Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1/*
  2 * Author: Daniel Thompson <daniel.thompson@linaro.org>
  3 *
  4 * Inspired by clk-asm9260.c .
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms and conditions of the GNU General Public License,
  8 * version 2, as published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope it will be useful, but WITHOUT
 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13 * more details.
 14 *
 15 * You should have received a copy of the GNU General Public License along with
 16 * this program.  If not, see <http://www.gnu.org/licenses/>.
 17 */
 18
 19#include <linux/clk-provider.h>
 20#include <linux/err.h>
 21#include <linux/io.h>
 22#include <linux/slab.h>
 23#include <linux/spinlock.h>
 24#include <linux/of.h>
 25#include <linux/of_address.h>
 26
 27#define STM32F4_RCC_PLLCFGR		0x04
 28#define STM32F4_RCC_CFGR		0x08
 29#define STM32F4_RCC_AHB1ENR		0x30
 30#define STM32F4_RCC_AHB2ENR		0x34
 31#define STM32F4_RCC_AHB3ENR		0x38
 32#define STM32F4_RCC_APB1ENR		0x40
 33#define STM32F4_RCC_APB2ENR		0x44
 34
 35struct stm32f4_gate_data {
 36	u8	offset;
 37	u8	bit_idx;
 38	const char *name;
 39	const char *parent_name;
 40	unsigned long flags;
 41};
 42
 43static const struct stm32f4_gate_data stm32f4_gates[] __initconst = {
 44	{ STM32F4_RCC_AHB1ENR,  0,	"gpioa",	"ahb_div" },
 45	{ STM32F4_RCC_AHB1ENR,  1,	"gpiob",	"ahb_div" },
 46	{ STM32F4_RCC_AHB1ENR,  2,	"gpioc",	"ahb_div" },
 47	{ STM32F4_RCC_AHB1ENR,  3,	"gpiod",	"ahb_div" },
 48	{ STM32F4_RCC_AHB1ENR,  4,	"gpioe",	"ahb_div" },
 49	{ STM32F4_RCC_AHB1ENR,  5,	"gpiof",	"ahb_div" },
 50	{ STM32F4_RCC_AHB1ENR,  6,	"gpiog",	"ahb_div" },
 51	{ STM32F4_RCC_AHB1ENR,  7,	"gpioh",	"ahb_div" },
 52	{ STM32F4_RCC_AHB1ENR,  8,	"gpioi",	"ahb_div" },
 53	{ STM32F4_RCC_AHB1ENR,  9,	"gpioj",	"ahb_div" },
 54	{ STM32F4_RCC_AHB1ENR, 10,	"gpiok",	"ahb_div" },
 55	{ STM32F4_RCC_AHB1ENR, 12,	"crc",		"ahb_div" },
 56	{ STM32F4_RCC_AHB1ENR, 18,	"bkpsra",	"ahb_div" },
 57	{ STM32F4_RCC_AHB1ENR, 20,	"ccmdatam",	"ahb_div" },
 58	{ STM32F4_RCC_AHB1ENR, 21,	"dma1",		"ahb_div" },
 59	{ STM32F4_RCC_AHB1ENR, 22,	"dma2",		"ahb_div" },
 60	{ STM32F4_RCC_AHB1ENR, 23,	"dma2d",	"ahb_div" },
 61	{ STM32F4_RCC_AHB1ENR, 25,	"ethmac",	"ahb_div" },
 62	{ STM32F4_RCC_AHB1ENR, 26,	"ethmactx",	"ahb_div" },
 63	{ STM32F4_RCC_AHB1ENR, 27,	"ethmacrx",	"ahb_div" },
 64	{ STM32F4_RCC_AHB1ENR, 28,	"ethmacptp",	"ahb_div" },
 65	{ STM32F4_RCC_AHB1ENR, 29,	"otghs",	"ahb_div" },
 66	{ STM32F4_RCC_AHB1ENR, 30,	"otghsulpi",	"ahb_div" },
 67
 68	{ STM32F4_RCC_AHB2ENR,  0,	"dcmi",		"ahb_div" },
 69	{ STM32F4_RCC_AHB2ENR,  4,	"cryp",		"ahb_div" },
 70	{ STM32F4_RCC_AHB2ENR,  5,	"hash",		"ahb_div" },
 71	{ STM32F4_RCC_AHB2ENR,  6,	"rng",		"pll48" },
 72	{ STM32F4_RCC_AHB2ENR,  7,	"otgfs",	"pll48" },
 73
 74	{ STM32F4_RCC_AHB3ENR,  0,	"fmc",		"ahb_div",
 75		CLK_IGNORE_UNUSED },
 76
 77	{ STM32F4_RCC_APB1ENR,  0,	"tim2",		"apb1_mul" },
 78	{ STM32F4_RCC_APB1ENR,  1,	"tim3",		"apb1_mul" },
 79	{ STM32F4_RCC_APB1ENR,  2,	"tim4",		"apb1_mul" },
 80	{ STM32F4_RCC_APB1ENR,  3,	"tim5",		"apb1_mul" },
 81	{ STM32F4_RCC_APB1ENR,  4,	"tim6",		"apb1_mul" },
 82	{ STM32F4_RCC_APB1ENR,  5,	"tim7",		"apb1_mul" },
 83	{ STM32F4_RCC_APB1ENR,  6,	"tim12",	"apb1_mul" },
 84	{ STM32F4_RCC_APB1ENR,  7,	"tim13",	"apb1_mul" },
 85	{ STM32F4_RCC_APB1ENR,  8,	"tim14",	"apb1_mul" },
 86	{ STM32F4_RCC_APB1ENR, 11,	"wwdg",		"apb1_div" },
 87	{ STM32F4_RCC_APB1ENR, 14,	"spi2",		"apb1_div" },
 88	{ STM32F4_RCC_APB1ENR, 15,	"spi3",		"apb1_div" },
 89	{ STM32F4_RCC_APB1ENR, 17,	"uart2",	"apb1_div" },
 90	{ STM32F4_RCC_APB1ENR, 18,	"uart3",	"apb1_div" },
 91	{ STM32F4_RCC_APB1ENR, 19,	"uart4",	"apb1_div" },
 92	{ STM32F4_RCC_APB1ENR, 20,	"uart5",	"apb1_div" },
 93	{ STM32F4_RCC_APB1ENR, 21,	"i2c1",		"apb1_div" },
 94	{ STM32F4_RCC_APB1ENR, 22,	"i2c2",		"apb1_div" },
 95	{ STM32F4_RCC_APB1ENR, 23,	"i2c3",		"apb1_div" },
 96	{ STM32F4_RCC_APB1ENR, 25,	"can1",		"apb1_div" },
 97	{ STM32F4_RCC_APB1ENR, 26,	"can2",		"apb1_div" },
 98	{ STM32F4_RCC_APB1ENR, 28,	"pwr",		"apb1_div" },
 99	{ STM32F4_RCC_APB1ENR, 29,	"dac",		"apb1_div" },
100	{ STM32F4_RCC_APB1ENR, 30,	"uart7",	"apb1_div" },
101	{ STM32F4_RCC_APB1ENR, 31,	"uart8",	"apb1_div" },
102
103	{ STM32F4_RCC_APB2ENR,  0,	"tim1",		"apb2_mul" },
104	{ STM32F4_RCC_APB2ENR,  1,	"tim8",		"apb2_mul" },
105	{ STM32F4_RCC_APB2ENR,  4,	"usart1",	"apb2_div" },
106	{ STM32F4_RCC_APB2ENR,  5,	"usart6",	"apb2_div" },
107	{ STM32F4_RCC_APB2ENR,  8,	"adc1",		"apb2_div" },
108	{ STM32F4_RCC_APB2ENR,  9,	"adc2",		"apb2_div" },
109	{ STM32F4_RCC_APB2ENR, 10,	"adc3",		"apb2_div" },
110	{ STM32F4_RCC_APB2ENR, 11,	"sdio",		"pll48" },
111	{ STM32F4_RCC_APB2ENR, 12,	"spi1",		"apb2_div" },
112	{ STM32F4_RCC_APB2ENR, 13,	"spi4",		"apb2_div" },
113	{ STM32F4_RCC_APB2ENR, 14,	"syscfg",	"apb2_div" },
114	{ STM32F4_RCC_APB2ENR, 16,	"tim9",		"apb2_mul" },
115	{ STM32F4_RCC_APB2ENR, 17,	"tim10",	"apb2_mul" },
116	{ STM32F4_RCC_APB2ENR, 18,	"tim11",	"apb2_mul" },
117	{ STM32F4_RCC_APB2ENR, 20,	"spi5",		"apb2_div" },
118	{ STM32F4_RCC_APB2ENR, 21,	"spi6",		"apb2_div" },
119	{ STM32F4_RCC_APB2ENR, 22,	"sai1",		"apb2_div" },
120	{ STM32F4_RCC_APB2ENR, 26,	"ltdc",		"apb2_div" },
121};
122
123/*
124 * MAX_CLKS is the maximum value in the enumeration below plus the combined
125 * hweight of stm32f42xx_gate_map (plus one).
126 */
127#define MAX_CLKS 74
128
129enum { SYSTICK, FCLK };
130
131/*
132 * This bitmask tells us which bit offsets (0..192) on STM32F4[23]xxx
133 * have gate bits associated with them. Its combined hweight is 71.
134 */
135static const u64 stm32f42xx_gate_map[] = { 0x000000f17ef417ffull,
136					   0x0000000000000001ull,
137					   0x04777f33f6fec9ffull };
138
139static struct clk *clks[MAX_CLKS];
140static DEFINE_SPINLOCK(stm32f4_clk_lock);
141static void __iomem *base;
142
143/*
144 * "Multiplier" device for APBx clocks.
145 *
146 * The APBx dividers are power-of-two dividers and, if *not* running in 1:1
147 * mode, they also tap out the one of the low order state bits to run the
148 * timers. ST datasheets represent this feature as a (conditional) clock
149 * multiplier.
150 */
151struct clk_apb_mul {
152	struct clk_hw hw;
153	u8 bit_idx;
154};
155
156#define to_clk_apb_mul(_hw) container_of(_hw, struct clk_apb_mul, hw)
157
158static unsigned long clk_apb_mul_recalc_rate(struct clk_hw *hw,
159					     unsigned long parent_rate)
160{
161	struct clk_apb_mul *am = to_clk_apb_mul(hw);
162
163	if (readl(base + STM32F4_RCC_CFGR) & BIT(am->bit_idx))
164		return parent_rate * 2;
165
166	return parent_rate;
167}
168
169static long clk_apb_mul_round_rate(struct clk_hw *hw, unsigned long rate,
170				   unsigned long *prate)
171{
172	struct clk_apb_mul *am = to_clk_apb_mul(hw);
173	unsigned long mult = 1;
174
175	if (readl(base + STM32F4_RCC_CFGR) & BIT(am->bit_idx))
176		mult = 2;
177
178	if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
179		unsigned long best_parent = rate / mult;
180
181		*prate = clk_hw_round_rate(clk_hw_get_parent(hw), best_parent);
182	}
183
184	return *prate * mult;
185}
186
187static int clk_apb_mul_set_rate(struct clk_hw *hw, unsigned long rate,
188				unsigned long parent_rate)
189{
190	/*
191	 * We must report success but we can do so unconditionally because
192	 * clk_apb_mul_round_rate returns values that ensure this call is a
193	 * nop.
194	 */
195
196	return 0;
197}
198
199static const struct clk_ops clk_apb_mul_factor_ops = {
200	.round_rate = clk_apb_mul_round_rate,
201	.set_rate = clk_apb_mul_set_rate,
202	.recalc_rate = clk_apb_mul_recalc_rate,
203};
204
205static struct clk *clk_register_apb_mul(struct device *dev, const char *name,
206					const char *parent_name,
207					unsigned long flags, u8 bit_idx)
208{
209	struct clk_apb_mul *am;
210	struct clk_init_data init;
211	struct clk *clk;
212
213	am = kzalloc(sizeof(*am), GFP_KERNEL);
214	if (!am)
215		return ERR_PTR(-ENOMEM);
216
217	am->bit_idx = bit_idx;
218	am->hw.init = &init;
219
220	init.name = name;
221	init.ops = &clk_apb_mul_factor_ops;
222	init.flags = flags;
223	init.parent_names = &parent_name;
224	init.num_parents = 1;
225
226	clk = clk_register(dev, &am->hw);
227
228	if (IS_ERR(clk))
229		kfree(am);
230
231	return clk;
232}
233
234/*
235 * Decode current PLL state and (statically) model the state we inherit from
236 * the bootloader.
237 */
238static void stm32f4_rcc_register_pll(const char *hse_clk, const char *hsi_clk)
239{
240	unsigned long pllcfgr = readl(base + STM32F4_RCC_PLLCFGR);
241
242	unsigned long pllm   = pllcfgr & 0x3f;
243	unsigned long plln   = (pllcfgr >> 6) & 0x1ff;
244	unsigned long pllp   = BIT(((pllcfgr >> 16) & 3) + 1);
245	const char   *pllsrc = pllcfgr & BIT(22) ? hse_clk : hsi_clk;
246	unsigned long pllq   = (pllcfgr >> 24) & 0xf;
247
248	clk_register_fixed_factor(NULL, "vco", pllsrc, 0, plln, pllm);
249	clk_register_fixed_factor(NULL, "pll", "vco", 0, 1, pllp);
250	clk_register_fixed_factor(NULL, "pll48", "vco", 0, 1, pllq);
251}
252
253/*
254 * Converts the primary and secondary indices (as they appear in DT) to an
255 * offset into our struct clock array.
256 */
257static int stm32f4_rcc_lookup_clk_idx(u8 primary, u8 secondary)
258{
259	u64 table[ARRAY_SIZE(stm32f42xx_gate_map)];
260
261	if (primary == 1) {
262		if (WARN_ON(secondary > FCLK))
263			return -EINVAL;
264		return secondary;
265	}
266
267	memcpy(table, stm32f42xx_gate_map, sizeof(table));
268
269	/* only bits set in table can be used as indices */
270	if (WARN_ON(secondary >= BITS_PER_BYTE * sizeof(table) ||
271		    0 == (table[BIT_ULL_WORD(secondary)] &
272			  BIT_ULL_MASK(secondary))))
273		return -EINVAL;
274
275	/* mask out bits above our current index */
276	table[BIT_ULL_WORD(secondary)] &=
277	    GENMASK_ULL(secondary % BITS_PER_LONG_LONG, 0);
278
279	return FCLK + hweight64(table[0]) +
280	       (BIT_ULL_WORD(secondary) >= 1 ? hweight64(table[1]) : 0) +
281	       (BIT_ULL_WORD(secondary) >= 2 ? hweight64(table[2]) : 0);
282}
283
284static struct clk *
285stm32f4_rcc_lookup_clk(struct of_phandle_args *clkspec, void *data)
286{
287	int i = stm32f4_rcc_lookup_clk_idx(clkspec->args[0], clkspec->args[1]);
288
289	if (i < 0)
290		return ERR_PTR(-EINVAL);
291
292	return clks[i];
293}
294
295static const char *sys_parents[] __initdata =   { "hsi", NULL, "pll" };
296
297static const struct clk_div_table ahb_div_table[] = {
298	{ 0x0,   1 }, { 0x1,   1 }, { 0x2,   1 }, { 0x3,   1 },
299	{ 0x4,   1 }, { 0x5,   1 }, { 0x6,   1 }, { 0x7,   1 },
300	{ 0x8,   2 }, { 0x9,   4 }, { 0xa,   8 }, { 0xb,  16 },
301	{ 0xc,  64 }, { 0xd, 128 }, { 0xe, 256 }, { 0xf, 512 },
302	{ 0 },
303};
304
305static const struct clk_div_table apb_div_table[] = {
306	{ 0,  1 }, { 0,  1 }, { 0,  1 }, { 0,  1 },
307	{ 4,  2 }, { 5,  4 }, { 6,  8 }, { 7, 16 },
308	{ 0 },
309};
310
311static void __init stm32f4_rcc_init(struct device_node *np)
312{
313	const char *hse_clk;
314	int n;
315
316	base = of_iomap(np, 0);
317	if (!base) {
318		pr_err("%s: unable to map resource", np->name);
319		return;
320	}
321
322	hse_clk = of_clk_get_parent_name(np, 0);
323
324	clk_register_fixed_rate_with_accuracy(NULL, "hsi", NULL, 0,
325			16000000, 160000);
326	stm32f4_rcc_register_pll(hse_clk, "hsi");
327
328	sys_parents[1] = hse_clk;
329	clk_register_mux_table(
330	    NULL, "sys", sys_parents, ARRAY_SIZE(sys_parents), 0,
331	    base + STM32F4_RCC_CFGR, 0, 3, 0, NULL, &stm32f4_clk_lock);
332
333	clk_register_divider_table(NULL, "ahb_div", "sys",
334				   CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR,
335				   4, 4, 0, ahb_div_table, &stm32f4_clk_lock);
336
337	clk_register_divider_table(NULL, "apb1_div", "ahb_div",
338				   CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR,
339				   10, 3, 0, apb_div_table, &stm32f4_clk_lock);
340	clk_register_apb_mul(NULL, "apb1_mul", "apb1_div",
341			     CLK_SET_RATE_PARENT, 12);
342
343	clk_register_divider_table(NULL, "apb2_div", "ahb_div",
344				   CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR,
345				   13, 3, 0, apb_div_table, &stm32f4_clk_lock);
346	clk_register_apb_mul(NULL, "apb2_mul", "apb2_div",
347			     CLK_SET_RATE_PARENT, 15);
348
349	clks[SYSTICK] = clk_register_fixed_factor(NULL, "systick", "ahb_div",
350						  0, 1, 8);
351	clks[FCLK] = clk_register_fixed_factor(NULL, "fclk", "ahb_div",
352					       0, 1, 1);
353
354	for (n = 0; n < ARRAY_SIZE(stm32f4_gates); n++) {
355		const struct stm32f4_gate_data *gd = &stm32f4_gates[n];
356		unsigned int secondary =
357		    8 * (gd->offset - STM32F4_RCC_AHB1ENR) + gd->bit_idx;
358		int idx = stm32f4_rcc_lookup_clk_idx(0, secondary);
359
360		if (idx < 0)
361			goto fail;
362
363		clks[idx] = clk_register_gate(
364		    NULL, gd->name, gd->parent_name, gd->flags,
365		    base + gd->offset, gd->bit_idx, 0, &stm32f4_clk_lock);
366
367		if (IS_ERR(clks[n])) {
368			pr_err("%s: Unable to register leaf clock %s\n",
369			       np->full_name, gd->name);
370			goto fail;
371		}
372	}
373
374	of_clk_add_provider(np, stm32f4_rcc_lookup_clk, NULL);
375	return;
376fail:
377	iounmap(base);
378}
379CLK_OF_DECLARE(stm32f4_rcc, "st,stm32f42xx-rcc", stm32f4_rcc_init);