Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * Interrupt request handling routines. On the
  3 * Sparc the IRQs are basically 'cast in stone'
  4 * and you are supposed to probe the prom's device
  5 * node trees to find out who's got which IRQ.
  6 *
  7 *  Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  8 *  Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
  9 *  Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com)
 10 *  Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
 11 *  Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org)
 12 */
 13
 14#include <linux/kernel_stat.h>
 15#include <linux/seq_file.h>
 16#include <linux/export.h>
 17
 18#include <asm/cacheflush.h>
 19#include <asm/cpudata.h>
 
 20#include <asm/pcic.h>
 21#include <asm/leon.h>
 22
 23#include "kernel.h"
 24#include "irq.h"
 25
 26/* platform specific irq setup */
 27struct sparc_config sparc_config;
 28
 29unsigned long arch_local_irq_save(void)
 30{
 31	unsigned long retval;
 32	unsigned long tmp;
 33
 34	__asm__ __volatile__(
 35		"rd	%%psr, %0\n\t"
 36		"or	%0, %2, %1\n\t"
 37		"wr	%1, 0, %%psr\n\t"
 38		"nop; nop; nop\n"
 39		: "=&r" (retval), "=r" (tmp)
 40		: "i" (PSR_PIL)
 41		: "memory");
 42
 43	return retval;
 44}
 45EXPORT_SYMBOL(arch_local_irq_save);
 46
 47void arch_local_irq_enable(void)
 48{
 49	unsigned long tmp;
 50
 51	__asm__ __volatile__(
 52		"rd	%%psr, %0\n\t"
 53		"andn	%0, %1, %0\n\t"
 54		"wr	%0, 0, %%psr\n\t"
 55		"nop; nop; nop\n"
 56		: "=&r" (tmp)
 57		: "i" (PSR_PIL)
 58		: "memory");
 59}
 60EXPORT_SYMBOL(arch_local_irq_enable);
 61
 62void arch_local_irq_restore(unsigned long old_psr)
 63{
 64	unsigned long tmp;
 65
 66	__asm__ __volatile__(
 67		"rd	%%psr, %0\n\t"
 68		"and	%2, %1, %2\n\t"
 69		"andn	%0, %1, %0\n\t"
 70		"wr	%0, %2, %%psr\n\t"
 71		"nop; nop; nop\n"
 72		: "=&r" (tmp)
 73		: "i" (PSR_PIL), "r" (old_psr)
 74		: "memory");
 75}
 76EXPORT_SYMBOL(arch_local_irq_restore);
 77
 78/*
 79 * Dave Redman (djhr@tadpole.co.uk)
 80 *
 81 * IRQ numbers.. These are no longer restricted to 15..
 82 *
 83 * this is done to enable SBUS cards and onboard IO to be masked
 84 * correctly. using the interrupt level isn't good enough.
 85 *
 86 * For example:
 87 *   A device interrupting at sbus level6 and the Floppy both come in
 88 *   at IRQ11, but enabling and disabling them requires writing to
 89 *   different bits in the SLAVIO/SEC.
 90 *
 91 * As a result of these changes sun4m machines could now support
 92 * directed CPU interrupts using the existing enable/disable irq code
 93 * with tweaks.
 94 *
 95 * Sun4d complicates things even further.  IRQ numbers are arbitrary
 96 * 32-bit values in that case.  Since this is similar to sparc64,
 97 * we adopt a virtual IRQ numbering scheme as is done there.
 98 * Virutal interrupt numbers are allocated by build_irq().  So NR_IRQS
 99 * just becomes a limit of how many interrupt sources we can handle in
100 * a single system.  Even fully loaded SS2000 machines top off at
101 * about 32 interrupt sources or so, therefore a NR_IRQS value of 64
102 * is more than enough.
103  *
104 * We keep a map of per-PIL enable interrupts.  These get wired
105 * up via the irq_chip->startup() method which gets invoked by
106 * the generic IRQ layer during request_irq().
107 */
108
109
110/* Table of allocated irqs. Unused entries has irq == 0 */
111static struct irq_bucket irq_table[NR_IRQS];
112/* Protect access to irq_table */
113static DEFINE_SPINLOCK(irq_table_lock);
114
115/* Map between the irq identifier used in hw to the irq_bucket. */
116struct irq_bucket *irq_map[SUN4D_MAX_IRQ];
117/* Protect access to irq_map */
118static DEFINE_SPINLOCK(irq_map_lock);
119
120/* Allocate a new irq from the irq_table */
121unsigned int irq_alloc(unsigned int real_irq, unsigned int pil)
122{
123	unsigned long flags;
124	unsigned int i;
125
126	spin_lock_irqsave(&irq_table_lock, flags);
127	for (i = 1; i < NR_IRQS; i++) {
128		if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil)
129			goto found;
130	}
131
132	for (i = 1; i < NR_IRQS; i++) {
133		if (!irq_table[i].irq)
134			break;
135	}
136
137	if (i < NR_IRQS) {
138		irq_table[i].real_irq = real_irq;
139		irq_table[i].irq = i;
140		irq_table[i].pil = pil;
141	} else {
142		printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
143		i = 0;
144	}
145found:
146	spin_unlock_irqrestore(&irq_table_lock, flags);
147
148	return i;
149}
150
151/* Based on a single pil handler_irq may need to call several
152 * interrupt handlers. Use irq_map as entry to irq_table,
153 * and let each entry in irq_table point to the next entry.
154 */
155void irq_link(unsigned int irq)
156{
157	struct irq_bucket *p;
158	unsigned long flags;
159	unsigned int pil;
160
161	BUG_ON(irq >= NR_IRQS);
162
163	spin_lock_irqsave(&irq_map_lock, flags);
164
165	p = &irq_table[irq];
166	pil = p->pil;
167	BUG_ON(pil > SUN4D_MAX_IRQ);
168	p->next = irq_map[pil];
169	irq_map[pil] = p;
170
171	spin_unlock_irqrestore(&irq_map_lock, flags);
172}
173
174void irq_unlink(unsigned int irq)
175{
176	struct irq_bucket *p, **pnext;
177	unsigned long flags;
178
179	BUG_ON(irq >= NR_IRQS);
180
181	spin_lock_irqsave(&irq_map_lock, flags);
182
183	p = &irq_table[irq];
184	BUG_ON(p->pil > SUN4D_MAX_IRQ);
185	pnext = &irq_map[p->pil];
186	while (*pnext != p)
187		pnext = &(*pnext)->next;
188	*pnext = p->next;
189
190	spin_unlock_irqrestore(&irq_map_lock, flags);
191}
192
193
194/* /proc/interrupts printing */
195int arch_show_interrupts(struct seq_file *p, int prec)
196{
197	int j;
198
199#ifdef CONFIG_SMP
200	seq_printf(p, "RES: ");
201	for_each_online_cpu(j)
202		seq_printf(p, "%10u ", cpu_data(j).irq_resched_count);
203	seq_printf(p, "     IPI rescheduling interrupts\n");
204	seq_printf(p, "CAL: ");
205	for_each_online_cpu(j)
206		seq_printf(p, "%10u ", cpu_data(j).irq_call_count);
207	seq_printf(p, "     IPI function call interrupts\n");
208#endif
209	seq_printf(p, "NMI: ");
210	for_each_online_cpu(j)
211		seq_printf(p, "%10u ", cpu_data(j).counter);
212	seq_printf(p, "     Non-maskable interrupts\n");
213	return 0;
214}
215
216void handler_irq(unsigned int pil, struct pt_regs *regs)
217{
218	struct pt_regs *old_regs;
219	struct irq_bucket *p;
220
221	BUG_ON(pil > 15);
222	old_regs = set_irq_regs(regs);
223	irq_enter();
224
225	p = irq_map[pil];
226	while (p) {
227		struct irq_bucket *next = p->next;
228
229		generic_handle_irq(p->irq);
230		p = next;
231	}
232	irq_exit();
233	set_irq_regs(old_regs);
234}
235
236#if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE)
237static unsigned int floppy_irq;
238
239int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler)
240{
241	unsigned int cpu_irq;
242	int err;
243
244
245	err = request_irq(irq, irq_handler, 0, "floppy", NULL);
246	if (err)
247		return -1;
248
249	/* Save for later use in floppy interrupt handler */
250	floppy_irq = irq;
251
252	cpu_irq = (irq & (NR_IRQS - 1));
253
254	/* Dork with trap table if we get this far. */
255#define INSTANTIATE(table) \
256	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \
257	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \
258		SPARC_BRANCH((unsigned long) floppy_hardint, \
259			     (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\
260	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \
261	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP;
262
263	INSTANTIATE(sparc_ttable)
264
265#if defined CONFIG_SMP
266	if (sparc_cpu_model != sparc_leon) {
267		struct tt_entry *trap_table;
268
269		trap_table = &trapbase_cpu1;
270		INSTANTIATE(trap_table)
271		trap_table = &trapbase_cpu2;
272		INSTANTIATE(trap_table)
273		trap_table = &trapbase_cpu3;
274		INSTANTIATE(trap_table)
275	}
276#endif
277#undef INSTANTIATE
278	/*
279	 * XXX Correct thing whould be to flush only I- and D-cache lines
280	 * which contain the handler in question. But as of time of the
281	 * writing we have no CPU-neutral interface to fine-grained flushes.
282	 */
283	flush_cache_all();
284	return 0;
285}
286EXPORT_SYMBOL(sparc_floppy_request_irq);
287
288/*
289 * These variables are used to access state from the assembler
290 * interrupt handler, floppy_hardint, so we cannot put these in
291 * the floppy driver image because that would not work in the
292 * modular case.
293 */
294volatile unsigned char *fdc_status;
295EXPORT_SYMBOL(fdc_status);
296
297char *pdma_vaddr;
298EXPORT_SYMBOL(pdma_vaddr);
299
300unsigned long pdma_size;
301EXPORT_SYMBOL(pdma_size);
302
303volatile int doing_pdma;
304EXPORT_SYMBOL(doing_pdma);
305
306char *pdma_base;
307EXPORT_SYMBOL(pdma_base);
308
309unsigned long pdma_areasize;
310EXPORT_SYMBOL(pdma_areasize);
311
312/* Use the generic irq support to call floppy_interrupt
313 * which was setup using request_irq() in sparc_floppy_request_irq().
314 * We only have one floppy interrupt so we do not need to check
315 * for additional handlers being wired up by irq_link()
316 */
317void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs)
318{
319	struct pt_regs *old_regs;
320
321	old_regs = set_irq_regs(regs);
322	irq_enter();
323	generic_handle_irq(floppy_irq);
324	irq_exit();
325	set_irq_regs(old_regs);
326}
327#endif
328
329/* djhr
330 * This could probably be made indirect too and assigned in the CPU
331 * bits of the code. That would be much nicer I think and would also
332 * fit in with the idea of being able to tune your kernel for your machine
333 * by removing unrequired machine and device support.
334 *
335 */
336
337void __init init_IRQ(void)
338{
339	switch (sparc_cpu_model) {
340	case sun4m:
341		pcic_probe();
342		if (pcic_present())
343			sun4m_pci_init_IRQ();
344		else
345			sun4m_init_IRQ();
346		break;
347
348	case sun4d:
349		sun4d_init_IRQ();
350		break;
351
352	case sparc_leon:
353		leon_init_IRQ();
354		break;
355
356	default:
357		prom_printf("Cannot initialize IRQs on this Sun machine...");
358		break;
359	}
360}
361
v4.6
  1/*
  2 * Interrupt request handling routines. On the
  3 * Sparc the IRQs are basically 'cast in stone'
  4 * and you are supposed to probe the prom's device
  5 * node trees to find out who's got which IRQ.
  6 *
  7 *  Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  8 *  Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
  9 *  Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com)
 10 *  Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
 11 *  Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org)
 12 */
 13
 14#include <linux/kernel_stat.h>
 15#include <linux/seq_file.h>
 16#include <linux/export.h>
 17
 18#include <asm/cacheflush.h>
 19#include <asm/cpudata.h>
 20#include <asm/setup.h>
 21#include <asm/pcic.h>
 22#include <asm/leon.h>
 23
 24#include "kernel.h"
 25#include "irq.h"
 26
 27/* platform specific irq setup */
 28struct sparc_config sparc_config;
 29
 30unsigned long arch_local_irq_save(void)
 31{
 32	unsigned long retval;
 33	unsigned long tmp;
 34
 35	__asm__ __volatile__(
 36		"rd	%%psr, %0\n\t"
 37		"or	%0, %2, %1\n\t"
 38		"wr	%1, 0, %%psr\n\t"
 39		"nop; nop; nop\n"
 40		: "=&r" (retval), "=r" (tmp)
 41		: "i" (PSR_PIL)
 42		: "memory");
 43
 44	return retval;
 45}
 46EXPORT_SYMBOL(arch_local_irq_save);
 47
 48void arch_local_irq_enable(void)
 49{
 50	unsigned long tmp;
 51
 52	__asm__ __volatile__(
 53		"rd	%%psr, %0\n\t"
 54		"andn	%0, %1, %0\n\t"
 55		"wr	%0, 0, %%psr\n\t"
 56		"nop; nop; nop\n"
 57		: "=&r" (tmp)
 58		: "i" (PSR_PIL)
 59		: "memory");
 60}
 61EXPORT_SYMBOL(arch_local_irq_enable);
 62
 63void arch_local_irq_restore(unsigned long old_psr)
 64{
 65	unsigned long tmp;
 66
 67	__asm__ __volatile__(
 68		"rd	%%psr, %0\n\t"
 69		"and	%2, %1, %2\n\t"
 70		"andn	%0, %1, %0\n\t"
 71		"wr	%0, %2, %%psr\n\t"
 72		"nop; nop; nop\n"
 73		: "=&r" (tmp)
 74		: "i" (PSR_PIL), "r" (old_psr)
 75		: "memory");
 76}
 77EXPORT_SYMBOL(arch_local_irq_restore);
 78
 79/*
 80 * Dave Redman (djhr@tadpole.co.uk)
 81 *
 82 * IRQ numbers.. These are no longer restricted to 15..
 83 *
 84 * this is done to enable SBUS cards and onboard IO to be masked
 85 * correctly. using the interrupt level isn't good enough.
 86 *
 87 * For example:
 88 *   A device interrupting at sbus level6 and the Floppy both come in
 89 *   at IRQ11, but enabling and disabling them requires writing to
 90 *   different bits in the SLAVIO/SEC.
 91 *
 92 * As a result of these changes sun4m machines could now support
 93 * directed CPU interrupts using the existing enable/disable irq code
 94 * with tweaks.
 95 *
 96 * Sun4d complicates things even further.  IRQ numbers are arbitrary
 97 * 32-bit values in that case.  Since this is similar to sparc64,
 98 * we adopt a virtual IRQ numbering scheme as is done there.
 99 * Virutal interrupt numbers are allocated by build_irq().  So NR_IRQS
100 * just becomes a limit of how many interrupt sources we can handle in
101 * a single system.  Even fully loaded SS2000 machines top off at
102 * about 32 interrupt sources or so, therefore a NR_IRQS value of 64
103 * is more than enough.
104  *
105 * We keep a map of per-PIL enable interrupts.  These get wired
106 * up via the irq_chip->startup() method which gets invoked by
107 * the generic IRQ layer during request_irq().
108 */
109
110
111/* Table of allocated irqs. Unused entries has irq == 0 */
112static struct irq_bucket irq_table[NR_IRQS];
113/* Protect access to irq_table */
114static DEFINE_SPINLOCK(irq_table_lock);
115
116/* Map between the irq identifier used in hw to the irq_bucket. */
117struct irq_bucket *irq_map[SUN4D_MAX_IRQ];
118/* Protect access to irq_map */
119static DEFINE_SPINLOCK(irq_map_lock);
120
121/* Allocate a new irq from the irq_table */
122unsigned int irq_alloc(unsigned int real_irq, unsigned int pil)
123{
124	unsigned long flags;
125	unsigned int i;
126
127	spin_lock_irqsave(&irq_table_lock, flags);
128	for (i = 1; i < NR_IRQS; i++) {
129		if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil)
130			goto found;
131	}
132
133	for (i = 1; i < NR_IRQS; i++) {
134		if (!irq_table[i].irq)
135			break;
136	}
137
138	if (i < NR_IRQS) {
139		irq_table[i].real_irq = real_irq;
140		irq_table[i].irq = i;
141		irq_table[i].pil = pil;
142	} else {
143		printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
144		i = 0;
145	}
146found:
147	spin_unlock_irqrestore(&irq_table_lock, flags);
148
149	return i;
150}
151
152/* Based on a single pil handler_irq may need to call several
153 * interrupt handlers. Use irq_map as entry to irq_table,
154 * and let each entry in irq_table point to the next entry.
155 */
156void irq_link(unsigned int irq)
157{
158	struct irq_bucket *p;
159	unsigned long flags;
160	unsigned int pil;
161
162	BUG_ON(irq >= NR_IRQS);
163
164	spin_lock_irqsave(&irq_map_lock, flags);
165
166	p = &irq_table[irq];
167	pil = p->pil;
168	BUG_ON(pil > SUN4D_MAX_IRQ);
169	p->next = irq_map[pil];
170	irq_map[pil] = p;
171
172	spin_unlock_irqrestore(&irq_map_lock, flags);
173}
174
175void irq_unlink(unsigned int irq)
176{
177	struct irq_bucket *p, **pnext;
178	unsigned long flags;
179
180	BUG_ON(irq >= NR_IRQS);
181
182	spin_lock_irqsave(&irq_map_lock, flags);
183
184	p = &irq_table[irq];
185	BUG_ON(p->pil > SUN4D_MAX_IRQ);
186	pnext = &irq_map[p->pil];
187	while (*pnext != p)
188		pnext = &(*pnext)->next;
189	*pnext = p->next;
190
191	spin_unlock_irqrestore(&irq_map_lock, flags);
192}
193
194
195/* /proc/interrupts printing */
196int arch_show_interrupts(struct seq_file *p, int prec)
197{
198	int j;
199
200#ifdef CONFIG_SMP
201	seq_printf(p, "RES: ");
202	for_each_online_cpu(j)
203		seq_printf(p, "%10u ", cpu_data(j).irq_resched_count);
204	seq_printf(p, "     IPI rescheduling interrupts\n");
205	seq_printf(p, "CAL: ");
206	for_each_online_cpu(j)
207		seq_printf(p, "%10u ", cpu_data(j).irq_call_count);
208	seq_printf(p, "     IPI function call interrupts\n");
209#endif
210	seq_printf(p, "NMI: ");
211	for_each_online_cpu(j)
212		seq_printf(p, "%10u ", cpu_data(j).counter);
213	seq_printf(p, "     Non-maskable interrupts\n");
214	return 0;
215}
216
217void handler_irq(unsigned int pil, struct pt_regs *regs)
218{
219	struct pt_regs *old_regs;
220	struct irq_bucket *p;
221
222	BUG_ON(pil > 15);
223	old_regs = set_irq_regs(regs);
224	irq_enter();
225
226	p = irq_map[pil];
227	while (p) {
228		struct irq_bucket *next = p->next;
229
230		generic_handle_irq(p->irq);
231		p = next;
232	}
233	irq_exit();
234	set_irq_regs(old_regs);
235}
236
237#if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE)
238static unsigned int floppy_irq;
239
240int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler)
241{
242	unsigned int cpu_irq;
243	int err;
244
245
246	err = request_irq(irq, irq_handler, 0, "floppy", NULL);
247	if (err)
248		return -1;
249
250	/* Save for later use in floppy interrupt handler */
251	floppy_irq = irq;
252
253	cpu_irq = (irq & (NR_IRQS - 1));
254
255	/* Dork with trap table if we get this far. */
256#define INSTANTIATE(table) \
257	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \
258	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \
259		SPARC_BRANCH((unsigned long) floppy_hardint, \
260			     (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\
261	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \
262	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP;
263
264	INSTANTIATE(sparc_ttable)
265
266#if defined CONFIG_SMP
267	if (sparc_cpu_model != sparc_leon) {
268		struct tt_entry *trap_table;
269
270		trap_table = &trapbase_cpu1;
271		INSTANTIATE(trap_table)
272		trap_table = &trapbase_cpu2;
273		INSTANTIATE(trap_table)
274		trap_table = &trapbase_cpu3;
275		INSTANTIATE(trap_table)
276	}
277#endif
278#undef INSTANTIATE
279	/*
280	 * XXX Correct thing whould be to flush only I- and D-cache lines
281	 * which contain the handler in question. But as of time of the
282	 * writing we have no CPU-neutral interface to fine-grained flushes.
283	 */
284	flush_cache_all();
285	return 0;
286}
287EXPORT_SYMBOL(sparc_floppy_request_irq);
288
289/*
290 * These variables are used to access state from the assembler
291 * interrupt handler, floppy_hardint, so we cannot put these in
292 * the floppy driver image because that would not work in the
293 * modular case.
294 */
295volatile unsigned char *fdc_status;
296EXPORT_SYMBOL(fdc_status);
297
298char *pdma_vaddr;
299EXPORT_SYMBOL(pdma_vaddr);
300
301unsigned long pdma_size;
302EXPORT_SYMBOL(pdma_size);
303
304volatile int doing_pdma;
305EXPORT_SYMBOL(doing_pdma);
306
307char *pdma_base;
308EXPORT_SYMBOL(pdma_base);
309
310unsigned long pdma_areasize;
311EXPORT_SYMBOL(pdma_areasize);
312
313/* Use the generic irq support to call floppy_interrupt
314 * which was setup using request_irq() in sparc_floppy_request_irq().
315 * We only have one floppy interrupt so we do not need to check
316 * for additional handlers being wired up by irq_link()
317 */
318void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs)
319{
320	struct pt_regs *old_regs;
321
322	old_regs = set_irq_regs(regs);
323	irq_enter();
324	generic_handle_irq(floppy_irq);
325	irq_exit();
326	set_irq_regs(old_regs);
327}
328#endif
329
330/* djhr
331 * This could probably be made indirect too and assigned in the CPU
332 * bits of the code. That would be much nicer I think and would also
333 * fit in with the idea of being able to tune your kernel for your machine
334 * by removing unrequired machine and device support.
335 *
336 */
337
338void __init init_IRQ(void)
339{
340	switch (sparc_cpu_model) {
341	case sun4m:
342		pcic_probe();
343		if (pcic_present())
344			sun4m_pci_init_IRQ();
345		else
346			sun4m_init_IRQ();
347		break;
348
349	case sun4d:
350		sun4d_init_IRQ();
351		break;
352
353	case sparc_leon:
354		leon_init_IRQ();
355		break;
356
357	default:
358		prom_printf("Cannot initialize IRQs on this Sun machine...");
359		break;
360	}
361}
362