Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1/*
  2 * background writeback - scan btree for dirty data and write it to the backing
  3 * device
  4 *
  5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
  6 * Copyright 2012 Google, Inc.
  7 */
  8
  9#include "bcache.h"
 10#include "btree.h"
 11#include "debug.h"
 12#include "writeback.h"
 13
 14#include <linux/delay.h>
 15#include <linux/freezer.h>
 16#include <linux/kthread.h>
 17#include <trace/events/bcache.h>
 18
 19/* Rate limiting */
 20
 21static void __update_writeback_rate(struct cached_dev *dc)
 22{
 23	struct cache_set *c = dc->disk.c;
 24	uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
 25	uint64_t cache_dirty_target =
 26		div_u64(cache_sectors * dc->writeback_percent, 100);
 27
 28	int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
 29				   c->cached_dev_sectors);
 30
 31	/* PD controller */
 32
 33	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
 34	int64_t derivative = dirty - dc->disk.sectors_dirty_last;
 35	int64_t proportional = dirty - target;
 36	int64_t change;
 37
 38	dc->disk.sectors_dirty_last = dirty;
 39
 40	/* Scale to sectors per second */
 41
 42	proportional *= dc->writeback_rate_update_seconds;
 43	proportional = div_s64(proportional, dc->writeback_rate_p_term_inverse);
 44
 45	derivative = div_s64(derivative, dc->writeback_rate_update_seconds);
 46
 47	derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
 48			      (dc->writeback_rate_d_term /
 49			       dc->writeback_rate_update_seconds) ?: 1, 0);
 50
 51	derivative *= dc->writeback_rate_d_term;
 52	derivative = div_s64(derivative, dc->writeback_rate_p_term_inverse);
 53
 54	change = proportional + derivative;
 55
 56	/* Don't increase writeback rate if the device isn't keeping up */
 57	if (change > 0 &&
 58	    time_after64(local_clock(),
 59			 dc->writeback_rate.next + NSEC_PER_MSEC))
 60		change = 0;
 61
 62	dc->writeback_rate.rate =
 63		clamp_t(int64_t, (int64_t) dc->writeback_rate.rate + change,
 64			1, NSEC_PER_MSEC);
 65
 66	dc->writeback_rate_proportional = proportional;
 67	dc->writeback_rate_derivative = derivative;
 68	dc->writeback_rate_change = change;
 69	dc->writeback_rate_target = target;
 70}
 71
 72static void update_writeback_rate(struct work_struct *work)
 73{
 74	struct cached_dev *dc = container_of(to_delayed_work(work),
 75					     struct cached_dev,
 76					     writeback_rate_update);
 77
 78	down_read(&dc->writeback_lock);
 79
 80	if (atomic_read(&dc->has_dirty) &&
 81	    dc->writeback_percent)
 82		__update_writeback_rate(dc);
 83
 84	up_read(&dc->writeback_lock);
 85
 86	schedule_delayed_work(&dc->writeback_rate_update,
 87			      dc->writeback_rate_update_seconds * HZ);
 88}
 89
 90static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
 91{
 92	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
 93	    !dc->writeback_percent)
 94		return 0;
 95
 96	return bch_next_delay(&dc->writeback_rate, sectors);
 97}
 98
 99struct dirty_io {
100	struct closure		cl;
101	struct cached_dev	*dc;
102	struct bio		bio;
103};
104
105static void dirty_init(struct keybuf_key *w)
106{
107	struct dirty_io *io = w->private;
108	struct bio *bio = &io->bio;
109
110	bio_init(bio);
111	if (!io->dc->writeback_percent)
112		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
113
114	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9;
115	bio->bi_max_vecs	= DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
116	bio->bi_private		= w;
117	bio->bi_io_vec		= bio->bi_inline_vecs;
118	bch_bio_map(bio, NULL);
119}
120
121static void dirty_io_destructor(struct closure *cl)
122{
123	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
124	kfree(io);
125}
126
127static void write_dirty_finish(struct closure *cl)
128{
129	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
130	struct keybuf_key *w = io->bio.bi_private;
131	struct cached_dev *dc = io->dc;
132	struct bio_vec *bv;
133	int i;
134
135	bio_for_each_segment_all(bv, &io->bio, i)
136		__free_page(bv->bv_page);
137
138	/* This is kind of a dumb way of signalling errors. */
139	if (KEY_DIRTY(&w->key)) {
140		int ret;
141		unsigned i;
142		struct keylist keys;
143
144		bch_keylist_init(&keys);
145
146		bkey_copy(keys.top, &w->key);
147		SET_KEY_DIRTY(keys.top, false);
148		bch_keylist_push(&keys);
149
150		for (i = 0; i < KEY_PTRS(&w->key); i++)
151			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
152
153		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
154
155		if (ret)
156			trace_bcache_writeback_collision(&w->key);
157
158		atomic_long_inc(ret
159				? &dc->disk.c->writeback_keys_failed
160				: &dc->disk.c->writeback_keys_done);
161	}
162
163	bch_keybuf_del(&dc->writeback_keys, w);
164	up(&dc->in_flight);
165
166	closure_return_with_destructor(cl, dirty_io_destructor);
167}
168
169static void dirty_endio(struct bio *bio)
170{
171	struct keybuf_key *w = bio->bi_private;
172	struct dirty_io *io = w->private;
173
174	if (bio->bi_error)
175		SET_KEY_DIRTY(&w->key, false);
176
177	closure_put(&io->cl);
178}
179
180static void write_dirty(struct closure *cl)
181{
182	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
183	struct keybuf_key *w = io->bio.bi_private;
184
185	dirty_init(w);
186	io->bio.bi_rw		= WRITE;
187	io->bio.bi_iter.bi_sector = KEY_START(&w->key);
188	io->bio.bi_bdev		= io->dc->bdev;
189	io->bio.bi_end_io	= dirty_endio;
190
191	closure_bio_submit(&io->bio, cl);
192
193	continue_at(cl, write_dirty_finish, system_wq);
194}
195
196static void read_dirty_endio(struct bio *bio)
197{
198	struct keybuf_key *w = bio->bi_private;
199	struct dirty_io *io = w->private;
200
201	bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
202			    bio->bi_error, "reading dirty data from cache");
203
204	dirty_endio(bio);
205}
206
207static void read_dirty_submit(struct closure *cl)
208{
209	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
210
211	closure_bio_submit(&io->bio, cl);
212
213	continue_at(cl, write_dirty, system_wq);
214}
215
216static void read_dirty(struct cached_dev *dc)
217{
218	unsigned delay = 0;
219	struct keybuf_key *w;
220	struct dirty_io *io;
221	struct closure cl;
222
223	closure_init_stack(&cl);
224
225	/*
226	 * XXX: if we error, background writeback just spins. Should use some
227	 * mempools.
228	 */
229
230	while (!kthread_should_stop()) {
231		try_to_freeze();
232
233		w = bch_keybuf_next(&dc->writeback_keys);
234		if (!w)
235			break;
236
237		BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
238
239		if (KEY_START(&w->key) != dc->last_read ||
240		    jiffies_to_msecs(delay) > 50)
241			while (!kthread_should_stop() && delay)
242				delay = schedule_timeout_interruptible(delay);
243
244		dc->last_read	= KEY_OFFSET(&w->key);
245
246		io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
247			     * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
248			     GFP_KERNEL);
249		if (!io)
250			goto err;
251
252		w->private	= io;
253		io->dc		= dc;
254
255		dirty_init(w);
256		io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
257		io->bio.bi_bdev		= PTR_CACHE(dc->disk.c,
258						    &w->key, 0)->bdev;
259		io->bio.bi_rw		= READ;
260		io->bio.bi_end_io	= read_dirty_endio;
261
262		if (bio_alloc_pages(&io->bio, GFP_KERNEL))
263			goto err_free;
264
265		trace_bcache_writeback(&w->key);
266
267		down(&dc->in_flight);
268		closure_call(&io->cl, read_dirty_submit, NULL, &cl);
269
270		delay = writeback_delay(dc, KEY_SIZE(&w->key));
271	}
272
273	if (0) {
274err_free:
275		kfree(w->private);
276err:
277		bch_keybuf_del(&dc->writeback_keys, w);
278	}
279
280	/*
281	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
282	 * freed) before refilling again
283	 */
284	closure_sync(&cl);
285}
286
287/* Scan for dirty data */
288
289void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
290				  uint64_t offset, int nr_sectors)
291{
292	struct bcache_device *d = c->devices[inode];
293	unsigned stripe_offset, stripe, sectors_dirty;
294
295	if (!d)
296		return;
297
298	stripe = offset_to_stripe(d, offset);
299	stripe_offset = offset & (d->stripe_size - 1);
300
301	while (nr_sectors) {
302		int s = min_t(unsigned, abs(nr_sectors),
303			      d->stripe_size - stripe_offset);
304
305		if (nr_sectors < 0)
306			s = -s;
307
308		if (stripe >= d->nr_stripes)
309			return;
310
311		sectors_dirty = atomic_add_return(s,
312					d->stripe_sectors_dirty + stripe);
313		if (sectors_dirty == d->stripe_size)
314			set_bit(stripe, d->full_dirty_stripes);
315		else
316			clear_bit(stripe, d->full_dirty_stripes);
317
318		nr_sectors -= s;
319		stripe_offset = 0;
320		stripe++;
321	}
322}
323
324static bool dirty_pred(struct keybuf *buf, struct bkey *k)
325{
326	struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
327
328	BUG_ON(KEY_INODE(k) != dc->disk.id);
329
330	return KEY_DIRTY(k);
331}
332
333static void refill_full_stripes(struct cached_dev *dc)
334{
335	struct keybuf *buf = &dc->writeback_keys;
336	unsigned start_stripe, stripe, next_stripe;
337	bool wrapped = false;
338
339	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
340
341	if (stripe >= dc->disk.nr_stripes)
342		stripe = 0;
343
344	start_stripe = stripe;
345
346	while (1) {
347		stripe = find_next_bit(dc->disk.full_dirty_stripes,
348				       dc->disk.nr_stripes, stripe);
349
350		if (stripe == dc->disk.nr_stripes)
351			goto next;
352
353		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
354						 dc->disk.nr_stripes, stripe);
355
356		buf->last_scanned = KEY(dc->disk.id,
357					stripe * dc->disk.stripe_size, 0);
358
359		bch_refill_keybuf(dc->disk.c, buf,
360				  &KEY(dc->disk.id,
361				       next_stripe * dc->disk.stripe_size, 0),
362				  dirty_pred);
363
364		if (array_freelist_empty(&buf->freelist))
365			return;
366
367		stripe = next_stripe;
368next:
369		if (wrapped && stripe > start_stripe)
370			return;
371
372		if (stripe == dc->disk.nr_stripes) {
373			stripe = 0;
374			wrapped = true;
375		}
376	}
377}
378
379/*
380 * Returns true if we scanned the entire disk
381 */
382static bool refill_dirty(struct cached_dev *dc)
383{
384	struct keybuf *buf = &dc->writeback_keys;
385	struct bkey start = KEY(dc->disk.id, 0, 0);
386	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
387	struct bkey start_pos;
388
389	/*
390	 * make sure keybuf pos is inside the range for this disk - at bringup
391	 * we might not be attached yet so this disk's inode nr isn't
392	 * initialized then
393	 */
394	if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
395	    bkey_cmp(&buf->last_scanned, &end) > 0)
396		buf->last_scanned = start;
397
398	if (dc->partial_stripes_expensive) {
399		refill_full_stripes(dc);
400		if (array_freelist_empty(&buf->freelist))
401			return false;
402	}
403
404	start_pos = buf->last_scanned;
405	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
406
407	if (bkey_cmp(&buf->last_scanned, &end) < 0)
408		return false;
409
410	/*
411	 * If we get to the end start scanning again from the beginning, and
412	 * only scan up to where we initially started scanning from:
413	 */
414	buf->last_scanned = start;
415	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
416
417	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
418}
419
420static int bch_writeback_thread(void *arg)
421{
422	struct cached_dev *dc = arg;
423	bool searched_full_index;
424
425	while (!kthread_should_stop()) {
426		down_write(&dc->writeback_lock);
427		if (!atomic_read(&dc->has_dirty) ||
428		    (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
429		     !dc->writeback_running)) {
430			up_write(&dc->writeback_lock);
431			set_current_state(TASK_INTERRUPTIBLE);
432
433			if (kthread_should_stop())
434				return 0;
435
436			try_to_freeze();
437			schedule();
438			continue;
439		}
440
441		searched_full_index = refill_dirty(dc);
442
443		if (searched_full_index &&
444		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
445			atomic_set(&dc->has_dirty, 0);
446			cached_dev_put(dc);
447			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
448			bch_write_bdev_super(dc, NULL);
449		}
450
451		up_write(&dc->writeback_lock);
452
453		bch_ratelimit_reset(&dc->writeback_rate);
454		read_dirty(dc);
455
456		if (searched_full_index) {
457			unsigned delay = dc->writeback_delay * HZ;
458
459			while (delay &&
460			       !kthread_should_stop() &&
461			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
462				delay = schedule_timeout_interruptible(delay);
463		}
464	}
465
466	return 0;
467}
468
469/* Init */
470
471struct sectors_dirty_init {
472	struct btree_op	op;
473	unsigned	inode;
474};
475
476static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
477				 struct bkey *k)
478{
479	struct sectors_dirty_init *op = container_of(_op,
480						struct sectors_dirty_init, op);
481	if (KEY_INODE(k) > op->inode)
482		return MAP_DONE;
483
484	if (KEY_DIRTY(k))
485		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
486					     KEY_START(k), KEY_SIZE(k));
487
488	return MAP_CONTINUE;
489}
490
491void bch_sectors_dirty_init(struct cached_dev *dc)
492{
493	struct sectors_dirty_init op;
494
495	bch_btree_op_init(&op.op, -1);
496	op.inode = dc->disk.id;
497
498	bch_btree_map_keys(&op.op, dc->disk.c, &KEY(op.inode, 0, 0),
499			   sectors_dirty_init_fn, 0);
500
501	dc->disk.sectors_dirty_last = bcache_dev_sectors_dirty(&dc->disk);
502}
503
504void bch_cached_dev_writeback_init(struct cached_dev *dc)
505{
506	sema_init(&dc->in_flight, 64);
507	init_rwsem(&dc->writeback_lock);
508	bch_keybuf_init(&dc->writeback_keys);
509
510	dc->writeback_metadata		= true;
511	dc->writeback_running		= true;
512	dc->writeback_percent		= 10;
513	dc->writeback_delay		= 30;
514	dc->writeback_rate.rate		= 1024;
515
516	dc->writeback_rate_update_seconds = 5;
517	dc->writeback_rate_d_term	= 30;
518	dc->writeback_rate_p_term_inverse = 6000;
519
520	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
521}
522
523int bch_cached_dev_writeback_start(struct cached_dev *dc)
524{
525	dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
526					      "bcache_writeback");
527	if (IS_ERR(dc->writeback_thread))
528		return PTR_ERR(dc->writeback_thread);
529
530	schedule_delayed_work(&dc->writeback_rate_update,
531			      dc->writeback_rate_update_seconds * HZ);
532
533	bch_writeback_queue(dc);
534
535	return 0;
536}