Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * NTP state machine interfaces and logic.
  3 *
  4 * This code was mainly moved from kernel/timer.c and kernel/time.c
  5 * Please see those files for relevant copyright info and historical
  6 * changelogs.
  7 */
  8#include <linux/capability.h>
  9#include <linux/clocksource.h>
 10#include <linux/workqueue.h>
 11#include <linux/hrtimer.h>
 12#include <linux/jiffies.h>
 13#include <linux/math64.h>
 14#include <linux/timex.h>
 15#include <linux/time.h>
 16#include <linux/mm.h>
 17#include <linux/module.h>
 
 
 
 
 
 18
 19#include "tick-internal.h"
 20
 21/*
 22 * NTP timekeeping variables:
 
 
 23 */
 24
 25DEFINE_SPINLOCK(ntp_lock);
 26
 27
 28/* USER_HZ period (usecs): */
 29unsigned long			tick_usec = TICK_USEC;
 30
 31/* ACTHZ period (nsecs): */
 32unsigned long			tick_nsec;
 33
 34static u64			tick_length;
 35static u64			tick_length_base;
 36
 
 37#define MAX_TICKADJ		500LL		/* usecs */
 38#define MAX_TICKADJ_SCALED \
 39	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
 40
 41/*
 42 * phase-lock loop variables
 43 */
 44
 45/*
 46 * clock synchronization status
 47 *
 48 * (TIME_ERROR prevents overwriting the CMOS clock)
 49 */
 50static int			time_state = TIME_OK;
 51
 52/* clock status bits:							*/
 53static int			time_status = STA_UNSYNC;
 54
 55/* TAI offset (secs):							*/
 56static long			time_tai;
 57
 58/* time adjustment (nsecs):						*/
 59static s64			time_offset;
 60
 61/* pll time constant:							*/
 62static long			time_constant = 2;
 63
 64/* maximum error (usecs):						*/
 65static long			time_maxerror = NTP_PHASE_LIMIT;
 66
 67/* estimated error (usecs):						*/
 68static long			time_esterror = NTP_PHASE_LIMIT;
 69
 70/* frequency offset (scaled nsecs/secs):				*/
 71static s64			time_freq;
 72
 73/* time at last adjustment (secs):					*/
 74static long			time_reftime;
 75
 76static long			time_adjust;
 77
 78/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
 79static s64			ntp_tick_adj;
 80
 
 
 
 81#ifdef CONFIG_NTP_PPS
 82
 83/*
 84 * The following variables are used when a pulse-per-second (PPS) signal
 85 * is available. They establish the engineering parameters of the clock
 86 * discipline loop when controlled by the PPS signal.
 87 */
 88#define PPS_VALID	10	/* PPS signal watchdog max (s) */
 89#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
 90#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
 91#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
 92#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
 93				   increase pps_shift or consecutive bad
 94				   intervals to decrease it */
 95#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
 96
 97static int pps_valid;		/* signal watchdog counter */
 98static long pps_tf[3];		/* phase median filter */
 99static long pps_jitter;		/* current jitter (ns) */
100static struct timespec pps_fbase; /* beginning of the last freq interval */
101static int pps_shift;		/* current interval duration (s) (shift) */
102static int pps_intcnt;		/* interval counter */
103static s64 pps_freq;		/* frequency offset (scaled ns/s) */
104static long pps_stabil;		/* current stability (scaled ns/s) */
105
106/*
107 * PPS signal quality monitors
108 */
109static long pps_calcnt;		/* calibration intervals */
110static long pps_jitcnt;		/* jitter limit exceeded */
111static long pps_stbcnt;		/* stability limit exceeded */
112static long pps_errcnt;		/* calibration errors */
113
114
115/* PPS kernel consumer compensates the whole phase error immediately.
116 * Otherwise, reduce the offset by a fixed factor times the time constant.
117 */
118static inline s64 ntp_offset_chunk(s64 offset)
119{
120	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
121		return offset;
122	else
123		return shift_right(offset, SHIFT_PLL + time_constant);
124}
125
126static inline void pps_reset_freq_interval(void)
127{
128	/* the PPS calibration interval may end
129	   surprisingly early */
130	pps_shift = PPS_INTMIN;
131	pps_intcnt = 0;
132}
133
134/**
135 * pps_clear - Clears the PPS state variables
136 *
137 * Must be called while holding a write on the ntp_lock
138 */
139static inline void pps_clear(void)
140{
141	pps_reset_freq_interval();
142	pps_tf[0] = 0;
143	pps_tf[1] = 0;
144	pps_tf[2] = 0;
145	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
146	pps_freq = 0;
147}
148
149/* Decrease pps_valid to indicate that another second has passed since
150 * the last PPS signal. When it reaches 0, indicate that PPS signal is
151 * missing.
152 *
153 * Must be called while holding a write on the ntp_lock
154 */
155static inline void pps_dec_valid(void)
156{
157	if (pps_valid > 0)
158		pps_valid--;
159	else {
160		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
161				 STA_PPSWANDER | STA_PPSERROR);
162		pps_clear();
163	}
164}
165
166static inline void pps_set_freq(s64 freq)
167{
168	pps_freq = freq;
169}
170
171static inline int is_error_status(int status)
172{
173	return (time_status & (STA_UNSYNC|STA_CLOCKERR))
174		/* PPS signal lost when either PPS time or
175		 * PPS frequency synchronization requested
176		 */
177		|| ((time_status & (STA_PPSFREQ|STA_PPSTIME))
178			&& !(time_status & STA_PPSSIGNAL))
179		/* PPS jitter exceeded when
180		 * PPS time synchronization requested */
181		|| ((time_status & (STA_PPSTIME|STA_PPSJITTER))
182			== (STA_PPSTIME|STA_PPSJITTER))
183		/* PPS wander exceeded or calibration error when
184		 * PPS frequency synchronization requested
185		 */
186		|| ((time_status & STA_PPSFREQ)
187			&& (time_status & (STA_PPSWANDER|STA_PPSERROR)));
188}
189
190static inline void pps_fill_timex(struct timex *txc)
191{
192	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
193					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
194	txc->jitter	   = pps_jitter;
195	if (!(time_status & STA_NANO))
196		txc->jitter /= NSEC_PER_USEC;
197	txc->shift	   = pps_shift;
198	txc->stabil	   = pps_stabil;
199	txc->jitcnt	   = pps_jitcnt;
200	txc->calcnt	   = pps_calcnt;
201	txc->errcnt	   = pps_errcnt;
202	txc->stbcnt	   = pps_stbcnt;
203}
204
205#else /* !CONFIG_NTP_PPS */
206
207static inline s64 ntp_offset_chunk(s64 offset)
208{
209	return shift_right(offset, SHIFT_PLL + time_constant);
210}
211
212static inline void pps_reset_freq_interval(void) {}
213static inline void pps_clear(void) {}
214static inline void pps_dec_valid(void) {}
215static inline void pps_set_freq(s64 freq) {}
216
217static inline int is_error_status(int status)
218{
219	return status & (STA_UNSYNC|STA_CLOCKERR);
220}
221
222static inline void pps_fill_timex(struct timex *txc)
223{
224	/* PPS is not implemented, so these are zero */
225	txc->ppsfreq	   = 0;
226	txc->jitter	   = 0;
227	txc->shift	   = 0;
228	txc->stabil	   = 0;
229	txc->jitcnt	   = 0;
230	txc->calcnt	   = 0;
231	txc->errcnt	   = 0;
232	txc->stbcnt	   = 0;
233}
234
235#endif /* CONFIG_NTP_PPS */
236
237
238/**
239 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
240 *
241 */
242static inline int ntp_synced(void)
243{
244	return !(time_status & STA_UNSYNC);
245}
246
247
248/*
249 * NTP methods:
250 */
251
252/*
253 * Update (tick_length, tick_length_base, tick_nsec), based
254 * on (tick_usec, ntp_tick_adj, time_freq):
255 */
256static void ntp_update_frequency(void)
257{
258	u64 second_length;
259	u64 new_base;
260
261	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
262						<< NTP_SCALE_SHIFT;
263
264	second_length		+= ntp_tick_adj;
265	second_length		+= time_freq;
266
267	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
268	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
269
270	/*
271	 * Don't wait for the next second_overflow, apply
272	 * the change to the tick length immediately:
273	 */
274	tick_length		+= new_base - tick_length_base;
275	tick_length_base	 = new_base;
276}
277
278static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
279{
280	time_status &= ~STA_MODE;
281
282	if (secs < MINSEC)
283		return 0;
284
285	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
286		return 0;
287
288	time_status |= STA_MODE;
289
290	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
291}
292
293static void ntp_update_offset(long offset)
294{
295	s64 freq_adj;
296	s64 offset64;
297	long secs;
298
299	if (!(time_status & STA_PLL))
300		return;
301
302	if (!(time_status & STA_NANO))
 
 
303		offset *= NSEC_PER_USEC;
 
304
305	/*
306	 * Scale the phase adjustment and
307	 * clamp to the operating range.
308	 */
309	offset = min(offset, MAXPHASE);
310	offset = max(offset, -MAXPHASE);
311
312	/*
313	 * Select how the frequency is to be controlled
314	 * and in which mode (PLL or FLL).
315	 */
316	secs = get_seconds() - time_reftime;
317	if (unlikely(time_status & STA_FREQHOLD))
318		secs = 0;
319
320	time_reftime = get_seconds();
321
322	offset64    = offset;
323	freq_adj    = ntp_update_offset_fll(offset64, secs);
324
325	/*
326	 * Clamp update interval to reduce PLL gain with low
327	 * sampling rate (e.g. intermittent network connection)
328	 * to avoid instability.
329	 */
330	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
331		secs = 1 << (SHIFT_PLL + 1 + time_constant);
332
333	freq_adj    += (offset64 * secs) <<
334			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
335
336	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
337
338	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
339
340	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
341}
342
343/**
344 * ntp_clear - Clears the NTP state variables
345 */
346void ntp_clear(void)
347{
348	unsigned long flags;
349
350	spin_lock_irqsave(&ntp_lock, flags);
351
352	time_adjust	= 0;		/* stop active adjtime() */
353	time_status	|= STA_UNSYNC;
354	time_maxerror	= NTP_PHASE_LIMIT;
355	time_esterror	= NTP_PHASE_LIMIT;
356
357	ntp_update_frequency();
358
359	tick_length	= tick_length_base;
360	time_offset	= 0;
361
 
362	/* Clear PPS state variables */
363	pps_clear();
364	spin_unlock_irqrestore(&ntp_lock, flags);
365
366}
367
368
369u64 ntp_tick_length(void)
370{
371	unsigned long flags;
372	s64 ret;
373
374	spin_lock_irqsave(&ntp_lock, flags);
375	ret = tick_length;
376	spin_unlock_irqrestore(&ntp_lock, flags);
 
 
 
 
 
 
 
 
 
 
377	return ret;
378}
379
380
381/*
382 * this routine handles the overflow of the microsecond field
383 *
384 * The tricky bits of code to handle the accurate clock support
385 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
386 * They were originally developed for SUN and DEC kernels.
387 * All the kudos should go to Dave for this stuff.
388 *
389 * Also handles leap second processing, and returns leap offset
390 */
391int second_overflow(unsigned long secs)
392{
393	s64 delta;
394	int leap = 0;
395	unsigned long flags;
396
397	spin_lock_irqsave(&ntp_lock, flags);
398
399	/*
400	 * Leap second processing. If in leap-insert state at the end of the
401	 * day, the system clock is set back one second; if in leap-delete
402	 * state, the system clock is set ahead one second.
403	 */
404	switch (time_state) {
405	case TIME_OK:
406		if (time_status & STA_INS)
407			time_state = TIME_INS;
408		else if (time_status & STA_DEL)
 
 
409			time_state = TIME_DEL;
 
 
 
410		break;
411	case TIME_INS:
412		if (!(time_status & STA_INS))
 
413			time_state = TIME_OK;
414		else if (secs % 86400 == 0) {
415			leap = -1;
416			time_state = TIME_OOP;
417			time_tai++;
418			printk(KERN_NOTICE
419				"Clock: inserting leap second 23:59:60 UTC\n");
420		}
421		break;
422	case TIME_DEL:
423		if (!(time_status & STA_DEL))
 
424			time_state = TIME_OK;
425		else if ((secs + 1) % 86400 == 0) {
426			leap = 1;
427			time_tai--;
428			time_state = TIME_WAIT;
429			printk(KERN_NOTICE
430				"Clock: deleting leap second 23:59:59 UTC\n");
431		}
432		break;
433	case TIME_OOP:
 
434		time_state = TIME_WAIT;
435		break;
436
437	case TIME_WAIT:
438		if (!(time_status & (STA_INS | STA_DEL)))
439			time_state = TIME_OK;
440		break;
441	}
442
443
444	/* Bump the maxerror field */
445	time_maxerror += MAXFREQ / NSEC_PER_USEC;
446	if (time_maxerror > NTP_PHASE_LIMIT) {
447		time_maxerror = NTP_PHASE_LIMIT;
448		time_status |= STA_UNSYNC;
449	}
450
451	/* Compute the phase adjustment for the next second */
452	tick_length	 = tick_length_base;
453
454	delta		 = ntp_offset_chunk(time_offset);
455	time_offset	-= delta;
456	tick_length	+= delta;
457
458	/* Check PPS signal */
459	pps_dec_valid();
460
461	if (!time_adjust)
462		goto out;
463
464	if (time_adjust > MAX_TICKADJ) {
465		time_adjust -= MAX_TICKADJ;
466		tick_length += MAX_TICKADJ_SCALED;
467		goto out;
468	}
469
470	if (time_adjust < -MAX_TICKADJ) {
471		time_adjust += MAX_TICKADJ;
472		tick_length -= MAX_TICKADJ_SCALED;
473		goto out;
474	}
475
476	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
477							 << NTP_SCALE_SHIFT;
478	time_adjust = 0;
479
480out:
481	spin_unlock_irqrestore(&ntp_lock, flags);
482
483	return leap;
484}
485
486#ifdef CONFIG_GENERIC_CMOS_UPDATE
487
488static void sync_cmos_clock(struct work_struct *work);
489
490static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
 
491
492static void sync_cmos_clock(struct work_struct *work)
493{
494	struct timespec now, next;
495	int fail = 1;
496
497	/*
498	 * If we have an externally synchronized Linux clock, then update
499	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
500	 * called as close as possible to 500 ms before the new second starts.
501	 * This code is run on a timer.  If the clock is set, that timer
502	 * may not expire at the correct time.  Thus, we adjust...
503	 */
504	if (!ntp_synced()) {
505		/*
506		 * Not synced, exit, do not restart a timer (if one is
507		 * running, let it run out).
 
 
508		 */
509		return;
510	}
511
512	getnstimeofday(&now);
513	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
514		fail = update_persistent_clock(now);
515
516	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
517	if (next.tv_nsec <= 0)
518		next.tv_nsec += NSEC_PER_SEC;
519
520	if (!fail)
521		next.tv_sec = 659;
522	else
523		next.tv_sec = 0;
524
525	if (next.tv_nsec >= NSEC_PER_SEC) {
526		next.tv_sec++;
527		next.tv_nsec -= NSEC_PER_SEC;
528	}
529	schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
 
 
530}
531
532static void notify_cmos_timer(void)
533{
534	schedule_delayed_work(&sync_cmos_work, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
535}
536
537#else
538static inline void notify_cmos_timer(void) { }
 
 
 
 
 
 
 
 
 
 
 
539#endif
540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
541
542/*
543 * Propagate a new txc->status value into the NTP state:
544 */
545static inline void process_adj_status(struct timex *txc, struct timespec *ts)
546{
547	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
548		time_state = TIME_OK;
549		time_status = STA_UNSYNC;
 
550		/* restart PPS frequency calibration */
551		pps_reset_freq_interval();
552	}
553
554	/*
555	 * If we turn on PLL adjustments then reset the
556	 * reference time to current time.
557	 */
558	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
559		time_reftime = get_seconds();
560
561	/* only set allowed bits */
562	time_status &= STA_RONLY;
563	time_status |= txc->status & ~STA_RONLY;
564}
565
566/*
567 * Called with ntp_lock held, so we can access and modify
568 * all the global NTP state:
569 */
570static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
571{
572	if (txc->modes & ADJ_STATUS)
573		process_adj_status(txc, ts);
574
575	if (txc->modes & ADJ_NANO)
576		time_status |= STA_NANO;
577
578	if (txc->modes & ADJ_MICRO)
579		time_status &= ~STA_NANO;
580
581	if (txc->modes & ADJ_FREQUENCY) {
582		time_freq = txc->freq * PPM_SCALE;
583		time_freq = min(time_freq, MAXFREQ_SCALED);
584		time_freq = max(time_freq, -MAXFREQ_SCALED);
585		/* update pps_freq */
586		pps_set_freq(time_freq);
587	}
588
589	if (txc->modes & ADJ_MAXERROR)
590		time_maxerror = txc->maxerror;
591
592	if (txc->modes & ADJ_ESTERROR)
593		time_esterror = txc->esterror;
594
595	if (txc->modes & ADJ_TIMECONST) {
596		time_constant = txc->constant;
597		if (!(time_status & STA_NANO))
598			time_constant += 4;
599		time_constant = min(time_constant, (long)MAXTC);
600		time_constant = max(time_constant, 0l);
601	}
602
603	if (txc->modes & ADJ_TAI && txc->constant > 0)
604		time_tai = txc->constant;
605
606	if (txc->modes & ADJ_OFFSET)
607		ntp_update_offset(txc->offset);
608
609	if (txc->modes & ADJ_TICK)
610		tick_usec = txc->tick;
611
612	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
613		ntp_update_frequency();
614}
615
 
616/*
617 * adjtimex mainly allows reading (and writing, if superuser) of
618 * kernel time-keeping variables. used by xntpd.
619 */
620int do_adjtimex(struct timex *txc)
621{
622	struct timespec ts;
623	int result;
624
625	/* Validate the data before disabling interrupts */
626	if (txc->modes & ADJ_ADJTIME) {
627		/* singleshot must not be used with any other mode bits */
628		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
629			return -EINVAL;
630		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
631		    !capable(CAP_SYS_TIME))
632			return -EPERM;
633	} else {
634		/* In order to modify anything, you gotta be super-user! */
635		 if (txc->modes && !capable(CAP_SYS_TIME))
636			return -EPERM;
637
638		/*
639		 * if the quartz is off by more than 10% then
640		 * something is VERY wrong!
641		 */
642		if (txc->modes & ADJ_TICK &&
643		    (txc->tick <  900000/USER_HZ ||
644		     txc->tick > 1100000/USER_HZ))
645			return -EINVAL;
646	}
647
648	if (txc->modes & ADJ_SETOFFSET) {
649		struct timespec delta;
650		delta.tv_sec  = txc->time.tv_sec;
651		delta.tv_nsec = txc->time.tv_usec;
652		if (!capable(CAP_SYS_TIME))
653			return -EPERM;
654		if (!(txc->modes & ADJ_NANO))
655			delta.tv_nsec *= 1000;
656		result = timekeeping_inject_offset(&delta);
657		if (result)
658			return result;
659	}
660
661	getnstimeofday(&ts);
662
663	spin_lock_irq(&ntp_lock);
664
665	if (txc->modes & ADJ_ADJTIME) {
666		long save_adjust = time_adjust;
667
668		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
669			/* adjtime() is independent from ntp_adjtime() */
670			time_adjust = txc->offset;
671			ntp_update_frequency();
672		}
673		txc->offset = save_adjust;
674	} else {
675
676		/* If there are input parameters, then process them: */
677		if (txc->modes)
678			process_adjtimex_modes(txc, &ts);
679
680		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
681				  NTP_SCALE_SHIFT);
682		if (!(time_status & STA_NANO))
683			txc->offset /= NSEC_PER_USEC;
684	}
685
686	result = time_state;	/* mostly `TIME_OK' */
687	/* check for errors */
688	if (is_error_status(time_status))
689		result = TIME_ERROR;
690
691	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
692					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
693	txc->maxerror	   = time_maxerror;
694	txc->esterror	   = time_esterror;
695	txc->status	   = time_status;
696	txc->constant	   = time_constant;
697	txc->precision	   = 1;
698	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
699	txc->tick	   = tick_usec;
700	txc->tai	   = time_tai;
701
702	/* fill PPS status fields */
703	pps_fill_timex(txc);
704
705	spin_unlock_irq(&ntp_lock);
706
707	txc->time.tv_sec = ts.tv_sec;
708	txc->time.tv_usec = ts.tv_nsec;
709	if (!(time_status & STA_NANO))
710		txc->time.tv_usec /= NSEC_PER_USEC;
711
712	notify_cmos_timer();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
713
714	return result;
715}
716
717#ifdef	CONFIG_NTP_PPS
718
719/* actually struct pps_normtime is good old struct timespec, but it is
720 * semantically different (and it is the reason why it was invented):
721 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
722 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
723struct pps_normtime {
724	__kernel_time_t	sec;	/* seconds */
725	long		nsec;	/* nanoseconds */
726};
727
728/* normalize the timestamp so that nsec is in the
729   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
730static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
731{
732	struct pps_normtime norm = {
733		.sec = ts.tv_sec,
734		.nsec = ts.tv_nsec
735	};
736
737	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
738		norm.nsec -= NSEC_PER_SEC;
739		norm.sec++;
740	}
741
742	return norm;
743}
744
745/* get current phase correction and jitter */
746static inline long pps_phase_filter_get(long *jitter)
747{
748	*jitter = pps_tf[0] - pps_tf[1];
749	if (*jitter < 0)
750		*jitter = -*jitter;
751
752	/* TODO: test various filters */
753	return pps_tf[0];
754}
755
756/* add the sample to the phase filter */
757static inline void pps_phase_filter_add(long err)
758{
759	pps_tf[2] = pps_tf[1];
760	pps_tf[1] = pps_tf[0];
761	pps_tf[0] = err;
762}
763
764/* decrease frequency calibration interval length.
765 * It is halved after four consecutive unstable intervals.
766 */
767static inline void pps_dec_freq_interval(void)
768{
769	if (--pps_intcnt <= -PPS_INTCOUNT) {
770		pps_intcnt = -PPS_INTCOUNT;
771		if (pps_shift > PPS_INTMIN) {
772			pps_shift--;
773			pps_intcnt = 0;
774		}
775	}
776}
777
778/* increase frequency calibration interval length.
779 * It is doubled after four consecutive stable intervals.
780 */
781static inline void pps_inc_freq_interval(void)
782{
783	if (++pps_intcnt >= PPS_INTCOUNT) {
784		pps_intcnt = PPS_INTCOUNT;
785		if (pps_shift < PPS_INTMAX) {
786			pps_shift++;
787			pps_intcnt = 0;
788		}
789	}
790}
791
792/* update clock frequency based on MONOTONIC_RAW clock PPS signal
793 * timestamps
794 *
795 * At the end of the calibration interval the difference between the
796 * first and last MONOTONIC_RAW clock timestamps divided by the length
797 * of the interval becomes the frequency update. If the interval was
798 * too long, the data are discarded.
799 * Returns the difference between old and new frequency values.
800 */
801static long hardpps_update_freq(struct pps_normtime freq_norm)
802{
803	long delta, delta_mod;
804	s64 ftemp;
805
806	/* check if the frequency interval was too long */
807	if (freq_norm.sec > (2 << pps_shift)) {
808		time_status |= STA_PPSERROR;
809		pps_errcnt++;
810		pps_dec_freq_interval();
811		pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
812				freq_norm.sec);
 
813		return 0;
814	}
815
816	/* here the raw frequency offset and wander (stability) is
817	 * calculated. If the wander is less than the wander threshold
818	 * the interval is increased; otherwise it is decreased.
819	 */
820	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
821			freq_norm.sec);
822	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
823	pps_freq = ftemp;
824	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
825		pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
 
826		time_status |= STA_PPSWANDER;
827		pps_stbcnt++;
828		pps_dec_freq_interval();
829	} else {	/* good sample */
830		pps_inc_freq_interval();
831	}
832
833	/* the stability metric is calculated as the average of recent
834	 * frequency changes, but is used only for performance
835	 * monitoring
836	 */
837	delta_mod = delta;
838	if (delta_mod < 0)
839		delta_mod = -delta_mod;
840	pps_stabil += (div_s64(((s64)delta_mod) <<
841				(NTP_SCALE_SHIFT - SHIFT_USEC),
842				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
843
844	/* if enabled, the system clock frequency is updated */
845	if ((time_status & STA_PPSFREQ) != 0 &&
846	    (time_status & STA_FREQHOLD) == 0) {
847		time_freq = pps_freq;
848		ntp_update_frequency();
849	}
850
851	return delta;
852}
853
854/* correct REALTIME clock phase error against PPS signal */
855static void hardpps_update_phase(long error)
856{
857	long correction = -error;
858	long jitter;
859
860	/* add the sample to the median filter */
861	pps_phase_filter_add(correction);
862	correction = pps_phase_filter_get(&jitter);
863
864	/* Nominal jitter is due to PPS signal noise. If it exceeds the
865	 * threshold, the sample is discarded; otherwise, if so enabled,
866	 * the time offset is updated.
867	 */
868	if (jitter > (pps_jitter << PPS_POPCORN)) {
869		pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
870		       jitter, (pps_jitter << PPS_POPCORN));
 
871		time_status |= STA_PPSJITTER;
872		pps_jitcnt++;
873	} else if (time_status & STA_PPSTIME) {
874		/* correct the time using the phase offset */
875		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
876				NTP_INTERVAL_FREQ);
877		/* cancel running adjtime() */
878		time_adjust = 0;
879	}
880	/* update jitter */
881	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
882}
883
884/*
885 * hardpps() - discipline CPU clock oscillator to external PPS signal
886 *
887 * This routine is called at each PPS signal arrival in order to
888 * discipline the CPU clock oscillator to the PPS signal. It takes two
889 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
890 * is used to correct clock phase error and the latter is used to
891 * correct the frequency.
892 *
893 * This code is based on David Mills's reference nanokernel
894 * implementation. It was mostly rewritten but keeps the same idea.
895 */
896void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
897{
898	struct pps_normtime pts_norm, freq_norm;
899	unsigned long flags;
900
901	pts_norm = pps_normalize_ts(*phase_ts);
902
903	spin_lock_irqsave(&ntp_lock, flags);
904
905	/* clear the error bits, they will be set again if needed */
906	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
907
908	/* indicate signal presence */
909	time_status |= STA_PPSSIGNAL;
910	pps_valid = PPS_VALID;
911
912	/* when called for the first time,
913	 * just start the frequency interval */
914	if (unlikely(pps_fbase.tv_sec == 0)) {
915		pps_fbase = *raw_ts;
916		spin_unlock_irqrestore(&ntp_lock, flags);
917		return;
918	}
919
920	/* ok, now we have a base for frequency calculation */
921	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
922
923	/* check that the signal is in the range
924	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
925	if ((freq_norm.sec == 0) ||
926			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
927			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
928		time_status |= STA_PPSJITTER;
929		/* restart the frequency calibration interval */
930		pps_fbase = *raw_ts;
931		spin_unlock_irqrestore(&ntp_lock, flags);
932		pr_err("hardpps: PPSJITTER: bad pulse\n");
933		return;
934	}
935
936	/* signal is ok */
937
938	/* check if the current frequency interval is finished */
939	if (freq_norm.sec >= (1 << pps_shift)) {
940		pps_calcnt++;
941		/* restart the frequency calibration interval */
942		pps_fbase = *raw_ts;
943		hardpps_update_freq(freq_norm);
944	}
945
946	hardpps_update_phase(pts_norm.nsec);
947
948	spin_unlock_irqrestore(&ntp_lock, flags);
949}
950EXPORT_SYMBOL(hardpps);
951
952#endif	/* CONFIG_NTP_PPS */
953
954static int __init ntp_tick_adj_setup(char *str)
955{
956	ntp_tick_adj = simple_strtol(str, NULL, 0);
 
 
 
957	ntp_tick_adj <<= NTP_SCALE_SHIFT;
958
959	return 1;
960}
961
962__setup("ntp_tick_adj=", ntp_tick_adj_setup);
963
964void __init ntp_init(void)
965{
966	ntp_clear();
967}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NTP state machine interfaces and logic.
   4 *
   5 * This code was mainly moved from kernel/timer.c and kernel/time.c
   6 * Please see those files for relevant copyright info and historical
   7 * changelogs.
   8 */
   9#include <linux/capability.h>
  10#include <linux/clocksource.h>
  11#include <linux/workqueue.h>
  12#include <linux/hrtimer.h>
  13#include <linux/jiffies.h>
  14#include <linux/math64.h>
  15#include <linux/timex.h>
  16#include <linux/time.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/rtc.h>
  20#include <linux/math64.h>
  21
  22#include "ntp_internal.h"
  23#include "timekeeping_internal.h"
  24
 
  25
  26/*
  27 * NTP timekeeping variables:
  28 *
  29 * Note: All of the NTP state is protected by the timekeeping locks.
  30 */
  31
 
 
  32
  33/* USER_HZ period (usecs): */
  34unsigned long			tick_usec = USER_TICK_USEC;
  35
  36/* SHIFTED_HZ period (nsecs): */
  37unsigned long			tick_nsec;
  38
  39static u64			tick_length;
  40static u64			tick_length_base;
  41
  42#define SECS_PER_DAY		86400
  43#define MAX_TICKADJ		500LL		/* usecs */
  44#define MAX_TICKADJ_SCALED \
  45	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
  46
  47/*
  48 * phase-lock loop variables
  49 */
  50
  51/*
  52 * clock synchronization status
  53 *
  54 * (TIME_ERROR prevents overwriting the CMOS clock)
  55 */
  56static int			time_state = TIME_OK;
  57
  58/* clock status bits:							*/
  59static int			time_status = STA_UNSYNC;
  60
 
 
 
  61/* time adjustment (nsecs):						*/
  62static s64			time_offset;
  63
  64/* pll time constant:							*/
  65static long			time_constant = 2;
  66
  67/* maximum error (usecs):						*/
  68static long			time_maxerror = NTP_PHASE_LIMIT;
  69
  70/* estimated error (usecs):						*/
  71static long			time_esterror = NTP_PHASE_LIMIT;
  72
  73/* frequency offset (scaled nsecs/secs):				*/
  74static s64			time_freq;
  75
  76/* time at last adjustment (secs):					*/
  77static time64_t		time_reftime;
  78
  79static long			time_adjust;
  80
  81/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
  82static s64			ntp_tick_adj;
  83
  84/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
  85static time64_t			ntp_next_leap_sec = TIME64_MAX;
  86
  87#ifdef CONFIG_NTP_PPS
  88
  89/*
  90 * The following variables are used when a pulse-per-second (PPS) signal
  91 * is available. They establish the engineering parameters of the clock
  92 * discipline loop when controlled by the PPS signal.
  93 */
  94#define PPS_VALID	10	/* PPS signal watchdog max (s) */
  95#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
  96#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
  97#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
  98#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
  99				   increase pps_shift or consecutive bad
 100				   intervals to decrease it */
 101#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
 102
 103static int pps_valid;		/* signal watchdog counter */
 104static long pps_tf[3];		/* phase median filter */
 105static long pps_jitter;		/* current jitter (ns) */
 106static struct timespec64 pps_fbase; /* beginning of the last freq interval */
 107static int pps_shift;		/* current interval duration (s) (shift) */
 108static int pps_intcnt;		/* interval counter */
 109static s64 pps_freq;		/* frequency offset (scaled ns/s) */
 110static long pps_stabil;		/* current stability (scaled ns/s) */
 111
 112/*
 113 * PPS signal quality monitors
 114 */
 115static long pps_calcnt;		/* calibration intervals */
 116static long pps_jitcnt;		/* jitter limit exceeded */
 117static long pps_stbcnt;		/* stability limit exceeded */
 118static long pps_errcnt;		/* calibration errors */
 119
 120
 121/* PPS kernel consumer compensates the whole phase error immediately.
 122 * Otherwise, reduce the offset by a fixed factor times the time constant.
 123 */
 124static inline s64 ntp_offset_chunk(s64 offset)
 125{
 126	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
 127		return offset;
 128	else
 129		return shift_right(offset, SHIFT_PLL + time_constant);
 130}
 131
 132static inline void pps_reset_freq_interval(void)
 133{
 134	/* the PPS calibration interval may end
 135	   surprisingly early */
 136	pps_shift = PPS_INTMIN;
 137	pps_intcnt = 0;
 138}
 139
 140/**
 141 * pps_clear - Clears the PPS state variables
 
 
 142 */
 143static inline void pps_clear(void)
 144{
 145	pps_reset_freq_interval();
 146	pps_tf[0] = 0;
 147	pps_tf[1] = 0;
 148	pps_tf[2] = 0;
 149	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
 150	pps_freq = 0;
 151}
 152
 153/* Decrease pps_valid to indicate that another second has passed since
 154 * the last PPS signal. When it reaches 0, indicate that PPS signal is
 155 * missing.
 
 
 156 */
 157static inline void pps_dec_valid(void)
 158{
 159	if (pps_valid > 0)
 160		pps_valid--;
 161	else {
 162		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
 163				 STA_PPSWANDER | STA_PPSERROR);
 164		pps_clear();
 165	}
 166}
 167
 168static inline void pps_set_freq(s64 freq)
 169{
 170	pps_freq = freq;
 171}
 172
 173static inline int is_error_status(int status)
 174{
 175	return (status & (STA_UNSYNC|STA_CLOCKERR))
 176		/* PPS signal lost when either PPS time or
 177		 * PPS frequency synchronization requested
 178		 */
 179		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
 180			&& !(status & STA_PPSSIGNAL))
 181		/* PPS jitter exceeded when
 182		 * PPS time synchronization requested */
 183		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
 184			== (STA_PPSTIME|STA_PPSJITTER))
 185		/* PPS wander exceeded or calibration error when
 186		 * PPS frequency synchronization requested
 187		 */
 188		|| ((status & STA_PPSFREQ)
 189			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
 190}
 191
 192static inline void pps_fill_timex(struct timex *txc)
 193{
 194	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
 195					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
 196	txc->jitter	   = pps_jitter;
 197	if (!(time_status & STA_NANO))
 198		txc->jitter /= NSEC_PER_USEC;
 199	txc->shift	   = pps_shift;
 200	txc->stabil	   = pps_stabil;
 201	txc->jitcnt	   = pps_jitcnt;
 202	txc->calcnt	   = pps_calcnt;
 203	txc->errcnt	   = pps_errcnt;
 204	txc->stbcnt	   = pps_stbcnt;
 205}
 206
 207#else /* !CONFIG_NTP_PPS */
 208
 209static inline s64 ntp_offset_chunk(s64 offset)
 210{
 211	return shift_right(offset, SHIFT_PLL + time_constant);
 212}
 213
 214static inline void pps_reset_freq_interval(void) {}
 215static inline void pps_clear(void) {}
 216static inline void pps_dec_valid(void) {}
 217static inline void pps_set_freq(s64 freq) {}
 218
 219static inline int is_error_status(int status)
 220{
 221	return status & (STA_UNSYNC|STA_CLOCKERR);
 222}
 223
 224static inline void pps_fill_timex(struct timex *txc)
 225{
 226	/* PPS is not implemented, so these are zero */
 227	txc->ppsfreq	   = 0;
 228	txc->jitter	   = 0;
 229	txc->shift	   = 0;
 230	txc->stabil	   = 0;
 231	txc->jitcnt	   = 0;
 232	txc->calcnt	   = 0;
 233	txc->errcnt	   = 0;
 234	txc->stbcnt	   = 0;
 235}
 236
 237#endif /* CONFIG_NTP_PPS */
 238
 239
 240/**
 241 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
 242 *
 243 */
 244static inline int ntp_synced(void)
 245{
 246	return !(time_status & STA_UNSYNC);
 247}
 248
 249
 250/*
 251 * NTP methods:
 252 */
 253
 254/*
 255 * Update (tick_length, tick_length_base, tick_nsec), based
 256 * on (tick_usec, ntp_tick_adj, time_freq):
 257 */
 258static void ntp_update_frequency(void)
 259{
 260	u64 second_length;
 261	u64 new_base;
 262
 263	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
 264						<< NTP_SCALE_SHIFT;
 265
 266	second_length		+= ntp_tick_adj;
 267	second_length		+= time_freq;
 268
 269	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
 270	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
 271
 272	/*
 273	 * Don't wait for the next second_overflow, apply
 274	 * the change to the tick length immediately:
 275	 */
 276	tick_length		+= new_base - tick_length_base;
 277	tick_length_base	 = new_base;
 278}
 279
 280static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
 281{
 282	time_status &= ~STA_MODE;
 283
 284	if (secs < MINSEC)
 285		return 0;
 286
 287	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
 288		return 0;
 289
 290	time_status |= STA_MODE;
 291
 292	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
 293}
 294
 295static void ntp_update_offset(long offset)
 296{
 297	s64 freq_adj;
 298	s64 offset64;
 299	long secs;
 300
 301	if (!(time_status & STA_PLL))
 302		return;
 303
 304	if (!(time_status & STA_NANO)) {
 305		/* Make sure the multiplication below won't overflow */
 306		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
 307		offset *= NSEC_PER_USEC;
 308	}
 309
 310	/*
 311	 * Scale the phase adjustment and
 312	 * clamp to the operating range.
 313	 */
 314	offset = clamp(offset, -MAXPHASE, MAXPHASE);
 
 315
 316	/*
 317	 * Select how the frequency is to be controlled
 318	 * and in which mode (PLL or FLL).
 319	 */
 320	secs = (long)(__ktime_get_real_seconds() - time_reftime);
 321	if (unlikely(time_status & STA_FREQHOLD))
 322		secs = 0;
 323
 324	time_reftime = __ktime_get_real_seconds();
 325
 326	offset64    = offset;
 327	freq_adj    = ntp_update_offset_fll(offset64, secs);
 328
 329	/*
 330	 * Clamp update interval to reduce PLL gain with low
 331	 * sampling rate (e.g. intermittent network connection)
 332	 * to avoid instability.
 333	 */
 334	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
 335		secs = 1 << (SHIFT_PLL + 1 + time_constant);
 336
 337	freq_adj    += (offset64 * secs) <<
 338			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
 339
 340	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
 341
 342	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
 343
 344	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
 345}
 346
 347/**
 348 * ntp_clear - Clears the NTP state variables
 349 */
 350void ntp_clear(void)
 351{
 
 
 
 
 352	time_adjust	= 0;		/* stop active adjtime() */
 353	time_status	|= STA_UNSYNC;
 354	time_maxerror	= NTP_PHASE_LIMIT;
 355	time_esterror	= NTP_PHASE_LIMIT;
 356
 357	ntp_update_frequency();
 358
 359	tick_length	= tick_length_base;
 360	time_offset	= 0;
 361
 362	ntp_next_leap_sec = TIME64_MAX;
 363	/* Clear PPS state variables */
 364	pps_clear();
 
 
 365}
 366
 367
 368u64 ntp_tick_length(void)
 369{
 370	return tick_length;
 371}
 372
 373/**
 374 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
 375 *
 376 * Provides the time of the next leapsecond against CLOCK_REALTIME in
 377 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
 378 */
 379ktime_t ntp_get_next_leap(void)
 380{
 381	ktime_t ret;
 382
 383	if ((time_state == TIME_INS) && (time_status & STA_INS))
 384		return ktime_set(ntp_next_leap_sec, 0);
 385	ret = KTIME_MAX;
 386	return ret;
 387}
 388
 
 389/*
 390 * this routine handles the overflow of the microsecond field
 391 *
 392 * The tricky bits of code to handle the accurate clock support
 393 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 394 * They were originally developed for SUN and DEC kernels.
 395 * All the kudos should go to Dave for this stuff.
 396 *
 397 * Also handles leap second processing, and returns leap offset
 398 */
 399int second_overflow(time64_t secs)
 400{
 401	s64 delta;
 402	int leap = 0;
 403	s32 rem;
 
 
 404
 405	/*
 406	 * Leap second processing. If in leap-insert state at the end of the
 407	 * day, the system clock is set back one second; if in leap-delete
 408	 * state, the system clock is set ahead one second.
 409	 */
 410	switch (time_state) {
 411	case TIME_OK:
 412		if (time_status & STA_INS) {
 413			time_state = TIME_INS;
 414			div_s64_rem(secs, SECS_PER_DAY, &rem);
 415			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 416		} else if (time_status & STA_DEL) {
 417			time_state = TIME_DEL;
 418			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
 419			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 420		}
 421		break;
 422	case TIME_INS:
 423		if (!(time_status & STA_INS)) {
 424			ntp_next_leap_sec = TIME64_MAX;
 425			time_state = TIME_OK;
 426		} else if (secs == ntp_next_leap_sec) {
 427			leap = -1;
 428			time_state = TIME_OOP;
 
 429			printk(KERN_NOTICE
 430				"Clock: inserting leap second 23:59:60 UTC\n");
 431		}
 432		break;
 433	case TIME_DEL:
 434		if (!(time_status & STA_DEL)) {
 435			ntp_next_leap_sec = TIME64_MAX;
 436			time_state = TIME_OK;
 437		} else if (secs == ntp_next_leap_sec) {
 438			leap = 1;
 439			ntp_next_leap_sec = TIME64_MAX;
 440			time_state = TIME_WAIT;
 441			printk(KERN_NOTICE
 442				"Clock: deleting leap second 23:59:59 UTC\n");
 443		}
 444		break;
 445	case TIME_OOP:
 446		ntp_next_leap_sec = TIME64_MAX;
 447		time_state = TIME_WAIT;
 448		break;
 
 449	case TIME_WAIT:
 450		if (!(time_status & (STA_INS | STA_DEL)))
 451			time_state = TIME_OK;
 452		break;
 453	}
 454
 455
 456	/* Bump the maxerror field */
 457	time_maxerror += MAXFREQ / NSEC_PER_USEC;
 458	if (time_maxerror > NTP_PHASE_LIMIT) {
 459		time_maxerror = NTP_PHASE_LIMIT;
 460		time_status |= STA_UNSYNC;
 461	}
 462
 463	/* Compute the phase adjustment for the next second */
 464	tick_length	 = tick_length_base;
 465
 466	delta		 = ntp_offset_chunk(time_offset);
 467	time_offset	-= delta;
 468	tick_length	+= delta;
 469
 470	/* Check PPS signal */
 471	pps_dec_valid();
 472
 473	if (!time_adjust)
 474		goto out;
 475
 476	if (time_adjust > MAX_TICKADJ) {
 477		time_adjust -= MAX_TICKADJ;
 478		tick_length += MAX_TICKADJ_SCALED;
 479		goto out;
 480	}
 481
 482	if (time_adjust < -MAX_TICKADJ) {
 483		time_adjust += MAX_TICKADJ;
 484		tick_length -= MAX_TICKADJ_SCALED;
 485		goto out;
 486	}
 487
 488	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
 489							 << NTP_SCALE_SHIFT;
 490	time_adjust = 0;
 491
 492out:
 
 
 493	return leap;
 494}
 495
 496static void sync_hw_clock(struct work_struct *work);
 497static DECLARE_DELAYED_WORK(sync_work, sync_hw_clock);
 
 498
 499static void sched_sync_hw_clock(struct timespec64 now,
 500				unsigned long target_nsec, bool fail)
 501
 
 502{
 503	struct timespec64 next;
 
 504
 505	getnstimeofday64(&next);
 506	if (!fail)
 507		next.tv_sec = 659;
 508	else {
 
 
 
 
 509		/*
 510		 * Try again as soon as possible. Delaying long periods
 511		 * decreases the accuracy of the work queue timer. Due to this
 512		 * the algorithm is very likely to require a short-sleep retry
 513		 * after the above long sleep to synchronize ts_nsec.
 514		 */
 515		next.tv_sec = 0;
 516	}
 517
 518	/* Compute the needed delay that will get to tv_nsec == target_nsec */
 519	next.tv_nsec = target_nsec - next.tv_nsec;
 
 
 
 520	if (next.tv_nsec <= 0)
 521		next.tv_nsec += NSEC_PER_SEC;
 
 
 
 
 
 
 522	if (next.tv_nsec >= NSEC_PER_SEC) {
 523		next.tv_sec++;
 524		next.tv_nsec -= NSEC_PER_SEC;
 525	}
 526
 527	queue_delayed_work(system_power_efficient_wq, &sync_work,
 528			   timespec64_to_jiffies(&next));
 529}
 530
 531static void sync_rtc_clock(void)
 532{
 533	unsigned long target_nsec;
 534	struct timespec64 adjust, now;
 535	int rc;
 536
 537	if (!IS_ENABLED(CONFIG_RTC_SYSTOHC))
 538		return;
 539
 540	getnstimeofday64(&now);
 541
 542	adjust = now;
 543	if (persistent_clock_is_local)
 544		adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
 545
 546	/*
 547	 * The current RTC in use will provide the target_nsec it wants to be
 548	 * called at, and does rtc_tv_nsec_ok internally.
 549	 */
 550	rc = rtc_set_ntp_time(adjust, &target_nsec);
 551	if (rc == -ENODEV)
 552		return;
 553
 554	sched_sync_hw_clock(now, target_nsec, rc);
 555}
 556
 557#ifdef CONFIG_GENERIC_CMOS_UPDATE
 558int __weak update_persistent_clock(struct timespec now)
 559{
 560	return -ENODEV;
 561}
 562
 563int __weak update_persistent_clock64(struct timespec64 now64)
 564{
 565	struct timespec now;
 566
 567	now = timespec64_to_timespec(now64);
 568	return update_persistent_clock(now);
 569}
 570#endif
 571
 572static bool sync_cmos_clock(void)
 573{
 574	static bool no_cmos;
 575	struct timespec64 now;
 576	struct timespec64 adjust;
 577	int rc = -EPROTO;
 578	long target_nsec = NSEC_PER_SEC / 2;
 579
 580	if (!IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE))
 581		return false;
 582
 583	if (no_cmos)
 584		return false;
 585
 586	/*
 587	 * Historically update_persistent_clock64() has followed x86
 588	 * semantics, which match the MC146818A/etc RTC. This RTC will store
 589	 * 'adjust' and then in .5s it will advance once second.
 590	 *
 591	 * Architectures are strongly encouraged to use rtclib and not
 592	 * implement this legacy API.
 593	 */
 594	getnstimeofday64(&now);
 595	if (rtc_tv_nsec_ok(-1 * target_nsec, &adjust, &now)) {
 596		if (persistent_clock_is_local)
 597			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
 598		rc = update_persistent_clock64(adjust);
 599		/*
 600		 * The machine does not support update_persistent_clock64 even
 601		 * though it defines CONFIG_GENERIC_CMOS_UPDATE.
 602		 */
 603		if (rc == -ENODEV) {
 604			no_cmos = true;
 605			return false;
 606		}
 607	}
 608
 609	sched_sync_hw_clock(now, target_nsec, rc);
 610	return true;
 611}
 612
 613/*
 614 * If we have an externally synchronized Linux clock, then update RTC clock
 615 * accordingly every ~11 minutes. Generally RTCs can only store second
 616 * precision, but many RTCs will adjust the phase of their second tick to
 617 * match the moment of update. This infrastructure arranges to call to the RTC
 618 * set at the correct moment to phase synchronize the RTC second tick over
 619 * with the kernel clock.
 620 */
 621static void sync_hw_clock(struct work_struct *work)
 622{
 623	if (!ntp_synced())
 624		return;
 625
 626	if (sync_cmos_clock())
 627		return;
 628
 629	sync_rtc_clock();
 630}
 631
 632void ntp_notify_cmos_timer(void)
 633{
 634	if (!ntp_synced())
 635		return;
 636
 637	if (IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE) ||
 638	    IS_ENABLED(CONFIG_RTC_SYSTOHC))
 639		queue_delayed_work(system_power_efficient_wq, &sync_work, 0);
 640}
 641
 642/*
 643 * Propagate a new txc->status value into the NTP state:
 644 */
 645static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
 646{
 647	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
 648		time_state = TIME_OK;
 649		time_status = STA_UNSYNC;
 650		ntp_next_leap_sec = TIME64_MAX;
 651		/* restart PPS frequency calibration */
 652		pps_reset_freq_interval();
 653	}
 654
 655	/*
 656	 * If we turn on PLL adjustments then reset the
 657	 * reference time to current time.
 658	 */
 659	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
 660		time_reftime = __ktime_get_real_seconds();
 661
 662	/* only set allowed bits */
 663	time_status &= STA_RONLY;
 664	time_status |= txc->status & ~STA_RONLY;
 665}
 666
 667
 668static inline void process_adjtimex_modes(struct timex *txc,
 669						struct timespec64 *ts,
 670						s32 *time_tai)
 
 671{
 672	if (txc->modes & ADJ_STATUS)
 673		process_adj_status(txc, ts);
 674
 675	if (txc->modes & ADJ_NANO)
 676		time_status |= STA_NANO;
 677
 678	if (txc->modes & ADJ_MICRO)
 679		time_status &= ~STA_NANO;
 680
 681	if (txc->modes & ADJ_FREQUENCY) {
 682		time_freq = txc->freq * PPM_SCALE;
 683		time_freq = min(time_freq, MAXFREQ_SCALED);
 684		time_freq = max(time_freq, -MAXFREQ_SCALED);
 685		/* update pps_freq */
 686		pps_set_freq(time_freq);
 687	}
 688
 689	if (txc->modes & ADJ_MAXERROR)
 690		time_maxerror = txc->maxerror;
 691
 692	if (txc->modes & ADJ_ESTERROR)
 693		time_esterror = txc->esterror;
 694
 695	if (txc->modes & ADJ_TIMECONST) {
 696		time_constant = txc->constant;
 697		if (!(time_status & STA_NANO))
 698			time_constant += 4;
 699		time_constant = min(time_constant, (long)MAXTC);
 700		time_constant = max(time_constant, 0l);
 701	}
 702
 703	if (txc->modes & ADJ_TAI && txc->constant > 0)
 704		*time_tai = txc->constant;
 705
 706	if (txc->modes & ADJ_OFFSET)
 707		ntp_update_offset(txc->offset);
 708
 709	if (txc->modes & ADJ_TICK)
 710		tick_usec = txc->tick;
 711
 712	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
 713		ntp_update_frequency();
 714}
 715
 716
 717/*
 718 * adjtimex mainly allows reading (and writing, if superuser) of
 719 * kernel time-keeping variables. used by xntpd.
 720 */
 721int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
 722{
 
 723	int result;
 724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 725	if (txc->modes & ADJ_ADJTIME) {
 726		long save_adjust = time_adjust;
 727
 728		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
 729			/* adjtime() is independent from ntp_adjtime() */
 730			time_adjust = txc->offset;
 731			ntp_update_frequency();
 732		}
 733		txc->offset = save_adjust;
 734	} else {
 735
 736		/* If there are input parameters, then process them: */
 737		if (txc->modes)
 738			process_adjtimex_modes(txc, ts, time_tai);
 739
 740		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
 741				  NTP_SCALE_SHIFT);
 742		if (!(time_status & STA_NANO))
 743			txc->offset /= NSEC_PER_USEC;
 744	}
 745
 746	result = time_state;	/* mostly `TIME_OK' */
 747	/* check for errors */
 748	if (is_error_status(time_status))
 749		result = TIME_ERROR;
 750
 751	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
 752					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
 753	txc->maxerror	   = time_maxerror;
 754	txc->esterror	   = time_esterror;
 755	txc->status	   = time_status;
 756	txc->constant	   = time_constant;
 757	txc->precision	   = 1;
 758	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
 759	txc->tick	   = tick_usec;
 760	txc->tai	   = *time_tai;
 761
 762	/* fill PPS status fields */
 763	pps_fill_timex(txc);
 764
 765	txc->time.tv_sec = (time_t)ts->tv_sec;
 766	txc->time.tv_usec = ts->tv_nsec;
 
 
 767	if (!(time_status & STA_NANO))
 768		txc->time.tv_usec /= NSEC_PER_USEC;
 769
 770	/* Handle leapsec adjustments */
 771	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
 772		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
 773			result = TIME_OOP;
 774			txc->tai++;
 775			txc->time.tv_sec--;
 776		}
 777		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
 778			result = TIME_WAIT;
 779			txc->tai--;
 780			txc->time.tv_sec++;
 781		}
 782		if ((time_state == TIME_OOP) &&
 783					(ts->tv_sec == ntp_next_leap_sec)) {
 784			result = TIME_WAIT;
 785		}
 786	}
 787
 788	return result;
 789}
 790
 791#ifdef	CONFIG_NTP_PPS
 792
 793/* actually struct pps_normtime is good old struct timespec, but it is
 794 * semantically different (and it is the reason why it was invented):
 795 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 796 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
 797struct pps_normtime {
 798	s64		sec;	/* seconds */
 799	long		nsec;	/* nanoseconds */
 800};
 801
 802/* normalize the timestamp so that nsec is in the
 803   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
 804static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
 805{
 806	struct pps_normtime norm = {
 807		.sec = ts.tv_sec,
 808		.nsec = ts.tv_nsec
 809	};
 810
 811	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
 812		norm.nsec -= NSEC_PER_SEC;
 813		norm.sec++;
 814	}
 815
 816	return norm;
 817}
 818
 819/* get current phase correction and jitter */
 820static inline long pps_phase_filter_get(long *jitter)
 821{
 822	*jitter = pps_tf[0] - pps_tf[1];
 823	if (*jitter < 0)
 824		*jitter = -*jitter;
 825
 826	/* TODO: test various filters */
 827	return pps_tf[0];
 828}
 829
 830/* add the sample to the phase filter */
 831static inline void pps_phase_filter_add(long err)
 832{
 833	pps_tf[2] = pps_tf[1];
 834	pps_tf[1] = pps_tf[0];
 835	pps_tf[0] = err;
 836}
 837
 838/* decrease frequency calibration interval length.
 839 * It is halved after four consecutive unstable intervals.
 840 */
 841static inline void pps_dec_freq_interval(void)
 842{
 843	if (--pps_intcnt <= -PPS_INTCOUNT) {
 844		pps_intcnt = -PPS_INTCOUNT;
 845		if (pps_shift > PPS_INTMIN) {
 846			pps_shift--;
 847			pps_intcnt = 0;
 848		}
 849	}
 850}
 851
 852/* increase frequency calibration interval length.
 853 * It is doubled after four consecutive stable intervals.
 854 */
 855static inline void pps_inc_freq_interval(void)
 856{
 857	if (++pps_intcnt >= PPS_INTCOUNT) {
 858		pps_intcnt = PPS_INTCOUNT;
 859		if (pps_shift < PPS_INTMAX) {
 860			pps_shift++;
 861			pps_intcnt = 0;
 862		}
 863	}
 864}
 865
 866/* update clock frequency based on MONOTONIC_RAW clock PPS signal
 867 * timestamps
 868 *
 869 * At the end of the calibration interval the difference between the
 870 * first and last MONOTONIC_RAW clock timestamps divided by the length
 871 * of the interval becomes the frequency update. If the interval was
 872 * too long, the data are discarded.
 873 * Returns the difference between old and new frequency values.
 874 */
 875static long hardpps_update_freq(struct pps_normtime freq_norm)
 876{
 877	long delta, delta_mod;
 878	s64 ftemp;
 879
 880	/* check if the frequency interval was too long */
 881	if (freq_norm.sec > (2 << pps_shift)) {
 882		time_status |= STA_PPSERROR;
 883		pps_errcnt++;
 884		pps_dec_freq_interval();
 885		printk_deferred(KERN_ERR
 886			"hardpps: PPSERROR: interval too long - %lld s\n",
 887			freq_norm.sec);
 888		return 0;
 889	}
 890
 891	/* here the raw frequency offset and wander (stability) is
 892	 * calculated. If the wander is less than the wander threshold
 893	 * the interval is increased; otherwise it is decreased.
 894	 */
 895	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
 896			freq_norm.sec);
 897	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
 898	pps_freq = ftemp;
 899	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
 900		printk_deferred(KERN_WARNING
 901				"hardpps: PPSWANDER: change=%ld\n", delta);
 902		time_status |= STA_PPSWANDER;
 903		pps_stbcnt++;
 904		pps_dec_freq_interval();
 905	} else {	/* good sample */
 906		pps_inc_freq_interval();
 907	}
 908
 909	/* the stability metric is calculated as the average of recent
 910	 * frequency changes, but is used only for performance
 911	 * monitoring
 912	 */
 913	delta_mod = delta;
 914	if (delta_mod < 0)
 915		delta_mod = -delta_mod;
 916	pps_stabil += (div_s64(((s64)delta_mod) <<
 917				(NTP_SCALE_SHIFT - SHIFT_USEC),
 918				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
 919
 920	/* if enabled, the system clock frequency is updated */
 921	if ((time_status & STA_PPSFREQ) != 0 &&
 922	    (time_status & STA_FREQHOLD) == 0) {
 923		time_freq = pps_freq;
 924		ntp_update_frequency();
 925	}
 926
 927	return delta;
 928}
 929
 930/* correct REALTIME clock phase error against PPS signal */
 931static void hardpps_update_phase(long error)
 932{
 933	long correction = -error;
 934	long jitter;
 935
 936	/* add the sample to the median filter */
 937	pps_phase_filter_add(correction);
 938	correction = pps_phase_filter_get(&jitter);
 939
 940	/* Nominal jitter is due to PPS signal noise. If it exceeds the
 941	 * threshold, the sample is discarded; otherwise, if so enabled,
 942	 * the time offset is updated.
 943	 */
 944	if (jitter > (pps_jitter << PPS_POPCORN)) {
 945		printk_deferred(KERN_WARNING
 946				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
 947				jitter, (pps_jitter << PPS_POPCORN));
 948		time_status |= STA_PPSJITTER;
 949		pps_jitcnt++;
 950	} else if (time_status & STA_PPSTIME) {
 951		/* correct the time using the phase offset */
 952		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
 953				NTP_INTERVAL_FREQ);
 954		/* cancel running adjtime() */
 955		time_adjust = 0;
 956	}
 957	/* update jitter */
 958	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
 959}
 960
 961/*
 962 * __hardpps() - discipline CPU clock oscillator to external PPS signal
 963 *
 964 * This routine is called at each PPS signal arrival in order to
 965 * discipline the CPU clock oscillator to the PPS signal. It takes two
 966 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
 967 * is used to correct clock phase error and the latter is used to
 968 * correct the frequency.
 969 *
 970 * This code is based on David Mills's reference nanokernel
 971 * implementation. It was mostly rewritten but keeps the same idea.
 972 */
 973void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
 974{
 975	struct pps_normtime pts_norm, freq_norm;
 
 976
 977	pts_norm = pps_normalize_ts(*phase_ts);
 978
 
 
 979	/* clear the error bits, they will be set again if needed */
 980	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
 981
 982	/* indicate signal presence */
 983	time_status |= STA_PPSSIGNAL;
 984	pps_valid = PPS_VALID;
 985
 986	/* when called for the first time,
 987	 * just start the frequency interval */
 988	if (unlikely(pps_fbase.tv_sec == 0)) {
 989		pps_fbase = *raw_ts;
 
 990		return;
 991	}
 992
 993	/* ok, now we have a base for frequency calculation */
 994	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
 995
 996	/* check that the signal is in the range
 997	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
 998	if ((freq_norm.sec == 0) ||
 999			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1000			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1001		time_status |= STA_PPSJITTER;
1002		/* restart the frequency calibration interval */
1003		pps_fbase = *raw_ts;
1004		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
 
1005		return;
1006	}
1007
1008	/* signal is ok */
1009
1010	/* check if the current frequency interval is finished */
1011	if (freq_norm.sec >= (1 << pps_shift)) {
1012		pps_calcnt++;
1013		/* restart the frequency calibration interval */
1014		pps_fbase = *raw_ts;
1015		hardpps_update_freq(freq_norm);
1016	}
1017
1018	hardpps_update_phase(pts_norm.nsec);
1019
 
1020}
 
 
1021#endif	/* CONFIG_NTP_PPS */
1022
1023static int __init ntp_tick_adj_setup(char *str)
1024{
1025	int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
1026
1027	if (rc)
1028		return rc;
1029	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1030
1031	return 1;
1032}
1033
1034__setup("ntp_tick_adj=", ntp_tick_adj_setup);
1035
1036void __init ntp_init(void)
1037{
1038	ntp_clear();
1039}