PIC_UPPER	0x01
 112#define PIC_LOWER	0x02
 113};
 114
 115/* Encode a perf_event_map entry into a long.  */
 116static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 117{
 118	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 119}
 120
 121static u8 perf_event_get_msk(unsigned long val)
 122{
 123	return val & 0xff;
 124}
 125
 126static u64 perf_event_get_enc(unsigned long val)
 127{
 128	return val >> 16;
 129}
 130
 131#define C(x) PERF_COUNT_HW_CACHE_##x
 132
 133#define CACHE_OP_UNSUPPORTED	0xfffe
 134#define CACHE_OP_NONSENSE	0xffff
 135
 136typedef struct perf_event_map cache_map_t
 137				[PERF_COUNT_HW_CACHE_MAX]
 138				[PERF_COUNT_HW_CACHE_OP_MAX]
 139				[PERF_COUNT_HW_CACHE_RESULT_MAX];
 140
 141struct sparc_pmu {
 142	const struct perf_event_map	*(*event_map)(int);
 143	const cache_map_t		*cache_map;
 144	int				max_events;
 
 
 145	int				upper_shift;
 146	int				lower_shift;
 147	int				event_mask;
 
 
 148	int				hv_bit;
 149	int				irq_bit;
 150	int				upper_nop;
 151	int				lower_nop;
 
 
 
 
 
 
 152};
 153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154static const struct perf_event_map ultra3_perfmon_event_map[] = {
 155	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 156	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 157	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 158	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 159};
 160
 161static const struct perf_event_map *ultra3_event_map(int event_id)
 162{
 163	return &ultra3_perfmon_event_map[event_id];
 164}
 165
 166static const cache_map_t ultra3_cache_map = {
 167[C(L1D)] = {
 168	[C(OP_READ)] = {
 169		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 170		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 171	},
 172	[C(OP_WRITE)] = {
 173		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 174		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 175	},
 176	[C(OP_PREFETCH)] = {
 177		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 178		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 179	},
 180},
 181[C(L1I)] = {
 182	[C(OP_READ)] = {
 183		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 184		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 185	},
 186	[ C(OP_WRITE) ] = {
 187		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 188		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 189	},
 190	[ C(OP_PREFETCH) ] = {
 191		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 192		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 193	},
 194},
 195[C(LL)] = {
 196	[C(OP_READ)] = {
 197		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 198		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 199	},
 200	[C(OP_WRITE)] = {
 201		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 202		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 203	},
 204	[C(OP_PREFETCH)] = {
 205		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 206		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 207	},
 208},
 209[C(DTLB)] = {
 210	[C(OP_READ)] = {
 211		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 212		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 213	},
 214	[ C(OP_WRITE) ] = {
 215		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 216		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 217	},
 218	[ C(OP_PREFETCH) ] = {
 219		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 220		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 221	},
 222},
 223[C(ITLB)] = {
 224	[C(OP_READ)] = {
 225		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 226		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 227	},
 228	[ C(OP_WRITE) ] = {
 229		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 230		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 231	},
 232	[ C(OP_PREFETCH) ] = {
 233		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 234		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 235	},
 236},
 237[C(BPU)] = {
 238	[C(OP_READ)] = {
 239		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 240		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 241	},
 242	[ C(OP_WRITE) ] = {
 243		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 244		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 245	},
 246	[ C(OP_PREFETCH) ] = {
 247		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 248		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 249	},
 250},
 251[C(NODE)] = {
 252	[C(OP_READ)] = {
 253		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 254		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 255	},
 256	[ C(OP_WRITE) ] = {
 257		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 258		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 259	},
 260	[ C(OP_PREFETCH) ] = {
 261		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 262		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 263	},
 264},
 265};
 266
 267static const struct sparc_pmu ultra3_pmu = {
 268	.event_map	= ultra3_event_map,
 269	.cache_map	= &ultra3_cache_map,
 270	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
 
 
 271	.upper_shift	= 11,
 272	.lower_shift	= 4,
 273	.event_mask	= 0x3f,
 
 
 274	.upper_nop	= 0x1c,
 275	.lower_nop	= 0x14,
 
 
 
 
 
 276};
 277
 278/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 279 * only instructions, so it is free running which creates all kinds of
 280 * problems.  Some hardware designs make one wonder if the creator
 281 * even looked at how this stuff gets used by software.
 282 */
 283static const struct perf_event_map niagara1_perfmon_event_map[] = {
 284	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 285	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 286	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 287	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 288};
 289
 290static const struct perf_event_map *niagara1_event_map(int event_id)
 291{
 292	return &niagara1_perfmon_event_map[event_id];
 293}
 294
 295static const cache_map_t niagara1_cache_map = {
 296[C(L1D)] = {
 297	[C(OP_READ)] = {
 298		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 299		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 300	},
 301	[C(OP_WRITE)] = {
 302		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 303		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 304	},
 305	[C(OP_PREFETCH)] = {
 306		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 307		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 308	},
 309},
 310[C(L1I)] = {
 311	[C(OP_READ)] = {
 312		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 313		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 314	},
 315	[ C(OP_WRITE) ] = {
 316		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 317		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 318	},
 319	[ C(OP_PREFETCH) ] = {
 320		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 321		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 322	},
 323},
 324[C(LL)] = {
 325	[C(OP_READ)] = {
 326		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 327		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 328	},
 329	[C(OP_WRITE)] = {
 330		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 331		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 332	},
 333	[C(OP_PREFETCH)] = {
 334		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 335		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 336	},
 337},
 338[C(DTLB)] = {
 339	[C(OP_READ)] = {
 340		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 341		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 342	},
 343	[ C(OP_WRITE) ] = {
 344		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 345		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 346	},
 347	[ C(OP_PREFETCH) ] = {
 348		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 349		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 350	},
 351},
 352[C(ITLB)] = {
 353	[C(OP_READ)] = {
 354		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 355		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 356	},
 357	[ C(OP_WRITE) ] = {
 358		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 359		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 360	},
 361	[ C(OP_PREFETCH) ] = {
 362		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 363		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 364	},
 365},
 366[C(BPU)] = {
 367	[C(OP_READ)] = {
 368		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 369		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 370	},
 371	[ C(OP_WRITE) ] = {
 372		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 373		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 374	},
 375	[ C(OP_PREFETCH) ] = {
 376		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 377		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 378	},
 379},
 380[C(NODE)] = {
 381	[C(OP_READ)] = {
 382		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 383		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 384	},
 385	[ C(OP_WRITE) ] = {
 386		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 387		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 388	},
 389	[ C(OP_PREFETCH) ] = {
 390		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 391		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 392	},
 393},
 394};
 395
 396static const struct sparc_pmu niagara1_pmu = {
 397	.event_map	= niagara1_event_map,
 398	.cache_map	= &niagara1_cache_map,
 399	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
 
 
 400	.upper_shift	= 0,
 401	.lower_shift	= 4,
 402	.event_mask	= 0x7,
 
 
 403	.upper_nop	= 0x0,
 404	.lower_nop	= 0x0,
 
 
 
 
 
 405};
 406
 407static const struct perf_event_map niagara2_perfmon_event_map[] = {
 408	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 409	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 410	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 411	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 412	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 413	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 414};
 415
 416static const struct perf_event_map *niagara2_event_map(int event_id)
 417{
 418	return &niagara2_perfmon_event_map[event_id];
 419}
 420
 421static const cache_map_t niagara2_cache_map = {
 422[C(L1D)] = {
 423	[C(OP_READ)] = {
 424		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 425		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 426	},
 427	[C(OP_WRITE)] = {
 428		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 429		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 430	},
 431	[C(OP_PREFETCH)] = {
 432		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 433		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 434	},
 435},
 436[C(L1I)] = {
 437	[C(OP_READ)] = {
 438		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 439		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 440	},
 441	[ C(OP_WRITE) ] = {
 442		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 443		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 444	},
 445	[ C(OP_PREFETCH) ] = {
 446		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 447		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 448	},
 449},
 450[C(LL)] = {
 451	[C(OP_READ)] = {
 452		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 453		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 454	},
 455	[C(OP_WRITE)] = {
 456		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 457		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 458	},
 459	[C(OP_PREFETCH)] = {
 460		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 461		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 462	},
 463},
 464[C(DTLB)] = {
 465	[C(OP_READ)] = {
 466		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 467		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 468	},
 469	[ C(OP_WRITE) ] = {
 470		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 471		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 472	},
 473	[ C(OP_PREFETCH) ] = {
 474		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 475		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 476	},
 477},
 478[C(ITLB)] = {
 479	[C(OP_READ)] = {
 480		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 481		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 482	},
 483	[ C(OP_WRITE) ] = {
 484		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 485		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 486	},
 487	[ C(OP_PREFETCH) ] = {
 488		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 489		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 490	},
 491},
 492[C(BPU)] = {
 493	[C(OP_READ)] = {
 494		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 495		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 496	},
 497	[ C(OP_WRITE) ] = {
 498		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 499		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 500	},
 501	[ C(OP_PREFETCH) ] = {
 502		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 503		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 504	},
 505},
 506[C(NODE)] = {
 507	[C(OP_READ)] = {
 508		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 509		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 510	},
 511	[ C(OP_WRITE) ] = {
 512		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 513		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 514	},
 515	[ C(OP_PREFETCH) ] = {
 516		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 517		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 518	},
 519},
 520};
 521
 522static const struct sparc_pmu niagara2_pmu = {
 523	.event_map	= niagara2_event_map,
 524	.cache_map	= &niagara2_cache_map,
 525	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
 
 
 526	.upper_shift	= 19,
 527	.lower_shift	= 6,
 528	.event_mask	= 0xfff,
 529	.hv_bit		= 0x8,
 
 
 530	.irq_bit	= 0x30,
 531	.upper_nop	= 0x220,
 532	.lower_nop	= 0x220,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533};
 534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 535static const struct sparc_pmu *sparc_pmu __read_mostly;
 536
 537static u64 event_encoding(u64 event_id, int idx)
 538{
 539	if (idx == PIC_UPPER_INDEX)
 540		event_id <<= sparc_pmu->upper_shift;
 541	else
 542		event_id <<= sparc_pmu->lower_shift;
 543	return event_id;
 544}
 545
 546static u64 mask_for_index(int idx)
 547{
 548	return event_encoding(sparc_pmu->event_mask, idx);
 549}
 550
 551static u64 nop_for_index(int idx)
 552{
 553	return event_encoding(idx == PIC_UPPER_INDEX ?
 554			      sparc_pmu->upper_nop :
 555			      sparc_pmu->lower_nop, idx);
 556}
 557
 558static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 559{
 560	u64 val, mask = mask_for_index(idx);
 
 561
 562	val = cpuc->pcr;
 
 
 
 
 
 563	val &= ~mask;
 564	val |= hwc->config;
 565	cpuc->pcr = val;
 566
 567	pcr_ops->write(cpuc->pcr);
 568}
 569
 570static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 571{
 572	u64 mask = mask_for_index(idx);
 573	u64 nop = nop_for_index(idx);
 
 574	u64 val;
 575
 576	val = cpuc->pcr;
 
 
 
 577	val &= ~mask;
 578	val |= nop;
 579	cpuc->pcr = val;
 580
 581	pcr_ops->write(cpuc->pcr);
 582}
 583
 584static u32 read_pmc(int idx)
 585{
 586	u64 val;
 587
 588	read_pic(val);
 589	if (idx == PIC_UPPER_INDEX)
 590		val >>= 32;
 591
 592	return val & 0xffffffff;
 593}
 594
 595static void write_pmc(int idx, u64 val)
 596{
 597	u64 shift, mask, pic;
 598
 599	shift = 0;
 600	if (idx == PIC_UPPER_INDEX)
 601		shift = 32;
 602
 603	mask = ((u64) 0xffffffff) << shift;
 604	val <<= shift;
 605
 606	read_pic(pic);
 607	pic &= ~mask;
 608	pic |= val;
 609	write_pic(pic);
 610}
 611
 612static u64 sparc_perf_event_update(struct perf_event *event,
 613				   struct hw_perf_event *hwc, int idx)
 614{
 615	int shift = 64 - 32;
 616	u64 prev_raw_count, new_raw_count;
 617	s64 delta;
 618
 619again:
 620	prev_raw_count = local64_read(&hwc->prev_count);
 621	new_raw_count = read_pmc(idx);
 622
 623	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 624			     new_raw_count) != prev_raw_count)
 625		goto again;
 626
 627	delta = (new_raw_count << shift) - (prev_raw_count << shift);
 628	delta >>= shift;
 629
 630	local64_add(delta, &event->count);
 631	local64_sub(delta, &hwc->period_left);
 632
 633	return new_raw_count;
 634}
 635
 636static int sparc_perf_event_set_period(struct perf_event *event,
 637				       struct hw_perf_event *hwc, int idx)
 638{
 639	s64 left = local64_read(&hwc->period_left);
 640	s64 period = hwc->sample_period;
 641	int ret = 0;
 642
 643	if (unlikely(left <= -period)) {
 644		left = period;
 645		local64_set(&hwc->period_left, left);
 646		hwc->last_period = period;
 647		ret = 1;
 648	}
 649
 650	if (unlikely(left <= 0)) {
 651		left += period;
 652		local64_set(&hwc->period_left, left);
 653		hwc->last_period = period;
 654		ret = 1;
 655	}
 656	if (left > MAX_PERIOD)
 657		left = MAX_PERIOD;
 658
 659	local64_set(&hwc->prev_count, (u64)-left);
 660
 661	write_pmc(idx, (u64)(-left) & 0xffffffff);
 662
 663	perf_event_update_userpage(event);
 664
 665	return ret;
 666}
 667
 668/* If performance event entries have been added, move existing
 669 * events around (if necessary) and then assign new entries to
 670 * counters.
 671 */
 672static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
 673{
 674	int i;
 675
 676	if (!cpuc->n_added)
 677		goto out;
 678
 679	/* Read in the counters which are moving.  */
 680	for (i = 0; i < cpuc->n_events; i++) {
 681		struct perf_event *cp = cpuc->event[i];
 682
 683		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 684		    cpuc->current_idx[i] != cp->hw.idx) {
 685			sparc_perf_event_update(cp, &cp->hw,
 686						cpuc->current_idx[i]);
 687			cpuc->current_idx[i] = PIC_NO_INDEX;
 688		}
 689	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690
 691	/* Assign to counters all unassigned events.  */
 692	for (i = 0; i < cpuc->n_events; i++) {
 693		struct perf_event *cp = cpuc->event[i];
 694		struct hw_perf_event *hwc = &cp->hw;
 695		int idx = hwc->idx;
 696		u64 enc;
 697
 698		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 699			continue;
 700
 701		sparc_perf_event_set_period(cp, hwc, idx);
 702		cpuc->current_idx[i] = idx;
 703
 704		enc = perf_event_get_enc(cpuc->events[i]);
 705		pcr &= ~mask_for_index(idx);
 706		if (hwc->state & PERF_HES_STOPPED)
 707			pcr |= nop_for_index(idx);
 708		else
 709			pcr |= event_encoding(enc, idx);
 710	}
 711out:
 712	return pcr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713}
 714
 715static void sparc_pmu_enable(struct pmu *pmu)
 716{
 717	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 718	u64 pcr;
 719
 720	if (cpuc->enabled)
 721		return;
 722
 723	cpuc->enabled = 1;
 724	barrier();
 725
 726	pcr = cpuc->pcr;
 727	if (!cpuc->n_events) {
 728		pcr = 0;
 729	} else {
 730		pcr = maybe_change_configuration(cpuc, pcr);
 731
 732		/* We require that all of the events have the same
 733		 * configuration, so just fetch the settings from the
 734		 * first entry.
 735		 */
 736		cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
 737	}
 738
 739	pcr_ops->write(cpuc->pcr);
 740}
 741
 742static void sparc_pmu_disable(struct pmu *pmu)
 743{
 744	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 745	u64 val;
 746
 747	if (!cpuc->enabled)
 748		return;
 749
 750	cpuc->enabled = 0;
 751	cpuc->n_added = 0;
 752
 753	val = cpuc->pcr;
 754	val &= ~(PCR_UTRACE | PCR_STRACE |
 755		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
 756	cpuc->pcr = val;
 757
 758	pcr_ops->write(cpuc->pcr);
 
 
 
 
 759}
 760
 761static int active_event_index(struct cpu_hw_events *cpuc,
 762			      struct perf_event *event)
 763{
 764	int i;
 765
 766	for (i = 0; i < cpuc->n_events; i++) {
 767		if (cpuc->event[i] == event)
 768			break;
 769	}
 770	BUG_ON(i == cpuc->n_events);
 771	return cpuc->current_idx[i];
 772}
 773
 774static void sparc_pmu_start(struct perf_event *event, int flags)
 775{
 776	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 777	int idx = active_event_index(cpuc, event);
 778
 779	if (flags & PERF_EF_RELOAD) {
 780		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
 781		sparc_perf_event_set_period(event, &event->hw, idx);
 782	}
 783
 784	event->hw.state = 0;
 785
 786	sparc_pmu_enable_event(cpuc, &event->hw, idx);
 787}
 788
 789static void sparc_pmu_stop(struct perf_event *event, int flags)
 790{
 791	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 792	int idx = active_event_index(cpuc, event);
 793
 794	if (!(event->hw.state & PERF_HES_STOPPED)) {
 795		sparc_pmu_disable_event(cpuc, &event->hw, idx);
 796		event->hw.state |= PERF_HES_STOPPED;
 797	}
 798
 799	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
 800		sparc_perf_event_update(event, &event->hw, idx);
 801		event->hw.state |= PERF_HES_UPTODATE;
 802	}
 803}
 804
 805static void sparc_pmu_del(struct perf_event *event, int _flags)
 806{
 807	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 808	unsigned long flags;
 809	int i;
 810
 811	local_irq_save(flags);
 812	perf_pmu_disable(event->pmu);
 813
 814	for (i = 0; i < cpuc->n_events; i++) {
 815		if (event == cpuc->event[i]) {
 816			/* Absorb the final count and turn off the
 817			 * event.
 818			 */
 819			sparc_pmu_stop(event, PERF_EF_UPDATE);
 820
 821			/* Shift remaining entries down into
 822			 * the existing slot.
 823			 */
 824			while (++i < cpuc->n_events) {
 825				cpuc->event[i - 1] = cpuc->event[i];
 826				cpuc->events[i - 1] = cpuc->events[i];
 827				cpuc->current_idx[i - 1] =
 828					cpuc->current_idx[i];
 829			}
 830
 831			perf_event_update_userpage(event);
 832
 833			cpuc->n_events--;
 834			break;
 835		}
 836	}
 837
 838	perf_pmu_enable(event->pmu);
 839	local_irq_restore(flags);
 840}
 841
 842static void sparc_pmu_read(struct perf_event *event)
 843{
 844	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 845	int idx = active_event_index(cpuc, event);
 846	struct hw_perf_event *hwc = &event->hw;
 847
 848	sparc_perf_event_update(event, hwc, idx);
 849}
 850
 851static atomic_t active_events = ATOMIC_INIT(0);
 852static DEFINE_MUTEX(pmc_grab_mutex);
 853
 854static void perf_stop_nmi_watchdog(void *unused)
 855{
 856	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 
 857
 858	stop_nmi_watchdog(NULL);
 859	cpuc->pcr = pcr_ops->read();
 
 860}
 861
 862void perf_event_grab_pmc(void)
 863{
 864	if (atomic_inc_not_zero(&active_events))
 865		return;
 866
 867	mutex_lock(&pmc_grab_mutex);
 868	if (atomic_read(&active_events) == 0) {
 869		if (atomic_read(&nmi_active) > 0) {
 870			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
 871			BUG_ON(atomic_read(&nmi_active) != 0);
 872		}
 873		atomic_inc(&active_events);
 874	}
 875	mutex_unlock(&pmc_grab_mutex);
 876}
 877
 878void perf_event_release_pmc(void)
 879{
 880	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
 881		if (atomic_read(&nmi_active) == 0)
 882			on_each_cpu(start_nmi_watchdog, NULL, 1);
 883		mutex_unlock(&pmc_grab_mutex);
 884	}
 885}
 886
 887static const struct perf_event_map *sparc_map_cache_event(u64 config)
 888{
 889	unsigned int cache_type, cache_op, cache_result;
 890	const struct perf_event_map *pmap;
 891
 892	if (!sparc_pmu->cache_map)
 893		return ERR_PTR(-ENOENT);
 894
 895	cache_type = (config >>  0) & 0xff;
 896	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 897		return ERR_PTR(-EINVAL);
 898
 899	cache_op = (config >>  8) & 0xff;
 900	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 901		return ERR_PTR(-EINVAL);
 902
 903	cache_result = (config >> 16) & 0xff;
 904	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 905		return ERR_PTR(-EINVAL);
 906
 907	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
 908
 909	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
 910		return ERR_PTR(-ENOENT);
 911
 912	if (pmap->encoding == CACHE_OP_NONSENSE)
 913		return ERR_PTR(-EINVAL);
 914
 915	return pmap;
 916}
 917
 918static void hw_perf_event_destroy(struct perf_event *event)
 919{
 920	perf_event_release_pmc();
 921}
 922
 923/* Make sure all events can be scheduled into the hardware at
 924 * the same time.  This is simplified by the fact that we only
 925 * need to support 2 simultaneous HW events.
 926 *
 927 * As a side effect, the evts[]->hw.idx values will be assigned
 928 * on success.  These are pending indexes.  When the events are
 929 * actually programmed into the chip, these values will propagate
 930 * to the per-cpu cpuc->current_idx[] slots, see the code in
 931 * maybe_change_configuration() for details.
 932 */
 933static int sparc_check_constraints(struct perf_event **evts,
 934				   unsigned long *events, int n_ev)
 935{
 936	u8 msk0 = 0, msk1 = 0;
 937	int idx0 = 0;
 938
 939	/* This case is possible when we are invoked from
 940	 * hw_perf_group_sched_in().
 941	 */
 942	if (!n_ev)
 943		return 0;
 944
 945	if (n_ev > MAX_HWEVENTS)
 946		return -1;
 947
 
 
 
 
 
 
 
 
 948	msk0 = perf_event_get_msk(events[0]);
 949	if (n_ev == 1) {
 950		if (msk0 & PIC_LOWER)
 951			idx0 = 1;
 952		goto success;
 953	}
 954	BUG_ON(n_ev != 2);
 955	msk1 = perf_event_get_msk(events[1]);
 956
 957	/* If both events can go on any counter, OK.  */
 958	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
 959	    msk1 == (PIC_UPPER | PIC_LOWER))
 960		goto success;
 961
 962	/* If one event is limited to a specific counter,
 963	 * and the other can go on both, OK.
 964	 */
 965	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
 966	    msk1 == (PIC_UPPER | PIC_LOWER)) {
 967		if (msk0 & PIC_LOWER)
 968			idx0 = 1;
 969		goto success;
 970	}
 971
 972	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
 973	    msk0 == (PIC_UPPER | PIC_LOWER)) {
 974		if (msk1 & PIC_UPPER)
 975			idx0 = 1;
 976		goto success;
 977	}
 978
 979	/* If the events are fixed to different counters, OK.  */
 980	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
 981	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
 982		if (msk0 & PIC_LOWER)
 983			idx0 = 1;
 984		goto success;
 985	}
 986
 987	/* Otherwise, there is a conflict.  */
 988	return -1;
 989
 990success:
 991	evts[0]->hw.idx = idx0;
 992	if (n_ev == 2)
 993		evts[1]->hw.idx = idx0 ^ 1;
 994	return 0;
 995}
 996
 997static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
 998{
 999	int eu = 0, ek = 0, eh = 0;
1000	struct perf_event *event;
1001	int i, n, first;
1002
 
 
 
1003	n = n_prev + n_new;
1004	if (n <= 1)
1005		return 0;
1006
1007	first = 1;
1008	for (i = 0; i < n; i++) {
1009		event = evts[i];
1010		if (first) {
1011			eu = event->attr.exclude_user;
1012			ek = event->attr.exclude_kernel;
1013			eh = event->attr.exclude_hv;
1014			first = 0;
1015		} else if (event->attr.exclude_user != eu ||
1016			   event->attr.exclude_kernel != ek ||
1017			   event->attr.exclude_hv != eh) {
1018			return -EAGAIN;
1019		}
1020	}
1021
1022	return 0;
1023}
1024
1025static int collect_events(struct perf_event *group, int max_count,
1026			  struct perf_event *evts[], unsigned long *events,
1027			  int *current_idx)
1028{
1029	struct perf_event *event;
1030	int n = 0;
1031
1032	if (!is_software_event(group)) {
1033		if (n >= max_count)
1034			return -1;
1035		evts[n] = group;
1036		events[n] = group->hw.event_base;
1037		current_idx[n++] = PIC_NO_INDEX;
1038	}
1039	list_for_each_entry(event, &group->sibling_list, group_entry) {
1040		if (!is_software_event(event) &&
1041		    event->state != PERF_EVENT_STATE_OFF) {
1042			if (n >= max_count)
1043				return -1;
1044			evts[n] = event;
1045			events[n] = event->hw.event_base;
1046			current_idx[n++] = PIC_NO_INDEX;
1047		}
1048	}
1049	return n;
1050}
1051
1052static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1053{
1054	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1055	int n0, ret = -EAGAIN;
1056	unsigned long flags;
1057
1058	local_irq_save(flags);
1059	perf_pmu_disable(event->pmu);
1060
1061	n0 = cpuc->n_events;
1062	if (n0 >= MAX_HWEVENTS)
1063		goto out;
1064
1065	cpuc->event[n0] = event;
1066	cpuc->events[n0] = event->hw.event_base;
1067	cpuc->current_idx[n0] = PIC_NO_INDEX;
1068
1069	event->hw.state = PERF_HES_UPTODATE;
1070	if (!(ef_flags & PERF_EF_START))
1071		event->hw.state |= PERF_HES_STOPPED;
1072
1073	/*
1074	 * If group events scheduling transaction was started,
1075	 * skip the schedulability test here, it will be performed
1076	 * at commit time(->commit_txn) as a whole
1077	 */
1078	if (cpuc->group_flag & PERF_EVENT_TXN)
1079		goto nocheck;
1080
1081	if (check_excludes(cpuc->event, n0, 1))
1082		goto out;
1083	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1084		goto out;
1085
1086nocheck:
1087	cpuc->n_events++;
1088	cpuc->n_added++;
1089
1090	ret = 0;
1091out:
1092	perf_pmu_enable(event->pmu);
1093	local_irq_restore(flags);
1094	return ret;
1095}
1096
1097static int sparc_pmu_event_init(struct perf_event *event)
1098{
1099	struct perf_event_attr *attr = &event->attr;
1100	struct perf_event *evts[MAX_HWEVENTS];
1101	struct hw_perf_event *hwc = &event->hw;
1102	unsigned long events[MAX_HWEVENTS];
1103	int current_idx_dmy[MAX_HWEVENTS];
1104	const struct perf_event_map *pmap;
1105	int n;
1106
1107	if (atomic_read(&nmi_active) < 0)
1108		return -ENODEV;
1109
1110	/* does not support taken branch sampling */
1111	if (has_branch_stack(event))
1112		return -EOPNOTSUPP;
1113
1114	switch (attr->type) {
1115	case PERF_TYPE_HARDWARE:
1116		if (attr->config >= sparc_pmu->max_events)
1117			return -EINVAL;
1118		pmap = sparc_pmu->event_map(attr->config);
1119		break;
1120
1121	case PERF_TYPE_HW_CACHE:
1122		pmap = sparc_map_cache_event(attr->config);
1123		if (IS_ERR(pmap))
1124			return PTR_ERR(pmap);
1125		break;
1126
1127	case PERF_TYPE_RAW:
1128		pmap = NULL;
1129		break;
1130
1131	default:
1132		return -ENOENT;
1133
1134	}
1135
1136	if (pmap) {
1137		hwc->event_base = perf_event_encode(pmap);
1138	} else {
1139		/*
1140		 * User gives us "(encoding << 16) | pic_mask" for
1141		 * PERF_TYPE_RAW events.
1142		 */
1143		hwc->event_base = attr->config;
1144	}
1145
1146	/* We save the enable bits in the config_base.  */
1147	hwc->config_base = sparc_pmu->irq_bit;
1148	if (!attr->exclude_user)
1149		hwc->config_base |= PCR_UTRACE;
1150	if (!attr->exclude_kernel)
1151		hwc->config_base |= PCR_STRACE;
1152	if (!attr->exclude_hv)
1153		hwc->config_base |= sparc_pmu->hv_bit;
1154
1155	n = 0;
1156	if (event->group_leader != event) {
1157		n = collect_events(event->group_leader,
1158				   MAX_HWEVENTS - 1,
1159				   evts, events, current_idx_dmy);
1160		if (n < 0)
1161			return -EINVAL;
1162	}
1163	events[n] = hwc->event_base;
1164	evts[n] = event;
1165
1166	if (check_excludes(evts, n, 1))
1167		return -EINVAL;
1168
1169	if (sparc_check_constraints(evts, events, n + 1))
1170		return -EINVAL;
1171
1172	hwc->idx = PIC_NO_INDEX;
1173
1174	/* Try to do all error checking before this point, as unwinding
1175	 * state after grabbing the PMC is difficult.
1176	 */
1177	perf_event_grab_pmc();
1178	event->destroy = hw_perf_event_destroy;
1179
1180	if (!hwc->sample_period) {
1181		hwc->sample_period = MAX_PERIOD;
1182		hwc->last_period = hwc->sample_period;
1183		local64_set(&hwc->period_left, hwc->sample_period);
1184	}
1185
1186	return 0;
1187}
1188
1189/*
1190 * Start group events scheduling transaction
1191 * Set the flag to make pmu::enable() not perform the
1192 * schedulability test, it will be performed at commit time
1193 */
1194static void sparc_pmu_start_txn(struct pmu *pmu)
1195{
1196	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 
 
 
 
 
 
1197
1198	perf_pmu_disable(pmu);
1199	cpuhw->group_flag |= PERF_EVENT_TXN;
1200}
1201
1202/*
1203 * Stop group events scheduling transaction
1204 * Clear the flag and pmu::enable() will perform the
1205 * schedulability test.
1206 */
1207static void sparc_pmu_cancel_txn(struct pmu *pmu)
1208{
1209	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 
 
 
 
 
 
 
 
1210
1211	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1212	perf_pmu_enable(pmu);
1213}
1214
1215/*
1216 * Commit group events scheduling transaction
1217 * Perform the group schedulability test as a whole
1218 * Return 0 if success
1219 */
1220static int sparc_pmu_commit_txn(struct pmu *pmu)
1221{
1222	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1223	int n;
1224
1225	if (!sparc_pmu)
1226		return -EINVAL;
1227
1228	cpuc = &__get_cpu_var(cpu_hw_events);
 
 
 
 
 
 
1229	n = cpuc->n_events;
1230	if (check_excludes(cpuc->event, 0, n))
1231		return -EINVAL;
1232	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1233		return -EAGAIN;
1234
1235	cpuc->group_flag &= ~PERF_EVENT_TXN;
1236	perf_pmu_enable(pmu);
1237	return 0;
1238}
1239
1240static struct pmu pmu = {
1241	.pmu_enable	= sparc_pmu_enable,
1242	.pmu_disable	= sparc_pmu_disable,
1243	.event_init	= sparc_pmu_event_init,
1244	.add		= sparc_pmu_add,
1245	.del		= sparc_pmu_del,
1246	.start		= sparc_pmu_start,
1247	.stop		= sparc_pmu_stop,
1248	.read		= sparc_pmu_read,
1249	.start_txn	= sparc_pmu_start_txn,
1250	.cancel_txn	= sparc_pmu_cancel_txn,
1251	.commit_txn	= sparc_pmu_commit_txn,
1252};
1253
1254void perf_event_print_debug(void)
1255{
1256	unsigned long flags;
1257	u64 pcr, pic;
1258	int cpu;
1259
1260	if (!sparc_pmu)
1261		return;
1262
1263	local_irq_save(flags);
1264
1265	cpu = smp_processor_id();
1266
1267	pcr = pcr_ops->read();
1268	read_pic(pic);
1269
1270	pr_info("\n");
1271	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1272		cpu, pcr, pic);
 
 
 
 
1273
1274	local_irq_restore(flags);
1275}
1276
1277static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1278					    unsigned long cmd, void *__args)
1279{
1280	struct die_args *args = __args;
1281	struct perf_sample_data data;
1282	struct cpu_hw_events *cpuc;
1283	struct pt_regs *regs;
1284	int i;
1285
1286	if (!atomic_read(&active_events))
1287		return NOTIFY_DONE;
1288
1289	switch (cmd) {
1290	case DIE_NMI:
1291		break;
1292
1293	default:
1294		return NOTIFY_DONE;
1295	}
1296
1297	regs = args->regs;
1298
1299	cpuc = &__get_cpu_var(cpu_hw_events);
1300
1301	/* If the PMU has the TOE IRQ enable bits, we need to do a
1302	 * dummy write to the %pcr to clear the overflow bits and thus
1303	 * the interrupt.
1304	 *
1305	 * Do this before we peek at the counters to determine
1306	 * overflow so we don't lose any events.
1307	 */
1308	if (sparc_pmu->irq_bit)
1309		pcr_ops->write(cpuc->pcr);
 
1310
1311	for (i = 0; i < cpuc->n_events; i++) {
1312		struct perf_event *event = cpuc->event[i];
1313		int idx = cpuc->current_idx[i];
1314		struct hw_perf_event *hwc;
1315		u64 val;
1316
 
 
 
 
1317		hwc = &event->hw;
1318		val = sparc_perf_event_update(event, hwc, idx);
1319		if (val & (1ULL << 31))
1320			continue;
1321
1322		perf_sample_data_init(&data, 0, hwc->last_period);
1323		if (!sparc_perf_event_set_period(event, hwc, idx))
1324			continue;
1325
1326		if (perf_event_overflow(event, &data, regs))
1327			sparc_pmu_stop(event, 0);
1328	}
1329
1330	return NOTIFY_STOP;
1331}
1332
1333static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1334	.notifier_call		= perf_event_nmi_handler,
1335};
1336
1337static bool __init supported_pmu(void)
1338{
1339	if (!strcmp(sparc_pmu_type, "ultra3") ||
1340	    !strcmp(sparc_pmu_type, "ultra3+") ||
1341	    !strcmp(sparc_pmu_type, "ultra3i") ||
1342	    !strcmp(sparc_pmu_type, "ultra4+")) {
1343		sparc_pmu = &ultra3_pmu;
1344		return true;
1345	}
1346	if (!strcmp(sparc_pmu_type, "niagara")) {
1347		sparc_pmu = &niagara1_pmu;
1348		return true;
1349	}
1350	if (!strcmp(sparc_pmu_type, "niagara2") ||
1351	    !strcmp(sparc_pmu_type, "niagara3")) {
1352		sparc_pmu = &niagara2_pmu;
1353		return true;
1354	}
 
 
 
 
 
 
 
 
 
1355	return false;
1356}
1357
1358int __init init_hw_perf_events(void)
1359{
 
 
1360	pr_info("Performance events: ");
1361
1362	if (!supported_pmu()) {
 
1363		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1364		return 0;
1365	}
1366
1367	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1368
1369	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1370	register_die_notifier(&perf_event_nmi_notifier);
1371
1372	return 0;
1373}
1374early_initcall(init_hw_perf_events);
1375
1376void perf_callchain_kernel(struct perf_callchain_entry *entry,
1377			   struct pt_regs *regs)
1378{
1379	unsigned long ksp, fp;
1380#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1381	int graph = 0;
1382#endif
1383
1384	stack_trace_flush();
1385
1386	perf_callchain_store(entry, regs->tpc);
1387
1388	ksp = regs->u_regs[UREG_I6];
1389	fp = ksp + STACK_BIAS;
1390	do {
1391		struct sparc_stackf *sf;
1392		struct pt_regs *regs;
1393		unsigned long pc;
1394
1395		if (!kstack_valid(current_thread_info(), fp))
1396			break;
1397
1398		sf = (struct sparc_stackf *) fp;
1399		regs = (struct pt_regs *) (sf + 1);
1400
1401		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1402			if (user_mode(regs))
1403				break;
1404			pc = regs->tpc;
1405			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1406		} else {
1407			pc = sf->callers_pc;
1408			fp = (unsigned long)sf->fp + STACK_BIAS;
1409		}
1410		perf_callchain_store(entry, pc);
1411#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1412		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1413			int index = current->curr_ret_stack;
1414			if (current->ret_stack && index >= graph) {
1415				pc = current->ret_stack[index - graph].ret;
1416				perf_callchain_store(entry, pc);
1417				graph++;
1418			}
1419		}
1420#endif
1421	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1422}
1423
 
 
 
 
 
 
 
 
 
 
1424static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1425				   struct pt_regs *regs)
1426{
1427	unsigned long ufp;
1428
1429	perf_callchain_store(entry, regs->tpc);
1430
1431	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1432	do {
1433		struct sparc_stackf *usf, sf;
 
1434		unsigned long pc;
1435
1436		usf = (struct sparc_stackf *) ufp;
 
 
 
1437		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1438			break;
1439
1440		pc = sf.callers_pc;
1441		ufp = (unsigned long)sf.fp + STACK_BIAS;
1442		perf_callchain_store(entry, pc);
1443	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1444}
1445
1446static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1447				   struct pt_regs *regs)
1448{
1449	unsigned long ufp;
1450
1451	perf_callchain_store(entry, regs->tpc);
1452
1453	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1454	do {
1455		struct sparc_stackf32 *usf, sf;
1456		unsigned long pc;
1457
1458		usf = (struct sparc_stackf32 *) ufp;
1459		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1460			break;
1461
1462		pc = sf.callers_pc;
1463		ufp = (unsigned long)sf.fp;
 
 
 
 
 
 
 
 
 
 
 
 
 
1464		perf_callchain_store(entry, pc);
1465	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1466}
1467
1468void
1469perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1470{
 
 
 
 
 
 
 
 
 
 
 
 
1471	flushw_user();
 
 
 
1472	if (test_thread_flag(TIF_32BIT))
1473		perf_callchain_user_32(entry, regs);
1474	else
1475		perf_callchain_user_64(entry, regs);
 
 
 
 
 
 
1476}
v4.6
   1/* Performance event support for sparc64.
   2 *
   3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
   4 *
   5 * This code is based almost entirely upon the x86 perf event
   6 * code, which is:
   7 *
   8 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   9 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  10 *  Copyright (C) 2009 Jaswinder Singh Rajput
  11 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  12 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
  13 */
  14
  15#include <linux/perf_event.h>
  16#include <linux/kprobes.h>
  17#include <linux/ftrace.h>
  18#include <linux/kernel.h>
  19#include <linux/kdebug.h>
  20#include <linux/mutex.h>
  21
  22#include <asm/stacktrace.h>
  23#include <asm/cpudata.h>
  24#include <linux/uaccess.h>
  25#include <linux/atomic.h>
  26#include <asm/nmi.h>
  27#include <asm/pcr.h>
 
  28#include <asm/cacheflush.h>
  29
  30#include "kernel.h"
  31#include "kstack.h"
  32
  33/* Two classes of sparc64 chips currently exist.  All of which have
  34 * 32-bit counters which can generate overflow interrupts on the
  35 * transition from 0xffffffff to 0.
  36 *
  37 * All chips upto and including SPARC-T3 have two performance
  38 * counters.  The two 32-bit counters are accessed in one go using a
  39 * single 64-bit register.
 
 
  40 *
  41 * On these older chips both counters are controlled using a single
  42 * control register.  The only way to stop all sampling is to clear
  43 * all of the context (user, supervisor, hypervisor) sampling enable
  44 * bits.  But these bits apply to both counters, thus the two counters
  45 * can't be enabled/disabled individually.
  46 *
  47 * Furthermore, the control register on these older chips have two
  48 * event fields, one for each of the two counters.  It's thus nearly
  49 * impossible to have one counter going while keeping the other one
  50 * stopped.  Therefore it is possible to get overflow interrupts for
  51 * counters not currently "in use" and that condition must be checked
  52 * in the overflow interrupt handler.
  53 *
  54 * So we use a hack, in that we program inactive counters with the
  55 * "sw_count0" and "sw_count1" events.  These count how many times
  56 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
  57 * unusual way to encode a NOP and therefore will not trigger in
  58 * normal code.
  59 *
  60 * Starting with SPARC-T4 we have one control register per counter.
  61 * And the counters are stored in individual registers.  The registers
  62 * for the counters are 64-bit but only a 32-bit counter is
  63 * implemented.  The event selections on SPARC-T4 lack any
  64 * restrictions, therefore we can elide all of the complicated
  65 * conflict resolution code we have for SPARC-T3 and earlier chips.
  66 */
  67
  68#define MAX_HWEVENTS			4
  69#define MAX_PCRS			4
  70#define MAX_PERIOD			((1UL << 32) - 1)
  71
  72#define PIC_UPPER_INDEX			0
  73#define PIC_LOWER_INDEX			1
  74#define PIC_NO_INDEX			-1
  75
  76struct cpu_hw_events {
  77	/* Number of events currently scheduled onto this cpu.
  78	 * This tells how many entries in the arrays below
  79	 * are valid.
  80	 */
  81	int			n_events;
  82
  83	/* Number of new events added since the last hw_perf_disable().
  84	 * This works because the perf event layer always adds new
  85	 * events inside of a perf_{disable,enable}() sequence.
  86	 */
  87	int			n_added;
  88
  89	/* Array of events current scheduled on this cpu.  */
  90	struct perf_event	*event[MAX_HWEVENTS];
  91
  92	/* Array of encoded longs, specifying the %pcr register
  93	 * encoding and the mask of PIC counters this even can
  94	 * be scheduled on.  See perf_event_encode() et al.
  95	 */
  96	unsigned long		events[MAX_HWEVENTS];
  97
  98	/* The current counter index assigned to an event.  When the
  99	 * event hasn't been programmed into the cpu yet, this will
 100	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
 101	 * we ought to schedule the event.
 102	 */
 103	int			current_idx[MAX_HWEVENTS];
 104
 105	/* Software copy of %pcr register(s) on this cpu.  */
 106	u64			pcr[MAX_HWEVENTS];
 107
 108	/* Enabled/disable state.  */
 109	int			enabled;
 110
 111	unsigned int		txn_flags;
 112};
 113static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 114
 115/* An event map describes the characteristics of a performance
 116 * counter event.  In particular it gives the encoding as well as
 117 * a mask telling which counters the event can be measured on.
 118 *
 119 * The mask is unused on SPARC-T4 and later.
 120 */
 121struct perf_event_map {
 122	u16	encoding;
 123	u8	pic_mask;
 124#define PIC_NONE	0x00
 125#define PIC_UPPER	0x01
 126#define PIC_LOWER	0x02
 127};
 128
 129/* Encode a perf_event_map entry into a long.  */
 130static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 131{
 132	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 133}
 134
 135static u8 perf_event_get_msk(unsigned long val)
 136{
 137	return val & 0xff;
 138}
 139
 140static u64 perf_event_get_enc(unsigned long val)
 141{
 142	return val >> 16;
 143}
 144
 145#define C(x) PERF_COUNT_HW_CACHE_##x
 146
 147#define CACHE_OP_UNSUPPORTED	0xfffe
 148#define CACHE_OP_NONSENSE	0xffff
 149
 150typedef struct perf_event_map cache_map_t
 151				[PERF_COUNT_HW_CACHE_MAX]
 152				[PERF_COUNT_HW_CACHE_OP_MAX]
 153				[PERF_COUNT_HW_CACHE_RESULT_MAX];
 154
 155struct sparc_pmu {
 156	const struct perf_event_map	*(*event_map)(int);
 157	const cache_map_t		*cache_map;
 158	int				max_events;
 159	u32				(*read_pmc)(int);
 160	void				(*write_pmc)(int, u64);
 161	int				upper_shift;
 162	int				lower_shift;
 163	int				event_mask;
 164	int				user_bit;
 165	int				priv_bit;
 166	int				hv_bit;
 167	int				irq_bit;
 168	int				upper_nop;
 169	int				lower_nop;
 170	unsigned int			flags;
 171#define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
 172#define SPARC_PMU_HAS_CONFLICTS		0x00000002
 173	int				max_hw_events;
 174	int				num_pcrs;
 175	int				num_pic_regs;
 176};
 177
 178static u32 sparc_default_read_pmc(int idx)
 179{
 180	u64 val;
 181
 182	val = pcr_ops->read_pic(0);
 183	if (idx == PIC_UPPER_INDEX)
 184		val >>= 32;
 185
 186	return val & 0xffffffff;
 187}
 188
 189static void sparc_default_write_pmc(int idx, u64 val)
 190{
 191	u64 shift, mask, pic;
 192
 193	shift = 0;
 194	if (idx == PIC_UPPER_INDEX)
 195		shift = 32;
 196
 197	mask = ((u64) 0xffffffff) << shift;
 198	val <<= shift;
 199
 200	pic = pcr_ops->read_pic(0);
 201	pic &= ~mask;
 202	pic |= val;
 203	pcr_ops->write_pic(0, pic);
 204}
 205
 206static const struct perf_event_map ultra3_perfmon_event_map[] = {
 207	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 208	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 209	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 210	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 211};
 212
 213static const struct perf_event_map *ultra3_event_map(int event_id)
 214{
 215	return &ultra3_perfmon_event_map[event_id];
 216}
 217
 218static const cache_map_t ultra3_cache_map = {
 219[C(L1D)] = {
 220	[C(OP_READ)] = {
 221		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 222		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 223	},
 224	[C(OP_WRITE)] = {
 225		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 226		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 227	},
 228	[C(OP_PREFETCH)] = {
 229		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 230		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 231	},
 232},
 233[C(L1I)] = {
 234	[C(OP_READ)] = {
 235		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 236		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 237	},
 238	[ C(OP_WRITE) ] = {
 239		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 240		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 241	},
 242	[ C(OP_PREFETCH) ] = {
 243		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 244		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 245	},
 246},
 247[C(LL)] = {
 248	[C(OP_READ)] = {
 249		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 250		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 251	},
 252	[C(OP_WRITE)] = {
 253		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 254		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 255	},
 256	[C(OP_PREFETCH)] = {
 257		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 258		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 259	},
 260},
 261[C(DTLB)] = {
 262	[C(OP_READ)] = {
 263		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 264		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 265	},
 266	[ C(OP_WRITE) ] = {
 267		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 268		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 269	},
 270	[ C(OP_PREFETCH) ] = {
 271		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 272		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 273	},
 274},
 275[C(ITLB)] = {
 276	[C(OP_READ)] = {
 277		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 278		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 279	},
 280	[ C(OP_WRITE) ] = {
 281		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 282		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 283	},
 284	[ C(OP_PREFETCH) ] = {
 285		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 286		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 287	},
 288},
 289[C(BPU)] = {
 290	[C(OP_READ)] = {
 291		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 292		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 293	},
 294	[ C(OP_WRITE) ] = {
 295		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 296		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 297	},
 298	[ C(OP_PREFETCH) ] = {
 299		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 300		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 301	},
 302},
 303[C(NODE)] = {
 304	[C(OP_READ)] = {
 305		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 306		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 307	},
 308	[ C(OP_WRITE) ] = {
 309		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 310		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 311	},
 312	[ C(OP_PREFETCH) ] = {
 313		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 314		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 315	},
 316},
 317};
 318
 319static const struct sparc_pmu ultra3_pmu = {
 320	.event_map	= ultra3_event_map,
 321	.cache_map	= &ultra3_cache_map,
 322	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
 323	.read_pmc	= sparc_default_read_pmc,
 324	.write_pmc	= sparc_default_write_pmc,
 325	.upper_shift	= 11,
 326	.lower_shift	= 4,
 327	.event_mask	= 0x3f,
 328	.user_bit	= PCR_UTRACE,
 329	.priv_bit	= PCR_STRACE,
 330	.upper_nop	= 0x1c,
 331	.lower_nop	= 0x14,
 332	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 333			   SPARC_PMU_HAS_CONFLICTS),
 334	.max_hw_events	= 2,
 335	.num_pcrs	= 1,
 336	.num_pic_regs	= 1,
 337};
 338
 339/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 340 * only instructions, so it is free running which creates all kinds of
 341 * problems.  Some hardware designs make one wonder if the creator
 342 * even looked at how this stuff gets used by software.
 343 */
 344static const struct perf_event_map niagara1_perfmon_event_map[] = {
 345	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 346	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 347	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 348	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 349};
 350
 351static const struct perf_event_map *niagara1_event_map(int event_id)
 352{
 353	return &niagara1_perfmon_event_map[event_id];
 354}
 355
 356static const cache_map_t niagara1_cache_map = {
 357[C(L1D)] = {
 358	[C(OP_READ)] = {
 359		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 360		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 361	},
 362	[C(OP_WRITE)] = {
 363		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 364		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 365	},
 366	[C(OP_PREFETCH)] = {
 367		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 368		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 369	},
 370},
 371[C(L1I)] = {
 372	[C(OP_READ)] = {
 373		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 374		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 375	},
 376	[ C(OP_WRITE) ] = {
 377		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 378		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 379	},
 380	[ C(OP_PREFETCH) ] = {
 381		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 382		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 383	},
 384},
 385[C(LL)] = {
 386	[C(OP_READ)] = {
 387		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 388		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 389	},
 390	[C(OP_WRITE)] = {
 391		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 392		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 393	},
 394	[C(OP_PREFETCH)] = {
 395		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 396		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 397	},
 398},
 399[C(DTLB)] = {
 400	[C(OP_READ)] = {
 401		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 402		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 403	},
 404	[ C(OP_WRITE) ] = {
 405		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 406		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 407	},
 408	[ C(OP_PREFETCH) ] = {
 409		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 410		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 411	},
 412},
 413[C(ITLB)] = {
 414	[C(OP_READ)] = {
 415		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 416		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 417	},
 418	[ C(OP_WRITE) ] = {
 419		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 420		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 421	},
 422	[ C(OP_PREFETCH) ] = {
 423		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 424		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 425	},
 426},
 427[C(BPU)] = {
 428	[C(OP_READ)] = {
 429		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 430		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 431	},
 432	[ C(OP_WRITE) ] = {
 433		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 434		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 435	},
 436	[ C(OP_PREFETCH) ] = {
 437		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 438		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 439	},
 440},
 441[C(NODE)] = {
 442	[C(OP_READ)] = {
 443		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 444		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 445	},
 446	[ C(OP_WRITE) ] = {
 447		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 448		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 449	},
 450	[ C(OP_PREFETCH) ] = {
 451		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 452		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 453	},
 454},
 455};
 456
 457static const struct sparc_pmu niagara1_pmu = {
 458	.event_map	= niagara1_event_map,
 459	.cache_map	= &niagara1_cache_map,
 460	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
 461	.read_pmc	= sparc_default_read_pmc,
 462	.write_pmc	= sparc_default_write_pmc,
 463	.upper_shift	= 0,
 464	.lower_shift	= 4,
 465	.event_mask	= 0x7,
 466	.user_bit	= PCR_UTRACE,
 467	.priv_bit	= PCR_STRACE,
 468	.upper_nop	= 0x0,
 469	.lower_nop	= 0x0,
 470	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 471			   SPARC_PMU_HAS_CONFLICTS),
 472	.max_hw_events	= 2,
 473	.num_pcrs	= 1,
 474	.num_pic_regs	= 1,
 475};
 476
 477static const struct perf_event_map niagara2_perfmon_event_map[] = {
 478	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 479	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 480	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 481	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 482	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 483	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 484};
 485
 486static const struct perf_event_map *niagara2_event_map(int event_id)
 487{
 488	return &niagara2_perfmon_event_map[event_id];
 489}
 490
 491static const cache_map_t niagara2_cache_map = {
 492[C(L1D)] = {
 493	[C(OP_READ)] = {
 494		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 495		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 496	},
 497	[C(OP_WRITE)] = {
 498		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 499		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 500	},
 501	[C(OP_PREFETCH)] = {
 502		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 503		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 504	},
 505},
 506[C(L1I)] = {
 507	[C(OP_READ)] = {
 508		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 509		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 510	},
 511	[ C(OP_WRITE) ] = {
 512		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 513		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 514	},
 515	[ C(OP_PREFETCH) ] = {
 516		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 517		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 518	},
 519},
 520[C(LL)] = {
 521	[C(OP_READ)] = {
 522		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 523		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 524	},
 525	[C(OP_WRITE)] = {
 526		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 527		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 528	},
 529	[C(OP_PREFETCH)] = {
 530		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 531		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 532	},
 533},
 534[C(DTLB)] = {
 535	[C(OP_READ)] = {
 536		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 537		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 538	},
 539	[ C(OP_WRITE) ] = {
 540		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 541		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 542	},
 543	[ C(OP_PREFETCH) ] = {
 544		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 545		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 546	},
 547},
 548[C(ITLB)] = {
 549	[C(OP_READ)] = {
 550		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 551		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 552	},
 553	[ C(OP_WRITE) ] = {
 554		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 555		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 556	},
 557	[ C(OP_PREFETCH) ] = {
 558		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 559		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 560	},
 561},
 562[C(BPU)] = {
 563	[C(OP_READ)] = {
 564		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 565		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 566	},
 567	[ C(OP_WRITE) ] = {
 568		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 569		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 570	},
 571	[ C(OP_PREFETCH) ] = {
 572		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 573		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 574	},
 575},
 576[C(NODE)] = {
 577	[C(OP_READ)] = {
 578		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 579		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 580	},
 581	[ C(OP_WRITE) ] = {
 582		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 583		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 584	},
 585	[ C(OP_PREFETCH) ] = {
 586		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 587		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 588	},
 589},
 590};
 591
 592static const struct sparc_pmu niagara2_pmu = {
 593	.event_map	= niagara2_event_map,
 594	.cache_map	= &niagara2_cache_map,
 595	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
 596	.read_pmc	= sparc_default_read_pmc,
 597	.write_pmc	= sparc_default_write_pmc,
 598	.upper_shift	= 19,
 599	.lower_shift	= 6,
 600	.event_mask	= 0xfff,
 601	.user_bit	= PCR_UTRACE,
 602	.priv_bit	= PCR_STRACE,
 603	.hv_bit		= PCR_N2_HTRACE,
 604	.irq_bit	= 0x30,
 605	.upper_nop	= 0x220,
 606	.lower_nop	= 0x220,
 607	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 608			   SPARC_PMU_HAS_CONFLICTS),
 609	.max_hw_events	= 2,
 610	.num_pcrs	= 1,
 611	.num_pic_regs	= 1,
 612};
 613
 614static const struct perf_event_map niagara4_perfmon_event_map[] = {
 615	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
 616	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
 617	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
 618	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
 619	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
 620	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
 621};
 622
 623static const struct perf_event_map *niagara4_event_map(int event_id)
 624{
 625	return &niagara4_perfmon_event_map[event_id];
 626}
 627
 628static const cache_map_t niagara4_cache_map = {
 629[C(L1D)] = {
 630	[C(OP_READ)] = {
 631		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 632		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 633	},
 634	[C(OP_WRITE)] = {
 635		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 636		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 637	},
 638	[C(OP_PREFETCH)] = {
 639		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 640		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 641	},
 642},
 643[C(L1I)] = {
 644	[C(OP_READ)] = {
 645		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
 646		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
 647	},
 648	[ C(OP_WRITE) ] = {
 649		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 650		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 651	},
 652	[ C(OP_PREFETCH) ] = {
 653		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 654		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 655	},
 656},
 657[C(LL)] = {
 658	[C(OP_READ)] = {
 659		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 660		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 661	},
 662	[C(OP_WRITE)] = {
 663		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 664		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 665	},
 666	[C(OP_PREFETCH)] = {
 667		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 668		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 669	},
 670},
 671[C(DTLB)] = {
 672	[C(OP_READ)] = {
 673		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 674		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
 675	},
 676	[ C(OP_WRITE) ] = {
 677		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 678		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 679	},
 680	[ C(OP_PREFETCH) ] = {
 681		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 682		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 683	},
 684},
 685[C(ITLB)] = {
 686	[C(OP_READ)] = {
 687		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 688		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
 689	},
 690	[ C(OP_WRITE) ] = {
 691		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 692		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 693	},
 694	[ C(OP_PREFETCH) ] = {
 695		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 696		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 697	},
 698},
 699[C(BPU)] = {
 700	[C(OP_READ)] = {
 701		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 702		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 703	},
 704	[ C(OP_WRITE) ] = {
 705		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 706		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 707	},
 708	[ C(OP_PREFETCH) ] = {
 709		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 710		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 711	},
 712},
 713[C(NODE)] = {
 714	[C(OP_READ)] = {
 715		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 716		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 717	},
 718	[ C(OP_WRITE) ] = {
 719		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 720		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 721	},
 722	[ C(OP_PREFETCH) ] = {
 723		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 724		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 725	},
 726},
 727};
 728
 729static u32 sparc_vt_read_pmc(int idx)
 730{
 731	u64 val = pcr_ops->read_pic(idx);
 732
 733	return val & 0xffffffff;
 734}
 735
 736static void sparc_vt_write_pmc(int idx, u64 val)
 737{
 738	u64 pcr;
 739
 740	pcr = pcr_ops->read_pcr(idx);
 741	/* ensure ov and ntc are reset */
 742	pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
 743
 744	pcr_ops->write_pic(idx, val & 0xffffffff);
 745
 746	pcr_ops->write_pcr(idx, pcr);
 747}
 748
 749static const struct sparc_pmu niagara4_pmu = {
 750	.event_map	= niagara4_event_map,
 751	.cache_map	= &niagara4_cache_map,
 752	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
 753	.read_pmc	= sparc_vt_read_pmc,
 754	.write_pmc	= sparc_vt_write_pmc,
 755	.upper_shift	= 5,
 756	.lower_shift	= 5,
 757	.event_mask	= 0x7ff,
 758	.user_bit	= PCR_N4_UTRACE,
 759	.priv_bit	= PCR_N4_STRACE,
 760
 761	/* We explicitly don't support hypervisor tracing.  The T4
 762	 * generates the overflow event for precise events via a trap
 763	 * which will not be generated (ie. it's completely lost) if
 764	 * we happen to be in the hypervisor when the event triggers.
 765	 * Essentially, the overflow event reporting is completely
 766	 * unusable when you have hypervisor mode tracing enabled.
 767	 */
 768	.hv_bit		= 0,
 769
 770	.irq_bit	= PCR_N4_TOE,
 771	.upper_nop	= 0,
 772	.lower_nop	= 0,
 773	.flags		= 0,
 774	.max_hw_events	= 4,
 775	.num_pcrs	= 4,
 776	.num_pic_regs	= 4,
 777};
 778
 779static const struct sparc_pmu sparc_m7_pmu = {
 780	.event_map	= niagara4_event_map,
 781	.cache_map	= &niagara4_cache_map,
 782	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
 783	.read_pmc	= sparc_vt_read_pmc,
 784	.write_pmc	= sparc_vt_write_pmc,
 785	.upper_shift	= 5,
 786	.lower_shift	= 5,
 787	.event_mask	= 0x7ff,
 788	.user_bit	= PCR_N4_UTRACE,
 789	.priv_bit	= PCR_N4_STRACE,
 790
 791	/* We explicitly don't support hypervisor tracing. */
 792	.hv_bit		= 0,
 793
 794	.irq_bit	= PCR_N4_TOE,
 795	.upper_nop	= 0,
 796	.lower_nop	= 0,
 797	.flags		= 0,
 798	.max_hw_events	= 4,
 799	.num_pcrs	= 4,
 800	.num_pic_regs	= 4,
 801};
 802static const struct sparc_pmu *sparc_pmu __read_mostly;
 803
 804static u64 event_encoding(u64 event_id, int idx)
 805{
 806	if (idx == PIC_UPPER_INDEX)
 807		event_id <<= sparc_pmu->upper_shift;
 808	else
 809		event_id <<= sparc_pmu->lower_shift;
 810	return event_id;
 811}
 812
 813static u64 mask_for_index(int idx)
 814{
 815	return event_encoding(sparc_pmu->event_mask, idx);
 816}
 817
 818static u64 nop_for_index(int idx)
 819{
 820	return event_encoding(idx == PIC_UPPER_INDEX ?
 821			      sparc_pmu->upper_nop :
 822			      sparc_pmu->lower_nop, idx);
 823}
 824
 825static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 826{
 827	u64 enc, val, mask = mask_for_index(idx);
 828	int pcr_index = 0;
 829
 830	if (sparc_pmu->num_pcrs > 1)
 831		pcr_index = idx;
 832
 833	enc = perf_event_get_enc(cpuc->events[idx]);
 834
 835	val = cpuc->pcr[pcr_index];
 836	val &= ~mask;
 837	val |= event_encoding(enc, idx);
 838	cpuc->pcr[pcr_index] = val;
 839
 840	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 841}
 842
 843static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 844{
 845	u64 mask = mask_for_index(idx);
 846	u64 nop = nop_for_index(idx);
 847	int pcr_index = 0;
 848	u64 val;
 849
 850	if (sparc_pmu->num_pcrs > 1)
 851		pcr_index = idx;
 852
 853	val = cpuc->pcr[pcr_index];
 854	val &= ~mask;
 855	val |= nop;
 856	cpuc->pcr[pcr_index] = val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857
 858	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 
 
 
 
 
 
 
 
 
 
 859}
 860
 861static u64 sparc_perf_event_update(struct perf_event *event,
 862				   struct hw_perf_event *hwc, int idx)
 863{
 864	int shift = 64 - 32;
 865	u64 prev_raw_count, new_raw_count;
 866	s64 delta;
 867
 868again:
 869	prev_raw_count = local64_read(&hwc->prev_count);
 870	new_raw_count = sparc_pmu->read_pmc(idx);
 871
 872	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 873			     new_raw_count) != prev_raw_count)
 874		goto again;
 875
 876	delta = (new_raw_count << shift) - (prev_raw_count << shift);
 877	delta >>= shift;
 878
 879	local64_add(delta, &event->count);
 880	local64_sub(delta, &hwc->period_left);
 881
 882	return new_raw_count;
 883}
 884
 885static int sparc_perf_event_set_period(struct perf_event *event,
 886				       struct hw_perf_event *hwc, int idx)
 887{
 888	s64 left = local64_read(&hwc->period_left);
 889	s64 period = hwc->sample_period;
 890	int ret = 0;
 891
 892	if (unlikely(left <= -period)) {
 893		left = period;
 894		local64_set(&hwc->period_left, left);
 895		hwc->last_period = period;
 896		ret = 1;
 897	}
 898
 899	if (unlikely(left <= 0)) {
 900		left += period;
 901		local64_set(&hwc->period_left, left);
 902		hwc->last_period = period;
 903		ret = 1;
 904	}
 905	if (left > MAX_PERIOD)
 906		left = MAX_PERIOD;
 907
 908	local64_set(&hwc->prev_count, (u64)-left);
 909
 910	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
 911
 912	perf_event_update_userpage(event);
 913
 914	return ret;
 915}
 916
 917static void read_in_all_counters(struct cpu_hw_events *cpuc)
 
 
 
 
 918{
 919	int i;
 920
 
 
 
 
 921	for (i = 0; i < cpuc->n_events; i++) {
 922		struct perf_event *cp = cpuc->event[i];
 923
 924		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 925		    cpuc->current_idx[i] != cp->hw.idx) {
 926			sparc_perf_event_update(cp, &cp->hw,
 927						cpuc->current_idx[i]);
 928			cpuc->current_idx[i] = PIC_NO_INDEX;
 929		}
 930	}
 931}
 932
 933/* On this PMU all PICs are programmed using a single PCR.  Calculate
 934 * the combined control register value.
 935 *
 936 * For such chips we require that all of the events have the same
 937 * configuration, so just fetch the settings from the first entry.
 938 */
 939static void calculate_single_pcr(struct cpu_hw_events *cpuc)
 940{
 941	int i;
 942
 943	if (!cpuc->n_added)
 944		goto out;
 945
 946	/* Assign to counters all unassigned events.  */
 947	for (i = 0; i < cpuc->n_events; i++) {
 948		struct perf_event *cp = cpuc->event[i];
 949		struct hw_perf_event *hwc = &cp->hw;
 950		int idx = hwc->idx;
 951		u64 enc;
 952
 953		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 954			continue;
 955
 956		sparc_perf_event_set_period(cp, hwc, idx);
 957		cpuc->current_idx[i] = idx;
 958
 959		enc = perf_event_get_enc(cpuc->events[i]);
 960		cpuc->pcr[0] &= ~mask_for_index(idx);
 961		if (hwc->state & PERF_HES_STOPPED)
 962			cpuc->pcr[0] |= nop_for_index(idx);
 963		else
 964			cpuc->pcr[0] |= event_encoding(enc, idx);
 965	}
 966out:
 967	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
 968}
 969
 970static void sparc_pmu_start(struct perf_event *event, int flags);
 971
 972/* On this PMU each PIC has it's own PCR control register.  */
 973static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
 974{
 975	int i;
 976
 977	if (!cpuc->n_added)
 978		goto out;
 979
 980	for (i = 0; i < cpuc->n_events; i++) {
 981		struct perf_event *cp = cpuc->event[i];
 982		struct hw_perf_event *hwc = &cp->hw;
 983		int idx = hwc->idx;
 984
 985		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 986			continue;
 987
 988		cpuc->current_idx[i] = idx;
 989
 990		sparc_pmu_start(cp, PERF_EF_RELOAD);
 991	}
 992out:
 993	for (i = 0; i < cpuc->n_events; i++) {
 994		struct perf_event *cp = cpuc->event[i];
 995		int idx = cp->hw.idx;
 996
 997		cpuc->pcr[idx] |= cp->hw.config_base;
 998	}
 999}
1000
1001/* If performance event entries have been added, move existing events
1002 * around (if necessary) and then assign new entries to counters.
1003 */
1004static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1005{
1006	if (cpuc->n_added)
1007		read_in_all_counters(cpuc);
1008
1009	if (sparc_pmu->num_pcrs == 1) {
1010		calculate_single_pcr(cpuc);
1011	} else {
1012		calculate_multiple_pcrs(cpuc);
1013	}
1014}
1015
1016static void sparc_pmu_enable(struct pmu *pmu)
1017{
1018	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1019	int i;
1020
1021	if (cpuc->enabled)
1022		return;
1023
1024	cpuc->enabled = 1;
1025	barrier();
1026
1027	if (cpuc->n_events)
1028		update_pcrs_for_enable(cpuc);
 
 
 
1029
1030	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1031		pcr_ops->write_pcr(i, cpuc->pcr[i]);
 
 
 
 
 
 
1032}
1033
1034static void sparc_pmu_disable(struct pmu *pmu)
1035{
1036	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1037	int i;
1038
1039	if (!cpuc->enabled)
1040		return;
1041
1042	cpuc->enabled = 0;
1043	cpuc->n_added = 0;
1044
1045	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1046		u64 val = cpuc->pcr[i];
 
 
1047
1048		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1049			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1050		cpuc->pcr[i] = val;
1051		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1052	}
1053}
1054
1055static int active_event_index(struct cpu_hw_events *cpuc,
1056			      struct perf_event *event)
1057{
1058	int i;
1059
1060	for (i = 0; i < cpuc->n_events; i++) {
1061		if (cpuc->event[i] == event)
1062			break;
1063	}
1064	BUG_ON(i == cpuc->n_events);
1065	return cpuc->current_idx[i];
1066}
1067
1068static void sparc_pmu_start(struct perf_event *event, int flags)
1069{
1070	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1071	int idx = active_event_index(cpuc, event);
1072
1073	if (flags & PERF_EF_RELOAD) {
1074		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1075		sparc_perf_event_set_period(event, &event->hw, idx);
1076	}
1077
1078	event->hw.state = 0;
1079
1080	sparc_pmu_enable_event(cpuc, &event->hw, idx);
1081}
1082
1083static void sparc_pmu_stop(struct perf_event *event, int flags)
1084{
1085	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1086	int idx = active_event_index(cpuc, event);
1087
1088	if (!(event->hw.state & PERF_HES_STOPPED)) {
1089		sparc_pmu_disable_event(cpuc, &event->hw, idx);
1090		event->hw.state |= PERF_HES_STOPPED;
1091	}
1092
1093	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1094		sparc_perf_event_update(event, &event->hw, idx);
1095		event->hw.state |= PERF_HES_UPTODATE;
1096	}
1097}
1098
1099static void sparc_pmu_del(struct perf_event *event, int _flags)
1100{
1101	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1102	unsigned long flags;
1103	int i;
1104
1105	local_irq_save(flags);
 
1106
1107	for (i = 0; i < cpuc->n_events; i++) {
1108		if (event == cpuc->event[i]) {
1109			/* Absorb the final count and turn off the
1110			 * event.
1111			 */
1112			sparc_pmu_stop(event, PERF_EF_UPDATE);
1113
1114			/* Shift remaining entries down into
1115			 * the existing slot.
1116			 */
1117			while (++i < cpuc->n_events) {
1118				cpuc->event[i - 1] = cpuc->event[i];
1119				cpuc->events[i - 1] = cpuc->events[i];
1120				cpuc->current_idx[i - 1] =
1121					cpuc->current_idx[i];
1122			}
1123
1124			perf_event_update_userpage(event);
1125
1126			cpuc->n_events--;
1127			break;
1128		}
1129	}
1130
 
1131	local_irq_restore(flags);
1132}
1133
1134static void sparc_pmu_read(struct perf_event *event)
1135{
1136	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1137	int idx = active_event_index(cpuc, event);
1138	struct hw_perf_event *hwc = &event->hw;
1139
1140	sparc_perf_event_update(event, hwc, idx);
1141}
1142
1143static atomic_t active_events = ATOMIC_INIT(0);
1144static DEFINE_MUTEX(pmc_grab_mutex);
1145
1146static void perf_stop_nmi_watchdog(void *unused)
1147{
1148	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1149	int i;
1150
1151	stop_nmi_watchdog(NULL);
1152	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1153		cpuc->pcr[i] = pcr_ops->read_pcr(i);
1154}
1155
1156static void perf_event_grab_pmc(void)
1157{
1158	if (atomic_inc_not_zero(&active_events))
1159		return;
1160
1161	mutex_lock(&pmc_grab_mutex);
1162	if (atomic_read(&active_events) == 0) {
1163		if (atomic_read(&nmi_active) > 0) {
1164			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1165			BUG_ON(atomic_read(&nmi_active) != 0);
1166		}
1167		atomic_inc(&active_events);
1168	}
1169	mutex_unlock(&pmc_grab_mutex);
1170}
1171
1172static void perf_event_release_pmc(void)
1173{
1174	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1175		if (atomic_read(&nmi_active) == 0)
1176			on_each_cpu(start_nmi_watchdog, NULL, 1);
1177		mutex_unlock(&pmc_grab_mutex);
1178	}
1179}
1180
1181static const struct perf_event_map *sparc_map_cache_event(u64 config)
1182{
1183	unsigned int cache_type, cache_op, cache_result;
1184	const struct perf_event_map *pmap;
1185
1186	if (!sparc_pmu->cache_map)
1187		return ERR_PTR(-ENOENT);
1188
1189	cache_type = (config >>  0) & 0xff;
1190	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1191		return ERR_PTR(-EINVAL);
1192
1193	cache_op = (config >>  8) & 0xff;
1194	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1195		return ERR_PTR(-EINVAL);
1196
1197	cache_result = (config >> 16) & 0xff;
1198	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1199		return ERR_PTR(-EINVAL);
1200
1201	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1202
1203	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1204		return ERR_PTR(-ENOENT);
1205
1206	if (pmap->encoding == CACHE_OP_NONSENSE)
1207		return ERR_PTR(-EINVAL);
1208
1209	return pmap;
1210}
1211
1212static void hw_perf_event_destroy(struct perf_event *event)
1213{
1214	perf_event_release_pmc();
1215}
1216
1217/* Make sure all events can be scheduled into the hardware at
1218 * the same time.  This is simplified by the fact that we only
1219 * need to support 2 simultaneous HW events.
1220 *
1221 * As a side effect, the evts[]->hw.idx values will be assigned
1222 * on success.  These are pending indexes.  When the events are
1223 * actually programmed into the chip, these values will propagate
1224 * to the per-cpu cpuc->current_idx[] slots, see the code in
1225 * maybe_change_configuration() for details.
1226 */
1227static int sparc_check_constraints(struct perf_event **evts,
1228				   unsigned long *events, int n_ev)
1229{
1230	u8 msk0 = 0, msk1 = 0;
1231	int idx0 = 0;
1232
1233	/* This case is possible when we are invoked from
1234	 * hw_perf_group_sched_in().
1235	 */
1236	if (!n_ev)
1237		return 0;
1238
1239	if (n_ev > sparc_pmu->max_hw_events)
1240		return -1;
1241
1242	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1243		int i;
1244
1245		for (i = 0; i < n_ev; i++)
1246			evts[i]->hw.idx = i;
1247		return 0;
1248	}
1249
1250	msk0 = perf_event_get_msk(events[0]);
1251	if (n_ev == 1) {
1252		if (msk0 & PIC_LOWER)
1253			idx0 = 1;
1254		goto success;
1255	}
1256	BUG_ON(n_ev != 2);
1257	msk1 = perf_event_get_msk(events[1]);
1258
1259	/* If both events can go on any counter, OK.  */
1260	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1261	    msk1 == (PIC_UPPER | PIC_LOWER))
1262		goto success;
1263
1264	/* If one event is limited to a specific counter,
1265	 * and the other can go on both, OK.
1266	 */
1267	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1268	    msk1 == (PIC_UPPER | PIC_LOWER)) {
1269		if (msk0 & PIC_LOWER)
1270			idx0 = 1;
1271		goto success;
1272	}
1273
1274	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1275	    msk0 == (PIC_UPPER | PIC_LOWER)) {
1276		if (msk1 & PIC_UPPER)
1277			idx0 = 1;
1278		goto success;
1279	}
1280
1281	/* If the events are fixed to different counters, OK.  */
1282	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1283	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1284		if (msk0 & PIC_LOWER)
1285			idx0 = 1;
1286		goto success;
1287	}
1288
1289	/* Otherwise, there is a conflict.  */
1290	return -1;
1291
1292success:
1293	evts[0]->hw.idx = idx0;
1294	if (n_ev == 2)
1295		evts[1]->hw.idx = idx0 ^ 1;
1296	return 0;
1297}
1298
1299static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1300{
1301	int eu = 0, ek = 0, eh = 0;
1302	struct perf_event *event;
1303	int i, n, first;
1304
1305	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1306		return 0;
1307
1308	n = n_prev + n_new;
1309	if (n <= 1)
1310		return 0;
1311
1312	first = 1;
1313	for (i = 0; i < n; i++) {
1314		event = evts[i];
1315		if (first) {
1316			eu = event->attr.exclude_user;
1317			ek = event->attr.exclude_kernel;
1318			eh = event->attr.exclude_hv;
1319			first = 0;
1320		} else if (event->attr.exclude_user != eu ||
1321			   event->attr.exclude_kernel != ek ||
1322			   event->attr.exclude_hv != eh) {
1323			return -EAGAIN;
1324		}
1325	}
1326
1327	return 0;
1328}
1329
1330static int collect_events(struct perf_event *group, int max_count,
1331			  struct perf_event *evts[], unsigned long *events,
1332			  int *current_idx)
1333{
1334	struct perf_event *event;
1335	int n = 0;
1336
1337	if (!is_software_event(group)) {
1338		if (n >= max_count)
1339			return -1;
1340		evts[n] = group;
1341		events[n] = group->hw.event_base;
1342		current_idx[n++] = PIC_NO_INDEX;
1343	}
1344	list_for_each_entry(event, &group->sibling_list, group_entry) {
1345		if (!is_software_event(event) &&
1346		    event->state != PERF_EVENT_STATE_OFF) {
1347			if (n >= max_count)
1348				return -1;
1349			evts[n] = event;
1350			events[n] = event->hw.event_base;
1351			current_idx[n++] = PIC_NO_INDEX;
1352		}
1353	}
1354	return n;
1355}
1356
1357static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1358{
1359	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1360	int n0, ret = -EAGAIN;
1361	unsigned long flags;
1362
1363	local_irq_save(flags);
 
1364
1365	n0 = cpuc->n_events;
1366	if (n0 >= sparc_pmu->max_hw_events)
1367		goto out;
1368
1369	cpuc->event[n0] = event;
1370	cpuc->events[n0] = event->hw.event_base;
1371	cpuc->current_idx[n0] = PIC_NO_INDEX;
1372
1373	event->hw.state = PERF_HES_UPTODATE;
1374	if (!(ef_flags & PERF_EF_START))
1375		event->hw.state |= PERF_HES_STOPPED;
1376
1377	/*
1378	 * If group events scheduling transaction was started,
1379	 * skip the schedulability test here, it will be performed
1380	 * at commit time(->commit_txn) as a whole
1381	 */
1382	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1383		goto nocheck;
1384
1385	if (check_excludes(cpuc->event, n0, 1))
1386		goto out;
1387	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1388		goto out;
1389
1390nocheck:
1391	cpuc->n_events++;
1392	cpuc->n_added++;
1393
1394	ret = 0;
1395out:
 
1396	local_irq_restore(flags);
1397	return ret;
1398}
1399
1400static int sparc_pmu_event_init(struct perf_event *event)
1401{
1402	struct perf_event_attr *attr = &event->attr;
1403	struct perf_event *evts[MAX_HWEVENTS];
1404	struct hw_perf_event *hwc = &event->hw;
1405	unsigned long events[MAX_HWEVENTS];
1406	int current_idx_dmy[MAX_HWEVENTS];
1407	const struct perf_event_map *pmap;
1408	int n;
1409
1410	if (atomic_read(&nmi_active) < 0)
1411		return -ENODEV;
1412
1413	/* does not support taken branch sampling */
1414	if (has_branch_stack(event))
1415		return -EOPNOTSUPP;
1416
1417	switch (attr->type) {
1418	case PERF_TYPE_HARDWARE:
1419		if (attr->config >= sparc_pmu->max_events)
1420			return -EINVAL;
1421		pmap = sparc_pmu->event_map(attr->config);
1422		break;
1423
1424	case PERF_TYPE_HW_CACHE:
1425		pmap = sparc_map_cache_event(attr->config);
1426		if (IS_ERR(pmap))
1427			return PTR_ERR(pmap);
1428		break;
1429
1430	case PERF_TYPE_RAW:
1431		pmap = NULL;
1432		break;
1433
1434	default:
1435		return -ENOENT;
1436
1437	}
1438
1439	if (pmap) {
1440		hwc->event_base = perf_event_encode(pmap);
1441	} else {
1442		/*
1443		 * User gives us "(encoding << 16) | pic_mask" for
1444		 * PERF_TYPE_RAW events.
1445		 */
1446		hwc->event_base = attr->config;
1447	}
1448
1449	/* We save the enable bits in the config_base.  */
1450	hwc->config_base = sparc_pmu->irq_bit;
1451	if (!attr->exclude_user)
1452		hwc->config_base |= sparc_pmu->user_bit;
1453	if (!attr->exclude_kernel)
1454		hwc->config_base |= sparc_pmu->priv_bit;
1455	if (!attr->exclude_hv)
1456		hwc->config_base |= sparc_pmu->hv_bit;
1457
1458	n = 0;
1459	if (event->group_leader != event) {
1460		n = collect_events(event->group_leader,
1461				   sparc_pmu->max_hw_events - 1,
1462				   evts, events, current_idx_dmy);
1463		if (n < 0)
1464			return -EINVAL;
1465	}
1466	events[n] = hwc->event_base;
1467	evts[n] = event;
1468
1469	if (check_excludes(evts, n, 1))
1470		return -EINVAL;
1471
1472	if (sparc_check_constraints(evts, events, n + 1))
1473		return -EINVAL;
1474
1475	hwc->idx = PIC_NO_INDEX;
1476
1477	/* Try to do all error checking before this point, as unwinding
1478	 * state after grabbing the PMC is difficult.
1479	 */
1480	perf_event_grab_pmc();
1481	event->destroy = hw_perf_event_destroy;
1482
1483	if (!hwc->sample_period) {
1484		hwc->sample_period = MAX_PERIOD;
1485		hwc->last_period = hwc->sample_period;
1486		local64_set(&hwc->period_left, hwc->sample_period);
1487	}
1488
1489	return 0;
1490}
1491
1492/*
1493 * Start group events scheduling transaction
1494 * Set the flag to make pmu::enable() not perform the
1495 * schedulability test, it will be performed at commit time
1496 */
1497static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1498{
1499	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1500
1501	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1502
1503	cpuhw->txn_flags = txn_flags;
1504	if (txn_flags & ~PERF_PMU_TXN_ADD)
1505		return;
1506
1507	perf_pmu_disable(pmu);
 
1508}
1509
1510/*
1511 * Stop group events scheduling transaction
1512 * Clear the flag and pmu::enable() will perform the
1513 * schedulability test.
1514 */
1515static void sparc_pmu_cancel_txn(struct pmu *pmu)
1516{
1517	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1518	unsigned int txn_flags;
1519
1520	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1521
1522	txn_flags = cpuhw->txn_flags;
1523	cpuhw->txn_flags = 0;
1524	if (txn_flags & ~PERF_PMU_TXN_ADD)
1525		return;
1526
 
1527	perf_pmu_enable(pmu);
1528}
1529
1530/*
1531 * Commit group events scheduling transaction
1532 * Perform the group schedulability test as a whole
1533 * Return 0 if success
1534 */
1535static int sparc_pmu_commit_txn(struct pmu *pmu)
1536{
1537	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1538	int n;
1539
1540	if (!sparc_pmu)
1541		return -EINVAL;
1542
1543	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1544
1545	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1546		cpuc->txn_flags = 0;
1547		return 0;
1548	}
1549
1550	n = cpuc->n_events;
1551	if (check_excludes(cpuc->event, 0, n))
1552		return -EINVAL;
1553	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1554		return -EAGAIN;
1555
1556	cpuc->txn_flags = 0;
1557	perf_pmu_enable(pmu);
1558	return 0;
1559}
1560
1561static struct pmu pmu = {
1562	.pmu_enable	= sparc_pmu_enable,
1563	.pmu_disable	= sparc_pmu_disable,
1564	.event_init	= sparc_pmu_event_init,
1565	.add		= sparc_pmu_add,
1566	.del		= sparc_pmu_del,
1567	.start		= sparc_pmu_start,
1568	.stop		= sparc_pmu_stop,
1569	.read		= sparc_pmu_read,
1570	.start_txn	= sparc_pmu_start_txn,
1571	.cancel_txn	= sparc_pmu_cancel_txn,
1572	.commit_txn	= sparc_pmu_commit_txn,
1573};
1574
1575void perf_event_print_debug(void)
1576{
1577	unsigned long flags;
1578	int cpu, i;
 
1579
1580	if (!sparc_pmu)
1581		return;
1582
1583	local_irq_save(flags);
1584
1585	cpu = smp_processor_id();
1586
 
 
 
1587	pr_info("\n");
1588	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1589		pr_info("CPU#%d: PCR%d[%016llx]\n",
1590			cpu, i, pcr_ops->read_pcr(i));
1591	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1592		pr_info("CPU#%d: PIC%d[%016llx]\n",
1593			cpu, i, pcr_ops->read_pic(i));
1594
1595	local_irq_restore(flags);
1596}
1597
1598static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1599					    unsigned long cmd, void *__args)
1600{
1601	struct die_args *args = __args;
1602	struct perf_sample_data data;
1603	struct cpu_hw_events *cpuc;
1604	struct pt_regs *regs;
1605	int i;
1606
1607	if (!atomic_read(&active_events))
1608		return NOTIFY_DONE;
1609
1610	switch (cmd) {
1611	case DIE_NMI:
1612		break;
1613
1614	default:
1615		return NOTIFY_DONE;
1616	}
1617
1618	regs = args->regs;
1619
1620	cpuc = this_cpu_ptr(&cpu_hw_events);
1621
1622	/* If the PMU has the TOE IRQ enable bits, we need to do a
1623	 * dummy write to the %pcr to clear the overflow bits and thus
1624	 * the interrupt.
1625	 *
1626	 * Do this before we peek at the counters to determine
1627	 * overflow so we don't lose any events.
1628	 */
1629	if (sparc_pmu->irq_bit &&
1630	    sparc_pmu->num_pcrs == 1)
1631		pcr_ops->write_pcr(0, cpuc->pcr[0]);
1632
1633	for (i = 0; i < cpuc->n_events; i++) {
1634		struct perf_event *event = cpuc->event[i];
1635		int idx = cpuc->current_idx[i];
1636		struct hw_perf_event *hwc;
1637		u64 val;
1638
1639		if (sparc_pmu->irq_bit &&
1640		    sparc_pmu->num_pcrs > 1)
1641			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1642
1643		hwc = &event->hw;
1644		val = sparc_perf_event_update(event, hwc, idx);
1645		if (val & (1ULL << 31))
1646			continue;
1647
1648		perf_sample_data_init(&data, 0, hwc->last_period);
1649		if (!sparc_perf_event_set_period(event, hwc, idx))
1650			continue;
1651
1652		if (perf_event_overflow(event, &data, regs))
1653			sparc_pmu_stop(event, 0);
1654	}
1655
1656	return NOTIFY_STOP;
1657}
1658
1659static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1660	.notifier_call		= perf_event_nmi_handler,
1661};
1662
1663static bool __init supported_pmu(void)
1664{
1665	if (!strcmp(sparc_pmu_type, "ultra3") ||
1666	    !strcmp(sparc_pmu_type, "ultra3+") ||
1667	    !strcmp(sparc_pmu_type, "ultra3i") ||
1668	    !strcmp(sparc_pmu_type, "ultra4+")) {
1669		sparc_pmu = &ultra3_pmu;
1670		return true;
1671	}
1672	if (!strcmp(sparc_pmu_type, "niagara")) {
1673		sparc_pmu = &niagara1_pmu;
1674		return true;
1675	}
1676	if (!strcmp(sparc_pmu_type, "niagara2") ||
1677	    !strcmp(sparc_pmu_type, "niagara3")) {
1678		sparc_pmu = &niagara2_pmu;
1679		return true;
1680	}
1681	if (!strcmp(sparc_pmu_type, "niagara4") ||
1682	    !strcmp(sparc_pmu_type, "niagara5")) {
1683		sparc_pmu = &niagara4_pmu;
1684		return true;
1685	}
1686	if (!strcmp(sparc_pmu_type, "sparc-m7")) {
1687		sparc_pmu = &sparc_m7_pmu;
1688		return true;
1689	}
1690	return false;
1691}
1692
1693static int __init init_hw_perf_events(void)
1694{
1695	int err;
1696
1697	pr_info("Performance events: ");
1698
1699	err = pcr_arch_init();
1700	if (err || !supported_pmu()) {
1701		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1702		return 0;
1703	}
1704
1705	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1706
1707	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1708	register_die_notifier(&perf_event_nmi_notifier);
1709
1710	return 0;
1711}
1712pure_initcall(init_hw_perf_events);
1713
1714void perf_callchain_kernel(struct perf_callchain_entry *entry,
1715			   struct pt_regs *regs)
1716{
1717	unsigned long ksp, fp;
1718#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1719	int graph = 0;
1720#endif
1721
1722	stack_trace_flush();
1723
1724	perf_callchain_store(entry, regs->tpc);
1725
1726	ksp = regs->u_regs[UREG_I6];
1727	fp = ksp + STACK_BIAS;
1728	do {
1729		struct sparc_stackf *sf;
1730		struct pt_regs *regs;
1731		unsigned long pc;
1732
1733		if (!kstack_valid(current_thread_info(), fp))
1734			break;
1735
1736		sf = (struct sparc_stackf *) fp;
1737		regs = (struct pt_regs *) (sf + 1);
1738
1739		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1740			if (user_mode(regs))
1741				break;
1742			pc = regs->tpc;
1743			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1744		} else {
1745			pc = sf->callers_pc;
1746			fp = (unsigned long)sf->fp + STACK_BIAS;
1747		}
1748		perf_callchain_store(entry, pc);
1749#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1750		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1751			int index = current->curr_ret_stack;
1752			if (current->ret_stack && index >= graph) {
1753				pc = current->ret_stack[index - graph].ret;
1754				perf_callchain_store(entry, pc);
1755				graph++;
1756			}
1757		}
1758#endif
1759	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1760}
1761
1762static inline int
1763valid_user_frame(const void __user *fp, unsigned long size)
1764{
1765	/* addresses should be at least 4-byte aligned */
1766	if (((unsigned long) fp) & 3)
1767		return 0;
1768
1769	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1770}
1771
1772static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1773				   struct pt_regs *regs)
1774{
1775	unsigned long ufp;
1776
1777	ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
 
 
1778	do {
1779		struct sparc_stackf __user *usf;
1780		struct sparc_stackf sf;
1781		unsigned long pc;
1782
1783		usf = (struct sparc_stackf __user *)ufp;
1784		if (!valid_user_frame(usf, sizeof(sf)))
1785			break;
1786
1787		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1788			break;
1789
1790		pc = sf.callers_pc;
1791		ufp = (unsigned long)sf.fp + STACK_BIAS;
1792		perf_callchain_store(entry, pc);
1793	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1794}
1795
1796static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1797				   struct pt_regs *regs)
1798{
1799	unsigned long ufp;
1800
1801	ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
 
 
1802	do {
 
1803		unsigned long pc;
1804
1805		if (thread32_stack_is_64bit(ufp)) {
1806			struct sparc_stackf __user *usf;
1807			struct sparc_stackf sf;
1808
1809			ufp += STACK_BIAS;
1810			usf = (struct sparc_stackf __user *)ufp;
1811			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1812				break;
1813			pc = sf.callers_pc & 0xffffffff;
1814			ufp = ((unsigned long) sf.fp) & 0xffffffff;
1815		} else {
1816			struct sparc_stackf32 __user *usf;
1817			struct sparc_stackf32 sf;
1818			usf = (struct sparc_stackf32 __user *)ufp;
1819			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1820				break;
1821			pc = sf.callers_pc;
1822			ufp = (unsigned long)sf.fp;
1823		}
1824		perf_callchain_store(entry, pc);
1825	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1826}
1827
1828void
1829perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1830{
1831	u64 saved_fault_address = current_thread_info()->fault_address;
1832	u8 saved_fault_code = get_thread_fault_code();
1833	mm_segment_t old_fs;
1834
1835	perf_callchain_store(entry, regs->tpc);
1836
1837	if (!current->mm)
1838		return;
1839
1840	old_fs = get_fs();
1841	set_fs(USER_DS);
1842
1843	flushw_user();
1844
1845	pagefault_disable();
1846
1847	if (test_thread_flag(TIF_32BIT))
1848		perf_callchain_user_32(entry, regs);
1849	else
1850		perf_callchain_user_64(entry, regs);
1851
1852	pagefault_enable();
1853
1854	set_fs(old_fs);
1855	set_thread_fault_code(saved_fault_code);
1856	current_thread_info()->fault_address = saved_fault_address;
1857}