Loading...
1/*
2 * Interrupt request handling routines. On the
3 * Sparc the IRQs are basically 'cast in stone'
4 * and you are supposed to probe the prom's device
5 * node trees to find out who's got which IRQ.
6 *
7 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
8 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
9 * Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com)
10 * Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
11 * Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org)
12 */
13
14#include <linux/kernel_stat.h>
15#include <linux/seq_file.h>
16#include <linux/export.h>
17
18#include <asm/cacheflush.h>
19#include <asm/cpudata.h>
20#include <asm/pcic.h>
21#include <asm/leon.h>
22
23#include "kernel.h"
24#include "irq.h"
25
26/* platform specific irq setup */
27struct sparc_config sparc_config;
28
29unsigned long arch_local_irq_save(void)
30{
31 unsigned long retval;
32 unsigned long tmp;
33
34 __asm__ __volatile__(
35 "rd %%psr, %0\n\t"
36 "or %0, %2, %1\n\t"
37 "wr %1, 0, %%psr\n\t"
38 "nop; nop; nop\n"
39 : "=&r" (retval), "=r" (tmp)
40 : "i" (PSR_PIL)
41 : "memory");
42
43 return retval;
44}
45EXPORT_SYMBOL(arch_local_irq_save);
46
47void arch_local_irq_enable(void)
48{
49 unsigned long tmp;
50
51 __asm__ __volatile__(
52 "rd %%psr, %0\n\t"
53 "andn %0, %1, %0\n\t"
54 "wr %0, 0, %%psr\n\t"
55 "nop; nop; nop\n"
56 : "=&r" (tmp)
57 : "i" (PSR_PIL)
58 : "memory");
59}
60EXPORT_SYMBOL(arch_local_irq_enable);
61
62void arch_local_irq_restore(unsigned long old_psr)
63{
64 unsigned long tmp;
65
66 __asm__ __volatile__(
67 "rd %%psr, %0\n\t"
68 "and %2, %1, %2\n\t"
69 "andn %0, %1, %0\n\t"
70 "wr %0, %2, %%psr\n\t"
71 "nop; nop; nop\n"
72 : "=&r" (tmp)
73 : "i" (PSR_PIL), "r" (old_psr)
74 : "memory");
75}
76EXPORT_SYMBOL(arch_local_irq_restore);
77
78/*
79 * Dave Redman (djhr@tadpole.co.uk)
80 *
81 * IRQ numbers.. These are no longer restricted to 15..
82 *
83 * this is done to enable SBUS cards and onboard IO to be masked
84 * correctly. using the interrupt level isn't good enough.
85 *
86 * For example:
87 * A device interrupting at sbus level6 and the Floppy both come in
88 * at IRQ11, but enabling and disabling them requires writing to
89 * different bits in the SLAVIO/SEC.
90 *
91 * As a result of these changes sun4m machines could now support
92 * directed CPU interrupts using the existing enable/disable irq code
93 * with tweaks.
94 *
95 * Sun4d complicates things even further. IRQ numbers are arbitrary
96 * 32-bit values in that case. Since this is similar to sparc64,
97 * we adopt a virtual IRQ numbering scheme as is done there.
98 * Virutal interrupt numbers are allocated by build_irq(). So NR_IRQS
99 * just becomes a limit of how many interrupt sources we can handle in
100 * a single system. Even fully loaded SS2000 machines top off at
101 * about 32 interrupt sources or so, therefore a NR_IRQS value of 64
102 * is more than enough.
103 *
104 * We keep a map of per-PIL enable interrupts. These get wired
105 * up via the irq_chip->startup() method which gets invoked by
106 * the generic IRQ layer during request_irq().
107 */
108
109
110/* Table of allocated irqs. Unused entries has irq == 0 */
111static struct irq_bucket irq_table[NR_IRQS];
112/* Protect access to irq_table */
113static DEFINE_SPINLOCK(irq_table_lock);
114
115/* Map between the irq identifier used in hw to the irq_bucket. */
116struct irq_bucket *irq_map[SUN4D_MAX_IRQ];
117/* Protect access to irq_map */
118static DEFINE_SPINLOCK(irq_map_lock);
119
120/* Allocate a new irq from the irq_table */
121unsigned int irq_alloc(unsigned int real_irq, unsigned int pil)
122{
123 unsigned long flags;
124 unsigned int i;
125
126 spin_lock_irqsave(&irq_table_lock, flags);
127 for (i = 1; i < NR_IRQS; i++) {
128 if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil)
129 goto found;
130 }
131
132 for (i = 1; i < NR_IRQS; i++) {
133 if (!irq_table[i].irq)
134 break;
135 }
136
137 if (i < NR_IRQS) {
138 irq_table[i].real_irq = real_irq;
139 irq_table[i].irq = i;
140 irq_table[i].pil = pil;
141 } else {
142 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
143 i = 0;
144 }
145found:
146 spin_unlock_irqrestore(&irq_table_lock, flags);
147
148 return i;
149}
150
151/* Based on a single pil handler_irq may need to call several
152 * interrupt handlers. Use irq_map as entry to irq_table,
153 * and let each entry in irq_table point to the next entry.
154 */
155void irq_link(unsigned int irq)
156{
157 struct irq_bucket *p;
158 unsigned long flags;
159 unsigned int pil;
160
161 BUG_ON(irq >= NR_IRQS);
162
163 spin_lock_irqsave(&irq_map_lock, flags);
164
165 p = &irq_table[irq];
166 pil = p->pil;
167 BUG_ON(pil > SUN4D_MAX_IRQ);
168 p->next = irq_map[pil];
169 irq_map[pil] = p;
170
171 spin_unlock_irqrestore(&irq_map_lock, flags);
172}
173
174void irq_unlink(unsigned int irq)
175{
176 struct irq_bucket *p, **pnext;
177 unsigned long flags;
178
179 BUG_ON(irq >= NR_IRQS);
180
181 spin_lock_irqsave(&irq_map_lock, flags);
182
183 p = &irq_table[irq];
184 BUG_ON(p->pil > SUN4D_MAX_IRQ);
185 pnext = &irq_map[p->pil];
186 while (*pnext != p)
187 pnext = &(*pnext)->next;
188 *pnext = p->next;
189
190 spin_unlock_irqrestore(&irq_map_lock, flags);
191}
192
193
194/* /proc/interrupts printing */
195int arch_show_interrupts(struct seq_file *p, int prec)
196{
197 int j;
198
199#ifdef CONFIG_SMP
200 seq_printf(p, "RES: ");
201 for_each_online_cpu(j)
202 seq_printf(p, "%10u ", cpu_data(j).irq_resched_count);
203 seq_printf(p, " IPI rescheduling interrupts\n");
204 seq_printf(p, "CAL: ");
205 for_each_online_cpu(j)
206 seq_printf(p, "%10u ", cpu_data(j).irq_call_count);
207 seq_printf(p, " IPI function call interrupts\n");
208#endif
209 seq_printf(p, "NMI: ");
210 for_each_online_cpu(j)
211 seq_printf(p, "%10u ", cpu_data(j).counter);
212 seq_printf(p, " Non-maskable interrupts\n");
213 return 0;
214}
215
216void handler_irq(unsigned int pil, struct pt_regs *regs)
217{
218 struct pt_regs *old_regs;
219 struct irq_bucket *p;
220
221 BUG_ON(pil > 15);
222 old_regs = set_irq_regs(regs);
223 irq_enter();
224
225 p = irq_map[pil];
226 while (p) {
227 struct irq_bucket *next = p->next;
228
229 generic_handle_irq(p->irq);
230 p = next;
231 }
232 irq_exit();
233 set_irq_regs(old_regs);
234}
235
236#if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE)
237static unsigned int floppy_irq;
238
239int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler)
240{
241 unsigned int cpu_irq;
242 int err;
243
244
245 err = request_irq(irq, irq_handler, 0, "floppy", NULL);
246 if (err)
247 return -1;
248
249 /* Save for later use in floppy interrupt handler */
250 floppy_irq = irq;
251
252 cpu_irq = (irq & (NR_IRQS - 1));
253
254 /* Dork with trap table if we get this far. */
255#define INSTANTIATE(table) \
256 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \
257 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \
258 SPARC_BRANCH((unsigned long) floppy_hardint, \
259 (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\
260 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \
261 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP;
262
263 INSTANTIATE(sparc_ttable)
264
265#if defined CONFIG_SMP
266 if (sparc_cpu_model != sparc_leon) {
267 struct tt_entry *trap_table;
268
269 trap_table = &trapbase_cpu1;
270 INSTANTIATE(trap_table)
271 trap_table = &trapbase_cpu2;
272 INSTANTIATE(trap_table)
273 trap_table = &trapbase_cpu3;
274 INSTANTIATE(trap_table)
275 }
276#endif
277#undef INSTANTIATE
278 /*
279 * XXX Correct thing whould be to flush only I- and D-cache lines
280 * which contain the handler in question. But as of time of the
281 * writing we have no CPU-neutral interface to fine-grained flushes.
282 */
283 flush_cache_all();
284 return 0;
285}
286EXPORT_SYMBOL(sparc_floppy_request_irq);
287
288/*
289 * These variables are used to access state from the assembler
290 * interrupt handler, floppy_hardint, so we cannot put these in
291 * the floppy driver image because that would not work in the
292 * modular case.
293 */
294volatile unsigned char *fdc_status;
295EXPORT_SYMBOL(fdc_status);
296
297char *pdma_vaddr;
298EXPORT_SYMBOL(pdma_vaddr);
299
300unsigned long pdma_size;
301EXPORT_SYMBOL(pdma_size);
302
303volatile int doing_pdma;
304EXPORT_SYMBOL(doing_pdma);
305
306char *pdma_base;
307EXPORT_SYMBOL(pdma_base);
308
309unsigned long pdma_areasize;
310EXPORT_SYMBOL(pdma_areasize);
311
312/* Use the generic irq support to call floppy_interrupt
313 * which was setup using request_irq() in sparc_floppy_request_irq().
314 * We only have one floppy interrupt so we do not need to check
315 * for additional handlers being wired up by irq_link()
316 */
317void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs)
318{
319 struct pt_regs *old_regs;
320
321 old_regs = set_irq_regs(regs);
322 irq_enter();
323 generic_handle_irq(floppy_irq);
324 irq_exit();
325 set_irq_regs(old_regs);
326}
327#endif
328
329/* djhr
330 * This could probably be made indirect too and assigned in the CPU
331 * bits of the code. That would be much nicer I think and would also
332 * fit in with the idea of being able to tune your kernel for your machine
333 * by removing unrequired machine and device support.
334 *
335 */
336
337void __init init_IRQ(void)
338{
339 switch (sparc_cpu_model) {
340 case sun4m:
341 pcic_probe();
342 if (pcic_present())
343 sun4m_pci_init_IRQ();
344 else
345 sun4m_init_IRQ();
346 break;
347
348 case sun4d:
349 sun4d_init_IRQ();
350 break;
351
352 case sparc_leon:
353 leon_init_IRQ();
354 break;
355
356 default:
357 prom_printf("Cannot initialize IRQs on this Sun machine...");
358 break;
359 }
360}
361
1/*
2 * Interrupt request handling routines. On the
3 * Sparc the IRQs are basically 'cast in stone'
4 * and you are supposed to probe the prom's device
5 * node trees to find out who's got which IRQ.
6 *
7 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
8 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
9 * Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com)
10 * Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
11 * Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org)
12 */
13
14#include <linux/kernel_stat.h>
15#include <linux/seq_file.h>
16#include <linux/export.h>
17
18#include <asm/cacheflush.h>
19#include <asm/cpudata.h>
20#include <asm/setup.h>
21#include <asm/pcic.h>
22#include <asm/leon.h>
23
24#include "kernel.h"
25#include "irq.h"
26
27/* platform specific irq setup */
28struct sparc_config sparc_config;
29
30unsigned long arch_local_irq_save(void)
31{
32 unsigned long retval;
33 unsigned long tmp;
34
35 __asm__ __volatile__(
36 "rd %%psr, %0\n\t"
37 "or %0, %2, %1\n\t"
38 "wr %1, 0, %%psr\n\t"
39 "nop; nop; nop\n"
40 : "=&r" (retval), "=r" (tmp)
41 : "i" (PSR_PIL)
42 : "memory");
43
44 return retval;
45}
46EXPORT_SYMBOL(arch_local_irq_save);
47
48void arch_local_irq_enable(void)
49{
50 unsigned long tmp;
51
52 __asm__ __volatile__(
53 "rd %%psr, %0\n\t"
54 "andn %0, %1, %0\n\t"
55 "wr %0, 0, %%psr\n\t"
56 "nop; nop; nop\n"
57 : "=&r" (tmp)
58 : "i" (PSR_PIL)
59 : "memory");
60}
61EXPORT_SYMBOL(arch_local_irq_enable);
62
63void arch_local_irq_restore(unsigned long old_psr)
64{
65 unsigned long tmp;
66
67 __asm__ __volatile__(
68 "rd %%psr, %0\n\t"
69 "and %2, %1, %2\n\t"
70 "andn %0, %1, %0\n\t"
71 "wr %0, %2, %%psr\n\t"
72 "nop; nop; nop\n"
73 : "=&r" (tmp)
74 : "i" (PSR_PIL), "r" (old_psr)
75 : "memory");
76}
77EXPORT_SYMBOL(arch_local_irq_restore);
78
79/*
80 * Dave Redman (djhr@tadpole.co.uk)
81 *
82 * IRQ numbers.. These are no longer restricted to 15..
83 *
84 * this is done to enable SBUS cards and onboard IO to be masked
85 * correctly. using the interrupt level isn't good enough.
86 *
87 * For example:
88 * A device interrupting at sbus level6 and the Floppy both come in
89 * at IRQ11, but enabling and disabling them requires writing to
90 * different bits in the SLAVIO/SEC.
91 *
92 * As a result of these changes sun4m machines could now support
93 * directed CPU interrupts using the existing enable/disable irq code
94 * with tweaks.
95 *
96 * Sun4d complicates things even further. IRQ numbers are arbitrary
97 * 32-bit values in that case. Since this is similar to sparc64,
98 * we adopt a virtual IRQ numbering scheme as is done there.
99 * Virutal interrupt numbers are allocated by build_irq(). So NR_IRQS
100 * just becomes a limit of how many interrupt sources we can handle in
101 * a single system. Even fully loaded SS2000 machines top off at
102 * about 32 interrupt sources or so, therefore a NR_IRQS value of 64
103 * is more than enough.
104 *
105 * We keep a map of per-PIL enable interrupts. These get wired
106 * up via the irq_chip->startup() method which gets invoked by
107 * the generic IRQ layer during request_irq().
108 */
109
110
111/* Table of allocated irqs. Unused entries has irq == 0 */
112static struct irq_bucket irq_table[NR_IRQS];
113/* Protect access to irq_table */
114static DEFINE_SPINLOCK(irq_table_lock);
115
116/* Map between the irq identifier used in hw to the irq_bucket. */
117struct irq_bucket *irq_map[SUN4D_MAX_IRQ];
118/* Protect access to irq_map */
119static DEFINE_SPINLOCK(irq_map_lock);
120
121/* Allocate a new irq from the irq_table */
122unsigned int irq_alloc(unsigned int real_irq, unsigned int pil)
123{
124 unsigned long flags;
125 unsigned int i;
126
127 spin_lock_irqsave(&irq_table_lock, flags);
128 for (i = 1; i < NR_IRQS; i++) {
129 if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil)
130 goto found;
131 }
132
133 for (i = 1; i < NR_IRQS; i++) {
134 if (!irq_table[i].irq)
135 break;
136 }
137
138 if (i < NR_IRQS) {
139 irq_table[i].real_irq = real_irq;
140 irq_table[i].irq = i;
141 irq_table[i].pil = pil;
142 } else {
143 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
144 i = 0;
145 }
146found:
147 spin_unlock_irqrestore(&irq_table_lock, flags);
148
149 return i;
150}
151
152/* Based on a single pil handler_irq may need to call several
153 * interrupt handlers. Use irq_map as entry to irq_table,
154 * and let each entry in irq_table point to the next entry.
155 */
156void irq_link(unsigned int irq)
157{
158 struct irq_bucket *p;
159 unsigned long flags;
160 unsigned int pil;
161
162 BUG_ON(irq >= NR_IRQS);
163
164 spin_lock_irqsave(&irq_map_lock, flags);
165
166 p = &irq_table[irq];
167 pil = p->pil;
168 BUG_ON(pil > SUN4D_MAX_IRQ);
169 p->next = irq_map[pil];
170 irq_map[pil] = p;
171
172 spin_unlock_irqrestore(&irq_map_lock, flags);
173}
174
175void irq_unlink(unsigned int irq)
176{
177 struct irq_bucket *p, **pnext;
178 unsigned long flags;
179
180 BUG_ON(irq >= NR_IRQS);
181
182 spin_lock_irqsave(&irq_map_lock, flags);
183
184 p = &irq_table[irq];
185 BUG_ON(p->pil > SUN4D_MAX_IRQ);
186 pnext = &irq_map[p->pil];
187 while (*pnext != p)
188 pnext = &(*pnext)->next;
189 *pnext = p->next;
190
191 spin_unlock_irqrestore(&irq_map_lock, flags);
192}
193
194
195/* /proc/interrupts printing */
196int arch_show_interrupts(struct seq_file *p, int prec)
197{
198 int j;
199
200#ifdef CONFIG_SMP
201 seq_printf(p, "RES: ");
202 for_each_online_cpu(j)
203 seq_printf(p, "%10u ", cpu_data(j).irq_resched_count);
204 seq_printf(p, " IPI rescheduling interrupts\n");
205 seq_printf(p, "CAL: ");
206 for_each_online_cpu(j)
207 seq_printf(p, "%10u ", cpu_data(j).irq_call_count);
208 seq_printf(p, " IPI function call interrupts\n");
209#endif
210 seq_printf(p, "NMI: ");
211 for_each_online_cpu(j)
212 seq_printf(p, "%10u ", cpu_data(j).counter);
213 seq_printf(p, " Non-maskable interrupts\n");
214 return 0;
215}
216
217void handler_irq(unsigned int pil, struct pt_regs *regs)
218{
219 struct pt_regs *old_regs;
220 struct irq_bucket *p;
221
222 BUG_ON(pil > 15);
223 old_regs = set_irq_regs(regs);
224 irq_enter();
225
226 p = irq_map[pil];
227 while (p) {
228 struct irq_bucket *next = p->next;
229
230 generic_handle_irq(p->irq);
231 p = next;
232 }
233 irq_exit();
234 set_irq_regs(old_regs);
235}
236
237#if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE)
238static unsigned int floppy_irq;
239
240int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler)
241{
242 unsigned int cpu_irq;
243 int err;
244
245
246 err = request_irq(irq, irq_handler, 0, "floppy", NULL);
247 if (err)
248 return -1;
249
250 /* Save for later use in floppy interrupt handler */
251 floppy_irq = irq;
252
253 cpu_irq = (irq & (NR_IRQS - 1));
254
255 /* Dork with trap table if we get this far. */
256#define INSTANTIATE(table) \
257 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \
258 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \
259 SPARC_BRANCH((unsigned long) floppy_hardint, \
260 (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\
261 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \
262 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP;
263
264 INSTANTIATE(sparc_ttable)
265
266#if defined CONFIG_SMP
267 if (sparc_cpu_model != sparc_leon) {
268 struct tt_entry *trap_table;
269
270 trap_table = &trapbase_cpu1;
271 INSTANTIATE(trap_table)
272 trap_table = &trapbase_cpu2;
273 INSTANTIATE(trap_table)
274 trap_table = &trapbase_cpu3;
275 INSTANTIATE(trap_table)
276 }
277#endif
278#undef INSTANTIATE
279 /*
280 * XXX Correct thing whould be to flush only I- and D-cache lines
281 * which contain the handler in question. But as of time of the
282 * writing we have no CPU-neutral interface to fine-grained flushes.
283 */
284 flush_cache_all();
285 return 0;
286}
287EXPORT_SYMBOL(sparc_floppy_request_irq);
288
289/*
290 * These variables are used to access state from the assembler
291 * interrupt handler, floppy_hardint, so we cannot put these in
292 * the floppy driver image because that would not work in the
293 * modular case.
294 */
295volatile unsigned char *fdc_status;
296EXPORT_SYMBOL(fdc_status);
297
298char *pdma_vaddr;
299EXPORT_SYMBOL(pdma_vaddr);
300
301unsigned long pdma_size;
302EXPORT_SYMBOL(pdma_size);
303
304volatile int doing_pdma;
305EXPORT_SYMBOL(doing_pdma);
306
307char *pdma_base;
308EXPORT_SYMBOL(pdma_base);
309
310unsigned long pdma_areasize;
311EXPORT_SYMBOL(pdma_areasize);
312
313/* Use the generic irq support to call floppy_interrupt
314 * which was setup using request_irq() in sparc_floppy_request_irq().
315 * We only have one floppy interrupt so we do not need to check
316 * for additional handlers being wired up by irq_link()
317 */
318void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs)
319{
320 struct pt_regs *old_regs;
321
322 old_regs = set_irq_regs(regs);
323 irq_enter();
324 generic_handle_irq(floppy_irq);
325 irq_exit();
326 set_irq_regs(old_regs);
327}
328#endif
329
330/* djhr
331 * This could probably be made indirect too and assigned in the CPU
332 * bits of the code. That would be much nicer I think and would also
333 * fit in with the idea of being able to tune your kernel for your machine
334 * by removing unrequired machine and device support.
335 *
336 */
337
338void __init init_IRQ(void)
339{
340 switch (sparc_cpu_model) {
341 case sun4m:
342 pcic_probe();
343 if (pcic_present())
344 sun4m_pci_init_IRQ();
345 else
346 sun4m_init_IRQ();
347 break;
348
349 case sun4d:
350 sun4d_init_IRQ();
351 break;
352
353 case sparc_leon:
354 leon_init_IRQ();
355 break;
356
357 default:
358 prom_printf("Cannot initialize IRQs on this Sun machine...");
359 break;
360 }
361}
362