Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
  3 *
  4 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
  5 *
  6 * Copyright (C) IBM Corporation, 2004. All rights reserved.
 
 
 
  7 *
  8 */
  9
 10#include <linux/init.h>
 
 11#include <linux/types.h>
 12#include <linux/kernel.h>
 13#include <linux/smp.h>
 14#include <linux/reboot.h>
 15#include <linux/kexec.h>
 16#include <linux/delay.h>
 17#include <linux/elf.h>
 18#include <linux/elfcore.h>
 
 
 
 19
 20#include <asm/processor.h>
 21#include <asm/hardirq.h>
 22#include <asm/nmi.h>
 23#include <asm/hw_irq.h>
 24#include <asm/apic.h>
 
 25#include <asm/hpet.h>
 26#include <linux/kdebug.h>
 27#include <asm/cpu.h>
 28#include <asm/reboot.h>
 29#include <asm/virtext.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 30
 31int in_crash_kexec;
 
 
 
 
 
 32
 33#if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
 34
 35static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
 36{
 37#ifdef CONFIG_X86_32
 38	struct pt_regs fixed_regs;
 39#endif
 40
 41#ifdef CONFIG_X86_32
 42	if (!user_mode_vm(regs)) {
 43		crash_fixup_ss_esp(&fixed_regs, regs);
 44		regs = &fixed_regs;
 45	}
 46#endif
 47	crash_save_cpu(regs, cpu);
 48
 
 
 
 
 
 49	/* Disable VMX or SVM if needed.
 50	 *
 51	 * We need to disable virtualization on all CPUs.
 52	 * Having VMX or SVM enabled on any CPU may break rebooting
 53	 * after the kdump kernel has finished its task.
 54	 */
 55	cpu_emergency_vmxoff();
 56	cpu_emergency_svm_disable();
 57
 
 
 
 
 
 58	disable_local_APIC();
 59}
 60
 61static void kdump_nmi_shootdown_cpus(void)
 62{
 63	in_crash_kexec = 1;
 64	nmi_shootdown_cpus(kdump_nmi_callback);
 65
 66	disable_local_APIC();
 67}
 68
 69#else
 70static void kdump_nmi_shootdown_cpus(void)
 71{
 72	/* There are no cpus to shootdown */
 73}
 74#endif
 75
 76void native_machine_crash_shutdown(struct pt_regs *regs)
 77{
 78	/* This function is only called after the system
 79	 * has panicked or is otherwise in a critical state.
 80	 * The minimum amount of code to allow a kexec'd kernel
 81	 * to run successfully needs to happen here.
 82	 *
 83	 * In practice this means shooting down the other cpus in
 84	 * an SMP system.
 85	 */
 86	/* The kernel is broken so disable interrupts */
 87	local_irq_disable();
 88
 89	kdump_nmi_shootdown_cpus();
 90
 
 
 
 
 
 91	/* Booting kdump kernel with VMX or SVM enabled won't work,
 92	 * because (among other limitations) we can't disable paging
 93	 * with the virt flags.
 94	 */
 95	cpu_emergency_vmxoff();
 96	cpu_emergency_svm_disable();
 97
 98	lapic_shutdown();
 99#if defined(CONFIG_X86_IO_APIC)
 
 
 
 
 
 
100	disable_IO_APIC();
101#endif
 
102#ifdef CONFIG_HPET_TIMER
103	hpet_disable();
104#endif
105	crash_save_cpu(regs, safe_smp_processor_id());
106}
v4.6
  1/*
  2 * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
  3 *
  4 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
  5 *
  6 * Copyright (C) IBM Corporation, 2004. All rights reserved.
  7 * Copyright (C) Red Hat Inc., 2014. All rights reserved.
  8 * Authors:
  9 *      Vivek Goyal <vgoyal@redhat.com>
 10 *
 11 */
 12
 13#define pr_fmt(fmt)	"kexec: " fmt
 14
 15#include <linux/types.h>
 16#include <linux/kernel.h>
 17#include <linux/smp.h>
 18#include <linux/reboot.h>
 19#include <linux/kexec.h>
 20#include <linux/delay.h>
 21#include <linux/elf.h>
 22#include <linux/elfcore.h>
 23#include <linux/module.h>
 24#include <linux/slab.h>
 25#include <linux/vmalloc.h>
 26
 27#include <asm/processor.h>
 28#include <asm/hardirq.h>
 29#include <asm/nmi.h>
 30#include <asm/hw_irq.h>
 31#include <asm/apic.h>
 32#include <asm/io_apic.h>
 33#include <asm/hpet.h>
 34#include <linux/kdebug.h>
 35#include <asm/cpu.h>
 36#include <asm/reboot.h>
 37#include <asm/virtext.h>
 38#include <asm/intel_pt.h>
 39
 40/* Alignment required for elf header segment */
 41#define ELF_CORE_HEADER_ALIGN   4096
 42
 43/* This primarily represents number of split ranges due to exclusion */
 44#define CRASH_MAX_RANGES	16
 45
 46struct crash_mem_range {
 47	u64 start, end;
 48};
 49
 50struct crash_mem {
 51	unsigned int nr_ranges;
 52	struct crash_mem_range ranges[CRASH_MAX_RANGES];
 53};
 54
 55/* Misc data about ram ranges needed to prepare elf headers */
 56struct crash_elf_data {
 57	struct kimage *image;
 58	/*
 59	 * Total number of ram ranges we have after various adjustments for
 60	 * crash reserved region, etc.
 61	 */
 62	unsigned int max_nr_ranges;
 63
 64	/* Pointer to elf header */
 65	void *ehdr;
 66	/* Pointer to next phdr */
 67	void *bufp;
 68	struct crash_mem mem;
 69};
 70
 71/* Used while preparing memory map entries for second kernel */
 72struct crash_memmap_data {
 73	struct boot_params *params;
 74	/* Type of memory */
 75	unsigned int type;
 76};
 77
 78/*
 79 * This is used to VMCLEAR all VMCSs loaded on the
 80 * processor. And when loading kvm_intel module, the
 81 * callback function pointer will be assigned.
 82 *
 83 * protected by rcu.
 84 */
 85crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
 86EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
 87unsigned long crash_zero_bytes;
 88
 89static inline void cpu_crash_vmclear_loaded_vmcss(void)
 90{
 91	crash_vmclear_fn *do_vmclear_operation = NULL;
 92
 93	rcu_read_lock();
 94	do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
 95	if (do_vmclear_operation)
 96		do_vmclear_operation();
 97	rcu_read_unlock();
 98}
 99
100#if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
101
102static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
103{
104#ifdef CONFIG_X86_32
105	struct pt_regs fixed_regs;
 
106
107	if (!user_mode(regs)) {
 
108		crash_fixup_ss_esp(&fixed_regs, regs);
109		regs = &fixed_regs;
110	}
111#endif
112	crash_save_cpu(regs, cpu);
113
114	/*
115	 * VMCLEAR VMCSs loaded on all cpus if needed.
116	 */
117	cpu_crash_vmclear_loaded_vmcss();
118
119	/* Disable VMX or SVM if needed.
120	 *
121	 * We need to disable virtualization on all CPUs.
122	 * Having VMX or SVM enabled on any CPU may break rebooting
123	 * after the kdump kernel has finished its task.
124	 */
125	cpu_emergency_vmxoff();
126	cpu_emergency_svm_disable();
127
128	/*
129	 * Disable Intel PT to stop its logging
130	 */
131	cpu_emergency_stop_pt();
132
133	disable_local_APIC();
134}
135
136static void kdump_nmi_shootdown_cpus(void)
137{
 
138	nmi_shootdown_cpus(kdump_nmi_callback);
139
140	disable_local_APIC();
141}
142
143#else
144static void kdump_nmi_shootdown_cpus(void)
145{
146	/* There are no cpus to shootdown */
147}
148#endif
149
150void native_machine_crash_shutdown(struct pt_regs *regs)
151{
152	/* This function is only called after the system
153	 * has panicked or is otherwise in a critical state.
154	 * The minimum amount of code to allow a kexec'd kernel
155	 * to run successfully needs to happen here.
156	 *
157	 * In practice this means shooting down the other cpus in
158	 * an SMP system.
159	 */
160	/* The kernel is broken so disable interrupts */
161	local_irq_disable();
162
163	kdump_nmi_shootdown_cpus();
164
165	/*
166	 * VMCLEAR VMCSs loaded on this cpu if needed.
167	 */
168	cpu_crash_vmclear_loaded_vmcss();
169
170	/* Booting kdump kernel with VMX or SVM enabled won't work,
171	 * because (among other limitations) we can't disable paging
172	 * with the virt flags.
173	 */
174	cpu_emergency_vmxoff();
175	cpu_emergency_svm_disable();
176
177	/*
178	 * Disable Intel PT to stop its logging
179	 */
180	cpu_emergency_stop_pt();
181
182#ifdef CONFIG_X86_IO_APIC
183	/* Prevent crash_kexec() from deadlocking on ioapic_lock. */
184	ioapic_zap_locks();
185	disable_IO_APIC();
186#endif
187	lapic_shutdown();
188#ifdef CONFIG_HPET_TIMER
189	hpet_disable();
190#endif
191	crash_save_cpu(regs, safe_smp_processor_id());
192}
193
194#ifdef CONFIG_KEXEC_FILE
195static int get_nr_ram_ranges_callback(u64 start, u64 end, void *arg)
196{
197	unsigned int *nr_ranges = arg;
198
199	(*nr_ranges)++;
200	return 0;
201}
202
203
204/* Gather all the required information to prepare elf headers for ram regions */
205static void fill_up_crash_elf_data(struct crash_elf_data *ced,
206				   struct kimage *image)
207{
208	unsigned int nr_ranges = 0;
209
210	ced->image = image;
211
212	walk_system_ram_res(0, -1, &nr_ranges,
213				get_nr_ram_ranges_callback);
214
215	ced->max_nr_ranges = nr_ranges;
216
217	/* Exclusion of crash region could split memory ranges */
218	ced->max_nr_ranges++;
219
220	/* If crashk_low_res is not 0, another range split possible */
221	if (crashk_low_res.end)
222		ced->max_nr_ranges++;
223}
224
225static int exclude_mem_range(struct crash_mem *mem,
226		unsigned long long mstart, unsigned long long mend)
227{
228	int i, j;
229	unsigned long long start, end;
230	struct crash_mem_range temp_range = {0, 0};
231
232	for (i = 0; i < mem->nr_ranges; i++) {
233		start = mem->ranges[i].start;
234		end = mem->ranges[i].end;
235
236		if (mstart > end || mend < start)
237			continue;
238
239		/* Truncate any area outside of range */
240		if (mstart < start)
241			mstart = start;
242		if (mend > end)
243			mend = end;
244
245		/* Found completely overlapping range */
246		if (mstart == start && mend == end) {
247			mem->ranges[i].start = 0;
248			mem->ranges[i].end = 0;
249			if (i < mem->nr_ranges - 1) {
250				/* Shift rest of the ranges to left */
251				for (j = i; j < mem->nr_ranges - 1; j++) {
252					mem->ranges[j].start =
253						mem->ranges[j+1].start;
254					mem->ranges[j].end =
255							mem->ranges[j+1].end;
256				}
257			}
258			mem->nr_ranges--;
259			return 0;
260		}
261
262		if (mstart > start && mend < end) {
263			/* Split original range */
264			mem->ranges[i].end = mstart - 1;
265			temp_range.start = mend + 1;
266			temp_range.end = end;
267		} else if (mstart != start)
268			mem->ranges[i].end = mstart - 1;
269		else
270			mem->ranges[i].start = mend + 1;
271		break;
272	}
273
274	/* If a split happend, add the split to array */
275	if (!temp_range.end)
276		return 0;
277
278	/* Split happened */
279	if (i == CRASH_MAX_RANGES - 1) {
280		pr_err("Too many crash ranges after split\n");
281		return -ENOMEM;
282	}
283
284	/* Location where new range should go */
285	j = i + 1;
286	if (j < mem->nr_ranges) {
287		/* Move over all ranges one slot towards the end */
288		for (i = mem->nr_ranges - 1; i >= j; i--)
289			mem->ranges[i + 1] = mem->ranges[i];
290	}
291
292	mem->ranges[j].start = temp_range.start;
293	mem->ranges[j].end = temp_range.end;
294	mem->nr_ranges++;
295	return 0;
296}
297
298/*
299 * Look for any unwanted ranges between mstart, mend and remove them. This
300 * might lead to split and split ranges are put in ced->mem.ranges[] array
301 */
302static int elf_header_exclude_ranges(struct crash_elf_data *ced,
303		unsigned long long mstart, unsigned long long mend)
304{
305	struct crash_mem *cmem = &ced->mem;
306	int ret = 0;
307
308	memset(cmem->ranges, 0, sizeof(cmem->ranges));
309
310	cmem->ranges[0].start = mstart;
311	cmem->ranges[0].end = mend;
312	cmem->nr_ranges = 1;
313
314	/* Exclude crashkernel region */
315	ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
316	if (ret)
317		return ret;
318
319	if (crashk_low_res.end) {
320		ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end);
321		if (ret)
322			return ret;
323	}
324
325	return ret;
326}
327
328static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg)
329{
330	struct crash_elf_data *ced = arg;
331	Elf64_Ehdr *ehdr;
332	Elf64_Phdr *phdr;
333	unsigned long mstart, mend;
334	struct kimage *image = ced->image;
335	struct crash_mem *cmem;
336	int ret, i;
337
338	ehdr = ced->ehdr;
339
340	/* Exclude unwanted mem ranges */
341	ret = elf_header_exclude_ranges(ced, start, end);
342	if (ret)
343		return ret;
344
345	/* Go through all the ranges in ced->mem.ranges[] and prepare phdr */
346	cmem = &ced->mem;
347
348	for (i = 0; i < cmem->nr_ranges; i++) {
349		mstart = cmem->ranges[i].start;
350		mend = cmem->ranges[i].end;
351
352		phdr = ced->bufp;
353		ced->bufp += sizeof(Elf64_Phdr);
354
355		phdr->p_type = PT_LOAD;
356		phdr->p_flags = PF_R|PF_W|PF_X;
357		phdr->p_offset  = mstart;
358
359		/*
360		 * If a range matches backup region, adjust offset to backup
361		 * segment.
362		 */
363		if (mstart == image->arch.backup_src_start &&
364		    (mend - mstart + 1) == image->arch.backup_src_sz)
365			phdr->p_offset = image->arch.backup_load_addr;
366
367		phdr->p_paddr = mstart;
368		phdr->p_vaddr = (unsigned long long) __va(mstart);
369		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
370		phdr->p_align = 0;
371		ehdr->e_phnum++;
372		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
373			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
374			ehdr->e_phnum, phdr->p_offset);
375	}
376
377	return ret;
378}
379
380static int prepare_elf64_headers(struct crash_elf_data *ced,
381		void **addr, unsigned long *sz)
382{
383	Elf64_Ehdr *ehdr;
384	Elf64_Phdr *phdr;
385	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
386	unsigned char *buf, *bufp;
387	unsigned int cpu;
388	unsigned long long notes_addr;
389	int ret;
390
391	/* extra phdr for vmcoreinfo elf note */
392	nr_phdr = nr_cpus + 1;
393	nr_phdr += ced->max_nr_ranges;
394
395	/*
396	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
397	 * area on x86_64 (ffffffff80000000 - ffffffffa0000000).
398	 * I think this is required by tools like gdb. So same physical
399	 * memory will be mapped in two elf headers. One will contain kernel
400	 * text virtual addresses and other will have __va(physical) addresses.
401	 */
402
403	nr_phdr++;
404	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
405	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
406
407	buf = vzalloc(elf_sz);
408	if (!buf)
409		return -ENOMEM;
410
411	bufp = buf;
412	ehdr = (Elf64_Ehdr *)bufp;
413	bufp += sizeof(Elf64_Ehdr);
414	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
415	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
416	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
417	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
418	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
419	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
420	ehdr->e_type = ET_CORE;
421	ehdr->e_machine = ELF_ARCH;
422	ehdr->e_version = EV_CURRENT;
423	ehdr->e_phoff = sizeof(Elf64_Ehdr);
424	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
425	ehdr->e_phentsize = sizeof(Elf64_Phdr);
426
427	/* Prepare one phdr of type PT_NOTE for each present cpu */
428	for_each_present_cpu(cpu) {
429		phdr = (Elf64_Phdr *)bufp;
430		bufp += sizeof(Elf64_Phdr);
431		phdr->p_type = PT_NOTE;
432		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
433		phdr->p_offset = phdr->p_paddr = notes_addr;
434		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
435		(ehdr->e_phnum)++;
436	}
437
438	/* Prepare one PT_NOTE header for vmcoreinfo */
439	phdr = (Elf64_Phdr *)bufp;
440	bufp += sizeof(Elf64_Phdr);
441	phdr->p_type = PT_NOTE;
442	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
443	phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note);
444	(ehdr->e_phnum)++;
445
446#ifdef CONFIG_X86_64
447	/* Prepare PT_LOAD type program header for kernel text region */
448	phdr = (Elf64_Phdr *)bufp;
449	bufp += sizeof(Elf64_Phdr);
450	phdr->p_type = PT_LOAD;
451	phdr->p_flags = PF_R|PF_W|PF_X;
452	phdr->p_vaddr = (Elf64_Addr)_text;
453	phdr->p_filesz = phdr->p_memsz = _end - _text;
454	phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
455	(ehdr->e_phnum)++;
456#endif
457
458	/* Prepare PT_LOAD headers for system ram chunks. */
459	ced->ehdr = ehdr;
460	ced->bufp = bufp;
461	ret = walk_system_ram_res(0, -1, ced,
462			prepare_elf64_ram_headers_callback);
463	if (ret < 0)
464		return ret;
465
466	*addr = buf;
467	*sz = elf_sz;
468	return 0;
469}
470
471/* Prepare elf headers. Return addr and size */
472static int prepare_elf_headers(struct kimage *image, void **addr,
473					unsigned long *sz)
474{
475	struct crash_elf_data *ced;
476	int ret;
477
478	ced = kzalloc(sizeof(*ced), GFP_KERNEL);
479	if (!ced)
480		return -ENOMEM;
481
482	fill_up_crash_elf_data(ced, image);
483
484	/* By default prepare 64bit headers */
485	ret =  prepare_elf64_headers(ced, addr, sz);
486	kfree(ced);
487	return ret;
488}
489
490static int add_e820_entry(struct boot_params *params, struct e820entry *entry)
491{
492	unsigned int nr_e820_entries;
493
494	nr_e820_entries = params->e820_entries;
495	if (nr_e820_entries >= E820MAX)
496		return 1;
497
498	memcpy(&params->e820_map[nr_e820_entries], entry,
499			sizeof(struct e820entry));
500	params->e820_entries++;
501	return 0;
502}
503
504static int memmap_entry_callback(u64 start, u64 end, void *arg)
505{
506	struct crash_memmap_data *cmd = arg;
507	struct boot_params *params = cmd->params;
508	struct e820entry ei;
509
510	ei.addr = start;
511	ei.size = end - start + 1;
512	ei.type = cmd->type;
513	add_e820_entry(params, &ei);
514
515	return 0;
516}
517
518static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
519				 unsigned long long mstart,
520				 unsigned long long mend)
521{
522	unsigned long start, end;
523	int ret = 0;
524
525	cmem->ranges[0].start = mstart;
526	cmem->ranges[0].end = mend;
527	cmem->nr_ranges = 1;
528
529	/* Exclude Backup region */
530	start = image->arch.backup_load_addr;
531	end = start + image->arch.backup_src_sz - 1;
532	ret = exclude_mem_range(cmem, start, end);
533	if (ret)
534		return ret;
535
536	/* Exclude elf header region */
537	start = image->arch.elf_load_addr;
538	end = start + image->arch.elf_headers_sz - 1;
539	return exclude_mem_range(cmem, start, end);
540}
541
542/* Prepare memory map for crash dump kernel */
543int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
544{
545	int i, ret = 0;
546	unsigned long flags;
547	struct e820entry ei;
548	struct crash_memmap_data cmd;
549	struct crash_mem *cmem;
550
551	cmem = vzalloc(sizeof(struct crash_mem));
552	if (!cmem)
553		return -ENOMEM;
554
555	memset(&cmd, 0, sizeof(struct crash_memmap_data));
556	cmd.params = params;
557
558	/* Add first 640K segment */
559	ei.addr = image->arch.backup_src_start;
560	ei.size = image->arch.backup_src_sz;
561	ei.type = E820_RAM;
562	add_e820_entry(params, &ei);
563
564	/* Add ACPI tables */
565	cmd.type = E820_ACPI;
566	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
567	walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd,
568		       memmap_entry_callback);
569
570	/* Add ACPI Non-volatile Storage */
571	cmd.type = E820_NVS;
572	walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd,
573			memmap_entry_callback);
574
575	/* Add crashk_low_res region */
576	if (crashk_low_res.end) {
577		ei.addr = crashk_low_res.start;
578		ei.size = crashk_low_res.end - crashk_low_res.start + 1;
579		ei.type = E820_RAM;
580		add_e820_entry(params, &ei);
581	}
582
583	/* Exclude some ranges from crashk_res and add rest to memmap */
584	ret = memmap_exclude_ranges(image, cmem, crashk_res.start,
585						crashk_res.end);
586	if (ret)
587		goto out;
588
589	for (i = 0; i < cmem->nr_ranges; i++) {
590		ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
591
592		/* If entry is less than a page, skip it */
593		if (ei.size < PAGE_SIZE)
594			continue;
595		ei.addr = cmem->ranges[i].start;
596		ei.type = E820_RAM;
597		add_e820_entry(params, &ei);
598	}
599
600out:
601	vfree(cmem);
602	return ret;
603}
604
605static int determine_backup_region(u64 start, u64 end, void *arg)
606{
607	struct kimage *image = arg;
608
609	image->arch.backup_src_start = start;
610	image->arch.backup_src_sz = end - start + 1;
611
612	/* Expecting only one range for backup region */
613	return 1;
614}
615
616int crash_load_segments(struct kimage *image)
617{
618	unsigned long src_start, src_sz, elf_sz;
619	void *elf_addr;
620	int ret;
621
622	/*
623	 * Determine and load a segment for backup area. First 640K RAM
624	 * region is backup source
625	 */
626
627	ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
628				image, determine_backup_region);
629
630	/* Zero or postive return values are ok */
631	if (ret < 0)
632		return ret;
633
634	src_start = image->arch.backup_src_start;
635	src_sz = image->arch.backup_src_sz;
636
637	/* Add backup segment. */
638	if (src_sz) {
639		/*
640		 * Ideally there is no source for backup segment. This is
641		 * copied in purgatory after crash. Just add a zero filled
642		 * segment for now to make sure checksum logic works fine.
643		 */
644		ret = kexec_add_buffer(image, (char *)&crash_zero_bytes,
645				       sizeof(crash_zero_bytes), src_sz,
646				       PAGE_SIZE, 0, -1, 0,
647				       &image->arch.backup_load_addr);
648		if (ret)
649			return ret;
650		pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
651			 image->arch.backup_load_addr, src_start, src_sz);
652	}
653
654	/* Prepare elf headers and add a segment */
655	ret = prepare_elf_headers(image, &elf_addr, &elf_sz);
656	if (ret)
657		return ret;
658
659	image->arch.elf_headers = elf_addr;
660	image->arch.elf_headers_sz = elf_sz;
661
662	ret = kexec_add_buffer(image, (char *)elf_addr, elf_sz, elf_sz,
663			ELF_CORE_HEADER_ALIGN, 0, -1, 0,
664			&image->arch.elf_load_addr);
665	if (ret) {
666		vfree((void *)image->arch.elf_headers);
667		return ret;
668	}
669	pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
670		 image->arch.elf_load_addr, elf_sz, elf_sz);
671
672	return ret;
673}
674#endif /* CONFIG_KEXEC_FILE */