Linux Audio

Check our new training course

Loading...
v3.5.6
  1#include <linux/gfp.h>
  2#include <linux/initrd.h>
  3#include <linux/ioport.h>
  4#include <linux/swap.h>
  5#include <linux/memblock.h>
  6#include <linux/bootmem.h>	/* for max_low_pfn */
  7
  8#include <asm/cacheflush.h>
  9#include <asm/e820.h>
 10#include <asm/init.h>
 11#include <asm/page.h>
 12#include <asm/page_types.h>
 13#include <asm/sections.h>
 14#include <asm/setup.h>
 15#include <asm/tlbflush.h>
 16#include <asm/tlb.h>
 17#include <asm/proto.h>
 18#include <asm/dma.h>		/* for MAX_DMA_PFN */
 
 19
 20unsigned long __initdata pgt_buf_start;
 21unsigned long __meminitdata pgt_buf_end;
 22unsigned long __meminitdata pgt_buf_top;
 
 
 
 23
 24int after_bootmem;
 25
 26int direct_gbpages
 27#ifdef CONFIG_DIRECT_GBPAGES
 28				= 1
 29#endif
 30;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31
 32struct map_range {
 33	unsigned long start;
 34	unsigned long end;
 35	unsigned page_size_mask;
 
 
 
 
 
 36};
 
 37
 38static void __init find_early_table_space(struct map_range *mr, unsigned long end,
 39					  int use_pse, int use_gbpages)
 40{
 41	unsigned long puds, pmds, ptes, tables, start = 0, good_end = end;
 42	phys_addr_t base;
 43
 44	puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
 45	tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
 46
 47	if (use_gbpages) {
 48		unsigned long extra;
 49
 50		extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
 51		pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
 52	} else
 53		pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
 
 
 
 
 
 
 
 
 
 54
 55	tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
 
 56
 57	if (use_pse) {
 58		unsigned long extra;
 
 
 59
 60		extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
 61#ifdef CONFIG_X86_32
 62		extra += PMD_SIZE;
 63#endif
 64		/* The first 2/4M doesn't use large pages. */
 65		if (mr->start < PMD_SIZE)
 66			extra += mr->end - mr->start;
 
 
 
 
 
 
 
 
 
 
 67
 68		ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
 69	} else
 70		ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
 71
 72	tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
 
 
 73
 74#ifdef CONFIG_X86_32
 75	/* for fixmap */
 76	tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE);
 77#endif
 78	good_end = max_pfn_mapped << PAGE_SHIFT;
 79
 80	base = memblock_find_in_range(start, good_end, tables, PAGE_SIZE);
 81	if (!base)
 82		panic("Cannot find space for the kernel page tables");
 
 
 
 
 
 
 83
 84	pgt_buf_start = base >> PAGE_SHIFT;
 85	pgt_buf_end = pgt_buf_start;
 86	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 87
 88	printk(KERN_DEBUG "kernel direct mapping tables up to %#lx @ [mem %#010lx-%#010lx]\n",
 89		end - 1, pgt_buf_start << PAGE_SHIFT,
 90		(pgt_buf_top << PAGE_SHIFT) - 1);
 91}
 92
 93void __init native_pagetable_reserve(u64 start, u64 end)
 
 
 
 
 
 
 
 
 
 
 
 
 94{
 95	memblock_reserve(start, end - start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 96}
 97
 98#ifdef CONFIG_X86_32
 99#define NR_RANGE_MR 3
100#else /* CONFIG_X86_64 */
101#define NR_RANGE_MR 5
102#endif
103
104static int __meminit save_mr(struct map_range *mr, int nr_range,
105			     unsigned long start_pfn, unsigned long end_pfn,
106			     unsigned long page_size_mask)
107{
108	if (start_pfn < end_pfn) {
109		if (nr_range >= NR_RANGE_MR)
110			panic("run out of range for init_memory_mapping\n");
111		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
112		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
113		mr[nr_range].page_size_mask = page_size_mask;
114		nr_range++;
115	}
116
117	return nr_range;
118}
119
120/*
121 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
122 * This runs before bootmem is initialized and gets pages directly from
123 * the physical memory. To access them they are temporarily mapped.
124 */
125unsigned long __init_refok init_memory_mapping(unsigned long start,
126					       unsigned long end)
127{
128	unsigned long page_size_mask = 0;
129	unsigned long start_pfn, end_pfn;
130	unsigned long ret = 0;
131	unsigned long pos;
132
133	struct map_range mr[NR_RANGE_MR];
134	int nr_range, i;
135	int use_pse, use_gbpages;
 
 
136
137	printk(KERN_INFO "init_memory_mapping: [mem %#010lx-%#010lx]\n",
138	       start, end - 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
140#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KMEMCHECK)
 
141	/*
142	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
143	 * This will simplify cpa(), which otherwise needs to support splitting
144	 * large pages into small in interrupt context, etc.
145	 */
146	use_pse = use_gbpages = 0;
147#else
148	use_pse = cpu_has_pse;
149	use_gbpages = direct_gbpages;
150#endif
151
152	/* Enable PSE if available */
153	if (cpu_has_pse)
154		set_in_cr4(X86_CR4_PSE);
155
156	/* Enable PGE if available */
157	if (cpu_has_pge) {
158		set_in_cr4(X86_CR4_PGE);
159		__supported_pte_mask |= _PAGE_GLOBAL;
160	}
161
162	if (use_gbpages)
163		page_size_mask |= 1 << PG_LEVEL_1G;
164	if (use_pse)
165		page_size_mask |= 1 << PG_LEVEL_2M;
 
 
 
166
167	memset(mr, 0, sizeof(mr));
168	nr_range = 0;
169
170	/* head if not big page alignment ? */
171	start_pfn = start >> PAGE_SHIFT;
172	pos = start_pfn << PAGE_SHIFT;
173#ifdef CONFIG_X86_32
174	/*
175	 * Don't use a large page for the first 2/4MB of memory
176	 * because there are often fixed size MTRRs in there
177	 * and overlapping MTRRs into large pages can cause
178	 * slowdowns.
179	 */
180	if (pos == 0)
181		end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT);
182	else
183		end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
184				 << (PMD_SHIFT - PAGE_SHIFT);
185#else /* CONFIG_X86_64 */
186	end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
187			<< (PMD_SHIFT - PAGE_SHIFT);
188#endif
189	if (end_pfn > (end >> PAGE_SHIFT))
190		end_pfn = end >> PAGE_SHIFT;
191	if (start_pfn < end_pfn) {
192		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
193		pos = end_pfn << PAGE_SHIFT;
194	}
195
196	/* big page (2M) range */
197	start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
198			 << (PMD_SHIFT - PAGE_SHIFT);
199#ifdef CONFIG_X86_32
200	end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
201#else /* CONFIG_X86_64 */
202	end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
203			 << (PUD_SHIFT - PAGE_SHIFT);
204	if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
205		end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
206#endif
207
208	if (start_pfn < end_pfn) {
209		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
210				page_size_mask & (1<<PG_LEVEL_2M));
211		pos = end_pfn << PAGE_SHIFT;
212	}
213
214#ifdef CONFIG_X86_64
215	/* big page (1G) range */
216	start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
217			 << (PUD_SHIFT - PAGE_SHIFT);
218	end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
219	if (start_pfn < end_pfn) {
220		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
221				page_size_mask &
222				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
223		pos = end_pfn << PAGE_SHIFT;
224	}
225
226	/* tail is not big page (1G) alignment */
227	start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
228			 << (PMD_SHIFT - PAGE_SHIFT);
229	end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
230	if (start_pfn < end_pfn) {
231		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
232				page_size_mask & (1<<PG_LEVEL_2M));
233		pos = end_pfn << PAGE_SHIFT;
234	}
235#endif
236
237	/* tail is not big page (2M) alignment */
238	start_pfn = pos>>PAGE_SHIFT;
239	end_pfn = end>>PAGE_SHIFT;
240	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
241
 
 
 
242	/* try to merge same page size and continuous */
243	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
244		unsigned long old_start;
245		if (mr[i].end != mr[i+1].start ||
246		    mr[i].page_size_mask != mr[i+1].page_size_mask)
247			continue;
248		/* move it */
249		old_start = mr[i].start;
250		memmove(&mr[i], &mr[i+1],
251			(nr_range - 1 - i) * sizeof(struct map_range));
252		mr[i--].start = old_start;
253		nr_range--;
254	}
255
256	for (i = 0; i < nr_range; i++)
257		printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
258				mr[i].start, mr[i].end - 1,
259			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
260			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
261
262	/*
263	 * Find space for the kernel direct mapping tables.
264	 *
265	 * Later we should allocate these tables in the local node of the
266	 * memory mapped. Unfortunately this is done currently before the
267	 * nodes are discovered.
268	 */
269	if (!after_bootmem)
270		find_early_table_space(&mr[0], end, use_pse, use_gbpages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
271
272	for (i = 0; i < nr_range; i++)
273		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
274						   mr[i].page_size_mask);
275
276#ifdef CONFIG_X86_32
277	early_ioremap_page_table_range_init();
278
279	load_cr3(swapper_pg_dir);
280#endif
281
282	__flush_tlb_all();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283
 
 
284	/*
285	 * Reserve the kernel pagetable pages we used (pgt_buf_start -
286	 * pgt_buf_end) and free the other ones (pgt_buf_end - pgt_buf_top)
287	 * so that they can be reused for other purposes.
288	 *
289	 * On native it just means calling memblock_reserve, on Xen it also
290	 * means marking RW the pagetable pages that we allocated before
291	 * but that haven't been used.
292	 *
293	 * In fact on xen we mark RO the whole range pgt_buf_start -
294	 * pgt_buf_top, because we have to make sure that when
295	 * init_memory_mapping reaches the pagetable pages area, it maps
296	 * RO all the pagetable pages, including the ones that are beyond
297	 * pgt_buf_end at that time.
298	 */
299	if (!after_bootmem && pgt_buf_end > pgt_buf_start)
300		x86_init.mapping.pagetable_reserve(PFN_PHYS(pgt_buf_start),
301				PFN_PHYS(pgt_buf_end));
302
303	if (!after_bootmem)
304		early_memtest(start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305
306	return ret >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307}
308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
309
310/*
311 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
312 * is valid. The argument is a physical page number.
313 *
314 *
315 * On x86, access has to be given to the first megabyte of ram because that area
316 * contains bios code and data regions used by X and dosemu and similar apps.
317 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
318 * mmio resources as well as potential bios/acpi data regions.
319 */
320int devmem_is_allowed(unsigned long pagenr)
321{
322	if (pagenr <= 256)
323		return 1;
324	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
325		return 0;
326	if (!page_is_ram(pagenr))
327		return 1;
328	return 0;
329}
330
331void free_init_pages(char *what, unsigned long begin, unsigned long end)
332{
333	unsigned long addr;
334	unsigned long begin_aligned, end_aligned;
335
336	/* Make sure boundaries are page aligned */
337	begin_aligned = PAGE_ALIGN(begin);
338	end_aligned   = end & PAGE_MASK;
339
340	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
341		begin = begin_aligned;
342		end   = end_aligned;
343	}
344
345	if (begin >= end)
346		return;
347
348	addr = begin;
349
350	/*
351	 * If debugging page accesses then do not free this memory but
352	 * mark them not present - any buggy init-section access will
353	 * create a kernel page fault:
354	 */
355#ifdef CONFIG_DEBUG_PAGEALLOC
356	printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
357		begin, end - 1);
358	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
359#else
360	/*
361	 * We just marked the kernel text read only above, now that
362	 * we are going to free part of that, we need to make that
363	 * writeable and non-executable first.
364	 */
365	set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
366	set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
367
368	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
369
370	for (; addr < end; addr += PAGE_SIZE) {
371		ClearPageReserved(virt_to_page(addr));
372		init_page_count(virt_to_page(addr));
373		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
374		free_page(addr);
375		totalram_pages++;
376	}
377#endif
378}
379
380void free_initmem(void)
381{
382	free_init_pages("unused kernel memory",
383			(unsigned long)(&__init_begin),
384			(unsigned long)(&__init_end));
385}
386
387#ifdef CONFIG_BLK_DEV_INITRD
388void free_initrd_mem(unsigned long start, unsigned long end)
389{
390	/*
 
 
 
 
 
 
 
391	 * end could be not aligned, and We can not align that,
392	 * decompresser could be confused by aligned initrd_end
393	 * We already reserve the end partial page before in
394	 *   - i386_start_kernel()
395	 *   - x86_64_start_kernel()
396	 *   - relocate_initrd()
397	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
398	 */
399	free_init_pages("initrd memory", start, PAGE_ALIGN(end));
400}
401#endif
402
403void __init zone_sizes_init(void)
404{
405	unsigned long max_zone_pfns[MAX_NR_ZONES];
406
407	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
408
409#ifdef CONFIG_ZONE_DMA
410	max_zone_pfns[ZONE_DMA]		= MAX_DMA_PFN;
411#endif
412#ifdef CONFIG_ZONE_DMA32
413	max_zone_pfns[ZONE_DMA32]	= MAX_DMA32_PFN;
414#endif
415	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
416#ifdef CONFIG_HIGHMEM
417	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
418#endif
419
420	free_area_init_nodes(max_zone_pfns);
421}
422
v4.6
  1#include <linux/gfp.h>
  2#include <linux/initrd.h>
  3#include <linux/ioport.h>
  4#include <linux/swap.h>
  5#include <linux/memblock.h>
  6#include <linux/bootmem.h>	/* for max_low_pfn */
  7
  8#include <asm/cacheflush.h>
  9#include <asm/e820.h>
 10#include <asm/init.h>
 11#include <asm/page.h>
 12#include <asm/page_types.h>
 13#include <asm/sections.h>
 14#include <asm/setup.h>
 15#include <asm/tlbflush.h>
 16#include <asm/tlb.h>
 17#include <asm/proto.h>
 18#include <asm/dma.h>		/* for MAX_DMA_PFN */
 19#include <asm/microcode.h>
 20
 21/*
 22 * We need to define the tracepoints somewhere, and tlb.c
 23 * is only compied when SMP=y.
 24 */
 25#define CREATE_TRACE_POINTS
 26#include <trace/events/tlb.h>
 27
 28#include "mm_internal.h"
 29
 30/*
 31 * Tables translating between page_cache_type_t and pte encoding.
 32 *
 33 * The default values are defined statically as minimal supported mode;
 34 * WC and WT fall back to UC-.  pat_init() updates these values to support
 35 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
 36 * for the details.  Note, __early_ioremap() used during early boot-time
 37 * takes pgprot_t (pte encoding) and does not use these tables.
 38 *
 39 *   Index into __cachemode2pte_tbl[] is the cachemode.
 40 *
 41 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
 42 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
 43 */
 44uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
 45	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
 46	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
 47	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
 48	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
 49	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
 50	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
 51};
 52EXPORT_SYMBOL(__cachemode2pte_tbl);
 53
 54uint8_t __pte2cachemode_tbl[8] = {
 55	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
 56	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 57	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 58	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
 59	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
 60	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 61	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 62	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
 63};
 64EXPORT_SYMBOL(__pte2cachemode_tbl);
 65
 66static unsigned long __initdata pgt_buf_start;
 67static unsigned long __initdata pgt_buf_end;
 68static unsigned long __initdata pgt_buf_top;
 
 
 69
 70static unsigned long min_pfn_mapped;
 
 71
 72static bool __initdata can_use_brk_pgt = true;
 
 73
 74/*
 75 * Pages returned are already directly mapped.
 76 *
 77 * Changing that is likely to break Xen, see commit:
 78 *
 79 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 80 *
 81 * for detailed information.
 82 */
 83__ref void *alloc_low_pages(unsigned int num)
 84{
 85	unsigned long pfn;
 86	int i;
 87
 88	if (after_bootmem) {
 89		unsigned int order;
 90
 91		order = get_order((unsigned long)num << PAGE_SHIFT);
 92		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
 93						__GFP_ZERO, order);
 94	}
 95
 96	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
 97		unsigned long ret;
 98		if (min_pfn_mapped >= max_pfn_mapped)
 99			panic("alloc_low_pages: ran out of memory");
100		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
101					max_pfn_mapped << PAGE_SHIFT,
102					PAGE_SIZE * num , PAGE_SIZE);
103		if (!ret)
104			panic("alloc_low_pages: can not alloc memory");
105		memblock_reserve(ret, PAGE_SIZE * num);
106		pfn = ret >> PAGE_SHIFT;
107	} else {
108		pfn = pgt_buf_end;
109		pgt_buf_end += num;
110		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
111			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
112	}
113
114	for (i = 0; i < num; i++) {
115		void *adr;
 
116
117		adr = __va((pfn + i) << PAGE_SHIFT);
118		clear_page(adr);
119	}
120
121	return __va(pfn << PAGE_SHIFT);
122}
 
 
 
123
124/* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
125#define INIT_PGT_BUF_SIZE	(6 * PAGE_SIZE)
126RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
127void  __init early_alloc_pgt_buf(void)
128{
129	unsigned long tables = INIT_PGT_BUF_SIZE;
130	phys_addr_t base;
131
132	base = __pa(extend_brk(tables, PAGE_SIZE));
133
134	pgt_buf_start = base >> PAGE_SHIFT;
135	pgt_buf_end = pgt_buf_start;
136	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 
 
 
 
137}
138
139int after_bootmem;
140
141early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
142
143struct map_range {
144	unsigned long start;
145	unsigned long end;
146	unsigned page_size_mask;
147};
148
149static int page_size_mask;
150
151static void __init probe_page_size_mask(void)
152{
153#if !defined(CONFIG_KMEMCHECK)
154	/*
155	 * For CONFIG_KMEMCHECK or pagealloc debugging, identity mapping will
156	 * use small pages.
157	 * This will simplify cpa(), which otherwise needs to support splitting
158	 * large pages into small in interrupt context, etc.
159	 */
160	if (cpu_has_pse && !debug_pagealloc_enabled())
161		page_size_mask |= 1 << PG_LEVEL_2M;
162#endif
163
164	/* Enable PSE if available */
165	if (cpu_has_pse)
166		cr4_set_bits_and_update_boot(X86_CR4_PSE);
167
168	/* Enable PGE if available */
169	if (cpu_has_pge) {
170		cr4_set_bits_and_update_boot(X86_CR4_PGE);
171		__supported_pte_mask |= _PAGE_GLOBAL;
172	} else
173		__supported_pte_mask &= ~_PAGE_GLOBAL;
174
175	/* Enable 1 GB linear kernel mappings if available: */
176	if (direct_gbpages && cpu_has_gbpages) {
177		printk(KERN_INFO "Using GB pages for direct mapping\n");
178		page_size_mask |= 1 << PG_LEVEL_1G;
179	} else {
180		direct_gbpages = 0;
181	}
182}
183
184#ifdef CONFIG_X86_32
185#define NR_RANGE_MR 3
186#else /* CONFIG_X86_64 */
187#define NR_RANGE_MR 5
188#endif
189
190static int __meminit save_mr(struct map_range *mr, int nr_range,
191			     unsigned long start_pfn, unsigned long end_pfn,
192			     unsigned long page_size_mask)
193{
194	if (start_pfn < end_pfn) {
195		if (nr_range >= NR_RANGE_MR)
196			panic("run out of range for init_memory_mapping\n");
197		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
198		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
199		mr[nr_range].page_size_mask = page_size_mask;
200		nr_range++;
201	}
202
203	return nr_range;
204}
205
206/*
207 * adjust the page_size_mask for small range to go with
208 *	big page size instead small one if nearby are ram too.
 
209 */
210static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
211							 int nr_range)
212{
213	int i;
 
 
 
214
215	for (i = 0; i < nr_range; i++) {
216		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
217		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
218			unsigned long start = round_down(mr[i].start, PMD_SIZE);
219			unsigned long end = round_up(mr[i].end, PMD_SIZE);
220
221#ifdef CONFIG_X86_32
222			if ((end >> PAGE_SHIFT) > max_low_pfn)
223				continue;
224#endif
225
226			if (memblock_is_region_memory(start, end - start))
227				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
228		}
229		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
230		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
231			unsigned long start = round_down(mr[i].start, PUD_SIZE);
232			unsigned long end = round_up(mr[i].end, PUD_SIZE);
233
234			if (memblock_is_region_memory(start, end - start))
235				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
236		}
237	}
238}
239
240static const char *page_size_string(struct map_range *mr)
241{
242	static const char str_1g[] = "1G";
243	static const char str_2m[] = "2M";
244	static const char str_4m[] = "4M";
245	static const char str_4k[] = "4k";
246
247	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
248		return str_1g;
249	/*
250	 * 32-bit without PAE has a 4M large page size.
251	 * PG_LEVEL_2M is misnamed, but we can at least
252	 * print out the right size in the string.
253	 */
254	if (IS_ENABLED(CONFIG_X86_32) &&
255	    !IS_ENABLED(CONFIG_X86_PAE) &&
256	    mr->page_size_mask & (1<<PG_LEVEL_2M))
257		return str_4m;
 
258
259	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
260		return str_2m;
 
261
262	return str_4k;
263}
 
 
 
264
265static int __meminit split_mem_range(struct map_range *mr, int nr_range,
266				     unsigned long start,
267				     unsigned long end)
268{
269	unsigned long start_pfn, end_pfn, limit_pfn;
270	unsigned long pfn;
271	int i;
272
273	limit_pfn = PFN_DOWN(end);
 
274
275	/* head if not big page alignment ? */
276	pfn = start_pfn = PFN_DOWN(start);
 
277#ifdef CONFIG_X86_32
278	/*
279	 * Don't use a large page for the first 2/4MB of memory
280	 * because there are often fixed size MTRRs in there
281	 * and overlapping MTRRs into large pages can cause
282	 * slowdowns.
283	 */
284	if (pfn == 0)
285		end_pfn = PFN_DOWN(PMD_SIZE);
286	else
287		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 
288#else /* CONFIG_X86_64 */
289	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 
290#endif
291	if (end_pfn > limit_pfn)
292		end_pfn = limit_pfn;
293	if (start_pfn < end_pfn) {
294		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
295		pfn = end_pfn;
296	}
297
298	/* big page (2M) range */
299	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 
300#ifdef CONFIG_X86_32
301	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
302#else /* CONFIG_X86_64 */
303	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
304	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
305		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 
306#endif
307
308	if (start_pfn < end_pfn) {
309		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
310				page_size_mask & (1<<PG_LEVEL_2M));
311		pfn = end_pfn;
312	}
313
314#ifdef CONFIG_X86_64
315	/* big page (1G) range */
316	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
317	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
 
318	if (start_pfn < end_pfn) {
319		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
320				page_size_mask &
321				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
322		pfn = end_pfn;
323	}
324
325	/* tail is not big page (1G) alignment */
326	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
327	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 
328	if (start_pfn < end_pfn) {
329		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
330				page_size_mask & (1<<PG_LEVEL_2M));
331		pfn = end_pfn;
332	}
333#endif
334
335	/* tail is not big page (2M) alignment */
336	start_pfn = pfn;
337	end_pfn = limit_pfn;
338	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
339
340	if (!after_bootmem)
341		adjust_range_page_size_mask(mr, nr_range);
342
343	/* try to merge same page size and continuous */
344	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
345		unsigned long old_start;
346		if (mr[i].end != mr[i+1].start ||
347		    mr[i].page_size_mask != mr[i+1].page_size_mask)
348			continue;
349		/* move it */
350		old_start = mr[i].start;
351		memmove(&mr[i], &mr[i+1],
352			(nr_range - 1 - i) * sizeof(struct map_range));
353		mr[i--].start = old_start;
354		nr_range--;
355	}
356
357	for (i = 0; i < nr_range; i++)
358		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
359				mr[i].start, mr[i].end - 1,
360				page_size_string(&mr[i]));
 
361
362	return nr_range;
363}
364
365struct range pfn_mapped[E820_X_MAX];
366int nr_pfn_mapped;
367
368static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
369{
370	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
371					     nr_pfn_mapped, start_pfn, end_pfn);
372	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
373
374	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
375
376	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
377		max_low_pfn_mapped = max(max_low_pfn_mapped,
378					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
379}
380
381bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
382{
383	int i;
384
385	for (i = 0; i < nr_pfn_mapped; i++)
386		if ((start_pfn >= pfn_mapped[i].start) &&
387		    (end_pfn <= pfn_mapped[i].end))
388			return true;
389
390	return false;
391}
392
393/*
394 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
395 * This runs before bootmem is initialized and gets pages directly from
396 * the physical memory. To access them they are temporarily mapped.
397 */
398unsigned long __init_refok init_memory_mapping(unsigned long start,
399					       unsigned long end)
400{
401	struct map_range mr[NR_RANGE_MR];
402	unsigned long ret = 0;
403	int nr_range, i;
404
405	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
406	       start, end - 1);
407
408	memset(mr, 0, sizeof(mr));
409	nr_range = split_mem_range(mr, 0, start, end);
410
411	for (i = 0; i < nr_range; i++)
412		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
413						   mr[i].page_size_mask);
414
415	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
 
416
417	return ret >> PAGE_SHIFT;
418}
419
420/*
421 * We need to iterate through the E820 memory map and create direct mappings
422 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
423 * create direct mappings for all pfns from [0 to max_low_pfn) and
424 * [4GB to max_pfn) because of possible memory holes in high addresses
425 * that cannot be marked as UC by fixed/variable range MTRRs.
426 * Depending on the alignment of E820 ranges, this may possibly result
427 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
428 *
429 * init_mem_mapping() calls init_range_memory_mapping() with big range.
430 * That range would have hole in the middle or ends, and only ram parts
431 * will be mapped in init_range_memory_mapping().
432 */
433static unsigned long __init init_range_memory_mapping(
434					   unsigned long r_start,
435					   unsigned long r_end)
436{
437	unsigned long start_pfn, end_pfn;
438	unsigned long mapped_ram_size = 0;
439	int i;
440
441	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
442		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
443		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
444		if (start >= end)
445			continue;
446
447		/*
448		 * if it is overlapping with brk pgt, we need to
449		 * alloc pgt buf from memblock instead.
450		 */
451		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
452				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
453		init_memory_mapping(start, end);
454		mapped_ram_size += end - start;
455		can_use_brk_pgt = true;
456	}
457
458	return mapped_ram_size;
459}
460
461static unsigned long __init get_new_step_size(unsigned long step_size)
462{
463	/*
464	 * Initial mapped size is PMD_SIZE (2M).
465	 * We can not set step_size to be PUD_SIZE (1G) yet.
466	 * In worse case, when we cross the 1G boundary, and
467	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
468	 * to map 1G range with PTE. Hence we use one less than the
469	 * difference of page table level shifts.
 
470	 *
471	 * Don't need to worry about overflow in the top-down case, on 32bit,
472	 * when step_size is 0, round_down() returns 0 for start, and that
473	 * turns it into 0x100000000ULL.
474	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
475	 * needs to be taken into consideration by the code below.
476	 */
477	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
478}
 
479
480/**
481 * memory_map_top_down - Map [map_start, map_end) top down
482 * @map_start: start address of the target memory range
483 * @map_end: end address of the target memory range
484 *
485 * This function will setup direct mapping for memory range
486 * [map_start, map_end) in top-down. That said, the page tables
487 * will be allocated at the end of the memory, and we map the
488 * memory in top-down.
489 */
490static void __init memory_map_top_down(unsigned long map_start,
491				       unsigned long map_end)
492{
493	unsigned long real_end, start, last_start;
494	unsigned long step_size;
495	unsigned long addr;
496	unsigned long mapped_ram_size = 0;
497
498	/* xen has big range in reserved near end of ram, skip it at first.*/
499	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
500	real_end = addr + PMD_SIZE;
501
502	/* step_size need to be small so pgt_buf from BRK could cover it */
503	step_size = PMD_SIZE;
504	max_pfn_mapped = 0; /* will get exact value next */
505	min_pfn_mapped = real_end >> PAGE_SHIFT;
506	last_start = start = real_end;
507
508	/*
509	 * We start from the top (end of memory) and go to the bottom.
510	 * The memblock_find_in_range() gets us a block of RAM from the
511	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
512	 * for page table.
513	 */
514	while (last_start > map_start) {
515		if (last_start > step_size) {
516			start = round_down(last_start - 1, step_size);
517			if (start < map_start)
518				start = map_start;
519		} else
520			start = map_start;
521		mapped_ram_size += init_range_memory_mapping(start,
522							last_start);
523		last_start = start;
524		min_pfn_mapped = last_start >> PAGE_SHIFT;
525		if (mapped_ram_size >= step_size)
526			step_size = get_new_step_size(step_size);
527	}
528
529	if (real_end < map_end)
530		init_range_memory_mapping(real_end, map_end);
531}
532
533/**
534 * memory_map_bottom_up - Map [map_start, map_end) bottom up
535 * @map_start: start address of the target memory range
536 * @map_end: end address of the target memory range
537 *
538 * This function will setup direct mapping for memory range
539 * [map_start, map_end) in bottom-up. Since we have limited the
540 * bottom-up allocation above the kernel, the page tables will
541 * be allocated just above the kernel and we map the memory
542 * in [map_start, map_end) in bottom-up.
543 */
544static void __init memory_map_bottom_up(unsigned long map_start,
545					unsigned long map_end)
546{
547	unsigned long next, start;
548	unsigned long mapped_ram_size = 0;
549	/* step_size need to be small so pgt_buf from BRK could cover it */
550	unsigned long step_size = PMD_SIZE;
551
552	start = map_start;
553	min_pfn_mapped = start >> PAGE_SHIFT;
554
555	/*
556	 * We start from the bottom (@map_start) and go to the top (@map_end).
557	 * The memblock_find_in_range() gets us a block of RAM from the
558	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
559	 * for page table.
560	 */
561	while (start < map_end) {
562		if (step_size && map_end - start > step_size) {
563			next = round_up(start + 1, step_size);
564			if (next > map_end)
565				next = map_end;
566		} else {
567			next = map_end;
568		}
569
570		mapped_ram_size += init_range_memory_mapping(start, next);
571		start = next;
572
573		if (mapped_ram_size >= step_size)
574			step_size = get_new_step_size(step_size);
575	}
576}
577
578void __init init_mem_mapping(void)
579{
580	unsigned long end;
581
582	probe_page_size_mask();
583
584#ifdef CONFIG_X86_64
585	end = max_pfn << PAGE_SHIFT;
586#else
587	end = max_low_pfn << PAGE_SHIFT;
588#endif
589
590	/* the ISA range is always mapped regardless of memory holes */
591	init_memory_mapping(0, ISA_END_ADDRESS);
592
593	/*
594	 * If the allocation is in bottom-up direction, we setup direct mapping
595	 * in bottom-up, otherwise we setup direct mapping in top-down.
596	 */
597	if (memblock_bottom_up()) {
598		unsigned long kernel_end = __pa_symbol(_end);
599
600		/*
601		 * we need two separate calls here. This is because we want to
602		 * allocate page tables above the kernel. So we first map
603		 * [kernel_end, end) to make memory above the kernel be mapped
604		 * as soon as possible. And then use page tables allocated above
605		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
606		 */
607		memory_map_bottom_up(kernel_end, end);
608		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
609	} else {
610		memory_map_top_down(ISA_END_ADDRESS, end);
611	}
612
613#ifdef CONFIG_X86_64
614	if (max_pfn > max_low_pfn) {
615		/* can we preseve max_low_pfn ?*/
616		max_low_pfn = max_pfn;
617	}
618#else
619	early_ioremap_page_table_range_init();
620#endif
621
622	load_cr3(swapper_pg_dir);
623	__flush_tlb_all();
624
625	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
626}
627
628/*
629 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
630 * is valid. The argument is a physical page number.
631 *
632 *
633 * On x86, access has to be given to the first megabyte of ram because that area
634 * contains BIOS code and data regions used by X and dosemu and similar apps.
635 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
636 * mmio resources as well as potential bios/acpi data regions.
637 */
638int devmem_is_allowed(unsigned long pagenr)
639{
640	if (pagenr < 256)
641		return 1;
642	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
643		return 0;
644	if (!page_is_ram(pagenr))
645		return 1;
646	return 0;
647}
648
649void free_init_pages(char *what, unsigned long begin, unsigned long end)
650{
 
651	unsigned long begin_aligned, end_aligned;
652
653	/* Make sure boundaries are page aligned */
654	begin_aligned = PAGE_ALIGN(begin);
655	end_aligned   = end & PAGE_MASK;
656
657	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
658		begin = begin_aligned;
659		end   = end_aligned;
660	}
661
662	if (begin >= end)
663		return;
664
 
 
665	/*
666	 * If debugging page accesses then do not free this memory but
667	 * mark them not present - any buggy init-section access will
668	 * create a kernel page fault:
669	 */
670	if (debug_pagealloc_enabled()) {
671		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
672			begin, end - 1);
673		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
674	} else {
675		/*
676		 * We just marked the kernel text read only above, now that
677		 * we are going to free part of that, we need to make that
678		 * writeable and non-executable first.
679		 */
680		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
681		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
682
683		free_reserved_area((void *)begin, (void *)end,
684				   POISON_FREE_INITMEM, what);
 
 
 
 
 
 
685	}
 
686}
687
688void free_initmem(void)
689{
690	free_init_pages("unused kernel",
691			(unsigned long)(&__init_begin),
692			(unsigned long)(&__init_end));
693}
694
695#ifdef CONFIG_BLK_DEV_INITRD
696void __init free_initrd_mem(unsigned long start, unsigned long end)
697{
698	/*
699	 * Remember, initrd memory may contain microcode or other useful things.
700	 * Before we lose initrd mem, we need to find a place to hold them
701	 * now that normal virtual memory is enabled.
702	 */
703	save_microcode_in_initrd();
704
705	/*
706	 * end could be not aligned, and We can not align that,
707	 * decompresser could be confused by aligned initrd_end
708	 * We already reserve the end partial page before in
709	 *   - i386_start_kernel()
710	 *   - x86_64_start_kernel()
711	 *   - relocate_initrd()
712	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
713	 */
714	free_init_pages("initrd", start, PAGE_ALIGN(end));
715}
716#endif
717
718void __init zone_sizes_init(void)
719{
720	unsigned long max_zone_pfns[MAX_NR_ZONES];
721
722	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
723
724#ifdef CONFIG_ZONE_DMA
725	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
726#endif
727#ifdef CONFIG_ZONE_DMA32
728	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
729#endif
730	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
731#ifdef CONFIG_HIGHMEM
732	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
733#endif
734
735	free_area_init_nodes(max_zone_pfns);
736}
737
738DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
739#ifdef CONFIG_SMP
740	.active_mm = &init_mm,
741	.state = 0,
742#endif
743	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
744};
745EXPORT_SYMBOL_GPL(cpu_tlbstate);
746
747void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
748{
749	/* entry 0 MUST be WB (hardwired to speed up translations) */
750	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
751
752	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
753	__pte2cachemode_tbl[entry] = cache;
754}