Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1/*
  2 * Copyright (c) 2006 Oracle.  All rights reserved.
  3 *
  4 * This software is available to you under a choice of one of two
  5 * licenses.  You may choose to be licensed under the terms of the GNU
  6 * General Public License (GPL) Version 2, available from the file
  7 * COPYING in the main directory of this source tree, or the
  8 * OpenIB.org BSD license below:
  9 *
 10 *     Redistribution and use in source and binary forms, with or
 11 *     without modification, are permitted provided that the following
 12 *     conditions are met:
 13 *
 14 *      - Redistributions of source code must retain the above
 15 *        copyright notice, this list of conditions and the following
 16 *        disclaimer.
 17 *
 18 *      - Redistributions in binary form must reproduce the above
 19 *        copyright notice, this list of conditions and the following
 20 *        disclaimer in the documentation and/or other materials
 21 *        provided with the distribution.
 22 *
 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 30 * SOFTWARE.
 31 *
 32 */
 33#include <linux/kernel.h>
 34#include <linux/slab.h>
 35#include <linux/pci.h>
 36#include <linux/dma-mapping.h>
 37#include <rdma/rdma_cm.h>
 38
 39#include "rds.h"
 40#include "iw.h"
 41
 42static struct kmem_cache *rds_iw_incoming_slab;
 43static struct kmem_cache *rds_iw_frag_slab;
 44static atomic_t	rds_iw_allocation = ATOMIC_INIT(0);
 45
 46static void rds_iw_frag_drop_page(struct rds_page_frag *frag)
 47{
 48	rdsdebug("frag %p page %p\n", frag, frag->f_page);
 49	__free_page(frag->f_page);
 50	frag->f_page = NULL;
 51}
 52
 53static void rds_iw_frag_free(struct rds_page_frag *frag)
 54{
 55	rdsdebug("frag %p page %p\n", frag, frag->f_page);
 56	BUG_ON(frag->f_page);
 57	kmem_cache_free(rds_iw_frag_slab, frag);
 58}
 59
 60/*
 61 * We map a page at a time.  Its fragments are posted in order.  This
 62 * is called in fragment order as the fragments get send completion events.
 63 * Only the last frag in the page performs the unmapping.
 64 *
 65 * It's OK for ring cleanup to call this in whatever order it likes because
 66 * DMA is not in flight and so we can unmap while other ring entries still
 67 * hold page references in their frags.
 68 */
 69static void rds_iw_recv_unmap_page(struct rds_iw_connection *ic,
 70				   struct rds_iw_recv_work *recv)
 71{
 72	struct rds_page_frag *frag = recv->r_frag;
 73
 74	rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page);
 75	if (frag->f_mapped)
 76		ib_dma_unmap_page(ic->i_cm_id->device,
 77			       frag->f_mapped,
 78			       RDS_FRAG_SIZE, DMA_FROM_DEVICE);
 79	frag->f_mapped = 0;
 80}
 81
 82void rds_iw_recv_init_ring(struct rds_iw_connection *ic)
 83{
 84	struct rds_iw_recv_work *recv;
 85	u32 i;
 86
 87	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
 88		struct ib_sge *sge;
 89
 90		recv->r_iwinc = NULL;
 91		recv->r_frag = NULL;
 92
 93		recv->r_wr.next = NULL;
 94		recv->r_wr.wr_id = i;
 95		recv->r_wr.sg_list = recv->r_sge;
 96		recv->r_wr.num_sge = RDS_IW_RECV_SGE;
 97
 98		sge = rds_iw_data_sge(ic, recv->r_sge);
 99		sge->addr = 0;
100		sge->length = RDS_FRAG_SIZE;
101		sge->lkey = 0;
102
103		sge = rds_iw_header_sge(ic, recv->r_sge);
104		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
105		sge->length = sizeof(struct rds_header);
106		sge->lkey = 0;
107	}
108}
109
110static void rds_iw_recv_clear_one(struct rds_iw_connection *ic,
111				  struct rds_iw_recv_work *recv)
112{
113	if (recv->r_iwinc) {
114		rds_inc_put(&recv->r_iwinc->ii_inc);
115		recv->r_iwinc = NULL;
116	}
117	if (recv->r_frag) {
118		rds_iw_recv_unmap_page(ic, recv);
119		if (recv->r_frag->f_page)
120			rds_iw_frag_drop_page(recv->r_frag);
121		rds_iw_frag_free(recv->r_frag);
122		recv->r_frag = NULL;
123	}
124}
125
126void rds_iw_recv_clear_ring(struct rds_iw_connection *ic)
127{
128	u32 i;
129
130	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
131		rds_iw_recv_clear_one(ic, &ic->i_recvs[i]);
132
133	if (ic->i_frag.f_page)
134		rds_iw_frag_drop_page(&ic->i_frag);
135}
136
137static int rds_iw_recv_refill_one(struct rds_connection *conn,
138				  struct rds_iw_recv_work *recv,
139				  gfp_t kptr_gfp, gfp_t page_gfp)
140{
141	struct rds_iw_connection *ic = conn->c_transport_data;
142	dma_addr_t dma_addr;
143	struct ib_sge *sge;
144	int ret = -ENOMEM;
145
146	if (!recv->r_iwinc) {
147		if (!atomic_add_unless(&rds_iw_allocation, 1, rds_iw_sysctl_max_recv_allocation)) {
148			rds_iw_stats_inc(s_iw_rx_alloc_limit);
149			goto out;
150		}
151		recv->r_iwinc = kmem_cache_alloc(rds_iw_incoming_slab,
152						 kptr_gfp);
153		if (!recv->r_iwinc) {
154			atomic_dec(&rds_iw_allocation);
155			goto out;
156		}
157		INIT_LIST_HEAD(&recv->r_iwinc->ii_frags);
158		rds_inc_init(&recv->r_iwinc->ii_inc, conn, conn->c_faddr);
159	}
160
161	if (!recv->r_frag) {
162		recv->r_frag = kmem_cache_alloc(rds_iw_frag_slab, kptr_gfp);
163		if (!recv->r_frag)
164			goto out;
165		INIT_LIST_HEAD(&recv->r_frag->f_item);
166		recv->r_frag->f_page = NULL;
167	}
168
169	if (!ic->i_frag.f_page) {
170		ic->i_frag.f_page = alloc_page(page_gfp);
171		if (!ic->i_frag.f_page)
172			goto out;
173		ic->i_frag.f_offset = 0;
174	}
175
176	dma_addr = ib_dma_map_page(ic->i_cm_id->device,
177				  ic->i_frag.f_page,
178				  ic->i_frag.f_offset,
179				  RDS_FRAG_SIZE,
180				  DMA_FROM_DEVICE);
181	if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr))
182		goto out;
183
184	/*
185	 * Once we get the RDS_PAGE_LAST_OFF frag then rds_iw_frag_unmap()
186	 * must be called on this recv.  This happens as completions hit
187	 * in order or on connection shutdown.
188	 */
189	recv->r_frag->f_page = ic->i_frag.f_page;
190	recv->r_frag->f_offset = ic->i_frag.f_offset;
191	recv->r_frag->f_mapped = dma_addr;
192
193	sge = rds_iw_data_sge(ic, recv->r_sge);
194	sge->addr = dma_addr;
195	sge->length = RDS_FRAG_SIZE;
196
197	sge = rds_iw_header_sge(ic, recv->r_sge);
198	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
199	sge->length = sizeof(struct rds_header);
200
201	get_page(recv->r_frag->f_page);
202
203	if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) {
204		ic->i_frag.f_offset += RDS_FRAG_SIZE;
205	} else {
206		put_page(ic->i_frag.f_page);
207		ic->i_frag.f_page = NULL;
208		ic->i_frag.f_offset = 0;
209	}
210
211	ret = 0;
212out:
213	return ret;
214}
215
216/*
217 * This tries to allocate and post unused work requests after making sure that
218 * they have all the allocations they need to queue received fragments into
219 * sockets.  The i_recv_mutex is held here so that ring_alloc and _unalloc
220 * pairs don't go unmatched.
221 *
222 * -1 is returned if posting fails due to temporary resource exhaustion.
223 */
224int rds_iw_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp,
225		       gfp_t page_gfp, int prefill)
226{
227	struct rds_iw_connection *ic = conn->c_transport_data;
228	struct rds_iw_recv_work *recv;
229	struct ib_recv_wr *failed_wr;
230	unsigned int posted = 0;
231	int ret = 0;
232	u32 pos;
233
234	while ((prefill || rds_conn_up(conn)) &&
235	       rds_iw_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
236		if (pos >= ic->i_recv_ring.w_nr) {
237			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
238					pos);
239			ret = -EINVAL;
240			break;
241		}
242
243		recv = &ic->i_recvs[pos];
244		ret = rds_iw_recv_refill_one(conn, recv, kptr_gfp, page_gfp);
245		if (ret) {
246			ret = -1;
247			break;
248		}
249
250		/* XXX when can this fail? */
251		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
252		rdsdebug("recv %p iwinc %p page %p addr %lu ret %d\n", recv,
253			 recv->r_iwinc, recv->r_frag->f_page,
254			 (long) recv->r_frag->f_mapped, ret);
255		if (ret) {
256			rds_iw_conn_error(conn, "recv post on "
257			       "%pI4 returned %d, disconnecting and "
258			       "reconnecting\n", &conn->c_faddr,
259			       ret);
260			ret = -1;
261			break;
262		}
263
264		posted++;
265	}
266
267	/* We're doing flow control - update the window. */
268	if (ic->i_flowctl && posted)
269		rds_iw_advertise_credits(conn, posted);
270
271	if (ret)
272		rds_iw_ring_unalloc(&ic->i_recv_ring, 1);
273	return ret;
274}
275
276static void rds_iw_inc_purge(struct rds_incoming *inc)
277{
278	struct rds_iw_incoming *iwinc;
279	struct rds_page_frag *frag;
280	struct rds_page_frag *pos;
281
282	iwinc = container_of(inc, struct rds_iw_incoming, ii_inc);
283	rdsdebug("purging iwinc %p inc %p\n", iwinc, inc);
284
285	list_for_each_entry_safe(frag, pos, &iwinc->ii_frags, f_item) {
286		list_del_init(&frag->f_item);
287		rds_iw_frag_drop_page(frag);
288		rds_iw_frag_free(frag);
289	}
290}
291
292void rds_iw_inc_free(struct rds_incoming *inc)
293{
294	struct rds_iw_incoming *iwinc;
295
296	iwinc = container_of(inc, struct rds_iw_incoming, ii_inc);
297
298	rds_iw_inc_purge(inc);
299	rdsdebug("freeing iwinc %p inc %p\n", iwinc, inc);
300	BUG_ON(!list_empty(&iwinc->ii_frags));
301	kmem_cache_free(rds_iw_incoming_slab, iwinc);
302	atomic_dec(&rds_iw_allocation);
303	BUG_ON(atomic_read(&rds_iw_allocation) < 0);
304}
305
306int rds_iw_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
307			    size_t size)
308{
309	struct rds_iw_incoming *iwinc;
310	struct rds_page_frag *frag;
311	struct iovec *iov = first_iov;
312	unsigned long to_copy;
313	unsigned long frag_off = 0;
314	unsigned long iov_off = 0;
315	int copied = 0;
316	int ret;
317	u32 len;
318
319	iwinc = container_of(inc, struct rds_iw_incoming, ii_inc);
320	frag = list_entry(iwinc->ii_frags.next, struct rds_page_frag, f_item);
321	len = be32_to_cpu(inc->i_hdr.h_len);
322
323	while (copied < size && copied < len) {
324		if (frag_off == RDS_FRAG_SIZE) {
325			frag = list_entry(frag->f_item.next,
326					  struct rds_page_frag, f_item);
327			frag_off = 0;
328		}
329		while (iov_off == iov->iov_len) {
330			iov_off = 0;
331			iov++;
332		}
333
334		to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
335		to_copy = min_t(size_t, to_copy, size - copied);
336		to_copy = min_t(unsigned long, to_copy, len - copied);
337
338		rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
339			 "[%p, %lu] + %lu\n",
340			 to_copy, iov->iov_base, iov->iov_len, iov_off,
341			 frag->f_page, frag->f_offset, frag_off);
342
343		/* XXX needs + offset for multiple recvs per page */
344		ret = rds_page_copy_to_user(frag->f_page,
345					    frag->f_offset + frag_off,
346					    iov->iov_base + iov_off,
347					    to_copy);
348		if (ret) {
349			copied = ret;
350			break;
351		}
352
353		iov_off += to_copy;
354		frag_off += to_copy;
355		copied += to_copy;
356	}
357
358	return copied;
359}
360
361/* ic starts out kzalloc()ed */
362void rds_iw_recv_init_ack(struct rds_iw_connection *ic)
363{
364	struct ib_send_wr *wr = &ic->i_ack_wr;
365	struct ib_sge *sge = &ic->i_ack_sge;
366
367	sge->addr = ic->i_ack_dma;
368	sge->length = sizeof(struct rds_header);
369	sge->lkey = rds_iw_local_dma_lkey(ic);
370
371	wr->sg_list = sge;
372	wr->num_sge = 1;
373	wr->opcode = IB_WR_SEND;
374	wr->wr_id = RDS_IW_ACK_WR_ID;
375	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
376}
377
378/*
379 * You'd think that with reliable IB connections you wouldn't need to ack
380 * messages that have been received.  The problem is that IB hardware generates
381 * an ack message before it has DMAed the message into memory.  This creates a
382 * potential message loss if the HCA is disabled for any reason between when it
383 * sends the ack and before the message is DMAed and processed.  This is only a
384 * potential issue if another HCA is available for fail-over.
385 *
386 * When the remote host receives our ack they'll free the sent message from
387 * their send queue.  To decrease the latency of this we always send an ack
388 * immediately after we've received messages.
389 *
390 * For simplicity, we only have one ack in flight at a time.  This puts
391 * pressure on senders to have deep enough send queues to absorb the latency of
392 * a single ack frame being in flight.  This might not be good enough.
393 *
394 * This is implemented by have a long-lived send_wr and sge which point to a
395 * statically allocated ack frame.  This ack wr does not fall under the ring
396 * accounting that the tx and rx wrs do.  The QP attribute specifically makes
397 * room for it beyond the ring size.  Send completion notices its special
398 * wr_id and avoids working with the ring in that case.
399 */
400#ifndef KERNEL_HAS_ATOMIC64
401static void rds_iw_set_ack(struct rds_iw_connection *ic, u64 seq,
402				int ack_required)
403{
404	unsigned long flags;
405
406	spin_lock_irqsave(&ic->i_ack_lock, flags);
407	ic->i_ack_next = seq;
408	if (ack_required)
409		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
410	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
411}
412
413static u64 rds_iw_get_ack(struct rds_iw_connection *ic)
414{
415	unsigned long flags;
416	u64 seq;
417
418	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
419
420	spin_lock_irqsave(&ic->i_ack_lock, flags);
421	seq = ic->i_ack_next;
422	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
423
424	return seq;
425}
426#else
427static void rds_iw_set_ack(struct rds_iw_connection *ic, u64 seq,
428				int ack_required)
429{
430	atomic64_set(&ic->i_ack_next, seq);
431	if (ack_required) {
432		smp_mb__before_clear_bit();
433		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
434	}
435}
436
437static u64 rds_iw_get_ack(struct rds_iw_connection *ic)
438{
439	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
440	smp_mb__after_clear_bit();
441
442	return atomic64_read(&ic->i_ack_next);
443}
444#endif
445
446
447static void rds_iw_send_ack(struct rds_iw_connection *ic, unsigned int adv_credits)
448{
449	struct rds_header *hdr = ic->i_ack;
450	struct ib_send_wr *failed_wr;
451	u64 seq;
452	int ret;
453
454	seq = rds_iw_get_ack(ic);
455
456	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
457	rds_message_populate_header(hdr, 0, 0, 0);
458	hdr->h_ack = cpu_to_be64(seq);
459	hdr->h_credit = adv_credits;
460	rds_message_make_checksum(hdr);
461	ic->i_ack_queued = jiffies;
462
463	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
464	if (unlikely(ret)) {
465		/* Failed to send. Release the WR, and
466		 * force another ACK.
467		 */
468		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
469		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
470
471		rds_iw_stats_inc(s_iw_ack_send_failure);
472
473		rds_iw_conn_error(ic->conn, "sending ack failed\n");
474	} else
475		rds_iw_stats_inc(s_iw_ack_sent);
476}
477
478/*
479 * There are 3 ways of getting acknowledgements to the peer:
480 *  1.	We call rds_iw_attempt_ack from the recv completion handler
481 *	to send an ACK-only frame.
482 *	However, there can be only one such frame in the send queue
483 *	at any time, so we may have to postpone it.
484 *  2.	When another (data) packet is transmitted while there's
485 *	an ACK in the queue, we piggyback the ACK sequence number
486 *	on the data packet.
487 *  3.	If the ACK WR is done sending, we get called from the
488 *	send queue completion handler, and check whether there's
489 *	another ACK pending (postponed because the WR was on the
490 *	queue). If so, we transmit it.
491 *
492 * We maintain 2 variables:
493 *  -	i_ack_flags, which keeps track of whether the ACK WR
494 *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
495 *  -	i_ack_next, which is the last sequence number we received
496 *
497 * Potentially, send queue and receive queue handlers can run concurrently.
498 * It would be nice to not have to use a spinlock to synchronize things,
499 * but the one problem that rules this out is that 64bit updates are
500 * not atomic on all platforms. Things would be a lot simpler if
501 * we had atomic64 or maybe cmpxchg64 everywhere.
502 *
503 * Reconnecting complicates this picture just slightly. When we
504 * reconnect, we may be seeing duplicate packets. The peer
505 * is retransmitting them, because it hasn't seen an ACK for
506 * them. It is important that we ACK these.
507 *
508 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
509 * this flag set *MUST* be acknowledged immediately.
510 */
511
512/*
513 * When we get here, we're called from the recv queue handler.
514 * Check whether we ought to transmit an ACK.
515 */
516void rds_iw_attempt_ack(struct rds_iw_connection *ic)
517{
518	unsigned int adv_credits;
519
520	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
521		return;
522
523	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
524		rds_iw_stats_inc(s_iw_ack_send_delayed);
525		return;
526	}
527
528	/* Can we get a send credit? */
529	if (!rds_iw_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
530		rds_iw_stats_inc(s_iw_tx_throttle);
531		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
532		return;
533	}
534
535	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
536	rds_iw_send_ack(ic, adv_credits);
537}
538
539/*
540 * We get here from the send completion handler, when the
541 * adapter tells us the ACK frame was sent.
542 */
543void rds_iw_ack_send_complete(struct rds_iw_connection *ic)
544{
545	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
546	rds_iw_attempt_ack(ic);
547}
548
549/*
550 * This is called by the regular xmit code when it wants to piggyback
551 * an ACK on an outgoing frame.
552 */
553u64 rds_iw_piggyb_ack(struct rds_iw_connection *ic)
554{
555	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
556		rds_iw_stats_inc(s_iw_ack_send_piggybacked);
557	return rds_iw_get_ack(ic);
558}
559
560/*
561 * It's kind of lame that we're copying from the posted receive pages into
562 * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
563 * them.  But receiving new congestion bitmaps should be a *rare* event, so
564 * hopefully we won't need to invest that complexity in making it more
565 * efficient.  By copying we can share a simpler core with TCP which has to
566 * copy.
567 */
568static void rds_iw_cong_recv(struct rds_connection *conn,
569			      struct rds_iw_incoming *iwinc)
570{
571	struct rds_cong_map *map;
572	unsigned int map_off;
573	unsigned int map_page;
574	struct rds_page_frag *frag;
575	unsigned long frag_off;
576	unsigned long to_copy;
577	unsigned long copied;
578	uint64_t uncongested = 0;
579	void *addr;
580
581	/* catch completely corrupt packets */
582	if (be32_to_cpu(iwinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
583		return;
584
585	map = conn->c_fcong;
586	map_page = 0;
587	map_off = 0;
588
589	frag = list_entry(iwinc->ii_frags.next, struct rds_page_frag, f_item);
590	frag_off = 0;
591
592	copied = 0;
593
594	while (copied < RDS_CONG_MAP_BYTES) {
595		uint64_t *src, *dst;
596		unsigned int k;
597
598		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
599		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
600
601		addr = kmap_atomic(frag->f_page);
602
603		src = addr + frag_off;
604		dst = (void *)map->m_page_addrs[map_page] + map_off;
605		for (k = 0; k < to_copy; k += 8) {
606			/* Record ports that became uncongested, ie
607			 * bits that changed from 0 to 1. */
608			uncongested |= ~(*src) & *dst;
609			*dst++ = *src++;
610		}
611		kunmap_atomic(addr);
612
613		copied += to_copy;
614
615		map_off += to_copy;
616		if (map_off == PAGE_SIZE) {
617			map_off = 0;
618			map_page++;
619		}
620
621		frag_off += to_copy;
622		if (frag_off == RDS_FRAG_SIZE) {
623			frag = list_entry(frag->f_item.next,
624					  struct rds_page_frag, f_item);
625			frag_off = 0;
626		}
627	}
628
629	/* the congestion map is in little endian order */
630	uncongested = le64_to_cpu(uncongested);
631
632	rds_cong_map_updated(map, uncongested);
633}
634
635/*
636 * Rings are posted with all the allocations they'll need to queue the
637 * incoming message to the receiving socket so this can't fail.
638 * All fragments start with a header, so we can make sure we're not receiving
639 * garbage, and we can tell a small 8 byte fragment from an ACK frame.
640 */
641struct rds_iw_ack_state {
642	u64		ack_next;
643	u64		ack_recv;
644	unsigned int	ack_required:1;
645	unsigned int	ack_next_valid:1;
646	unsigned int	ack_recv_valid:1;
647};
648
649static void rds_iw_process_recv(struct rds_connection *conn,
650				struct rds_iw_recv_work *recv, u32 byte_len,
651				struct rds_iw_ack_state *state)
652{
653	struct rds_iw_connection *ic = conn->c_transport_data;
654	struct rds_iw_incoming *iwinc = ic->i_iwinc;
655	struct rds_header *ihdr, *hdr;
656
657	/* XXX shut down the connection if port 0,0 are seen? */
658
659	rdsdebug("ic %p iwinc %p recv %p byte len %u\n", ic, iwinc, recv,
660		 byte_len);
661
662	if (byte_len < sizeof(struct rds_header)) {
663		rds_iw_conn_error(conn, "incoming message "
664		       "from %pI4 didn't include a "
665		       "header, disconnecting and "
666		       "reconnecting\n",
667		       &conn->c_faddr);
668		return;
669	}
670	byte_len -= sizeof(struct rds_header);
671
672	ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
673
674	/* Validate the checksum. */
675	if (!rds_message_verify_checksum(ihdr)) {
676		rds_iw_conn_error(conn, "incoming message "
677		       "from %pI4 has corrupted header - "
678		       "forcing a reconnect\n",
679		       &conn->c_faddr);
680		rds_stats_inc(s_recv_drop_bad_checksum);
681		return;
682	}
683
684	/* Process the ACK sequence which comes with every packet */
685	state->ack_recv = be64_to_cpu(ihdr->h_ack);
686	state->ack_recv_valid = 1;
687
688	/* Process the credits update if there was one */
689	if (ihdr->h_credit)
690		rds_iw_send_add_credits(conn, ihdr->h_credit);
691
692	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && byte_len == 0) {
693		/* This is an ACK-only packet. The fact that it gets
694		 * special treatment here is that historically, ACKs
695		 * were rather special beasts.
696		 */
697		rds_iw_stats_inc(s_iw_ack_received);
698
699		/*
700		 * Usually the frags make their way on to incs and are then freed as
701		 * the inc is freed.  We don't go that route, so we have to drop the
702		 * page ref ourselves.  We can't just leave the page on the recv
703		 * because that confuses the dma mapping of pages and each recv's use
704		 * of a partial page.  We can leave the frag, though, it will be
705		 * reused.
706		 *
707		 * FIXME: Fold this into the code path below.
708		 */
709		rds_iw_frag_drop_page(recv->r_frag);
710		return;
711	}
712
713	/*
714	 * If we don't already have an inc on the connection then this
715	 * fragment has a header and starts a message.. copy its header
716	 * into the inc and save the inc so we can hang upcoming fragments
717	 * off its list.
718	 */
719	if (!iwinc) {
720		iwinc = recv->r_iwinc;
721		recv->r_iwinc = NULL;
722		ic->i_iwinc = iwinc;
723
724		hdr = &iwinc->ii_inc.i_hdr;
725		memcpy(hdr, ihdr, sizeof(*hdr));
726		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
727
728		rdsdebug("ic %p iwinc %p rem %u flag 0x%x\n", ic, iwinc,
729			 ic->i_recv_data_rem, hdr->h_flags);
730	} else {
731		hdr = &iwinc->ii_inc.i_hdr;
732		/* We can't just use memcmp here; fragments of a
733		 * single message may carry different ACKs */
734		if (hdr->h_sequence != ihdr->h_sequence ||
735		    hdr->h_len != ihdr->h_len ||
736		    hdr->h_sport != ihdr->h_sport ||
737		    hdr->h_dport != ihdr->h_dport) {
738			rds_iw_conn_error(conn,
739				"fragment header mismatch; forcing reconnect\n");
740			return;
741		}
742	}
743
744	list_add_tail(&recv->r_frag->f_item, &iwinc->ii_frags);
745	recv->r_frag = NULL;
746
747	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
748		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
749	else {
750		ic->i_recv_data_rem = 0;
751		ic->i_iwinc = NULL;
752
753		if (iwinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
754			rds_iw_cong_recv(conn, iwinc);
755		else {
756			rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
757					  &iwinc->ii_inc, GFP_ATOMIC);
758			state->ack_next = be64_to_cpu(hdr->h_sequence);
759			state->ack_next_valid = 1;
760		}
761
762		/* Evaluate the ACK_REQUIRED flag *after* we received
763		 * the complete frame, and after bumping the next_rx
764		 * sequence. */
765		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
766			rds_stats_inc(s_recv_ack_required);
767			state->ack_required = 1;
768		}
769
770		rds_inc_put(&iwinc->ii_inc);
771	}
772}
773
774/*
775 * Plucking the oldest entry from the ring can be done concurrently with
776 * the thread refilling the ring.  Each ring operation is protected by
777 * spinlocks and the transient state of refilling doesn't change the
778 * recording of which entry is oldest.
779 *
780 * This relies on IB only calling one cq comp_handler for each cq so that
781 * there will only be one caller of rds_recv_incoming() per RDS connection.
782 */
783void rds_iw_recv_cq_comp_handler(struct ib_cq *cq, void *context)
784{
785	struct rds_connection *conn = context;
786	struct rds_iw_connection *ic = conn->c_transport_data;
787
788	rdsdebug("conn %p cq %p\n", conn, cq);
789
790	rds_iw_stats_inc(s_iw_rx_cq_call);
791
792	tasklet_schedule(&ic->i_recv_tasklet);
793}
794
795static inline void rds_poll_cq(struct rds_iw_connection *ic,
796			       struct rds_iw_ack_state *state)
797{
798	struct rds_connection *conn = ic->conn;
799	struct ib_wc wc;
800	struct rds_iw_recv_work *recv;
801
802	while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
803		rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
804			 (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
805			 be32_to_cpu(wc.ex.imm_data));
806		rds_iw_stats_inc(s_iw_rx_cq_event);
807
808		recv = &ic->i_recvs[rds_iw_ring_oldest(&ic->i_recv_ring)];
809
810		rds_iw_recv_unmap_page(ic, recv);
811
812		/*
813		 * Also process recvs in connecting state because it is possible
814		 * to get a recv completion _before_ the rdmacm ESTABLISHED
815		 * event is processed.
816		 */
817		if (rds_conn_up(conn) || rds_conn_connecting(conn)) {
818			/* We expect errors as the qp is drained during shutdown */
819			if (wc.status == IB_WC_SUCCESS) {
820				rds_iw_process_recv(conn, recv, wc.byte_len, state);
821			} else {
822				rds_iw_conn_error(conn, "recv completion on "
823				       "%pI4 had status %u, disconnecting and "
824				       "reconnecting\n", &conn->c_faddr,
825				       wc.status);
826			}
827		}
828
829		rds_iw_ring_free(&ic->i_recv_ring, 1);
830	}
831}
832
833void rds_iw_recv_tasklet_fn(unsigned long data)
834{
835	struct rds_iw_connection *ic = (struct rds_iw_connection *) data;
836	struct rds_connection *conn = ic->conn;
837	struct rds_iw_ack_state state = { 0, };
838
839	rds_poll_cq(ic, &state);
840	ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
841	rds_poll_cq(ic, &state);
842
843	if (state.ack_next_valid)
844		rds_iw_set_ack(ic, state.ack_next, state.ack_required);
845	if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
846		rds_send_drop_acked(conn, state.ack_recv, NULL);
847		ic->i_ack_recv = state.ack_recv;
848	}
849	if (rds_conn_up(conn))
850		rds_iw_attempt_ack(ic);
851
852	/* If we ever end up with a really empty receive ring, we're
853	 * in deep trouble, as the sender will definitely see RNR
854	 * timeouts. */
855	if (rds_iw_ring_empty(&ic->i_recv_ring))
856		rds_iw_stats_inc(s_iw_rx_ring_empty);
857
858	/*
859	 * If the ring is running low, then schedule the thread to refill.
860	 */
861	if (rds_iw_ring_low(&ic->i_recv_ring))
862		queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
863}
864
865int rds_iw_recv(struct rds_connection *conn)
866{
867	struct rds_iw_connection *ic = conn->c_transport_data;
868	int ret = 0;
869
870	rdsdebug("conn %p\n", conn);
871
872	/*
873	 * If we get a temporary posting failure in this context then
874	 * we're really low and we want the caller to back off for a bit.
875	 */
876	mutex_lock(&ic->i_recv_mutex);
877	if (rds_iw_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0))
878		ret = -ENOMEM;
879	else
880		rds_iw_stats_inc(s_iw_rx_refill_from_thread);
881	mutex_unlock(&ic->i_recv_mutex);
882
883	if (rds_conn_up(conn))
884		rds_iw_attempt_ack(ic);
885
886	return ret;
887}
888
889int rds_iw_recv_init(void)
890{
891	struct sysinfo si;
892	int ret = -ENOMEM;
893
894	/* Default to 30% of all available RAM for recv memory */
895	si_meminfo(&si);
896	rds_iw_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
897
898	rds_iw_incoming_slab = kmem_cache_create("rds_iw_incoming",
899					sizeof(struct rds_iw_incoming),
900					0, 0, NULL);
901	if (!rds_iw_incoming_slab)
902		goto out;
903
904	rds_iw_frag_slab = kmem_cache_create("rds_iw_frag",
905					sizeof(struct rds_page_frag),
906					0, 0, NULL);
907	if (!rds_iw_frag_slab)
908		kmem_cache_destroy(rds_iw_incoming_slab);
909	else
910		ret = 0;
911out:
912	return ret;
913}
914
915void rds_iw_recv_exit(void)
916{
917	kmem_cache_destroy(rds_iw_incoming_slab);
918	kmem_cache_destroy(rds_iw_frag_slab);
919}