Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 *  linux/kernel/time/tick-sched.c
  3 *
  4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
  7 *
  8 *  No idle tick implementation for low and high resolution timers
  9 *
 10 *  Started by: Thomas Gleixner and Ingo Molnar
 11 *
 12 *  Distribute under GPLv2.
 13 */
 14#include <linux/cpu.h>
 15#include <linux/err.h>
 16#include <linux/hrtimer.h>
 17#include <linux/interrupt.h>
 18#include <linux/kernel_stat.h>
 19#include <linux/percpu.h>
 
 20#include <linux/profile.h>
 21#include <linux/sched.h>
 
 
 
 22#include <linux/module.h>
 
 
 
 
 23
 24#include <asm/irq_regs.h>
 25
 26#include "tick-internal.h"
 27
 28/*
 29 * Per cpu nohz control structure
 30 */
 31static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
 32
 33/*
 34 * The time, when the last jiffy update happened. Protected by xtime_lock.
 35 */
 36static ktime_t last_jiffies_update;
 37
 38struct tick_sched *tick_get_tick_sched(int cpu)
 39{
 40	return &per_cpu(tick_cpu_sched, cpu);
 41}
 42
 
 
 
 
 
 
 43/*
 44 * Must be called with interrupts disabled !
 45 */
 46static void tick_do_update_jiffies64(ktime_t now)
 47{
 48	unsigned long ticks = 0;
 49	ktime_t delta;
 50
 51	/*
 52	 * Do a quick check without holding xtime_lock:
 53	 */
 54	delta = ktime_sub(now, last_jiffies_update);
 55	if (delta.tv64 < tick_period.tv64)
 56		return;
 57
 58	/* Reevalute with xtime_lock held */
 59	write_seqlock(&xtime_lock);
 60
 61	delta = ktime_sub(now, last_jiffies_update);
 62	if (delta.tv64 >= tick_period.tv64) {
 63
 64		delta = ktime_sub(delta, tick_period);
 65		last_jiffies_update = ktime_add(last_jiffies_update,
 66						tick_period);
 67
 68		/* Slow path for long timeouts */
 69		if (unlikely(delta.tv64 >= tick_period.tv64)) {
 70			s64 incr = ktime_to_ns(tick_period);
 71
 72			ticks = ktime_divns(delta, incr);
 73
 74			last_jiffies_update = ktime_add_ns(last_jiffies_update,
 75							   incr * ticks);
 76		}
 77		do_timer(++ticks);
 78
 79		/* Keep the tick_next_period variable up to date */
 80		tick_next_period = ktime_add(last_jiffies_update, tick_period);
 
 
 
 81	}
 82	write_sequnlock(&xtime_lock);
 
 83}
 84
 85/*
 86 * Initialize and return retrieve the jiffies update.
 87 */
 88static ktime_t tick_init_jiffy_update(void)
 89{
 90	ktime_t period;
 91
 92	write_seqlock(&xtime_lock);
 93	/* Did we start the jiffies update yet ? */
 94	if (last_jiffies_update.tv64 == 0)
 95		last_jiffies_update = tick_next_period;
 96	period = last_jiffies_update;
 97	write_sequnlock(&xtime_lock);
 98	return period;
 99}
100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101/*
102 * NOHZ - aka dynamic tick functionality
103 */
104#ifdef CONFIG_NO_HZ
105/*
106 * NO HZ enabled ?
107 */
108static int tick_nohz_enabled __read_mostly  = 1;
109
110/*
111 * Enable / Disable tickless mode
112 */
113static int __init setup_tick_nohz(char *str)
114{
115	if (!strcmp(str, "off"))
116		tick_nohz_enabled = 0;
117	else if (!strcmp(str, "on"))
118		tick_nohz_enabled = 1;
119	else
120		return 0;
121	return 1;
122}
123
124__setup("nohz=", setup_tick_nohz);
125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126/**
127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
128 *
129 * Called from interrupt entry when the CPU was idle
130 *
131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132 * must be updated. Otherwise an interrupt handler could use a stale jiffy
133 * value. We do this unconditionally on any cpu, as we don't know whether the
134 * cpu, which has the update task assigned is in a long sleep.
135 */
136static void tick_nohz_update_jiffies(ktime_t now)
137{
138	int cpu = smp_processor_id();
139	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140	unsigned long flags;
141
142	ts->idle_waketime = now;
143
144	local_irq_save(flags);
145	tick_do_update_jiffies64(now);
146	local_irq_restore(flags);
147
148	calc_load_exit_idle();
149	touch_softlockup_watchdog();
150}
151
152/*
153 * Updates the per cpu time idle statistics counters
154 */
155static void
156update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
157{
158	ktime_t delta;
159
160	if (ts->idle_active) {
161		delta = ktime_sub(now, ts->idle_entrytime);
162		if (nr_iowait_cpu(cpu) > 0)
163			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
164		else
165			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
166		ts->idle_entrytime = now;
167	}
168
169	if (last_update_time)
170		*last_update_time = ktime_to_us(now);
171
172}
173
174static void tick_nohz_stop_idle(int cpu, ktime_t now)
175{
176	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
177
178	update_ts_time_stats(cpu, ts, now, NULL);
179	ts->idle_active = 0;
180
181	sched_clock_idle_wakeup_event(0);
182}
183
184static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
185{
186	ktime_t now = ktime_get();
187
188	ts->idle_entrytime = now;
189	ts->idle_active = 1;
190	sched_clock_idle_sleep_event();
191	return now;
192}
193
194/**
195 * get_cpu_idle_time_us - get the total idle time of a cpu
196 * @cpu: CPU number to query
197 * @last_update_time: variable to store update time in. Do not update
198 * counters if NULL.
199 *
200 * Return the cummulative idle time (since boot) for a given
201 * CPU, in microseconds.
202 *
203 * This time is measured via accounting rather than sampling,
204 * and is as accurate as ktime_get() is.
205 *
206 * This function returns -1 if NOHZ is not enabled.
207 */
208u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
209{
210	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
211	ktime_t now, idle;
212
213	if (!tick_nohz_enabled)
214		return -1;
215
216	now = ktime_get();
217	if (last_update_time) {
218		update_ts_time_stats(cpu, ts, now, last_update_time);
219		idle = ts->idle_sleeptime;
220	} else {
221		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
222			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
223
224			idle = ktime_add(ts->idle_sleeptime, delta);
225		} else {
226			idle = ts->idle_sleeptime;
227		}
228	}
229
230	return ktime_to_us(idle);
231
232}
233EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
234
235/**
236 * get_cpu_iowait_time_us - get the total iowait time of a cpu
237 * @cpu: CPU number to query
238 * @last_update_time: variable to store update time in. Do not update
239 * counters if NULL.
240 *
241 * Return the cummulative iowait time (since boot) for a given
242 * CPU, in microseconds.
243 *
244 * This time is measured via accounting rather than sampling,
245 * and is as accurate as ktime_get() is.
246 *
247 * This function returns -1 if NOHZ is not enabled.
248 */
249u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
250{
251	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
252	ktime_t now, iowait;
253
254	if (!tick_nohz_enabled)
255		return -1;
256
257	now = ktime_get();
258	if (last_update_time) {
259		update_ts_time_stats(cpu, ts, now, last_update_time);
260		iowait = ts->iowait_sleeptime;
261	} else {
262		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
263			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
264
265			iowait = ktime_add(ts->iowait_sleeptime, delta);
266		} else {
267			iowait = ts->iowait_sleeptime;
268		}
269	}
270
271	return ktime_to_us(iowait);
272}
273EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
274
275static void tick_nohz_stop_sched_tick(struct tick_sched *ts)
276{
277	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
278	unsigned long rcu_delta_jiffies;
279	ktime_t last_update, expires, now;
280	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
281	u64 time_delta;
282	int cpu;
283
284	cpu = smp_processor_id();
285	ts = &per_cpu(tick_cpu_sched, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286
287	now = tick_nohz_start_idle(cpu, ts);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288
 
 
289	/*
290	 * If this cpu is offline and it is the one which updates
291	 * jiffies, then give up the assignment and let it be taken by
292	 * the cpu which runs the tick timer next. If we don't drop
293	 * this here the jiffies might be stale and do_timer() never
294	 * invoked.
295	 */
296	if (unlikely(!cpu_online(cpu))) {
297		if (cpu == tick_do_timer_cpu)
298			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 
 
 
 
 
 
299	}
300
301	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
302		return;
303
304	if (need_resched())
305		return;
306
307	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
308		static int ratelimit;
309
310		if (ratelimit < 10) {
311			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
312			       (unsigned int) local_softirq_pending());
 
313			ratelimit++;
314		}
315		return;
316	}
317
318	ts->idle_calls++;
319	/* Read jiffies and the time when jiffies were updated last */
320	do {
321		seq = read_seqbegin(&xtime_lock);
322		last_update = last_jiffies_update;
323		last_jiffies = jiffies;
324		time_delta = timekeeping_max_deferment();
325	} while (read_seqretry(&xtime_lock, seq));
326
327	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || printk_needs_cpu(cpu) ||
328	    arch_needs_cpu(cpu)) {
329		next_jiffies = last_jiffies + 1;
330		delta_jiffies = 1;
331	} else {
332		/* Get the next timer wheel timer */
333		next_jiffies = get_next_timer_interrupt(last_jiffies);
334		delta_jiffies = next_jiffies - last_jiffies;
335		if (rcu_delta_jiffies < delta_jiffies) {
336			next_jiffies = last_jiffies + rcu_delta_jiffies;
337			delta_jiffies = rcu_delta_jiffies;
338		}
339	}
340	/*
341	 * Do not stop the tick, if we are only one off
342	 * or if the cpu is required for rcu
343	 */
344	if (!ts->tick_stopped && delta_jiffies == 1)
345		goto out;
346
347	/* Schedule the tick, if we are at least one jiffie off */
348	if ((long)delta_jiffies >= 1) {
349
350		/*
351		 * If this cpu is the one which updates jiffies, then
352		 * give up the assignment and let it be taken by the
353		 * cpu which runs the tick timer next, which might be
354		 * this cpu as well. If we don't drop this here the
355		 * jiffies might be stale and do_timer() never
356		 * invoked. Keep track of the fact that it was the one
357		 * which had the do_timer() duty last. If this cpu is
358		 * the one which had the do_timer() duty last, we
359		 * limit the sleep time to the timekeeping
360		 * max_deferement value which we retrieved
361		 * above. Otherwise we can sleep as long as we want.
362		 */
363		if (cpu == tick_do_timer_cpu) {
364			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
365			ts->do_timer_last = 1;
366		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
367			time_delta = KTIME_MAX;
368			ts->do_timer_last = 0;
369		} else if (!ts->do_timer_last) {
370			time_delta = KTIME_MAX;
371		}
372
373		/*
374		 * calculate the expiry time for the next timer wheel
375		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
376		 * that there is no timer pending or at least extremely
377		 * far into the future (12 days for HZ=1000). In this
378		 * case we set the expiry to the end of time.
379		 */
380		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
381			/*
382			 * Calculate the time delta for the next timer event.
383			 * If the time delta exceeds the maximum time delta
384			 * permitted by the current clocksource then adjust
385			 * the time delta accordingly to ensure the
386			 * clocksource does not wrap.
387			 */
388			time_delta = min_t(u64, time_delta,
389					   tick_period.tv64 * delta_jiffies);
390		}
391
392		if (time_delta < KTIME_MAX)
393			expires = ktime_add_ns(last_update, time_delta);
394		else
395			expires.tv64 = KTIME_MAX;
396
397		/* Skip reprogram of event if its not changed */
398		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
399			goto out;
 
400
401		/*
402		 * nohz_stop_sched_tick can be called several times before
403		 * the nohz_restart_sched_tick is called. This happens when
404		 * interrupts arrive which do not cause a reschedule. In the
405		 * first call we save the current tick time, so we can restart
406		 * the scheduler tick in nohz_restart_sched_tick.
407		 */
408		if (!ts->tick_stopped) {
409			select_nohz_load_balancer(1);
410			calc_load_enter_idle();
411
412			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
413			ts->tick_stopped = 1;
414			ts->idle_jiffies = last_jiffies;
415		}
416
417		ts->idle_sleeps++;
 
418
419		/* Mark expires */
 
 
420		ts->idle_expires = expires;
421
422		/*
423		 * If the expiration time == KTIME_MAX, then
424		 * in this case we simply stop the tick timer.
425		 */
426		 if (unlikely(expires.tv64 == KTIME_MAX)) {
427			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
428				hrtimer_cancel(&ts->sched_timer);
429			goto out;
430		}
431
432		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
433			hrtimer_start(&ts->sched_timer, expires,
434				      HRTIMER_MODE_ABS_PINNED);
435			/* Check, if the timer was already in the past */
436			if (hrtimer_active(&ts->sched_timer))
437				goto out;
438		} else if (!tick_program_event(expires, 0))
439				goto out;
440		/*
441		 * We are past the event already. So we crossed a
442		 * jiffie boundary. Update jiffies and raise the
443		 * softirq.
444		 */
445		tick_do_update_jiffies64(ktime_get());
446	}
447	raise_softirq_irqoff(TIMER_SOFTIRQ);
448out:
449	ts->next_jiffies = next_jiffies;
450	ts->last_jiffies = last_jiffies;
451	ts->sleep_length = ktime_sub(dev->next_event, now);
452}
453
454/**
455 * tick_nohz_idle_enter - stop the idle tick from the idle task
456 *
457 * When the next event is more than a tick into the future, stop the idle tick
458 * Called when we start the idle loop.
459 *
460 * The arch is responsible of calling:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461 *
462 * - rcu_idle_enter() after its last use of RCU before the CPU is put
463 *  to sleep.
464 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
465 */
466void tick_nohz_idle_enter(void)
467{
468	struct tick_sched *ts;
469
470	WARN_ON_ONCE(irqs_disabled());
471
472	/*
473 	 * Update the idle state in the scheduler domain hierarchy
474 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
475 	 * State will be updated to busy during the first busy tick after
476 	 * exiting idle.
477 	 */
478	set_cpu_sd_state_idle();
479
480	local_irq_disable();
481
482	ts = &__get_cpu_var(tick_cpu_sched);
483	/*
484	 * set ts->inidle unconditionally. even if the system did not
485	 * switch to nohz mode the cpu frequency governers rely on the
486	 * update of the idle time accounting in tick_nohz_start_idle().
487	 */
488	ts->inidle = 1;
489	tick_nohz_stop_sched_tick(ts);
490
491	local_irq_enable();
492}
493
494/**
495 * tick_nohz_irq_exit - update next tick event from interrupt exit
496 *
497 * When an interrupt fires while we are idle and it doesn't cause
498 * a reschedule, it may still add, modify or delete a timer, enqueue
499 * an RCU callback, etc...
500 * So we need to re-calculate and reprogram the next tick event.
501 */
502void tick_nohz_irq_exit(void)
503{
504	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
505
506	if (!ts->inidle)
507		return;
 
 
 
508
509	tick_nohz_stop_sched_tick(ts);
 
 
 
 
 
 
 
 
 
 
 
510}
511
512/**
513 * tick_nohz_get_sleep_length - return the length of the current sleep
 
514 *
515 * Called from power state control code with interrupts disabled
516 */
517ktime_t tick_nohz_get_sleep_length(void)
518{
519	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 
 
 
 
 
 
 
 
520
521	return ts->sleep_length;
522}
523
524static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
525{
526	hrtimer_cancel(&ts->sched_timer);
527	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
528
529	while (1) {
530		/* Forward the time to expire in the future */
531		hrtimer_forward(&ts->sched_timer, now, tick_period);
532
533		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
534			hrtimer_start_expires(&ts->sched_timer,
535					      HRTIMER_MODE_ABS_PINNED);
536			/* Check, if the timer was already in the past */
537			if (hrtimer_active(&ts->sched_timer))
538				break;
539		} else {
540			if (!tick_program_event(
541				hrtimer_get_expires(&ts->sched_timer), 0))
542				break;
543		}
544		/* Reread time and update jiffies */
545		now = ktime_get();
546		tick_do_update_jiffies64(now);
547	}
548}
549
550/**
551 * tick_nohz_idle_exit - restart the idle tick from the idle task
 
552 *
553 * Restart the idle tick when the CPU is woken up from idle
554 * This also exit the RCU extended quiescent state. The CPU
555 * can use RCU again after this function is called.
556 */
557void tick_nohz_idle_exit(void)
558{
559	int cpu = smp_processor_id();
560	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
561#ifndef CONFIG_VIRT_CPU_ACCOUNTING
562	unsigned long ticks;
563#endif
564	ktime_t now;
565
566	local_irq_disable();
567
568	WARN_ON_ONCE(!ts->inidle);
569
570	ts->inidle = 0;
 
 
 
 
 
 
 
571
572	if (ts->idle_active || ts->tick_stopped)
573		now = ktime_get();
574
575	if (ts->idle_active)
576		tick_nohz_stop_idle(cpu, now);
 
 
577
578	if (!ts->tick_stopped) {
579		local_irq_enable();
580		return;
581	}
582
583	/* Update jiffies first */
584	select_nohz_load_balancer(0);
585	tick_do_update_jiffies64(now);
586	update_cpu_load_nohz();
587
588#ifndef CONFIG_VIRT_CPU_ACCOUNTING
589	/*
590	 * We stopped the tick in idle. Update process times would miss the
591	 * time we slept as update_process_times does only a 1 tick
592	 * accounting. Enforce that this is accounted to idle !
593	 */
594	ticks = jiffies - ts->idle_jiffies;
595	/*
596	 * We might be one off. Do not randomly account a huge number of ticks!
597	 */
598	if (ticks && ticks < LONG_MAX)
599		account_idle_ticks(ticks);
600#endif
 
601
602	calc_load_exit_idle();
603	touch_softlockup_watchdog();
604	/*
605	 * Cancel the scheduled timer and restore the tick
606	 */
607	ts->tick_stopped  = 0;
608	ts->idle_exittime = now;
609
610	tick_nohz_restart(ts, now);
 
 
611
612	local_irq_enable();
 
613}
614
615static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
 
 
 
 
 
 
 
616{
617	hrtimer_forward(&ts->sched_timer, now, tick_period);
618	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
619}
620
621/*
622 * The nohz low res interrupt handler
623 */
624static void tick_nohz_handler(struct clock_event_device *dev)
625{
626	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
627	struct pt_regs *regs = get_irq_regs();
628	int cpu = smp_processor_id();
629	ktime_t now = ktime_get();
630
631	dev->next_event.tv64 = KTIME_MAX;
632
633	/*
634	 * Check if the do_timer duty was dropped. We don't care about
635	 * concurrency: This happens only when the cpu in charge went
636	 * into a long sleep. If two cpus happen to assign themself to
637	 * this duty, then the jiffies update is still serialized by
638	 * xtime_lock.
639	 */
640	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
641		tick_do_timer_cpu = cpu;
642
643	/* Check, if the jiffies need an update */
644	if (tick_do_timer_cpu == cpu)
645		tick_do_update_jiffies64(now);
646
647	/*
648	 * When we are idle and the tick is stopped, we have to touch
649	 * the watchdog as we might not schedule for a really long
650	 * time. This happens on complete idle SMP systems while
651	 * waiting on the login prompt. We also increment the "start
652	 * of idle" jiffy stamp so the idle accounting adjustment we
653	 * do when we go busy again does not account too much ticks.
654	 */
655	if (ts->tick_stopped) {
656		touch_softlockup_watchdog();
657		ts->idle_jiffies++;
658	}
659
660	update_process_times(user_mode(regs));
661	profile_tick(CPU_PROFILING);
 
662
663	while (tick_nohz_reprogram(ts, now)) {
664		now = ktime_get();
665		tick_do_update_jiffies64(now);
666	}
 
 
 
 
667}
668
669/**
670 * tick_nohz_switch_to_nohz - switch to nohz mode
671 */
672static void tick_nohz_switch_to_nohz(void)
673{
674	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
675	ktime_t next;
676
677	if (!tick_nohz_enabled)
678		return;
679
680	local_irq_disable();
681	if (tick_switch_to_oneshot(tick_nohz_handler)) {
682		local_irq_enable();
683		return;
684	}
685
686	ts->nohz_mode = NOHZ_MODE_LOWRES;
687
688	/*
689	 * Recycle the hrtimer in ts, so we can share the
690	 * hrtimer_forward with the highres code.
691	 */
692	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
693	/* Get the next period */
694	next = tick_init_jiffy_update();
695
696	for (;;) {
697		hrtimer_set_expires(&ts->sched_timer, next);
698		if (!tick_program_event(next, 0))
699			break;
700		next = ktime_add(next, tick_period);
701	}
702	local_irq_enable();
703}
704
705/*
706 * When NOHZ is enabled and the tick is stopped, we need to kick the
707 * tick timer from irq_enter() so that the jiffies update is kept
708 * alive during long running softirqs. That's ugly as hell, but
709 * correctness is key even if we need to fix the offending softirq in
710 * the first place.
711 *
712 * Note, this is different to tick_nohz_restart. We just kick the
713 * timer and do not touch the other magic bits which need to be done
714 * when idle is left.
715 */
716static void tick_nohz_kick_tick(int cpu, ktime_t now)
717{
718#if 0
719	/* Switch back to 2.6.27 behaviour */
720
721	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
722	ktime_t delta;
723
724	/*
725	 * Do not touch the tick device, when the next expiry is either
726	 * already reached or less/equal than the tick period.
727	 */
728	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
729	if (delta.tv64 <= tick_period.tv64)
730		return;
731
732	tick_nohz_restart(ts, now);
733#endif
734}
735
736static inline void tick_check_nohz(int cpu)
737{
738	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
739	ktime_t now;
740
741	if (!ts->idle_active && !ts->tick_stopped)
742		return;
743	now = ktime_get();
744	if (ts->idle_active)
745		tick_nohz_stop_idle(cpu, now);
746	if (ts->tick_stopped) {
747		tick_nohz_update_jiffies(now);
748		tick_nohz_kick_tick(cpu, now);
749	}
750}
751
752#else
753
754static inline void tick_nohz_switch_to_nohz(void) { }
755static inline void tick_check_nohz(int cpu) { }
 
756
757#endif /* NO_HZ */
758
759/*
760 * Called from irq_enter to notify about the possible interruption of idle()
761 */
762void tick_check_idle(int cpu)
763{
764	tick_check_oneshot_broadcast(cpu);
765	tick_check_nohz(cpu);
766}
767
768/*
769 * High resolution timer specific code
770 */
771#ifdef CONFIG_HIGH_RES_TIMERS
772/*
773 * We rearm the timer until we get disabled by the idle code.
774 * Called with interrupts disabled and timer->base->cpu_base->lock held.
775 */
776static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
777{
778	struct tick_sched *ts =
779		container_of(timer, struct tick_sched, sched_timer);
780	struct pt_regs *regs = get_irq_regs();
781	ktime_t now = ktime_get();
782	int cpu = smp_processor_id();
783
784#ifdef CONFIG_NO_HZ
785	/*
786	 * Check if the do_timer duty was dropped. We don't care about
787	 * concurrency: This happens only when the cpu in charge went
788	 * into a long sleep. If two cpus happen to assign themself to
789	 * this duty, then the jiffies update is still serialized by
790	 * xtime_lock.
791	 */
792	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
793		tick_do_timer_cpu = cpu;
794#endif
795
796	/* Check, if the jiffies need an update */
797	if (tick_do_timer_cpu == cpu)
798		tick_do_update_jiffies64(now);
799
800	/*
801	 * Do not call, when we are not in irq context and have
802	 * no valid regs pointer
803	 */
804	if (regs) {
805		/*
806		 * When we are idle and the tick is stopped, we have to touch
807		 * the watchdog as we might not schedule for a really long
808		 * time. This happens on complete idle SMP systems while
809		 * waiting on the login prompt. We also increment the "start of
810		 * idle" jiffy stamp so the idle accounting adjustment we do
811		 * when we go busy again does not account too much ticks.
812		 */
813		if (ts->tick_stopped) {
814			touch_softlockup_watchdog();
815			ts->idle_jiffies++;
816		}
817		update_process_times(user_mode(regs));
818		profile_tick(CPU_PROFILING);
819	}
820
821	hrtimer_forward(timer, now, tick_period);
822
823	return HRTIMER_RESTART;
824}
825
826static int sched_skew_tick;
827
828static int __init skew_tick(char *str)
829{
830	get_option(&str, &sched_skew_tick);
831
832	return 0;
833}
834early_param("skew_tick", skew_tick);
835
836/**
837 * tick_setup_sched_timer - setup the tick emulation timer
838 */
839void tick_setup_sched_timer(void)
840{
841	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
842	ktime_t now = ktime_get();
843
844	/*
845	 * Emulate tick processing via per-CPU hrtimers:
846	 */
847	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
848	ts->sched_timer.function = tick_sched_timer;
849
850	/* Get the next period (per cpu) */
851	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
852
853	/* Offset the tick to avert xtime_lock contention. */
854	if (sched_skew_tick) {
855		u64 offset = ktime_to_ns(tick_period) >> 1;
856		do_div(offset, num_possible_cpus());
857		offset *= smp_processor_id();
858		hrtimer_add_expires_ns(&ts->sched_timer, offset);
859	}
860
861	for (;;) {
862		hrtimer_forward(&ts->sched_timer, now, tick_period);
863		hrtimer_start_expires(&ts->sched_timer,
864				      HRTIMER_MODE_ABS_PINNED);
865		/* Check, if the timer was already in the past */
866		if (hrtimer_active(&ts->sched_timer))
867			break;
868		now = ktime_get();
869	}
870
871#ifdef CONFIG_NO_HZ
872	if (tick_nohz_enabled)
873		ts->nohz_mode = NOHZ_MODE_HIGHRES;
874#endif
875}
876#endif /* HIGH_RES_TIMERS */
877
878#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
879void tick_cancel_sched_timer(int cpu)
880{
881	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
882
883# ifdef CONFIG_HIGH_RES_TIMERS
884	if (ts->sched_timer.base)
885		hrtimer_cancel(&ts->sched_timer);
886# endif
887
888	ts->nohz_mode = NOHZ_MODE_INACTIVE;
889}
890#endif
891
892/**
893 * Async notification about clocksource changes
894 */
895void tick_clock_notify(void)
896{
897	int cpu;
898
899	for_each_possible_cpu(cpu)
900		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
901}
902
903/*
904 * Async notification about clock event changes
905 */
906void tick_oneshot_notify(void)
907{
908	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
909
910	set_bit(0, &ts->check_clocks);
911}
912
913/**
914 * Check, if a change happened, which makes oneshot possible.
915 *
916 * Called cyclic from the hrtimer softirq (driven by the timer
917 * softirq) allow_nohz signals, that we can switch into low-res nohz
918 * mode, because high resolution timers are disabled (either compile
919 * or runtime).
920 */
921int tick_check_oneshot_change(int allow_nohz)
922{
923	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
924
925	if (!test_and_clear_bit(0, &ts->check_clocks))
926		return 0;
927
928	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
929		return 0;
930
931	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
932		return 0;
933
934	if (!allow_nohz)
935		return 1;
936
937	tick_nohz_switch_to_nohz();
938	return 0;
939}
v4.17
   1/*
   2 *  linux/kernel/time/tick-sched.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  No idle tick implementation for low and high resolution timers
   9 *
  10 *  Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 *  Distribute under GPLv2.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/percpu.h>
  20#include <linux/nmi.h>
  21#include <linux/profile.h>
  22#include <linux/sched/signal.h>
  23#include <linux/sched/clock.h>
  24#include <linux/sched/stat.h>
  25#include <linux/sched/nohz.h>
  26#include <linux/module.h>
  27#include <linux/irq_work.h>
  28#include <linux/posix-timers.h>
  29#include <linux/context_tracking.h>
  30#include <linux/mm.h>
  31
  32#include <asm/irq_regs.h>
  33
  34#include "tick-internal.h"
  35
  36#include <trace/events/timer.h>
 
 
 
  37
  38/*
  39 * Per-CPU nohz control structure
  40 */
  41static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  42
  43struct tick_sched *tick_get_tick_sched(int cpu)
  44{
  45	return &per_cpu(tick_cpu_sched, cpu);
  46}
  47
  48#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  49/*
  50 * The time, when the last jiffy update happened. Protected by jiffies_lock.
  51 */
  52static ktime_t last_jiffies_update;
  53
  54/*
  55 * Must be called with interrupts disabled !
  56 */
  57static void tick_do_update_jiffies64(ktime_t now)
  58{
  59	unsigned long ticks = 0;
  60	ktime_t delta;
  61
  62	/*
  63	 * Do a quick check without holding jiffies_lock:
  64	 */
  65	delta = ktime_sub(now, last_jiffies_update);
  66	if (delta < tick_period)
  67		return;
  68
  69	/* Reevaluate with jiffies_lock held */
  70	write_seqlock(&jiffies_lock);
  71
  72	delta = ktime_sub(now, last_jiffies_update);
  73	if (delta >= tick_period) {
  74
  75		delta = ktime_sub(delta, tick_period);
  76		last_jiffies_update = ktime_add(last_jiffies_update,
  77						tick_period);
  78
  79		/* Slow path for long timeouts */
  80		if (unlikely(delta >= tick_period)) {
  81			s64 incr = ktime_to_ns(tick_period);
  82
  83			ticks = ktime_divns(delta, incr);
  84
  85			last_jiffies_update = ktime_add_ns(last_jiffies_update,
  86							   incr * ticks);
  87		}
  88		do_timer(++ticks);
  89
  90		/* Keep the tick_next_period variable up to date */
  91		tick_next_period = ktime_add(last_jiffies_update, tick_period);
  92	} else {
  93		write_sequnlock(&jiffies_lock);
  94		return;
  95	}
  96	write_sequnlock(&jiffies_lock);
  97	update_wall_time();
  98}
  99
 100/*
 101 * Initialize and return retrieve the jiffies update.
 102 */
 103static ktime_t tick_init_jiffy_update(void)
 104{
 105	ktime_t period;
 106
 107	write_seqlock(&jiffies_lock);
 108	/* Did we start the jiffies update yet ? */
 109	if (last_jiffies_update == 0)
 110		last_jiffies_update = tick_next_period;
 111	period = last_jiffies_update;
 112	write_sequnlock(&jiffies_lock);
 113	return period;
 114}
 115
 116static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 117{
 118	int cpu = smp_processor_id();
 119
 120#ifdef CONFIG_NO_HZ_COMMON
 121	/*
 122	 * Check if the do_timer duty was dropped. We don't care about
 123	 * concurrency: This happens only when the CPU in charge went
 124	 * into a long sleep. If two CPUs happen to assign themselves to
 125	 * this duty, then the jiffies update is still serialized by
 126	 * jiffies_lock.
 127	 */
 128	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 129	    && !tick_nohz_full_cpu(cpu))
 130		tick_do_timer_cpu = cpu;
 131#endif
 132
 133	/* Check, if the jiffies need an update */
 134	if (tick_do_timer_cpu == cpu)
 135		tick_do_update_jiffies64(now);
 136
 137	if (ts->inidle)
 138		ts->got_idle_tick = 1;
 139}
 140
 141static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 142{
 143#ifdef CONFIG_NO_HZ_COMMON
 144	/*
 145	 * When we are idle and the tick is stopped, we have to touch
 146	 * the watchdog as we might not schedule for a really long
 147	 * time. This happens on complete idle SMP systems while
 148	 * waiting on the login prompt. We also increment the "start of
 149	 * idle" jiffy stamp so the idle accounting adjustment we do
 150	 * when we go busy again does not account too much ticks.
 151	 */
 152	if (ts->tick_stopped) {
 153		touch_softlockup_watchdog_sched();
 154		if (is_idle_task(current))
 155			ts->idle_jiffies++;
 156		/*
 157		 * In case the current tick fired too early past its expected
 158		 * expiration, make sure we don't bypass the next clock reprogramming
 159		 * to the same deadline.
 160		 */
 161		ts->next_tick = 0;
 162	}
 163#endif
 164	update_process_times(user_mode(regs));
 165	profile_tick(CPU_PROFILING);
 166}
 167#endif
 168
 169#ifdef CONFIG_NO_HZ_FULL
 170cpumask_var_t tick_nohz_full_mask;
 171bool tick_nohz_full_running;
 172static atomic_t tick_dep_mask;
 173
 174static bool check_tick_dependency(atomic_t *dep)
 175{
 176	int val = atomic_read(dep);
 177
 178	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 179		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 180		return true;
 181	}
 182
 183	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 184		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 185		return true;
 186	}
 187
 188	if (val & TICK_DEP_MASK_SCHED) {
 189		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 190		return true;
 191	}
 192
 193	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 194		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 195		return true;
 196	}
 197
 198	return false;
 199}
 200
 201static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 202{
 203	lockdep_assert_irqs_disabled();
 204
 205	if (unlikely(!cpu_online(cpu)))
 206		return false;
 207
 208	if (check_tick_dependency(&tick_dep_mask))
 209		return false;
 210
 211	if (check_tick_dependency(&ts->tick_dep_mask))
 212		return false;
 213
 214	if (check_tick_dependency(&current->tick_dep_mask))
 215		return false;
 216
 217	if (check_tick_dependency(&current->signal->tick_dep_mask))
 218		return false;
 219
 220	return true;
 221}
 222
 223static void nohz_full_kick_func(struct irq_work *work)
 224{
 225	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 226}
 227
 228static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 229	.func = nohz_full_kick_func,
 230};
 231
 232/*
 233 * Kick this CPU if it's full dynticks in order to force it to
 234 * re-evaluate its dependency on the tick and restart it if necessary.
 235 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 236 * is NMI safe.
 237 */
 238static void tick_nohz_full_kick(void)
 239{
 240	if (!tick_nohz_full_cpu(smp_processor_id()))
 241		return;
 242
 243	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 244}
 245
 246/*
 247 * Kick the CPU if it's full dynticks in order to force it to
 248 * re-evaluate its dependency on the tick and restart it if necessary.
 249 */
 250void tick_nohz_full_kick_cpu(int cpu)
 251{
 252	if (!tick_nohz_full_cpu(cpu))
 253		return;
 254
 255	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 256}
 257
 258/*
 259 * Kick all full dynticks CPUs in order to force these to re-evaluate
 260 * their dependency on the tick and restart it if necessary.
 261 */
 262static void tick_nohz_full_kick_all(void)
 263{
 264	int cpu;
 265
 266	if (!tick_nohz_full_running)
 267		return;
 268
 269	preempt_disable();
 270	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 271		tick_nohz_full_kick_cpu(cpu);
 272	preempt_enable();
 273}
 274
 275static void tick_nohz_dep_set_all(atomic_t *dep,
 276				  enum tick_dep_bits bit)
 277{
 278	int prev;
 279
 280	prev = atomic_fetch_or(BIT(bit), dep);
 281	if (!prev)
 282		tick_nohz_full_kick_all();
 283}
 284
 285/*
 286 * Set a global tick dependency. Used by perf events that rely on freq and
 287 * by unstable clock.
 288 */
 289void tick_nohz_dep_set(enum tick_dep_bits bit)
 290{
 291	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 292}
 293
 294void tick_nohz_dep_clear(enum tick_dep_bits bit)
 295{
 296	atomic_andnot(BIT(bit), &tick_dep_mask);
 297}
 298
 299/*
 300 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 301 * manage events throttling.
 302 */
 303void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 304{
 305	int prev;
 306	struct tick_sched *ts;
 307
 308	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 309
 310	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 311	if (!prev) {
 312		preempt_disable();
 313		/* Perf needs local kick that is NMI safe */
 314		if (cpu == smp_processor_id()) {
 315			tick_nohz_full_kick();
 316		} else {
 317			/* Remote irq work not NMI-safe */
 318			if (!WARN_ON_ONCE(in_nmi()))
 319				tick_nohz_full_kick_cpu(cpu);
 320		}
 321		preempt_enable();
 322	}
 323}
 324
 325void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 326{
 327	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 328
 329	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 330}
 331
 332/*
 333 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 334 * per task timers.
 335 */
 336void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 337{
 338	/*
 339	 * We could optimize this with just kicking the target running the task
 340	 * if that noise matters for nohz full users.
 341	 */
 342	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
 343}
 344
 345void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 346{
 347	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 348}
 349
 350/*
 351 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 352 * per process timers.
 353 */
 354void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 355{
 356	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
 357}
 358
 359void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 360{
 361	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 362}
 363
 364/*
 365 * Re-evaluate the need for the tick as we switch the current task.
 366 * It might need the tick due to per task/process properties:
 367 * perf events, posix CPU timers, ...
 368 */
 369void __tick_nohz_task_switch(void)
 370{
 371	unsigned long flags;
 372	struct tick_sched *ts;
 373
 374	local_irq_save(flags);
 375
 376	if (!tick_nohz_full_cpu(smp_processor_id()))
 377		goto out;
 378
 379	ts = this_cpu_ptr(&tick_cpu_sched);
 380
 381	if (ts->tick_stopped) {
 382		if (atomic_read(&current->tick_dep_mask) ||
 383		    atomic_read(&current->signal->tick_dep_mask))
 384			tick_nohz_full_kick();
 385	}
 386out:
 387	local_irq_restore(flags);
 388}
 389
 390/* Get the boot-time nohz CPU list from the kernel parameters. */
 391void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 392{
 393	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 394	cpumask_copy(tick_nohz_full_mask, cpumask);
 395	tick_nohz_full_running = true;
 396}
 397
 398static int tick_nohz_cpu_down(unsigned int cpu)
 399{
 400	/*
 401	 * The boot CPU handles housekeeping duty (unbound timers,
 402	 * workqueues, timekeeping, ...) on behalf of full dynticks
 403	 * CPUs. It must remain online when nohz full is enabled.
 404	 */
 405	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 406		return -EBUSY;
 407	return 0;
 408}
 409
 410void __init tick_nohz_init(void)
 411{
 412	int cpu, ret;
 413
 414	if (!tick_nohz_full_running)
 415		return;
 416
 417	/*
 418	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 419	 * locking contexts. But then we need irq work to raise its own
 420	 * interrupts to avoid circular dependency on the tick
 421	 */
 422	if (!arch_irq_work_has_interrupt()) {
 423		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 424		cpumask_clear(tick_nohz_full_mask);
 425		tick_nohz_full_running = false;
 426		return;
 427	}
 428
 429	cpu = smp_processor_id();
 430
 431	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 432		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
 433			cpu);
 434		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 435	}
 436
 437	for_each_cpu(cpu, tick_nohz_full_mask)
 438		context_tracking_cpu_set(cpu);
 439
 440	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 441					"kernel/nohz:predown", NULL,
 442					tick_nohz_cpu_down);
 443	WARN_ON(ret < 0);
 444	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 445		cpumask_pr_args(tick_nohz_full_mask));
 446}
 447#endif
 448
 449/*
 450 * NOHZ - aka dynamic tick functionality
 451 */
 452#ifdef CONFIG_NO_HZ_COMMON
 453/*
 454 * NO HZ enabled ?
 455 */
 456bool tick_nohz_enabled __read_mostly  = true;
 457unsigned long tick_nohz_active  __read_mostly;
 458/*
 459 * Enable / Disable tickless mode
 460 */
 461static int __init setup_tick_nohz(char *str)
 462{
 463	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 
 
 
 
 
 
 464}
 465
 466__setup("nohz=", setup_tick_nohz);
 467
 468bool tick_nohz_tick_stopped(void)
 469{
 470	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 471
 472	return ts->tick_stopped;
 473}
 474
 475bool tick_nohz_tick_stopped_cpu(int cpu)
 476{
 477	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 478
 479	return ts->tick_stopped;
 480}
 481
 482/**
 483 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 484 *
 485 * Called from interrupt entry when the CPU was idle
 486 *
 487 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 488 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 489 * value. We do this unconditionally on any CPU, as we don't know whether the
 490 * CPU, which has the update task assigned is in a long sleep.
 491 */
 492static void tick_nohz_update_jiffies(ktime_t now)
 493{
 
 
 494	unsigned long flags;
 495
 496	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 497
 498	local_irq_save(flags);
 499	tick_do_update_jiffies64(now);
 500	local_irq_restore(flags);
 501
 502	touch_softlockup_watchdog_sched();
 
 503}
 504
 505/*
 506 * Updates the per-CPU time idle statistics counters
 507 */
 508static void
 509update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 510{
 511	ktime_t delta;
 512
 513	if (ts->idle_active) {
 514		delta = ktime_sub(now, ts->idle_entrytime);
 515		if (nr_iowait_cpu(cpu) > 0)
 516			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 517		else
 518			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 519		ts->idle_entrytime = now;
 520	}
 521
 522	if (last_update_time)
 523		*last_update_time = ktime_to_us(now);
 524
 525}
 526
 527static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 528{
 529	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 
 
 530	ts->idle_active = 0;
 531
 532	sched_clock_idle_wakeup_event();
 533}
 534
 535static void tick_nohz_start_idle(struct tick_sched *ts)
 536{
 537	ts->idle_entrytime = ktime_get();
 
 
 538	ts->idle_active = 1;
 539	sched_clock_idle_sleep_event();
 
 540}
 541
 542/**
 543 * get_cpu_idle_time_us - get the total idle time of a CPU
 544 * @cpu: CPU number to query
 545 * @last_update_time: variable to store update time in. Do not update
 546 * counters if NULL.
 547 *
 548 * Return the cumulative idle time (since boot) for a given
 549 * CPU, in microseconds.
 550 *
 551 * This time is measured via accounting rather than sampling,
 552 * and is as accurate as ktime_get() is.
 553 *
 554 * This function returns -1 if NOHZ is not enabled.
 555 */
 556u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 557{
 558	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 559	ktime_t now, idle;
 560
 561	if (!tick_nohz_active)
 562		return -1;
 563
 564	now = ktime_get();
 565	if (last_update_time) {
 566		update_ts_time_stats(cpu, ts, now, last_update_time);
 567		idle = ts->idle_sleeptime;
 568	} else {
 569		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 570			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 571
 572			idle = ktime_add(ts->idle_sleeptime, delta);
 573		} else {
 574			idle = ts->idle_sleeptime;
 575		}
 576	}
 577
 578	return ktime_to_us(idle);
 579
 580}
 581EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 582
 583/**
 584 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 585 * @cpu: CPU number to query
 586 * @last_update_time: variable to store update time in. Do not update
 587 * counters if NULL.
 588 *
 589 * Return the cumulative iowait time (since boot) for a given
 590 * CPU, in microseconds.
 591 *
 592 * This time is measured via accounting rather than sampling,
 593 * and is as accurate as ktime_get() is.
 594 *
 595 * This function returns -1 if NOHZ is not enabled.
 596 */
 597u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 598{
 599	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 600	ktime_t now, iowait;
 601
 602	if (!tick_nohz_active)
 603		return -1;
 604
 605	now = ktime_get();
 606	if (last_update_time) {
 607		update_ts_time_stats(cpu, ts, now, last_update_time);
 608		iowait = ts->iowait_sleeptime;
 609	} else {
 610		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 611			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 612
 613			iowait = ktime_add(ts->iowait_sleeptime, delta);
 614		} else {
 615			iowait = ts->iowait_sleeptime;
 616		}
 617	}
 618
 619	return ktime_to_us(iowait);
 620}
 621EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 622
 623static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 624{
 625	hrtimer_cancel(&ts->sched_timer);
 626	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 
 
 
 
 627
 628	/* Forward the time to expire in the future */
 629	hrtimer_forward(&ts->sched_timer, now, tick_period);
 630
 631	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 632		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
 633	else
 634		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 635
 636	/*
 637	 * Reset to make sure next tick stop doesn't get fooled by past
 638	 * cached clock deadline.
 639	 */
 640	ts->next_tick = 0;
 641}
 642
 643static inline bool local_timer_softirq_pending(void)
 644{
 645	return local_softirq_pending() & TIMER_SOFTIRQ;
 646}
 647
 648static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 649{
 650	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 651	unsigned long seq, basejiff;
 652
 653	/* Read jiffies and the time when jiffies were updated last */
 654	do {
 655		seq = read_seqbegin(&jiffies_lock);
 656		basemono = last_jiffies_update;
 657		basejiff = jiffies;
 658	} while (read_seqretry(&jiffies_lock, seq));
 659	ts->last_jiffies = basejiff;
 660	ts->timer_expires_base = basemono;
 661
 662	/*
 663	 * Keep the periodic tick, when RCU, architecture or irq_work
 664	 * requests it.
 665	 * Aside of that check whether the local timer softirq is
 666	 * pending. If so its a bad idea to call get_next_timer_interrupt()
 667	 * because there is an already expired timer, so it will request
 668	 * immeditate expiry, which rearms the hardware timer with a
 669	 * minimal delta which brings us back to this place
 670	 * immediately. Lather, rinse and repeat...
 671	 */
 672	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
 673	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 674		next_tick = basemono + TICK_NSEC;
 675	} else {
 676		/*
 677		 * Get the next pending timer. If high resolution
 678		 * timers are enabled this only takes the timer wheel
 679		 * timers into account. If high resolution timers are
 680		 * disabled this also looks at the next expiring
 681		 * hrtimer.
 682		 */
 683		next_tmr = get_next_timer_interrupt(basejiff, basemono);
 684		ts->next_timer = next_tmr;
 685		/* Take the next rcu event into account */
 686		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 687	}
 688
 689	/*
 690	 * If the tick is due in the next period, keep it ticking or
 691	 * force prod the timer.
 692	 */
 693	delta = next_tick - basemono;
 694	if (delta <= (u64)TICK_NSEC) {
 695		/*
 696		 * Tell the timer code that the base is not idle, i.e. undo
 697		 * the effect of get_next_timer_interrupt():
 698		 */
 699		timer_clear_idle();
 700		/*
 701		 * We've not stopped the tick yet, and there's a timer in the
 702		 * next period, so no point in stopping it either, bail.
 703		 */
 704		if (!ts->tick_stopped) {
 705			ts->timer_expires = 0;
 706			goto out;
 707		}
 708	}
 709
 710	/*
 711	 * If this CPU is the one which had the do_timer() duty last, we limit
 712	 * the sleep time to the timekeeping max_deferment value.
 713	 * Otherwise we can sleep as long as we want.
 714	 */
 715	delta = timekeeping_max_deferment();
 716	if (cpu != tick_do_timer_cpu &&
 717	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 718		delta = KTIME_MAX;
 719
 720	/* Calculate the next expiry time */
 721	if (delta < (KTIME_MAX - basemono))
 722		expires = basemono + delta;
 723	else
 724		expires = KTIME_MAX;
 725
 726	ts->timer_expires = min_t(u64, expires, next_tick);
 727
 728out:
 729	return ts->timer_expires;
 730}
 731
 732static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 733{
 734	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 735	u64 basemono = ts->timer_expires_base;
 736	u64 expires = ts->timer_expires;
 737	ktime_t tick = expires;
 738
 739	/* Make sure we won't be trying to stop it twice in a row. */
 740	ts->timer_expires_base = 0;
 741
 742	/*
 743	 * If this CPU is the one which updates jiffies, then give up
 744	 * the assignment and let it be taken by the CPU which runs
 745	 * the tick timer next, which might be this CPU as well. If we
 746	 * don't drop this here the jiffies might be stale and
 747	 * do_timer() never invoked. Keep track of the fact that it
 748	 * was the one which had the do_timer() duty last.
 749	 */
 750	if (cpu == tick_do_timer_cpu) {
 751		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 752		ts->do_timer_last = 1;
 753	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 754		ts->do_timer_last = 0;
 755	}
 756
 757	/* Skip reprogram of event if its not changed */
 758	if (ts->tick_stopped && (expires == ts->next_tick)) {
 759		/* Sanity check: make sure clockevent is actually programmed */
 760		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 761			return;
 762
 763		WARN_ON_ONCE(1);
 764		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 765			    basemono, ts->next_tick, dev->next_event,
 766			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 767	}
 768
 769	/*
 770	 * nohz_stop_sched_tick can be called several times before
 771	 * the nohz_restart_sched_tick is called. This happens when
 772	 * interrupts arrive which do not cause a reschedule. In the
 773	 * first call we save the current tick time, so we can restart
 774	 * the scheduler tick in nohz_restart_sched_tick.
 775	 */
 776	if (!ts->tick_stopped) {
 777		calc_load_nohz_start();
 778		cpu_load_update_nohz_start();
 779		quiet_vmstat();
 780
 781		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 782		ts->tick_stopped = 1;
 783		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 784	}
 785
 786	ts->next_tick = tick;
 787
 788	/*
 789	 * If the expiration time == KTIME_MAX, then we simply stop
 790	 * the tick timer.
 791	 */
 792	if (unlikely(expires == KTIME_MAX)) {
 793		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 794			hrtimer_cancel(&ts->sched_timer);
 795		return;
 796	}
 797
 798	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 799		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
 800	} else {
 801		hrtimer_set_expires(&ts->sched_timer, tick);
 802		tick_program_event(tick, 1);
 803	}
 804}
 805
 806static void tick_nohz_retain_tick(struct tick_sched *ts)
 807{
 808	ts->timer_expires_base = 0;
 809}
 810
 811#ifdef CONFIG_NO_HZ_FULL
 812static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 813{
 814	if (tick_nohz_next_event(ts, cpu))
 815		tick_nohz_stop_tick(ts, cpu);
 816	else
 817		tick_nohz_retain_tick(ts);
 818}
 819#endif /* CONFIG_NO_HZ_FULL */
 820
 821static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 822{
 823	/* Update jiffies first */
 824	tick_do_update_jiffies64(now);
 825	cpu_load_update_nohz_stop();
 826
 827	/*
 828	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 829	 * the clock forward checks in the enqueue path:
 830	 */
 831	timer_clear_idle();
 832
 833	calc_load_nohz_stop();
 834	touch_softlockup_watchdog_sched();
 835	/*
 836	 * Cancel the scheduled timer and restore the tick
 837	 */
 838	ts->tick_stopped  = 0;
 839	ts->idle_exittime = now;
 840
 841	tick_nohz_restart(ts, now);
 842}
 843
 844static void tick_nohz_full_update_tick(struct tick_sched *ts)
 845{
 846#ifdef CONFIG_NO_HZ_FULL
 847	int cpu = smp_processor_id();
 848
 849	if (!tick_nohz_full_cpu(cpu))
 850		return;
 851
 852	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 853		return;
 854
 855	if (can_stop_full_tick(cpu, ts))
 856		tick_nohz_stop_sched_tick(ts, cpu);
 857	else if (ts->tick_stopped)
 858		tick_nohz_restart_sched_tick(ts, ktime_get());
 859#endif
 860}
 861
 862static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 863{
 864	/*
 865	 * If this CPU is offline and it is the one which updates
 866	 * jiffies, then give up the assignment and let it be taken by
 867	 * the CPU which runs the tick timer next. If we don't drop
 868	 * this here the jiffies might be stale and do_timer() never
 869	 * invoked.
 870	 */
 871	if (unlikely(!cpu_online(cpu))) {
 872		if (cpu == tick_do_timer_cpu)
 873			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 874		/*
 875		 * Make sure the CPU doesn't get fooled by obsolete tick
 876		 * deadline if it comes back online later.
 877		 */
 878		ts->next_tick = 0;
 879		return false;
 880	}
 881
 882	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
 883		return false;
 884
 885	if (need_resched())
 886		return false;
 887
 888	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
 889		static int ratelimit;
 890
 891		if (ratelimit < 10 &&
 892		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 893			pr_warn("NOHZ: local_softirq_pending %02x\n",
 894				(unsigned int) local_softirq_pending());
 895			ratelimit++;
 896		}
 897		return false;
 898	}
 899
 900	if (tick_nohz_full_enabled()) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 901		/*
 902		 * Keep the tick alive to guarantee timekeeping progression
 903		 * if there are full dynticks CPUs around
 
 
 
 
 
 
 
 
 
 904		 */
 905		if (tick_do_timer_cpu == cpu)
 906			return false;
 
 
 
 
 
 
 
 
 907		/*
 908		 * Boot safety: make sure the timekeeping duty has been
 909		 * assigned before entering dyntick-idle mode,
 
 
 
 910		 */
 911		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 912			return false;
 913	}
 
 
 
 
 
 
 
 
 914
 915	return true;
 916}
 
 
 917
 918static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
 919{
 920	ktime_t expires;
 921	int cpu = smp_processor_id();
 922
 923	/*
 924	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
 925	 * tick timer expiration time is known already.
 926	 */
 927	if (ts->timer_expires_base)
 928		expires = ts->timer_expires;
 929	else if (can_stop_idle_tick(cpu, ts))
 930		expires = tick_nohz_next_event(ts, cpu);
 931	else
 932		return;
 933
 934	ts->idle_calls++;
 
 
 
 935
 936	if (expires > 0LL) {
 937		int was_stopped = ts->tick_stopped;
 938
 939		tick_nohz_stop_tick(ts, cpu);
 940
 941		ts->idle_sleeps++;
 942		ts->idle_expires = expires;
 943
 944		if (!was_stopped && ts->tick_stopped) {
 945			ts->idle_jiffies = ts->last_jiffies;
 946			nohz_balance_enter_idle(cpu);
 
 
 
 
 
 947		}
 948	} else {
 949		tick_nohz_retain_tick(ts);
 
 
 
 
 
 
 
 
 
 
 
 
 
 950	}
 
 
 
 
 
 951}
 952
 953/**
 954 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
 955 *
 956 * When the next event is more than a tick into the future, stop the idle tick
 957 */
 958void tick_nohz_idle_stop_tick(void)
 959{
 960	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
 961}
 962
 963void tick_nohz_idle_retain_tick(void)
 964{
 965	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
 966	/*
 967	 * Undo the effect of get_next_timer_interrupt() called from
 968	 * tick_nohz_next_event().
 969	 */
 970	timer_clear_idle();
 971}
 972
 973/**
 974 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
 975 *
 976 * Called when we start the idle loop.
 
 
 977 */
 978void tick_nohz_idle_enter(void)
 979{
 980	struct tick_sched *ts;
 981
 982	lockdep_assert_irqs_enabled();
 
 
 
 
 
 
 
 
 983
 984	local_irq_disable();
 985
 986	ts = this_cpu_ptr(&tick_cpu_sched);
 987
 988	WARN_ON_ONCE(ts->timer_expires_base);
 989
 
 
 990	ts->inidle = 1;
 991	tick_nohz_start_idle(ts);
 992
 993	local_irq_enable();
 994}
 995
 996/**
 997 * tick_nohz_irq_exit - update next tick event from interrupt exit
 998 *
 999 * When an interrupt fires while we are idle and it doesn't cause
1000 * a reschedule, it may still add, modify or delete a timer, enqueue
1001 * an RCU callback, etc...
1002 * So we need to re-calculate and reprogram the next tick event.
1003 */
1004void tick_nohz_irq_exit(void)
1005{
1006	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1007
1008	if (ts->inidle)
1009		tick_nohz_start_idle(ts);
1010	else
1011		tick_nohz_full_update_tick(ts);
1012}
1013
1014/**
1015 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1016 */
1017bool tick_nohz_idle_got_tick(void)
1018{
1019	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1020
1021	if (ts->got_idle_tick) {
1022		ts->got_idle_tick = 0;
1023		return true;
1024	}
1025	return false;
1026}
1027
1028/**
1029 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1030 * @delta_next: duration until the next event if the tick cannot be stopped
1031 *
1032 * Called from power state control code with interrupts disabled
1033 */
1034ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1035{
1036	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1037	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1038	int cpu = smp_processor_id();
1039	/*
1040	 * The idle entry time is expected to be a sufficient approximation of
1041	 * the current time at this point.
1042	 */
1043	ktime_t now = ts->idle_entrytime;
1044	ktime_t next_event;
1045
1046	WARN_ON_ONCE(!ts->inidle);
 
1047
1048	*delta_next = ktime_sub(dev->next_event, now);
 
 
 
1049
1050	if (!can_stop_idle_tick(cpu, ts))
1051		return *delta_next;
1052
1053	next_event = tick_nohz_next_event(ts, cpu);
1054	if (!next_event)
1055		return *delta_next;
1056
1057	/*
1058	 * If the next highres timer to expire is earlier than next_event, the
1059	 * idle governor needs to know that.
1060	 */
1061	next_event = min_t(u64, next_event,
1062			   hrtimer_next_event_without(&ts->sched_timer));
1063
1064	return ktime_sub(next_event, now);
 
 
 
 
1065}
1066
1067/**
1068 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1069 * for a particular CPU.
1070 *
1071 * Called from the schedutil frequency scaling governor in scheduler context.
 
 
1072 */
1073unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1074{
1075	struct tick_sched *ts = tick_get_tick_sched(cpu);
 
 
 
 
 
1076
1077	return ts->idle_calls;
1078}
 
1079
1080/**
1081 * tick_nohz_get_idle_calls - return the current idle calls counter value
1082 *
1083 * Called from the schedutil frequency scaling governor in scheduler context.
1084 */
1085unsigned long tick_nohz_get_idle_calls(void)
1086{
1087	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1088
1089	return ts->idle_calls;
1090}
1091
1092static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1093{
1094#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1095	unsigned long ticks;
1096
1097	if (vtime_accounting_cpu_enabled())
 
1098		return;
 
 
 
 
 
 
 
 
1099	/*
1100	 * We stopped the tick in idle. Update process times would miss the
1101	 * time we slept as update_process_times does only a 1 tick
1102	 * accounting. Enforce that this is accounted to idle !
1103	 */
1104	ticks = jiffies - ts->idle_jiffies;
1105	/*
1106	 * We might be one off. Do not randomly account a huge number of ticks!
1107	 */
1108	if (ticks && ticks < LONG_MAX)
1109		account_idle_ticks(ticks);
1110#endif
1111}
1112
1113static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1114{
1115	tick_nohz_restart_sched_tick(ts, now);
1116	tick_nohz_account_idle_ticks(ts);
1117}
 
 
1118
1119void tick_nohz_idle_restart_tick(void)
1120{
1121	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1122
1123	if (ts->tick_stopped)
1124		__tick_nohz_idle_restart_tick(ts, ktime_get());
1125}
1126
1127/**
1128 * tick_nohz_idle_exit - restart the idle tick from the idle task
1129 *
1130 * Restart the idle tick when the CPU is woken up from idle
1131 * This also exit the RCU extended quiescent state. The CPU
1132 * can use RCU again after this function is called.
1133 */
1134void tick_nohz_idle_exit(void)
1135{
1136	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1137	bool idle_active, tick_stopped;
1138	ktime_t now;
1139
1140	local_irq_disable();
1141
1142	WARN_ON_ONCE(!ts->inidle);
1143	WARN_ON_ONCE(ts->timer_expires_base);
1144
1145	ts->inidle = 0;
1146	idle_active = ts->idle_active;
1147	tick_stopped = ts->tick_stopped;
1148
1149	if (idle_active || tick_stopped)
1150		now = ktime_get();
1151
1152	if (idle_active)
1153		tick_nohz_stop_idle(ts, now);
1154
1155	if (tick_stopped)
1156		__tick_nohz_idle_restart_tick(ts, now);
1157
1158	local_irq_enable();
1159}
1160
1161/*
1162 * The nohz low res interrupt handler
1163 */
1164static void tick_nohz_handler(struct clock_event_device *dev)
1165{
1166	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1167	struct pt_regs *regs = get_irq_regs();
 
1168	ktime_t now = ktime_get();
1169
1170	dev->next_event = KTIME_MAX;
1171
1172	tick_sched_do_timer(ts, now);
1173	tick_sched_handle(ts, regs);
 
 
 
 
 
 
 
1174
1175	/* No need to reprogram if we are running tickless  */
1176	if (unlikely(ts->tick_stopped))
1177		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
1178
1179	hrtimer_forward(&ts->sched_timer, now, tick_period);
1180	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1181}
1182
1183static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1184{
1185	if (!tick_nohz_enabled)
1186		return;
1187	ts->nohz_mode = mode;
1188	/* One update is enough */
1189	if (!test_and_set_bit(0, &tick_nohz_active))
1190		timers_update_nohz();
1191}
1192
1193/**
1194 * tick_nohz_switch_to_nohz - switch to nohz mode
1195 */
1196static void tick_nohz_switch_to_nohz(void)
1197{
1198	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1199	ktime_t next;
1200
1201	if (!tick_nohz_enabled)
1202		return;
1203
1204	if (tick_switch_to_oneshot(tick_nohz_handler))
 
 
1205		return;
 
 
 
1206
1207	/*
1208	 * Recycle the hrtimer in ts, so we can share the
1209	 * hrtimer_forward with the highres code.
1210	 */
1211	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1212	/* Get the next period */
1213	next = tick_init_jiffy_update();
1214
1215	hrtimer_set_expires(&ts->sched_timer, next);
1216	hrtimer_forward_now(&ts->sched_timer, tick_period);
1217	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1218	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
 
 
 
1219}
1220
1221static inline void tick_nohz_irq_enter(void)
 
 
 
 
 
 
 
 
 
 
 
1222{
1223	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1224	ktime_t now;
1225
1226	if (!ts->idle_active && !ts->tick_stopped)
1227		return;
1228	now = ktime_get();
1229	if (ts->idle_active)
1230		tick_nohz_stop_idle(ts, now);
1231	if (ts->tick_stopped)
1232		tick_nohz_update_jiffies(now);
 
 
1233}
1234
1235#else
1236
1237static inline void tick_nohz_switch_to_nohz(void) { }
1238static inline void tick_nohz_irq_enter(void) { }
1239static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1240
1241#endif /* CONFIG_NO_HZ_COMMON */
1242
1243/*
1244 * Called from irq_enter to notify about the possible interruption of idle()
1245 */
1246void tick_irq_enter(void)
1247{
1248	tick_check_oneshot_broadcast_this_cpu();
1249	tick_nohz_irq_enter();
1250}
1251
1252/*
1253 * High resolution timer specific code
1254 */
1255#ifdef CONFIG_HIGH_RES_TIMERS
1256/*
1257 * We rearm the timer until we get disabled by the idle code.
1258 * Called with interrupts disabled.
1259 */
1260static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1261{
1262	struct tick_sched *ts =
1263		container_of(timer, struct tick_sched, sched_timer);
1264	struct pt_regs *regs = get_irq_regs();
1265	ktime_t now = ktime_get();
 
 
 
 
 
 
 
 
 
 
 
 
 
1266
1267	tick_sched_do_timer(ts, now);
 
 
1268
1269	/*
1270	 * Do not call, when we are not in irq context and have
1271	 * no valid regs pointer
1272	 */
1273	if (regs)
1274		tick_sched_handle(ts, regs);
1275	else
1276		ts->next_tick = 0;
1277
1278	/* No need to reprogram if we are in idle or full dynticks mode */
1279	if (unlikely(ts->tick_stopped))
1280		return HRTIMER_NORESTART;
 
 
 
 
 
 
 
 
1281
1282	hrtimer_forward(timer, now, tick_period);
1283
1284	return HRTIMER_RESTART;
1285}
1286
1287static int sched_skew_tick;
1288
1289static int __init skew_tick(char *str)
1290{
1291	get_option(&str, &sched_skew_tick);
1292
1293	return 0;
1294}
1295early_param("skew_tick", skew_tick);
1296
1297/**
1298 * tick_setup_sched_timer - setup the tick emulation timer
1299 */
1300void tick_setup_sched_timer(void)
1301{
1302	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1303	ktime_t now = ktime_get();
1304
1305	/*
1306	 * Emulate tick processing via per-CPU hrtimers:
1307	 */
1308	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1309	ts->sched_timer.function = tick_sched_timer;
1310
1311	/* Get the next period (per-CPU) */
1312	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1313
1314	/* Offset the tick to avert jiffies_lock contention. */
1315	if (sched_skew_tick) {
1316		u64 offset = ktime_to_ns(tick_period) >> 1;
1317		do_div(offset, num_possible_cpus());
1318		offset *= smp_processor_id();
1319		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1320	}
1321
1322	hrtimer_forward(&ts->sched_timer, now, tick_period);
1323	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1324	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
 
 
 
 
 
 
 
 
 
 
 
1325}
1326#endif /* HIGH_RES_TIMERS */
1327
1328#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1329void tick_cancel_sched_timer(int cpu)
1330{
1331	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1332
1333# ifdef CONFIG_HIGH_RES_TIMERS
1334	if (ts->sched_timer.base)
1335		hrtimer_cancel(&ts->sched_timer);
1336# endif
1337
1338	memset(ts, 0, sizeof(*ts));
1339}
1340#endif
1341
1342/**
1343 * Async notification about clocksource changes
1344 */
1345void tick_clock_notify(void)
1346{
1347	int cpu;
1348
1349	for_each_possible_cpu(cpu)
1350		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1351}
1352
1353/*
1354 * Async notification about clock event changes
1355 */
1356void tick_oneshot_notify(void)
1357{
1358	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1359
1360	set_bit(0, &ts->check_clocks);
1361}
1362
1363/**
1364 * Check, if a change happened, which makes oneshot possible.
1365 *
1366 * Called cyclic from the hrtimer softirq (driven by the timer
1367 * softirq) allow_nohz signals, that we can switch into low-res nohz
1368 * mode, because high resolution timers are disabled (either compile
1369 * or runtime). Called with interrupts disabled.
1370 */
1371int tick_check_oneshot_change(int allow_nohz)
1372{
1373	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1374
1375	if (!test_and_clear_bit(0, &ts->check_clocks))
1376		return 0;
1377
1378	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1379		return 0;
1380
1381	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1382		return 0;
1383
1384	if (!allow_nohz)
1385		return 1;
1386
1387	tick_nohz_switch_to_nohz();
1388	return 0;
1389}