Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/ratelimit.h>
 
  21#include "ctree.h"
  22#include "volumes.h"
  23#include "disk-io.h"
  24#include "ordered-data.h"
  25#include "transaction.h"
  26#include "backref.h"
  27#include "extent_io.h"
 
  28#include "check-integrity.h"
  29#include "rcu-string.h"
 
  30
  31/*
  32 * This is only the first step towards a full-features scrub. It reads all
  33 * extent and super block and verifies the checksums. In case a bad checksum
  34 * is found or the extent cannot be read, good data will be written back if
  35 * any can be found.
  36 *
  37 * Future enhancements:
  38 *  - In case an unrepairable extent is encountered, track which files are
  39 *    affected and report them
  40 *  - track and record media errors, throw out bad devices
  41 *  - add a mode to also read unallocated space
  42 */
  43
  44struct scrub_block;
  45struct scrub_dev;
 
 
 
 
 
 
 
 
 
 
  46
  47#define SCRUB_PAGES_PER_BIO	16	/* 64k per bio */
  48#define SCRUB_BIOS_PER_DEV	16	/* 1 MB per device in flight */
 
 
 
  49#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
  50
 
 
 
 
 
 
  51struct scrub_page {
  52	struct scrub_block	*sblock;
  53	struct page		*page;
  54	struct btrfs_device	*dev;
 
  55	u64			flags;  /* extent flags */
  56	u64			generation;
  57	u64			logical;
  58	u64			physical;
 
 
  59	struct {
  60		unsigned int	mirror_num:8;
  61		unsigned int	have_csum:1;
  62		unsigned int	io_error:1;
  63	};
  64	u8			csum[BTRFS_CSUM_SIZE];
 
 
  65};
  66
  67struct scrub_bio {
  68	int			index;
  69	struct scrub_dev	*sdev;
 
  70	struct bio		*bio;
  71	int			err;
  72	u64			logical;
  73	u64			physical;
  74	struct scrub_page	*pagev[SCRUB_PAGES_PER_BIO];
 
 
 
 
  75	int			page_count;
  76	int			next_free;
  77	struct btrfs_work	work;
  78};
  79
  80struct scrub_block {
  81	struct scrub_page	pagev[SCRUB_MAX_PAGES_PER_BLOCK];
  82	int			page_count;
  83	atomic_t		outstanding_pages;
  84	atomic_t		ref_count; /* free mem on transition to zero */
  85	struct scrub_dev	*sdev;
 
  86	struct {
  87		unsigned int	header_error:1;
  88		unsigned int	checksum_error:1;
  89		unsigned int	no_io_error_seen:1;
  90		unsigned int	generation_error:1; /* also sets header_error */
 
 
 
 
  91	};
 
  92};
  93
  94struct scrub_dev {
  95	struct scrub_bio	*bios[SCRUB_BIOS_PER_DEV];
  96	struct btrfs_device	*dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97	int			first_free;
  98	int			curr;
  99	atomic_t		in_flight;
 100	atomic_t		fixup_cnt;
 101	spinlock_t		list_lock;
 102	wait_queue_head_t	list_wait;
 103	u16			csum_size;
 104	struct list_head	csum_list;
 105	atomic_t		cancel_req;
 106	int			readonly;
 107	int			pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
 108	u32			sectorsize;
 109	u32			nodesize;
 110	u32			leafsize;
 
 
 
 
 
 
 111	/*
 112	 * statistics
 113	 */
 114	struct btrfs_scrub_progress stat;
 115	spinlock_t		stat_lock;
 
 
 
 
 
 
 
 
 
 116};
 117
 118struct scrub_fixup_nodatasum {
 119	struct scrub_dev	*sdev;
 
 120	u64			logical;
 121	struct btrfs_root	*root;
 122	struct btrfs_work	work;
 123	int			mirror_num;
 124};
 125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126struct scrub_warning {
 127	struct btrfs_path	*path;
 128	u64			extent_item_size;
 129	char			*scratch_buf;
 130	char			*msg_buf;
 131	const char		*errstr;
 132	sector_t		sector;
 133	u64			logical;
 134	struct btrfs_device	*dev;
 135	int			msg_bufsize;
 136	int			scratch_bufsize;
 137};
 138
 
 
 
 
 
 
 139
 
 
 
 
 140static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 141static int scrub_setup_recheck_block(struct scrub_dev *sdev,
 142				     struct btrfs_mapping_tree *map_tree,
 143				     u64 length, u64 logical,
 144				     struct scrub_block *sblock);
 145static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
 146			       struct scrub_block *sblock, int is_metadata,
 147			       int have_csum, u8 *csum, u64 generation,
 148			       u16 csum_size);
 149static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
 150					 struct scrub_block *sblock,
 151					 int is_metadata, int have_csum,
 152					 const u8 *csum, u64 generation,
 153					 u16 csum_size);
 154static void scrub_complete_bio_end_io(struct bio *bio, int err);
 155static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 156					     struct scrub_block *sblock_good,
 157					     int force_write);
 158static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 159					    struct scrub_block *sblock_good,
 160					    int page_num, int force_write);
 
 
 
 161static int scrub_checksum_data(struct scrub_block *sblock);
 162static int scrub_checksum_tree_block(struct scrub_block *sblock);
 163static int scrub_checksum_super(struct scrub_block *sblock);
 164static void scrub_block_get(struct scrub_block *sblock);
 165static void scrub_block_put(struct scrub_block *sblock);
 166static int scrub_add_page_to_bio(struct scrub_dev *sdev,
 167				 struct scrub_page *spage);
 168static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
 169		       u64 physical, u64 flags, u64 gen, int mirror_num,
 170		       u8 *csum, int force);
 171static void scrub_bio_end_io(struct bio *bio, int err);
 
 
 
 
 
 172static void scrub_bio_end_io_worker(struct btrfs_work *work);
 173static void scrub_block_complete(struct scrub_block *sblock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175
 176static void scrub_free_csums(struct scrub_dev *sdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177{
 178	while (!list_empty(&sdev->csum_list)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179		struct btrfs_ordered_sum *sum;
 180		sum = list_first_entry(&sdev->csum_list,
 181				       struct btrfs_ordered_sum, list);
 182		list_del(&sum->list);
 183		kfree(sum);
 184	}
 185}
 186
 187static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
 188{
 189	int i;
 190
 191	if (!sdev)
 192		return;
 193
 194	/* this can happen when scrub is cancelled */
 195	if (sdev->curr != -1) {
 196		struct scrub_bio *sbio = sdev->bios[sdev->curr];
 197
 198		for (i = 0; i < sbio->page_count; i++) {
 199			BUG_ON(!sbio->pagev[i]);
 200			BUG_ON(!sbio->pagev[i]->page);
 201			scrub_block_put(sbio->pagev[i]->sblock);
 202		}
 203		bio_put(sbio->bio);
 204	}
 205
 206	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
 207		struct scrub_bio *sbio = sdev->bios[i];
 208
 209		if (!sbio)
 210			break;
 211		kfree(sbio);
 212	}
 213
 214	scrub_free_csums(sdev);
 215	kfree(sdev);
 
 
 
 
 
 
 
 216}
 217
 218static noinline_for_stack
 219struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
 220{
 221	struct scrub_dev *sdev;
 222	int		i;
 223	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 224	int pages_per_bio;
 225
 226	pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
 227			      bio_get_nr_vecs(dev->bdev));
 228	sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
 229	if (!sdev)
 230		goto nomem;
 231	sdev->dev = dev;
 232	sdev->pages_per_bio = pages_per_bio;
 233	sdev->curr = -1;
 234	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
 
 
 235		struct scrub_bio *sbio;
 236
 237		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
 238		if (!sbio)
 239			goto nomem;
 240		sdev->bios[i] = sbio;
 241
 242		sbio->index = i;
 243		sbio->sdev = sdev;
 244		sbio->page_count = 0;
 245		sbio->work.func = scrub_bio_end_io_worker;
 
 246
 247		if (i != SCRUB_BIOS_PER_DEV-1)
 248			sdev->bios[i]->next_free = i + 1;
 249		else
 250			sdev->bios[i]->next_free = -1;
 251	}
 252	sdev->first_free = 0;
 253	sdev->nodesize = dev->dev_root->nodesize;
 254	sdev->leafsize = dev->dev_root->leafsize;
 255	sdev->sectorsize = dev->dev_root->sectorsize;
 256	atomic_set(&sdev->in_flight, 0);
 257	atomic_set(&sdev->fixup_cnt, 0);
 258	atomic_set(&sdev->cancel_req, 0);
 259	sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 260	INIT_LIST_HEAD(&sdev->csum_list);
 261
 262	spin_lock_init(&sdev->list_lock);
 263	spin_lock_init(&sdev->stat_lock);
 264	init_waitqueue_head(&sdev->list_wait);
 265	return sdev;
 
 
 
 
 
 
 
 
 266
 267nomem:
 268	scrub_free_dev(sdev);
 269	return ERR_PTR(-ENOMEM);
 270}
 271
 272static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
 
 273{
 274	u64 isize;
 275	u32 nlink;
 276	int ret;
 277	int i;
 
 278	struct extent_buffer *eb;
 279	struct btrfs_inode_item *inode_item;
 280	struct scrub_warning *swarn = ctx;
 281	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
 282	struct inode_fs_paths *ipath = NULL;
 283	struct btrfs_root *local_root;
 284	struct btrfs_key root_key;
 
 285
 286	root_key.objectid = root;
 287	root_key.type = BTRFS_ROOT_ITEM_KEY;
 288	root_key.offset = (u64)-1;
 289	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 290	if (IS_ERR(local_root)) {
 291		ret = PTR_ERR(local_root);
 292		goto err;
 293	}
 294
 295	ret = inode_item_info(inum, 0, local_root, swarn->path);
 
 
 
 
 
 
 
 296	if (ret) {
 297		btrfs_release_path(swarn->path);
 298		goto err;
 299	}
 300
 301	eb = swarn->path->nodes[0];
 302	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 303					struct btrfs_inode_item);
 304	isize = btrfs_inode_size(eb, inode_item);
 305	nlink = btrfs_inode_nlink(eb, inode_item);
 306	btrfs_release_path(swarn->path);
 307
 
 
 
 
 
 
 308	ipath = init_ipath(4096, local_root, swarn->path);
 
 309	if (IS_ERR(ipath)) {
 310		ret = PTR_ERR(ipath);
 311		ipath = NULL;
 312		goto err;
 313	}
 314	ret = paths_from_inode(inum, ipath);
 315
 316	if (ret < 0)
 317		goto err;
 318
 319	/*
 320	 * we deliberately ignore the bit ipath might have been too small to
 321	 * hold all of the paths here
 322	 */
 323	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 324		printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
 325			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
 326			"length %llu, links %u (path: %s)\n", swarn->errstr,
 327			swarn->logical, rcu_str_deref(swarn->dev->name),
 328			(unsigned long long)swarn->sector, root, inum, offset,
 329			min(isize - offset, (u64)PAGE_SIZE), nlink,
 330			(char *)(unsigned long)ipath->fspath->val[i]);
 
 331
 332	free_ipath(ipath);
 333	return 0;
 334
 335err:
 336	printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
 337		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
 338		"resolving failed with ret=%d\n", swarn->errstr,
 339		swarn->logical, rcu_str_deref(swarn->dev->name),
 340		(unsigned long long)swarn->sector, root, inum, offset, ret);
 
 341
 342	free_ipath(ipath);
 343	return 0;
 344}
 345
 346static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 347{
 348	struct btrfs_device *dev = sblock->sdev->dev;
 349	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 350	struct btrfs_path *path;
 351	struct btrfs_key found_key;
 352	struct extent_buffer *eb;
 353	struct btrfs_extent_item *ei;
 354	struct scrub_warning swarn;
 355	u32 item_size;
 356	int ret;
 357	u64 ref_root;
 358	u8 ref_level;
 359	unsigned long ptr = 0;
 360	const int bufsize = 4096;
 361	u64 extent_item_pos;
 
 
 
 
 
 
 
 
 
 362
 363	path = btrfs_alloc_path();
 
 
 364
 365	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
 366	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
 367	BUG_ON(sblock->page_count < 1);
 368	swarn.sector = (sblock->pagev[0].physical) >> 9;
 369	swarn.logical = sblock->pagev[0].logical;
 370	swarn.errstr = errstr;
 371	swarn.dev = dev;
 372	swarn.msg_bufsize = bufsize;
 373	swarn.scratch_bufsize = bufsize;
 374
 375	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
 376		goto out;
 377
 378	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
 379	if (ret < 0)
 380		goto out;
 381
 382	extent_item_pos = swarn.logical - found_key.objectid;
 383	swarn.extent_item_size = found_key.offset;
 384
 385	eb = path->nodes[0];
 386	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 387	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 388	btrfs_release_path(path);
 389
 390	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 391		do {
 392			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
 393							&ref_root, &ref_level);
 394			printk_in_rcu(KERN_WARNING
 395				"btrfs: %s at logical %llu on dev %s, "
 396				"sector %llu: metadata %s (level %d) in tree "
 397				"%llu\n", errstr, swarn.logical,
 398				rcu_str_deref(dev->name),
 399				(unsigned long long)swarn.sector,
 400				ref_level ? "node" : "leaf",
 401				ret < 0 ? -1 : ref_level,
 402				ret < 0 ? -1 : ref_root);
 403		} while (ret != 1);
 
 404	} else {
 
 405		swarn.path = path;
 
 406		iterate_extent_inodes(fs_info, found_key.objectid,
 407					extent_item_pos, 1,
 408					scrub_print_warning_inode, &swarn);
 409	}
 410
 411out:
 412	btrfs_free_path(path);
 413	kfree(swarn.scratch_buf);
 414	kfree(swarn.msg_buf);
 415}
 416
 417static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
 418{
 419	struct page *page = NULL;
 420	unsigned long index;
 421	struct scrub_fixup_nodatasum *fixup = ctx;
 422	int ret;
 423	int corrected = 0;
 424	struct btrfs_key key;
 425	struct inode *inode = NULL;
 
 426	u64 end = offset + PAGE_SIZE - 1;
 427	struct btrfs_root *local_root;
 
 428
 429	key.objectid = root;
 430	key.type = BTRFS_ROOT_ITEM_KEY;
 431	key.offset = (u64)-1;
 432	local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
 433	if (IS_ERR(local_root))
 
 
 
 
 
 434		return PTR_ERR(local_root);
 
 435
 436	key.type = BTRFS_INODE_ITEM_KEY;
 437	key.objectid = inum;
 438	key.offset = 0;
 439	inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
 
 440	if (IS_ERR(inode))
 441		return PTR_ERR(inode);
 442
 443	index = offset >> PAGE_CACHE_SHIFT;
 444
 445	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 446	if (!page) {
 447		ret = -ENOMEM;
 448		goto out;
 449	}
 450
 451	if (PageUptodate(page)) {
 452		struct btrfs_mapping_tree *map_tree;
 453		if (PageDirty(page)) {
 454			/*
 455			 * we need to write the data to the defect sector. the
 456			 * data that was in that sector is not in memory,
 457			 * because the page was modified. we must not write the
 458			 * modified page to that sector.
 459			 *
 460			 * TODO: what could be done here: wait for the delalloc
 461			 *       runner to write out that page (might involve
 462			 *       COW) and see whether the sector is still
 463			 *       referenced afterwards.
 464			 *
 465			 * For the meantime, we'll treat this error
 466			 * incorrectable, although there is a chance that a
 467			 * later scrub will find the bad sector again and that
 468			 * there's no dirty page in memory, then.
 469			 */
 470			ret = -EIO;
 471			goto out;
 472		}
 473		map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
 474		ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
 475					fixup->logical, page,
 
 476					fixup->mirror_num);
 477		unlock_page(page);
 478		corrected = !ret;
 479	} else {
 480		/*
 481		 * we need to get good data first. the general readpage path
 482		 * will call repair_io_failure for us, we just have to make
 483		 * sure we read the bad mirror.
 484		 */
 485		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 486					EXTENT_DAMAGED, GFP_NOFS);
 487		if (ret) {
 488			/* set_extent_bits should give proper error */
 489			WARN_ON(ret > 0);
 490			if (ret > 0)
 491				ret = -EFAULT;
 492			goto out;
 493		}
 494
 495		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 496						btrfs_get_extent,
 497						fixup->mirror_num);
 498		wait_on_page_locked(page);
 499
 500		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 501						end, EXTENT_DAMAGED, 0, NULL);
 502		if (!corrected)
 503			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 504						EXTENT_DAMAGED, GFP_NOFS);
 505	}
 506
 507out:
 508	if (page)
 509		put_page(page);
 510	if (inode)
 511		iput(inode);
 512
 513	if (ret < 0)
 514		return ret;
 515
 516	if (ret == 0 && corrected) {
 517		/*
 518		 * we only need to call readpage for one of the inodes belonging
 519		 * to this extent. so make iterate_extent_inodes stop
 520		 */
 521		return 1;
 522	}
 523
 524	return -EIO;
 525}
 526
 527static void scrub_fixup_nodatasum(struct btrfs_work *work)
 528{
 
 529	int ret;
 530	struct scrub_fixup_nodatasum *fixup;
 531	struct scrub_dev *sdev;
 532	struct btrfs_trans_handle *trans = NULL;
 533	struct btrfs_fs_info *fs_info;
 534	struct btrfs_path *path;
 535	int uncorrectable = 0;
 536
 537	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
 538	sdev = fixup->sdev;
 539	fs_info = fixup->root->fs_info;
 540
 541	path = btrfs_alloc_path();
 542	if (!path) {
 543		spin_lock(&sdev->stat_lock);
 544		++sdev->stat.malloc_errors;
 545		spin_unlock(&sdev->stat_lock);
 546		uncorrectable = 1;
 547		goto out;
 548	}
 549
 550	trans = btrfs_join_transaction(fixup->root);
 551	if (IS_ERR(trans)) {
 552		uncorrectable = 1;
 553		goto out;
 554	}
 555
 556	/*
 557	 * the idea is to trigger a regular read through the standard path. we
 558	 * read a page from the (failed) logical address by specifying the
 559	 * corresponding copynum of the failed sector. thus, that readpage is
 560	 * expected to fail.
 561	 * that is the point where on-the-fly error correction will kick in
 562	 * (once it's finished) and rewrite the failed sector if a good copy
 563	 * can be found.
 564	 */
 565	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
 566						path, scrub_fixup_readpage,
 567						fixup);
 568	if (ret < 0) {
 569		uncorrectable = 1;
 570		goto out;
 571	}
 572	WARN_ON(ret != 1);
 573
 574	spin_lock(&sdev->stat_lock);
 575	++sdev->stat.corrected_errors;
 576	spin_unlock(&sdev->stat_lock);
 577
 578out:
 579	if (trans && !IS_ERR(trans))
 580		btrfs_end_transaction(trans, fixup->root);
 581	if (uncorrectable) {
 582		spin_lock(&sdev->stat_lock);
 583		++sdev->stat.uncorrectable_errors;
 584		spin_unlock(&sdev->stat_lock);
 585
 586		printk_ratelimited_in_rcu(KERN_ERR
 587			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
 588			(unsigned long long)fixup->logical,
 589			rcu_str_deref(sdev->dev->name));
 590	}
 591
 592	btrfs_free_path(path);
 593	kfree(fixup);
 594
 595	/* see caller why we're pretending to be paused in the scrub counters */
 596	mutex_lock(&fs_info->scrub_lock);
 597	atomic_dec(&fs_info->scrubs_running);
 598	atomic_dec(&fs_info->scrubs_paused);
 599	mutex_unlock(&fs_info->scrub_lock);
 600	atomic_dec(&sdev->fixup_cnt);
 601	wake_up(&fs_info->scrub_pause_wait);
 602	wake_up(&sdev->list_wait);
 
 
 
 
 
 
 
 
 603}
 604
 605/*
 606 * scrub_handle_errored_block gets called when either verification of the
 607 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 608 * case, this function handles all pages in the bio, even though only one
 609 * may be bad.
 610 * The goal of this function is to repair the errored block by using the
 611 * contents of one of the mirrors.
 612 */
 613static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 614{
 615	struct scrub_dev *sdev = sblock_to_check->sdev;
 
 616	struct btrfs_fs_info *fs_info;
 617	u64 length;
 618	u64 logical;
 619	u64 generation;
 620	unsigned int failed_mirror_index;
 621	unsigned int is_metadata;
 622	unsigned int have_csum;
 623	u8 *csum;
 624	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 625	struct scrub_block *sblock_bad;
 626	int ret;
 627	int mirror_index;
 628	int page_num;
 629	int success;
 
 630	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 631				      DEFAULT_RATELIMIT_BURST);
 632
 633	BUG_ON(sblock_to_check->page_count < 1);
 634	fs_info = sdev->dev->dev_root->fs_info;
 635	length = sblock_to_check->page_count * PAGE_SIZE;
 636	logical = sblock_to_check->pagev[0].logical;
 637	generation = sblock_to_check->pagev[0].generation;
 638	BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
 639	failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
 640	is_metadata = !(sblock_to_check->pagev[0].flags &
 
 
 
 
 
 
 
 
 
 641			BTRFS_EXTENT_FLAG_DATA);
 642	have_csum = sblock_to_check->pagev[0].have_csum;
 643	csum = sblock_to_check->pagev[0].csum;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 644
 645	/*
 646	 * read all mirrors one after the other. This includes to
 647	 * re-read the extent or metadata block that failed (that was
 648	 * the cause that this fixup code is called) another time,
 649	 * page by page this time in order to know which pages
 650	 * caused I/O errors and which ones are good (for all mirrors).
 651	 * It is the goal to handle the situation when more than one
 652	 * mirror contains I/O errors, but the errors do not
 653	 * overlap, i.e. the data can be repaired by selecting the
 654	 * pages from those mirrors without I/O error on the
 655	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 656	 * would be that mirror #1 has an I/O error on the first page,
 657	 * the second page is good, and mirror #2 has an I/O error on
 658	 * the second page, but the first page is good.
 659	 * Then the first page of the first mirror can be repaired by
 660	 * taking the first page of the second mirror, and the
 661	 * second page of the second mirror can be repaired by
 662	 * copying the contents of the 2nd page of the 1st mirror.
 663	 * One more note: if the pages of one mirror contain I/O
 664	 * errors, the checksum cannot be verified. In order to get
 665	 * the best data for repairing, the first attempt is to find
 666	 * a mirror without I/O errors and with a validated checksum.
 667	 * Only if this is not possible, the pages are picked from
 668	 * mirrors with I/O errors without considering the checksum.
 669	 * If the latter is the case, at the end, the checksum of the
 670	 * repaired area is verified in order to correctly maintain
 671	 * the statistics.
 672	 */
 673
 674	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
 675				     sizeof(*sblocks_for_recheck),
 676				     GFP_NOFS);
 677	if (!sblocks_for_recheck) {
 678		spin_lock(&sdev->stat_lock);
 679		sdev->stat.malloc_errors++;
 680		sdev->stat.read_errors++;
 681		sdev->stat.uncorrectable_errors++;
 682		spin_unlock(&sdev->stat_lock);
 683		btrfs_dev_stat_inc_and_print(sdev->dev,
 684					     BTRFS_DEV_STAT_READ_ERRS);
 685		goto out;
 686	}
 687
 688	/* setup the context, map the logical blocks and alloc the pages */
 689	ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
 690					logical, sblocks_for_recheck);
 691	if (ret) {
 692		spin_lock(&sdev->stat_lock);
 693		sdev->stat.read_errors++;
 694		sdev->stat.uncorrectable_errors++;
 695		spin_unlock(&sdev->stat_lock);
 696		btrfs_dev_stat_inc_and_print(sdev->dev,
 697					     BTRFS_DEV_STAT_READ_ERRS);
 698		goto out;
 699	}
 700	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 701	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 702
 703	/* build and submit the bios for the failed mirror, check checksums */
 704	ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
 705				  csum, generation, sdev->csum_size);
 706	if (ret) {
 707		spin_lock(&sdev->stat_lock);
 708		sdev->stat.read_errors++;
 709		sdev->stat.uncorrectable_errors++;
 710		spin_unlock(&sdev->stat_lock);
 711		btrfs_dev_stat_inc_and_print(sdev->dev,
 712					     BTRFS_DEV_STAT_READ_ERRS);
 713		goto out;
 714	}
 715
 716	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 717	    sblock_bad->no_io_error_seen) {
 718		/*
 719		 * the error disappeared after reading page by page, or
 720		 * the area was part of a huge bio and other parts of the
 721		 * bio caused I/O errors, or the block layer merged several
 722		 * read requests into one and the error is caused by a
 723		 * different bio (usually one of the two latter cases is
 724		 * the cause)
 725		 */
 726		spin_lock(&sdev->stat_lock);
 727		sdev->stat.unverified_errors++;
 728		spin_unlock(&sdev->stat_lock);
 
 729
 
 
 730		goto out;
 731	}
 732
 733	if (!sblock_bad->no_io_error_seen) {
 734		spin_lock(&sdev->stat_lock);
 735		sdev->stat.read_errors++;
 736		spin_unlock(&sdev->stat_lock);
 737		if (__ratelimit(&_rs))
 738			scrub_print_warning("i/o error", sblock_to_check);
 739		btrfs_dev_stat_inc_and_print(sdev->dev,
 740					     BTRFS_DEV_STAT_READ_ERRS);
 741	} else if (sblock_bad->checksum_error) {
 742		spin_lock(&sdev->stat_lock);
 743		sdev->stat.csum_errors++;
 744		spin_unlock(&sdev->stat_lock);
 745		if (__ratelimit(&_rs))
 746			scrub_print_warning("checksum error", sblock_to_check);
 747		btrfs_dev_stat_inc_and_print(sdev->dev,
 748					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
 749	} else if (sblock_bad->header_error) {
 750		spin_lock(&sdev->stat_lock);
 751		sdev->stat.verify_errors++;
 752		spin_unlock(&sdev->stat_lock);
 753		if (__ratelimit(&_rs))
 754			scrub_print_warning("checksum/header error",
 755					    sblock_to_check);
 756		if (sblock_bad->generation_error)
 757			btrfs_dev_stat_inc_and_print(sdev->dev,
 758				BTRFS_DEV_STAT_GENERATION_ERRS);
 759		else
 760			btrfs_dev_stat_inc_and_print(sdev->dev,
 761				BTRFS_DEV_STAT_CORRUPTION_ERRS);
 762	}
 763
 764	if (sdev->readonly)
 765		goto did_not_correct_error;
 
 
 766
 767	if (!is_metadata && !have_csum) {
 768		struct scrub_fixup_nodatasum *fixup_nodatasum;
 769
 
 
 
 
 770		/*
 771		 * !is_metadata and !have_csum, this means that the data
 772		 * might not be COW'ed, that it might be modified
 773		 * concurrently. The general strategy to work on the
 774		 * commit root does not help in the case when COW is not
 775		 * used.
 776		 */
 777		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
 778		if (!fixup_nodatasum)
 779			goto did_not_correct_error;
 780		fixup_nodatasum->sdev = sdev;
 
 781		fixup_nodatasum->logical = logical;
 782		fixup_nodatasum->root = fs_info->extent_root;
 783		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
 784		/*
 785		 * increment scrubs_running to prevent cancel requests from
 786		 * completing as long as a fixup worker is running. we must also
 787		 * increment scrubs_paused to prevent deadlocking on pause
 788		 * requests used for transactions commits (as the worker uses a
 789		 * transaction context). it is safe to regard the fixup worker
 790		 * as paused for all matters practical. effectively, we only
 791		 * avoid cancellation requests from completing.
 792		 */
 793		mutex_lock(&fs_info->scrub_lock);
 794		atomic_inc(&fs_info->scrubs_running);
 795		atomic_inc(&fs_info->scrubs_paused);
 796		mutex_unlock(&fs_info->scrub_lock);
 797		atomic_inc(&sdev->fixup_cnt);
 798		fixup_nodatasum->work.func = scrub_fixup_nodatasum;
 799		btrfs_queue_worker(&fs_info->scrub_workers,
 800				   &fixup_nodatasum->work);
 801		goto out;
 802	}
 803
 804	/*
 805	 * now build and submit the bios for the other mirrors, check
 806	 * checksums
 807	 */
 808	for (mirror_index = 0;
 809	     mirror_index < BTRFS_MAX_MIRRORS &&
 810	     sblocks_for_recheck[mirror_index].page_count > 0;
 811	     mirror_index++) {
 812		if (mirror_index == failed_mirror_index)
 813			continue;
 814
 815		/* build and submit the bios, check checksums */
 816		ret = scrub_recheck_block(fs_info,
 817					  sblocks_for_recheck + mirror_index,
 818					  is_metadata, have_csum, csum,
 819					  generation, sdev->csum_size);
 820		if (ret)
 821			goto did_not_correct_error;
 822	}
 823
 824	/*
 825	 * first try to pick the mirror which is completely without I/O
 826	 * errors and also does not have a checksum error.
 827	 * If one is found, and if a checksum is present, the full block
 828	 * that is known to contain an error is rewritten. Afterwards
 829	 * the block is known to be corrected.
 830	 * If a mirror is found which is completely correct, and no
 831	 * checksum is present, only those pages are rewritten that had
 832	 * an I/O error in the block to be repaired, since it cannot be
 833	 * determined, which copy of the other pages is better (and it
 834	 * could happen otherwise that a correct page would be
 835	 * overwritten by a bad one).
 836	 */
 837	for (mirror_index = 0;
 838	     mirror_index < BTRFS_MAX_MIRRORS &&
 839	     sblocks_for_recheck[mirror_index].page_count > 0;
 840	     mirror_index++) {
 841		struct scrub_block *sblock_other = sblocks_for_recheck +
 842						   mirror_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843
 844		if (!sblock_other->header_error &&
 845		    !sblock_other->checksum_error &&
 846		    sblock_other->no_io_error_seen) {
 847			int force_write = is_metadata || have_csum;
 848
 849			ret = scrub_repair_block_from_good_copy(sblock_bad,
 850								sblock_other,
 851								force_write);
 852			if (0 == ret)
 853				goto corrected_error;
 
 
 
 
 
 
 854		}
 855	}
 856
 
 
 
 857	/*
 858	 * in case of I/O errors in the area that is supposed to be
 859	 * repaired, continue by picking good copies of those pages.
 860	 * Select the good pages from mirrors to rewrite bad pages from
 861	 * the area to fix. Afterwards verify the checksum of the block
 862	 * that is supposed to be repaired. This verification step is
 863	 * only done for the purpose of statistic counting and for the
 864	 * final scrub report, whether errors remain.
 865	 * A perfect algorithm could make use of the checksum and try
 866	 * all possible combinations of pages from the different mirrors
 867	 * until the checksum verification succeeds. For example, when
 868	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
 869	 * of mirror #2 is readable but the final checksum test fails,
 870	 * then the 2nd page of mirror #3 could be tried, whether now
 871	 * the final checksum succeedes. But this would be a rare
 872	 * exception and is therefore not implemented. At least it is
 873	 * avoided that the good copy is overwritten.
 874	 * A more useful improvement would be to pick the sectors
 875	 * without I/O error based on sector sizes (512 bytes on legacy
 876	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
 877	 * mirror could be repaired by taking 512 byte of a different
 878	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
 879	 * area are unreadable.
 880	 */
 881
 882	/* can only fix I/O errors from here on */
 883	if (sblock_bad->no_io_error_seen)
 884		goto did_not_correct_error;
 885
 886	success = 1;
 887	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
 888		struct scrub_page *page_bad = sblock_bad->pagev + page_num;
 
 
 889
 890		if (!page_bad->io_error)
 
 891			continue;
 892
 893		for (mirror_index = 0;
 894		     mirror_index < BTRFS_MAX_MIRRORS &&
 895		     sblocks_for_recheck[mirror_index].page_count > 0;
 896		     mirror_index++) {
 897			struct scrub_block *sblock_other = sblocks_for_recheck +
 898							   mirror_index;
 899			struct scrub_page *page_other = sblock_other->pagev +
 900							page_num;
 901
 902			if (!page_other->io_error) {
 903				ret = scrub_repair_page_from_good_copy(
 904					sblock_bad, sblock_other, page_num, 0);
 905				if (0 == ret) {
 906					page_bad->io_error = 0;
 907					break; /* succeeded for this page */
 
 
 
 
 
 908				}
 909			}
 
 
 910		}
 911
 912		if (page_bad->io_error) {
 913			/* did not find a mirror to copy the page from */
 914			success = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915		}
 916	}
 917
 918	if (success) {
 919		if (is_metadata || have_csum) {
 920			/*
 921			 * need to verify the checksum now that all
 922			 * sectors on disk are repaired (the write
 923			 * request for data to be repaired is on its way).
 924			 * Just be lazy and use scrub_recheck_block()
 925			 * which re-reads the data before the checksum
 926			 * is verified, but most likely the data comes out
 927			 * of the page cache.
 928			 */
 929			ret = scrub_recheck_block(fs_info, sblock_bad,
 930						  is_metadata, have_csum, csum,
 931						  generation, sdev->csum_size);
 932			if (!ret && !sblock_bad->header_error &&
 933			    !sblock_bad->checksum_error &&
 934			    sblock_bad->no_io_error_seen)
 935				goto corrected_error;
 936			else
 937				goto did_not_correct_error;
 938		} else {
 939corrected_error:
 940			spin_lock(&sdev->stat_lock);
 941			sdev->stat.corrected_errors++;
 942			spin_unlock(&sdev->stat_lock);
 943			printk_ratelimited_in_rcu(KERN_ERR
 944				"btrfs: fixed up error at logical %llu on dev %s\n",
 945				(unsigned long long)logical,
 946				rcu_str_deref(sdev->dev->name));
 947		}
 948	} else {
 949did_not_correct_error:
 950		spin_lock(&sdev->stat_lock);
 951		sdev->stat.uncorrectable_errors++;
 952		spin_unlock(&sdev->stat_lock);
 953		printk_ratelimited_in_rcu(KERN_ERR
 954			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
 955			(unsigned long long)logical,
 956			rcu_str_deref(sdev->dev->name));
 957	}
 958
 959out:
 960	if (sblocks_for_recheck) {
 961		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
 962		     mirror_index++) {
 963			struct scrub_block *sblock = sblocks_for_recheck +
 964						     mirror_index;
 
 965			int page_index;
 966
 967			for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
 968			     page_index++)
 969				if (sblock->pagev[page_index].page)
 970					__free_page(
 971						sblock->pagev[page_index].page);
 
 
 
 
 
 
 972		}
 973		kfree(sblocks_for_recheck);
 974	}
 975
 
 
 
 976	return 0;
 977}
 978
 979static int scrub_setup_recheck_block(struct scrub_dev *sdev,
 980				     struct btrfs_mapping_tree *map_tree,
 981				     u64 length, u64 logical,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982				     struct scrub_block *sblocks_for_recheck)
 983{
 984	int page_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 985	int mirror_index;
 
 986	int ret;
 987
 988	/*
 989	 * note: the three members sdev, ref_count and outstanding_pages
 990	 * are not used (and not set) in the blocks that are used for
 991	 * the recheck procedure
 992	 */
 993
 994	page_index = 0;
 995	while (length > 0) {
 996		u64 sublen = min_t(u64, length, PAGE_SIZE);
 997		u64 mapped_length = sublen;
 998		struct btrfs_bio *bbio = NULL;
 999
1000		/*
1001		 * with a length of PAGE_SIZE, each returned stripe
1002		 * represents one mirror
1003		 */
1004		ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
1005				      &bbio, 0);
 
1006		if (ret || !bbio || mapped_length < sublen) {
1007			kfree(bbio);
 
1008			return -EIO;
1009		}
1010
1011		BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
1012		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1013		     mirror_index++) {
1014			struct scrub_block *sblock;
1015			struct scrub_page *page;
1016
1017			if (mirror_index >= BTRFS_MAX_MIRRORS)
1018				continue;
1019
1020			sblock = sblocks_for_recheck + mirror_index;
1021			page = sblock->pagev + page_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022			page->logical = logical;
1023			page->physical = bbio->stripes[mirror_index].physical;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024			/* for missing devices, dev->bdev is NULL */
1025			page->dev = bbio->stripes[mirror_index].dev;
1026			page->mirror_num = mirror_index + 1;
1027			page->page = alloc_page(GFP_NOFS);
1028			if (!page->page) {
1029				spin_lock(&sdev->stat_lock);
1030				sdev->stat.malloc_errors++;
1031				spin_unlock(&sdev->stat_lock);
1032				return -ENOMEM;
1033			}
1034			sblock->page_count++;
 
 
 
 
 
 
1035		}
1036		kfree(bbio);
1037		length -= sublen;
1038		logical += sublen;
1039		page_index++;
1040	}
1041
1042	return 0;
1043}
1044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1045/*
1046 * this function will check the on disk data for checksum errors, header
1047 * errors and read I/O errors. If any I/O errors happen, the exact pages
1048 * which are errored are marked as being bad. The goal is to enable scrub
1049 * to take those pages that are not errored from all the mirrors so that
1050 * the pages that are errored in the just handled mirror can be repaired.
1051 */
1052static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
1053			       struct scrub_block *sblock, int is_metadata,
1054			       int have_csum, u8 *csum, u64 generation,
1055			       u16 csum_size)
1056{
1057	int page_num;
1058
1059	sblock->no_io_error_seen = 1;
1060	sblock->header_error = 0;
1061	sblock->checksum_error = 0;
 
 
1062
1063	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1064		struct bio *bio;
1065		int ret;
1066		struct scrub_page *page = sblock->pagev + page_num;
1067		DECLARE_COMPLETION_ONSTACK(complete);
1068
1069		if (page->dev->bdev == NULL) {
1070			page->io_error = 1;
1071			sblock->no_io_error_seen = 0;
1072			continue;
1073		}
1074
1075		BUG_ON(!page->page);
1076		bio = bio_alloc(GFP_NOFS, 1);
1077		if (!bio)
1078			return -EIO;
1079		bio->bi_bdev = page->dev->bdev;
1080		bio->bi_sector = page->physical >> 9;
1081		bio->bi_end_io = scrub_complete_bio_end_io;
1082		bio->bi_private = &complete;
1083
1084		ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
1085		if (PAGE_SIZE != ret) {
1086			bio_put(bio);
1087			return -EIO;
1088		}
1089		btrfsic_submit_bio(READ, bio);
1090
1091		/* this will also unplug the queue */
1092		wait_for_completion(&complete);
1093
1094		page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1095		if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1096			sblock->no_io_error_seen = 0;
1097		bio_put(bio);
1098	}
1099
1100	if (sblock->no_io_error_seen)
1101		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1102					     have_csum, csum, generation,
1103					     csum_size);
1104
1105	return 0;
1106}
1107
1108static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1109					 struct scrub_block *sblock,
1110					 int is_metadata, int have_csum,
1111					 const u8 *csum, u64 generation,
1112					 u16 csum_size)
1113{
1114	int page_num;
1115	u8 calculated_csum[BTRFS_CSUM_SIZE];
1116	u32 crc = ~(u32)0;
1117	struct btrfs_root *root = fs_info->extent_root;
1118	void *mapped_buffer;
1119
1120	BUG_ON(!sblock->pagev[0].page);
1121	if (is_metadata) {
1122		struct btrfs_header *h;
1123
1124		mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1125		h = (struct btrfs_header *)mapped_buffer;
1126
1127		if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
1128		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1129		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1130			   BTRFS_UUID_SIZE)) {
1131			sblock->header_error = 1;
1132		} else if (generation != le64_to_cpu(h->generation)) {
1133			sblock->header_error = 1;
1134			sblock->generation_error = 1;
1135		}
1136		csum = h->csum;
1137	} else {
1138		if (!have_csum)
1139			return;
1140
1141		mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1142	}
1143
1144	for (page_num = 0;;) {
1145		if (page_num == 0 && is_metadata)
1146			crc = btrfs_csum_data(root,
1147				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1148				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1149		else
1150			crc = btrfs_csum_data(root, mapped_buffer, crc,
1151					      PAGE_SIZE);
1152
1153		kunmap_atomic(mapped_buffer);
1154		page_num++;
1155		if (page_num >= sblock->page_count)
1156			break;
1157		BUG_ON(!sblock->pagev[page_num].page);
1158
1159		mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
1160	}
1161
1162	btrfs_csum_final(crc, calculated_csum);
1163	if (memcmp(calculated_csum, csum, csum_size))
1164		sblock->checksum_error = 1;
1165}
1166
1167static void scrub_complete_bio_end_io(struct bio *bio, int err)
1168{
1169	complete((struct completion *)bio->bi_private);
 
 
 
 
 
 
 
1170}
1171
1172static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1173					     struct scrub_block *sblock_good,
1174					     int force_write)
1175{
1176	int page_num;
1177	int ret = 0;
1178
1179	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1180		int ret_sub;
1181
1182		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1183							   sblock_good,
1184							   page_num,
1185							   force_write);
1186		if (ret_sub)
1187			ret = ret_sub;
1188	}
1189
1190	return ret;
1191}
1192
1193static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1194					    struct scrub_block *sblock_good,
1195					    int page_num, int force_write)
1196{
1197	struct scrub_page *page_bad = sblock_bad->pagev + page_num;
1198	struct scrub_page *page_good = sblock_good->pagev + page_num;
 
1199
1200	BUG_ON(sblock_bad->pagev[page_num].page == NULL);
1201	BUG_ON(sblock_good->pagev[page_num].page == NULL);
1202	if (force_write || sblock_bad->header_error ||
1203	    sblock_bad->checksum_error || page_bad->io_error) {
1204		struct bio *bio;
1205		int ret;
1206		DECLARE_COMPLETION_ONSTACK(complete);
1207
1208		bio = bio_alloc(GFP_NOFS, 1);
1209		if (!bio)
 
1210			return -EIO;
1211		bio->bi_bdev = page_bad->dev->bdev;
1212		bio->bi_sector = page_bad->physical >> 9;
1213		bio->bi_end_io = scrub_complete_bio_end_io;
1214		bio->bi_private = &complete;
 
 
1215
1216		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1217		if (PAGE_SIZE != ret) {
1218			bio_put(bio);
1219			return -EIO;
1220		}
1221		btrfsic_submit_bio(WRITE, bio);
1222
1223		/* this will also unplug the queue */
1224		wait_for_completion(&complete);
1225		if (!bio_flagged(bio, BIO_UPTODATE)) {
1226			btrfs_dev_stat_inc_and_print(page_bad->dev,
1227				BTRFS_DEV_STAT_WRITE_ERRS);
 
 
1228			bio_put(bio);
1229			return -EIO;
1230		}
1231		bio_put(bio);
1232	}
1233
1234	return 0;
1235}
1236
1237static void scrub_checksum(struct scrub_block *sblock)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238{
1239	u64 flags;
1240	int ret;
1241
1242	BUG_ON(sblock->page_count < 1);
1243	flags = sblock->pagev[0].flags;
 
 
 
 
 
 
 
 
 
 
 
 
1244	ret = 0;
1245	if (flags & BTRFS_EXTENT_FLAG_DATA)
1246		ret = scrub_checksum_data(sblock);
1247	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1248		ret = scrub_checksum_tree_block(sblock);
1249	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1250		(void)scrub_checksum_super(sblock);
1251	else
1252		WARN_ON(1);
1253	if (ret)
1254		scrub_handle_errored_block(sblock);
 
 
1255}
1256
1257static int scrub_checksum_data(struct scrub_block *sblock)
1258{
1259	struct scrub_dev *sdev = sblock->sdev;
1260	u8 csum[BTRFS_CSUM_SIZE];
1261	u8 *on_disk_csum;
1262	struct page *page;
1263	void *buffer;
1264	u32 crc = ~(u32)0;
1265	int fail = 0;
1266	struct btrfs_root *root = sdev->dev->dev_root;
1267	u64 len;
1268	int index;
1269
1270	BUG_ON(sblock->page_count < 1);
1271	if (!sblock->pagev[0].have_csum)
1272		return 0;
1273
1274	on_disk_csum = sblock->pagev[0].csum;
1275	page = sblock->pagev[0].page;
1276	buffer = kmap_atomic(page);
1277
1278	len = sdev->sectorsize;
1279	index = 0;
1280	for (;;) {
1281		u64 l = min_t(u64, len, PAGE_SIZE);
1282
1283		crc = btrfs_csum_data(root, buffer, crc, l);
1284		kunmap_atomic(buffer);
1285		len -= l;
1286		if (len == 0)
1287			break;
1288		index++;
1289		BUG_ON(index >= sblock->page_count);
1290		BUG_ON(!sblock->pagev[index].page);
1291		page = sblock->pagev[index].page;
1292		buffer = kmap_atomic(page);
1293	}
1294
1295	btrfs_csum_final(crc, csum);
1296	if (memcmp(csum, on_disk_csum, sdev->csum_size))
1297		fail = 1;
1298
1299	return fail;
1300}
1301
1302static int scrub_checksum_tree_block(struct scrub_block *sblock)
1303{
1304	struct scrub_dev *sdev = sblock->sdev;
1305	struct btrfs_header *h;
1306	struct btrfs_root *root = sdev->dev->dev_root;
1307	struct btrfs_fs_info *fs_info = root->fs_info;
1308	u8 calculated_csum[BTRFS_CSUM_SIZE];
1309	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1310	struct page *page;
1311	void *mapped_buffer;
1312	u64 mapped_size;
1313	void *p;
1314	u32 crc = ~(u32)0;
1315	int fail = 0;
1316	int crc_fail = 0;
1317	u64 len;
1318	int index;
1319
1320	BUG_ON(sblock->page_count < 1);
1321	page = sblock->pagev[0].page;
1322	mapped_buffer = kmap_atomic(page);
1323	h = (struct btrfs_header *)mapped_buffer;
1324	memcpy(on_disk_csum, h->csum, sdev->csum_size);
1325
1326	/*
1327	 * we don't use the getter functions here, as we
1328	 * a) don't have an extent buffer and
1329	 * b) the page is already kmapped
1330	 */
 
 
1331
1332	if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
1333		++fail;
1334
1335	if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
1336		++fail;
1337
1338	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1339		++fail;
1340
1341	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1342		   BTRFS_UUID_SIZE))
1343		++fail;
1344
1345	BUG_ON(sdev->nodesize != sdev->leafsize);
1346	len = sdev->nodesize - BTRFS_CSUM_SIZE;
1347	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1348	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1349	index = 0;
1350	for (;;) {
1351		u64 l = min_t(u64, len, mapped_size);
1352
1353		crc = btrfs_csum_data(root, p, crc, l);
1354		kunmap_atomic(mapped_buffer);
1355		len -= l;
1356		if (len == 0)
1357			break;
1358		index++;
1359		BUG_ON(index >= sblock->page_count);
1360		BUG_ON(!sblock->pagev[index].page);
1361		page = sblock->pagev[index].page;
1362		mapped_buffer = kmap_atomic(page);
1363		mapped_size = PAGE_SIZE;
1364		p = mapped_buffer;
1365	}
1366
1367	btrfs_csum_final(crc, calculated_csum);
1368	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1369		++crc_fail;
1370
1371	return fail || crc_fail;
1372}
1373
1374static int scrub_checksum_super(struct scrub_block *sblock)
1375{
1376	struct btrfs_super_block *s;
1377	struct scrub_dev *sdev = sblock->sdev;
1378	struct btrfs_root *root = sdev->dev->dev_root;
1379	struct btrfs_fs_info *fs_info = root->fs_info;
1380	u8 calculated_csum[BTRFS_CSUM_SIZE];
1381	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1382	struct page *page;
1383	void *mapped_buffer;
1384	u64 mapped_size;
1385	void *p;
1386	u32 crc = ~(u32)0;
1387	int fail_gen = 0;
1388	int fail_cor = 0;
1389	u64 len;
1390	int index;
1391
1392	BUG_ON(sblock->page_count < 1);
1393	page = sblock->pagev[0].page;
1394	mapped_buffer = kmap_atomic(page);
1395	s = (struct btrfs_super_block *)mapped_buffer;
1396	memcpy(on_disk_csum, s->csum, sdev->csum_size);
1397
1398	if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
1399		++fail_cor;
1400
1401	if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
1402		++fail_gen;
1403
1404	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1405		++fail_cor;
1406
1407	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1408	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1409	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1410	index = 0;
1411	for (;;) {
1412		u64 l = min_t(u64, len, mapped_size);
1413
1414		crc = btrfs_csum_data(root, p, crc, l);
1415		kunmap_atomic(mapped_buffer);
1416		len -= l;
1417		if (len == 0)
1418			break;
1419		index++;
1420		BUG_ON(index >= sblock->page_count);
1421		BUG_ON(!sblock->pagev[index].page);
1422		page = sblock->pagev[index].page;
1423		mapped_buffer = kmap_atomic(page);
1424		mapped_size = PAGE_SIZE;
1425		p = mapped_buffer;
1426	}
1427
1428	btrfs_csum_final(crc, calculated_csum);
1429	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1430		++fail_cor;
1431
1432	if (fail_cor + fail_gen) {
1433		/*
1434		 * if we find an error in a super block, we just report it.
1435		 * They will get written with the next transaction commit
1436		 * anyway
1437		 */
1438		spin_lock(&sdev->stat_lock);
1439		++sdev->stat.super_errors;
1440		spin_unlock(&sdev->stat_lock);
1441		if (fail_cor)
1442			btrfs_dev_stat_inc_and_print(sdev->dev,
1443				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1444		else
1445			btrfs_dev_stat_inc_and_print(sdev->dev,
1446				BTRFS_DEV_STAT_GENERATION_ERRS);
1447	}
1448
1449	return fail_cor + fail_gen;
1450}
1451
1452static void scrub_block_get(struct scrub_block *sblock)
1453{
1454	atomic_inc(&sblock->ref_count);
1455}
1456
1457static void scrub_block_put(struct scrub_block *sblock)
1458{
1459	if (atomic_dec_and_test(&sblock->ref_count)) {
1460		int i;
1461
 
 
 
1462		for (i = 0; i < sblock->page_count; i++)
1463			if (sblock->pagev[i].page)
1464				__free_page(sblock->pagev[i].page);
1465		kfree(sblock);
1466	}
1467}
1468
1469static void scrub_submit(struct scrub_dev *sdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470{
1471	struct scrub_bio *sbio;
1472
1473	if (sdev->curr == -1)
1474		return;
1475
1476	sbio = sdev->bios[sdev->curr];
1477	sdev->curr = -1;
1478	atomic_inc(&sdev->in_flight);
1479
1480	btrfsic_submit_bio(READ, sbio->bio);
1481}
1482
1483static int scrub_add_page_to_bio(struct scrub_dev *sdev,
1484				 struct scrub_page *spage)
1485{
1486	struct scrub_block *sblock = spage->sblock;
1487	struct scrub_bio *sbio;
1488	int ret;
1489
1490again:
1491	/*
1492	 * grab a fresh bio or wait for one to become available
1493	 */
1494	while (sdev->curr == -1) {
1495		spin_lock(&sdev->list_lock);
1496		sdev->curr = sdev->first_free;
1497		if (sdev->curr != -1) {
1498			sdev->first_free = sdev->bios[sdev->curr]->next_free;
1499			sdev->bios[sdev->curr]->next_free = -1;
1500			sdev->bios[sdev->curr]->page_count = 0;
1501			spin_unlock(&sdev->list_lock);
1502		} else {
1503			spin_unlock(&sdev->list_lock);
1504			wait_event(sdev->list_wait, sdev->first_free != -1);
1505		}
1506	}
1507	sbio = sdev->bios[sdev->curr];
1508	if (sbio->page_count == 0) {
1509		struct bio *bio;
1510
1511		sbio->physical = spage->physical;
1512		sbio->logical = spage->logical;
 
1513		bio = sbio->bio;
1514		if (!bio) {
1515			bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
1516			if (!bio)
1517				return -ENOMEM;
1518			sbio->bio = bio;
1519		}
1520
1521		bio->bi_private = sbio;
1522		bio->bi_end_io = scrub_bio_end_io;
1523		bio->bi_bdev = sdev->dev->bdev;
1524		bio->bi_sector = spage->physical >> 9;
1525		sbio->err = 0;
 
1526	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1527		   spage->physical ||
1528		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1529		   spage->logical) {
1530		scrub_submit(sdev);
 
1531		goto again;
1532	}
1533
1534	sbio->pagev[sbio->page_count] = spage;
1535	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1536	if (ret != PAGE_SIZE) {
1537		if (sbio->page_count < 1) {
1538			bio_put(sbio->bio);
1539			sbio->bio = NULL;
1540			return -EIO;
1541		}
1542		scrub_submit(sdev);
1543		goto again;
1544	}
1545
1546	scrub_block_get(sblock); /* one for the added page */
1547	atomic_inc(&sblock->outstanding_pages);
1548	sbio->page_count++;
1549	if (sbio->page_count == sdev->pages_per_bio)
1550		scrub_submit(sdev);
1551
1552	return 0;
1553}
1554
1555static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
1556		       u64 physical, u64 flags, u64 gen, int mirror_num,
1557		       u8 *csum, int force)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1558{
1559	struct scrub_block *sblock;
1560	int index;
1561
1562	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1563	if (!sblock) {
1564		spin_lock(&sdev->stat_lock);
1565		sdev->stat.malloc_errors++;
1566		spin_unlock(&sdev->stat_lock);
1567		return -ENOMEM;
1568	}
1569
1570	/* one ref inside this function, plus one for each page later on */
1571	atomic_set(&sblock->ref_count, 1);
1572	sblock->sdev = sdev;
 
1573	sblock->no_io_error_seen = 1;
1574
1575	for (index = 0; len > 0; index++) {
1576		struct scrub_page *spage = sblock->pagev + index;
1577		u64 l = min_t(u64, len, PAGE_SIZE);
1578
1579		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1580		spage->page = alloc_page(GFP_NOFS);
1581		if (!spage->page) {
1582			spin_lock(&sdev->stat_lock);
1583			sdev->stat.malloc_errors++;
1584			spin_unlock(&sdev->stat_lock);
1585			while (index > 0) {
1586				index--;
1587				__free_page(sblock->pagev[index].page);
1588			}
1589			kfree(sblock);
1590			return -ENOMEM;
1591		}
 
 
 
1592		spage->sblock = sblock;
1593		spage->dev = sdev->dev;
1594		spage->flags = flags;
1595		spage->generation = gen;
1596		spage->logical = logical;
1597		spage->physical = physical;
 
1598		spage->mirror_num = mirror_num;
1599		if (csum) {
1600			spage->have_csum = 1;
1601			memcpy(spage->csum, csum, sdev->csum_size);
1602		} else {
1603			spage->have_csum = 0;
1604		}
1605		sblock->page_count++;
 
 
 
1606		len -= l;
1607		logical += l;
1608		physical += l;
 
1609	}
1610
1611	BUG_ON(sblock->page_count == 0);
1612	for (index = 0; index < sblock->page_count; index++) {
1613		struct scrub_page *spage = sblock->pagev + index;
1614		int ret;
1615
1616		ret = scrub_add_page_to_bio(sdev, spage);
1617		if (ret) {
1618			scrub_block_put(sblock);
1619			return ret;
 
 
 
 
 
 
 
 
1620		}
1621	}
1622
1623	if (force)
1624		scrub_submit(sdev);
 
1625
1626	/* last one frees, either here or in bio completion for last page */
1627	scrub_block_put(sblock);
1628	return 0;
1629}
1630
1631static void scrub_bio_end_io(struct bio *bio, int err)
1632{
1633	struct scrub_bio *sbio = bio->bi_private;
1634	struct scrub_dev *sdev = sbio->sdev;
1635	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1636
1637	sbio->err = err;
1638	sbio->bio = bio;
1639
1640	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
1641}
1642
1643static void scrub_bio_end_io_worker(struct btrfs_work *work)
1644{
1645	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1646	struct scrub_dev *sdev = sbio->sdev;
1647	int i;
1648
1649	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
1650	if (sbio->err) {
1651		for (i = 0; i < sbio->page_count; i++) {
1652			struct scrub_page *spage = sbio->pagev[i];
1653
1654			spage->io_error = 1;
1655			spage->sblock->no_io_error_seen = 0;
1656		}
1657	}
1658
1659	/* now complete the scrub_block items that have all pages completed */
1660	for (i = 0; i < sbio->page_count; i++) {
1661		struct scrub_page *spage = sbio->pagev[i];
1662		struct scrub_block *sblock = spage->sblock;
1663
1664		if (atomic_dec_and_test(&sblock->outstanding_pages))
1665			scrub_block_complete(sblock);
1666		scrub_block_put(sblock);
1667	}
1668
1669	if (sbio->err) {
1670		/* what is this good for??? */
1671		sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1672		sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
1673		sbio->bio->bi_phys_segments = 0;
1674		sbio->bio->bi_idx = 0;
1675
1676		for (i = 0; i < sbio->page_count; i++) {
1677			struct bio_vec *bi;
1678			bi = &sbio->bio->bi_io_vec[i];
1679			bi->bv_offset = 0;
1680			bi->bv_len = PAGE_SIZE;
1681		}
1682	}
1683
1684	bio_put(sbio->bio);
1685	sbio->bio = NULL;
1686	spin_lock(&sdev->list_lock);
1687	sbio->next_free = sdev->first_free;
1688	sdev->first_free = sbio->index;
1689	spin_unlock(&sdev->list_lock);
1690	atomic_dec(&sdev->in_flight);
1691	wake_up(&sdev->list_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692}
1693
1694static void scrub_block_complete(struct scrub_block *sblock)
1695{
1696	if (!sblock->no_io_error_seen)
 
 
 
1697		scrub_handle_errored_block(sblock);
1698	else
1699		scrub_checksum(sblock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1700}
1701
1702static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1703			   u8 *csum)
1704{
1705	struct btrfs_ordered_sum *sum = NULL;
1706	int ret = 0;
1707	unsigned long i;
1708	unsigned long num_sectors;
1709
1710	while (!list_empty(&sdev->csum_list)) {
1711		sum = list_first_entry(&sdev->csum_list,
1712				       struct btrfs_ordered_sum, list);
1713		if (sum->bytenr > logical)
1714			return 0;
1715		if (sum->bytenr + sum->len > logical)
1716			break;
1717
1718		++sdev->stat.csum_discards;
1719		list_del(&sum->list);
1720		kfree(sum);
1721		sum = NULL;
1722	}
1723	if (!sum)
1724		return 0;
1725
1726	num_sectors = sum->len / sdev->sectorsize;
1727	for (i = 0; i < num_sectors; ++i) {
1728		if (sum->sums[i].bytenr == logical) {
1729			memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1730			ret = 1;
1731			break;
1732		}
1733	}
1734	if (ret && i == num_sectors - 1) {
1735		list_del(&sum->list);
1736		kfree(sum);
1737	}
1738	return ret;
1739}
1740
1741/* scrub extent tries to collect up to 64 kB for each bio */
1742static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
1743			u64 physical, u64 flags, u64 gen, int mirror_num)
 
 
1744{
1745	int ret;
1746	u8 csum[BTRFS_CSUM_SIZE];
1747	u32 blocksize;
1748
1749	if (flags & BTRFS_EXTENT_FLAG_DATA) {
1750		blocksize = sdev->sectorsize;
1751		spin_lock(&sdev->stat_lock);
1752		sdev->stat.data_extents_scrubbed++;
1753		sdev->stat.data_bytes_scrubbed += len;
1754		spin_unlock(&sdev->stat_lock);
 
 
 
1755	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1756		BUG_ON(sdev->nodesize != sdev->leafsize);
1757		blocksize = sdev->nodesize;
1758		spin_lock(&sdev->stat_lock);
1759		sdev->stat.tree_extents_scrubbed++;
1760		sdev->stat.tree_bytes_scrubbed += len;
1761		spin_unlock(&sdev->stat_lock);
 
 
1762	} else {
1763		blocksize = sdev->sectorsize;
1764		BUG_ON(1);
1765	}
1766
1767	while (len) {
1768		u64 l = min_t(u64, len, blocksize);
1769		int have_csum = 0;
1770
1771		if (flags & BTRFS_EXTENT_FLAG_DATA) {
1772			/* push csums to sbio */
1773			have_csum = scrub_find_csum(sdev, logical, l, csum);
1774			if (have_csum == 0)
1775				++sdev->stat.no_csum;
 
 
 
 
 
 
1776		}
1777		ret = scrub_pages(sdev, logical, l, physical, flags, gen,
1778				  mirror_num, have_csum ? csum : NULL, 0);
 
 
1779		if (ret)
1780			return ret;
1781		len -= l;
1782		logical += l;
1783		physical += l;
 
1784	}
1785	return 0;
1786}
1787
1788static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1789	struct map_lookup *map, int num, u64 base, u64 length)
 
 
1790{
1791	struct btrfs_path *path;
1792	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1793	struct btrfs_root *root = fs_info->extent_root;
1794	struct btrfs_root *csum_root = fs_info->csum_root;
1795	struct btrfs_extent_item *extent;
1796	struct blk_plug plug;
1797	u64 flags;
1798	int ret;
1799	int slot;
1800	int i;
1801	u64 nstripes;
1802	struct extent_buffer *l;
1803	struct btrfs_key key;
1804	u64 physical;
1805	u64 logical;
 
 
1806	u64 generation;
1807	int mirror_num;
1808	struct reada_control *reada1;
1809	struct reada_control *reada2;
1810	struct btrfs_key key_start;
1811	struct btrfs_key key_end;
1812
1813	u64 increment = map->stripe_len;
1814	u64 offset;
 
 
 
 
 
 
 
 
1815
1816	nstripes = length;
1817	offset = 0;
1818	do_div(nstripes, map->stripe_len);
1819	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1820		offset = map->stripe_len * num;
1821		increment = map->stripe_len * map->num_stripes;
1822		mirror_num = 1;
1823	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1824		int factor = map->num_stripes / map->sub_stripes;
1825		offset = map->stripe_len * (num / map->sub_stripes);
1826		increment = map->stripe_len * factor;
1827		mirror_num = num % map->sub_stripes + 1;
1828	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1829		increment = map->stripe_len;
1830		mirror_num = num % map->num_stripes + 1;
1831	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1832		increment = map->stripe_len;
1833		mirror_num = num % map->num_stripes + 1;
 
 
 
 
1834	} else {
1835		increment = map->stripe_len;
1836		mirror_num = 1;
1837	}
1838
1839	path = btrfs_alloc_path();
1840	if (!path)
1841		return -ENOMEM;
1842
 
 
 
 
 
 
1843	/*
1844	 * work on commit root. The related disk blocks are static as
1845	 * long as COW is applied. This means, it is save to rewrite
1846	 * them to repair disk errors without any race conditions
1847	 */
1848	path->search_commit_root = 1;
1849	path->skip_locking = 1;
1850
 
 
1851	/*
1852	 * trigger the readahead for extent tree csum tree and wait for
1853	 * completion. During readahead, the scrub is officially paused
1854	 * to not hold off transaction commits
1855	 */
1856	logical = base + offset;
1857
1858	wait_event(sdev->list_wait,
1859		   atomic_read(&sdev->in_flight) == 0);
1860	atomic_inc(&fs_info->scrubs_paused);
1861	wake_up(&fs_info->scrub_pause_wait);
 
 
 
 
 
 
1862
1863	/* FIXME it might be better to start readahead at commit root */
1864	key_start.objectid = logical;
1865	key_start.type = BTRFS_EXTENT_ITEM_KEY;
1866	key_start.offset = (u64)0;
1867	key_end.objectid = base + offset + nstripes * increment;
1868	key_end.type = BTRFS_EXTENT_ITEM_KEY;
1869	key_end.offset = (u64)0;
1870	reada1 = btrfs_reada_add(root, &key_start, &key_end);
1871
1872	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1873	key_start.type = BTRFS_EXTENT_CSUM_KEY;
1874	key_start.offset = logical;
1875	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1876	key_end.type = BTRFS_EXTENT_CSUM_KEY;
1877	key_end.offset = base + offset + nstripes * increment;
1878	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1879
1880	if (!IS_ERR(reada1))
1881		btrfs_reada_wait(reada1);
1882	if (!IS_ERR(reada2))
1883		btrfs_reada_wait(reada2);
1884
1885	mutex_lock(&fs_info->scrub_lock);
1886	while (atomic_read(&fs_info->scrub_pause_req)) {
1887		mutex_unlock(&fs_info->scrub_lock);
1888		wait_event(fs_info->scrub_pause_wait,
1889		   atomic_read(&fs_info->scrub_pause_req) == 0);
1890		mutex_lock(&fs_info->scrub_lock);
1891	}
1892	atomic_dec(&fs_info->scrubs_paused);
1893	mutex_unlock(&fs_info->scrub_lock);
1894	wake_up(&fs_info->scrub_pause_wait);
1895
1896	/*
1897	 * collect all data csums for the stripe to avoid seeking during
1898	 * the scrub. This might currently (crc32) end up to be about 1MB
1899	 */
1900	blk_start_plug(&plug);
1901
1902	/*
1903	 * now find all extents for each stripe and scrub them
1904	 */
1905	logical = base + offset;
1906	physical = map->stripes[num].physical;
1907	ret = 0;
1908	for (i = 0; i < nstripes; ++i) {
1909		/*
1910		 * canceled?
1911		 */
1912		if (atomic_read(&fs_info->scrub_cancel_req) ||
1913		    atomic_read(&sdev->cancel_req)) {
1914			ret = -ECANCELED;
1915			goto out;
1916		}
1917		/*
1918		 * check to see if we have to pause
1919		 */
1920		if (atomic_read(&fs_info->scrub_pause_req)) {
1921			/* push queued extents */
1922			scrub_submit(sdev);
1923			wait_event(sdev->list_wait,
1924				   atomic_read(&sdev->in_flight) == 0);
1925			atomic_inc(&fs_info->scrubs_paused);
1926			wake_up(&fs_info->scrub_pause_wait);
1927			mutex_lock(&fs_info->scrub_lock);
1928			while (atomic_read(&fs_info->scrub_pause_req)) {
1929				mutex_unlock(&fs_info->scrub_lock);
1930				wait_event(fs_info->scrub_pause_wait,
1931				   atomic_read(&fs_info->scrub_pause_req) == 0);
1932				mutex_lock(&fs_info->scrub_lock);
1933			}
1934			atomic_dec(&fs_info->scrubs_paused);
1935			mutex_unlock(&fs_info->scrub_lock);
1936			wake_up(&fs_info->scrub_pause_wait);
1937		}
1938
1939		ret = btrfs_lookup_csums_range(csum_root, logical,
1940					       logical + map->stripe_len - 1,
1941					       &sdev->csum_list, 1);
1942		if (ret)
1943			goto out;
 
 
 
 
 
 
1944
 
 
 
 
1945		key.objectid = logical;
1946		key.type = BTRFS_EXTENT_ITEM_KEY;
1947		key.offset = (u64)0;
1948
1949		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1950		if (ret < 0)
1951			goto out;
 
1952		if (ret > 0) {
1953			ret = btrfs_previous_item(root, path, 0,
1954						  BTRFS_EXTENT_ITEM_KEY);
1955			if (ret < 0)
1956				goto out;
1957			if (ret > 0) {
1958				/* there's no smaller item, so stick with the
1959				 * larger one */
1960				btrfs_release_path(path);
1961				ret = btrfs_search_slot(NULL, root, &key,
1962							path, 0, 0);
1963				if (ret < 0)
1964					goto out;
1965			}
1966		}
1967
 
1968		while (1) {
 
 
1969			l = path->nodes[0];
1970			slot = path->slots[0];
1971			if (slot >= btrfs_header_nritems(l)) {
1972				ret = btrfs_next_leaf(root, path);
1973				if (ret == 0)
1974					continue;
1975				if (ret < 0)
1976					goto out;
1977
 
1978				break;
1979			}
1980			btrfs_item_key_to_cpu(l, &key, slot);
1981
1982			if (key.objectid + key.offset <= logical)
 
1983				goto next;
1984
1985			if (key.objectid >= logical + map->stripe_len)
1986				break;
 
 
1987
1988			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1989				goto next;
1990
 
 
 
 
 
 
 
1991			extent = btrfs_item_ptr(l, slot,
1992						struct btrfs_extent_item);
1993			flags = btrfs_extent_flags(l, extent);
1994			generation = btrfs_extent_generation(l, extent);
1995
1996			if (key.objectid < logical &&
1997			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1998				printk(KERN_ERR
1999				       "btrfs scrub: tree block %llu spanning "
2000				       "stripes, ignored. logical=%llu\n",
2001				       (unsigned long long)key.objectid,
2002				       (unsigned long long)logical);
 
 
 
2003				goto next;
2004			}
2005
 
 
 
 
2006			/*
2007			 * trim extent to this stripe
2008			 */
2009			if (key.objectid < logical) {
2010				key.offset -= logical - key.objectid;
2011				key.objectid = logical;
2012			}
2013			if (key.objectid + key.offset >
2014			    logical + map->stripe_len) {
2015				key.offset = logical + map->stripe_len -
2016					     key.objectid;
2017			}
2018
2019			ret = scrub_extent(sdev, key.objectid, key.offset,
2020					   key.objectid - logical + physical,
2021					   flags, generation, mirror_num);
 
 
 
 
 
 
 
 
 
 
 
2022			if (ret)
2023				goto out;
2024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2025next:
2026			path->slots[0]++;
2027		}
2028		btrfs_release_path(path);
 
2029		logical += increment;
2030		physical += map->stripe_len;
2031		spin_lock(&sdev->stat_lock);
2032		sdev->stat.last_physical = physical;
2033		spin_unlock(&sdev->stat_lock);
 
 
 
 
 
 
2034	}
 
2035	/* push queued extents */
2036	scrub_submit(sdev);
 
 
 
2037
2038out:
2039	blk_finish_plug(&plug);
2040	btrfs_free_path(path);
 
2041	return ret < 0 ? ret : 0;
2042}
2043
2044static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
2045	u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
2046	u64 dev_offset)
 
 
 
2047{
2048	struct btrfs_mapping_tree *map_tree =
2049		&sdev->dev->dev_root->fs_info->mapping_tree;
2050	struct map_lookup *map;
2051	struct extent_map *em;
2052	int i;
2053	int ret = -EINVAL;
2054
2055	read_lock(&map_tree->map_tree.lock);
2056	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2057	read_unlock(&map_tree->map_tree.lock);
2058
2059	if (!em)
2060		return -EINVAL;
 
 
 
 
 
 
 
2061
2062	map = (struct map_lookup *)em->bdev;
 
 
 
2063	if (em->start != chunk_offset)
2064		goto out;
2065
2066	if (em->len < length)
2067		goto out;
2068
2069	for (i = 0; i < map->num_stripes; ++i) {
2070		if (map->stripes[i].dev == sdev->dev &&
2071		    map->stripes[i].physical == dev_offset) {
2072			ret = scrub_stripe(sdev, map, i, chunk_offset, length);
 
 
2073			if (ret)
2074				goto out;
2075		}
2076	}
2077out:
2078	free_extent_map(em);
2079
2080	return ret;
2081}
2082
2083static noinline_for_stack
2084int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
 
 
2085{
2086	struct btrfs_dev_extent *dev_extent = NULL;
2087	struct btrfs_path *path;
2088	struct btrfs_root *root = sdev->dev->dev_root;
2089	struct btrfs_fs_info *fs_info = root->fs_info;
2090	u64 length;
2091	u64 chunk_tree;
2092	u64 chunk_objectid;
2093	u64 chunk_offset;
2094	int ret;
 
2095	int slot;
2096	struct extent_buffer *l;
2097	struct btrfs_key key;
2098	struct btrfs_key found_key;
2099	struct btrfs_block_group_cache *cache;
 
2100
2101	path = btrfs_alloc_path();
2102	if (!path)
2103		return -ENOMEM;
2104
2105	path->reada = 2;
2106	path->search_commit_root = 1;
2107	path->skip_locking = 1;
2108
2109	key.objectid = sdev->dev->devid;
2110	key.offset = 0ull;
2111	key.type = BTRFS_DEV_EXTENT_KEY;
2112
2113
2114	while (1) {
2115		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2116		if (ret < 0)
2117			break;
2118		if (ret > 0) {
2119			if (path->slots[0] >=
2120			    btrfs_header_nritems(path->nodes[0])) {
2121				ret = btrfs_next_leaf(root, path);
2122				if (ret)
 
 
 
2123					break;
 
 
 
2124			}
2125		}
2126
2127		l = path->nodes[0];
2128		slot = path->slots[0];
2129
2130		btrfs_item_key_to_cpu(l, &found_key, slot);
2131
2132		if (found_key.objectid != sdev->dev->devid)
2133			break;
2134
2135		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2136			break;
2137
2138		if (found_key.offset >= end)
2139			break;
2140
2141		if (found_key.offset < key.offset)
2142			break;
2143
2144		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2145		length = btrfs_dev_extent_length(l, dev_extent);
2146
2147		if (found_key.offset + length <= start) {
2148			key.offset = found_key.offset + length;
2149			btrfs_release_path(path);
2150			continue;
2151		}
2152
2153		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2154		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2155		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2156
2157		/*
2158		 * get a reference on the corresponding block group to prevent
2159		 * the chunk from going away while we scrub it
2160		 */
2161		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2162		if (!cache) {
2163			ret = -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2164			break;
2165		}
2166		ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
2167				  chunk_offset, length, found_key.offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168		btrfs_put_block_group(cache);
2169		if (ret)
2170			break;
2171
 
 
 
 
 
 
 
 
 
2172		key.offset = found_key.offset + length;
2173		btrfs_release_path(path);
2174	}
2175
2176	btrfs_free_path(path);
2177
2178	/*
2179	 * ret can still be 1 from search_slot or next_leaf,
2180	 * that's not an error
2181	 */
2182	return ret < 0 ? ret : 0;
2183}
2184
2185static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
 
2186{
2187	int	i;
2188	u64	bytenr;
2189	u64	gen;
2190	int	ret;
2191	struct btrfs_device *device = sdev->dev;
2192	struct btrfs_root *root = device->dev_root;
2193
2194	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2195		return -EIO;
2196
2197	gen = root->fs_info->last_trans_committed;
 
 
 
 
2198
2199	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2200		bytenr = btrfs_sb_offset(i);
2201		if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
 
2202			break;
2203
2204		ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2205				     BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
 
2206		if (ret)
2207			return ret;
2208	}
2209	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2210
2211	return 0;
2212}
2213
2214/*
2215 * get a reference count on fs_info->scrub_workers. start worker if necessary
2216 */
2217static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
 
2218{
2219	struct btrfs_fs_info *fs_info = root->fs_info;
2220	int ret = 0;
2221
2222	mutex_lock(&fs_info->scrub_lock);
2223	if (fs_info->scrub_workers_refcnt == 0) {
2224		btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2225			   fs_info->thread_pool_size, &fs_info->generic_worker);
2226		fs_info->scrub_workers.idle_thresh = 4;
2227		ret = btrfs_start_workers(&fs_info->scrub_workers);
2228		if (ret)
2229			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230	}
2231	++fs_info->scrub_workers_refcnt;
2232out:
2233	mutex_unlock(&fs_info->scrub_lock);
2234
2235	return ret;
2236}
2237
2238static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
2239{
2240	struct btrfs_fs_info *fs_info = root->fs_info;
2241
2242	mutex_lock(&fs_info->scrub_lock);
2243	if (--fs_info->scrub_workers_refcnt == 0)
2244		btrfs_stop_workers(&fs_info->scrub_workers);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2245	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2246	mutex_unlock(&fs_info->scrub_lock);
2247}
2248
2249
2250int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
2251		    struct btrfs_scrub_progress *progress, int readonly)
2252{
2253	struct scrub_dev *sdev;
2254	struct btrfs_fs_info *fs_info = root->fs_info;
2255	int ret;
2256	struct btrfs_device *dev;
 
2257
2258	if (btrfs_fs_closing(root->fs_info))
2259		return -EINVAL;
2260
2261	/*
2262	 * check some assumptions
2263	 */
2264	if (root->nodesize != root->leafsize) {
2265		printk(KERN_ERR
2266		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2267		       root->nodesize, root->leafsize);
2268		return -EINVAL;
2269	}
2270
2271	if (root->nodesize > BTRFS_STRIPE_LEN) {
2272		/*
2273		 * in this case scrub is unable to calculate the checksum
2274		 * the way scrub is implemented. Do not handle this
2275		 * situation at all because it won't ever happen.
2276		 */
2277		printk(KERN_ERR
2278		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2279		       root->nodesize, BTRFS_STRIPE_LEN);
 
2280		return -EINVAL;
2281	}
2282
2283	if (root->sectorsize != PAGE_SIZE) {
2284		/* not supported for data w/o checksums */
2285		printk(KERN_ERR
2286		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2287		       root->sectorsize, (unsigned long long)PAGE_SIZE);
2288		return -EINVAL;
2289	}
2290
2291	ret = scrub_workers_get(root);
2292	if (ret)
2293		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
2294
2295	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2296	dev = btrfs_find_device(root, devid, NULL, NULL);
2297	if (!dev || dev->missing) {
2298		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2299		scrub_workers_put(root);
 
2300		return -ENODEV;
2301	}
2302	mutex_lock(&fs_info->scrub_lock);
2303
2304	if (!dev->in_fs_metadata) {
 
 
 
 
 
 
 
 
 
 
 
 
 
2305		mutex_unlock(&fs_info->scrub_lock);
2306		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2307		scrub_workers_put(root);
2308		return -ENODEV;
2309	}
2310
2311	if (dev->scrub_device) {
 
 
 
 
2312		mutex_unlock(&fs_info->scrub_lock);
2313		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2314		scrub_workers_put(root);
2315		return -EINPROGRESS;
2316	}
2317	sdev = scrub_setup_dev(dev);
2318	if (IS_ERR(sdev)) {
 
 
 
 
 
 
 
 
 
2319		mutex_unlock(&fs_info->scrub_lock);
2320		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2321		scrub_workers_put(root);
2322		return PTR_ERR(sdev);
2323	}
2324	sdev->readonly = readonly;
2325	dev->scrub_device = sdev;
 
2326
 
 
 
 
 
2327	atomic_inc(&fs_info->scrubs_running);
2328	mutex_unlock(&fs_info->scrub_lock);
2329	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2330
2331	down_read(&fs_info->scrub_super_lock);
2332	ret = scrub_supers(sdev);
2333	up_read(&fs_info->scrub_super_lock);
 
 
 
 
 
 
2334
2335	if (!ret)
2336		ret = scrub_enumerate_chunks(sdev, start, end);
 
2337
2338	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2339	atomic_dec(&fs_info->scrubs_running);
2340	wake_up(&fs_info->scrub_pause_wait);
2341
2342	wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
2343
2344	if (progress)
2345		memcpy(progress, &sdev->stat, sizeof(*progress));
2346
2347	mutex_lock(&fs_info->scrub_lock);
2348	dev->scrub_device = NULL;
 
2349	mutex_unlock(&fs_info->scrub_lock);
2350
2351	scrub_free_dev(sdev);
2352	scrub_workers_put(root);
2353
2354	return ret;
2355}
2356
2357void btrfs_scrub_pause(struct btrfs_root *root)
2358{
2359	struct btrfs_fs_info *fs_info = root->fs_info;
2360
2361	mutex_lock(&fs_info->scrub_lock);
2362	atomic_inc(&fs_info->scrub_pause_req);
2363	while (atomic_read(&fs_info->scrubs_paused) !=
2364	       atomic_read(&fs_info->scrubs_running)) {
2365		mutex_unlock(&fs_info->scrub_lock);
2366		wait_event(fs_info->scrub_pause_wait,
2367			   atomic_read(&fs_info->scrubs_paused) ==
2368			   atomic_read(&fs_info->scrubs_running));
2369		mutex_lock(&fs_info->scrub_lock);
2370	}
2371	mutex_unlock(&fs_info->scrub_lock);
2372}
2373
2374void btrfs_scrub_continue(struct btrfs_root *root)
2375{
2376	struct btrfs_fs_info *fs_info = root->fs_info;
2377
2378	atomic_dec(&fs_info->scrub_pause_req);
2379	wake_up(&fs_info->scrub_pause_wait);
2380}
2381
2382void btrfs_scrub_pause_super(struct btrfs_root *root)
2383{
2384	down_write(&root->fs_info->scrub_super_lock);
2385}
2386
2387void btrfs_scrub_continue_super(struct btrfs_root *root)
2388{
2389	up_write(&root->fs_info->scrub_super_lock);
2390}
2391
2392int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2393{
2394
2395	mutex_lock(&fs_info->scrub_lock);
2396	if (!atomic_read(&fs_info->scrubs_running)) {
2397		mutex_unlock(&fs_info->scrub_lock);
2398		return -ENOTCONN;
2399	}
2400
2401	atomic_inc(&fs_info->scrub_cancel_req);
2402	while (atomic_read(&fs_info->scrubs_running)) {
2403		mutex_unlock(&fs_info->scrub_lock);
2404		wait_event(fs_info->scrub_pause_wait,
2405			   atomic_read(&fs_info->scrubs_running) == 0);
2406		mutex_lock(&fs_info->scrub_lock);
2407	}
2408	atomic_dec(&fs_info->scrub_cancel_req);
2409	mutex_unlock(&fs_info->scrub_lock);
2410
2411	return 0;
2412}
2413
2414int btrfs_scrub_cancel(struct btrfs_root *root)
 
2415{
2416	return __btrfs_scrub_cancel(root->fs_info);
2417}
2418
2419int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
2420{
2421	struct btrfs_fs_info *fs_info = root->fs_info;
2422	struct scrub_dev *sdev;
2423
2424	mutex_lock(&fs_info->scrub_lock);
2425	sdev = dev->scrub_device;
2426	if (!sdev) {
2427		mutex_unlock(&fs_info->scrub_lock);
2428		return -ENOTCONN;
2429	}
2430	atomic_inc(&sdev->cancel_req);
2431	while (dev->scrub_device) {
2432		mutex_unlock(&fs_info->scrub_lock);
2433		wait_event(fs_info->scrub_pause_wait,
2434			   dev->scrub_device == NULL);
2435		mutex_lock(&fs_info->scrub_lock);
2436	}
2437	mutex_unlock(&fs_info->scrub_lock);
2438
2439	return 0;
2440}
2441
2442int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
 
2443{
2444	struct btrfs_fs_info *fs_info = root->fs_info;
2445	struct btrfs_device *dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2446	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2447
2448	/*
2449	 * we have to hold the device_list_mutex here so the device
2450	 * does not go away in cancel_dev. FIXME: find a better solution
2451	 */
2452	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2453	dev = btrfs_find_device(root, devid, NULL, NULL);
2454	if (!dev) {
2455		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2456		return -ENODEV;
 
2457	}
2458	ret = btrfs_scrub_cancel_dev(root, dev);
2459	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2460
 
 
2461	return ret;
2462}
2463
2464int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2465			 struct btrfs_scrub_progress *progress)
2466{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2467	struct btrfs_device *dev;
2468	struct scrub_dev *sdev = NULL;
2469
2470	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2471	dev = btrfs_find_device(root, devid, NULL, NULL);
2472	if (dev)
2473		sdev = dev->scrub_device;
2474	if (sdev)
2475		memcpy(progress, &sdev->stat, sizeof(*progress));
2476	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
2477
2478	return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
 
 
 
 
 
 
 
2479}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include "ctree.h"
  10#include "volumes.h"
  11#include "disk-io.h"
  12#include "ordered-data.h"
  13#include "transaction.h"
  14#include "backref.h"
  15#include "extent_io.h"
  16#include "dev-replace.h"
  17#include "check-integrity.h"
  18#include "rcu-string.h"
  19#include "raid56.h"
  20
  21/*
  22 * This is only the first step towards a full-features scrub. It reads all
  23 * extent and super block and verifies the checksums. In case a bad checksum
  24 * is found or the extent cannot be read, good data will be written back if
  25 * any can be found.
  26 *
  27 * Future enhancements:
  28 *  - In case an unrepairable extent is encountered, track which files are
  29 *    affected and report them
  30 *  - track and record media errors, throw out bad devices
  31 *  - add a mode to also read unallocated space
  32 */
  33
  34struct scrub_block;
  35struct scrub_ctx;
  36
  37/*
  38 * the following three values only influence the performance.
  39 * The last one configures the number of parallel and outstanding I/O
  40 * operations. The first two values configure an upper limit for the number
  41 * of (dynamically allocated) pages that are added to a bio.
  42 */
  43#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  44#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  45#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  46
  47/*
  48 * the following value times PAGE_SIZE needs to be large enough to match the
  49 * largest node/leaf/sector size that shall be supported.
  50 * Values larger than BTRFS_STRIPE_LEN are not supported.
  51 */
  52#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
  53
  54struct scrub_recover {
  55	refcount_t		refs;
  56	struct btrfs_bio	*bbio;
  57	u64			map_length;
  58};
  59
  60struct scrub_page {
  61	struct scrub_block	*sblock;
  62	struct page		*page;
  63	struct btrfs_device	*dev;
  64	struct list_head	list;
  65	u64			flags;  /* extent flags */
  66	u64			generation;
  67	u64			logical;
  68	u64			physical;
  69	u64			physical_for_dev_replace;
  70	atomic_t		refs;
  71	struct {
  72		unsigned int	mirror_num:8;
  73		unsigned int	have_csum:1;
  74		unsigned int	io_error:1;
  75	};
  76	u8			csum[BTRFS_CSUM_SIZE];
  77
  78	struct scrub_recover	*recover;
  79};
  80
  81struct scrub_bio {
  82	int			index;
  83	struct scrub_ctx	*sctx;
  84	struct btrfs_device	*dev;
  85	struct bio		*bio;
  86	blk_status_t		status;
  87	u64			logical;
  88	u64			physical;
  89#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  90	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
  91#else
  92	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
  93#endif
  94	int			page_count;
  95	int			next_free;
  96	struct btrfs_work	work;
  97};
  98
  99struct scrub_block {
 100	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 101	int			page_count;
 102	atomic_t		outstanding_pages;
 103	refcount_t		refs; /* free mem on transition to zero */
 104	struct scrub_ctx	*sctx;
 105	struct scrub_parity	*sparity;
 106	struct {
 107		unsigned int	header_error:1;
 108		unsigned int	checksum_error:1;
 109		unsigned int	no_io_error_seen:1;
 110		unsigned int	generation_error:1; /* also sets header_error */
 111
 112		/* The following is for the data used to check parity */
 113		/* It is for the data with checksum */
 114		unsigned int	data_corrected:1;
 115	};
 116	struct btrfs_work	work;
 117};
 118
 119/* Used for the chunks with parity stripe such RAID5/6 */
 120struct scrub_parity {
 121	struct scrub_ctx	*sctx;
 122
 123	struct btrfs_device	*scrub_dev;
 124
 125	u64			logic_start;
 126
 127	u64			logic_end;
 128
 129	int			nsectors;
 130
 131	u64			stripe_len;
 132
 133	refcount_t		refs;
 134
 135	struct list_head	spages;
 136
 137	/* Work of parity check and repair */
 138	struct btrfs_work	work;
 139
 140	/* Mark the parity blocks which have data */
 141	unsigned long		*dbitmap;
 142
 143	/*
 144	 * Mark the parity blocks which have data, but errors happen when
 145	 * read data or check data
 146	 */
 147	unsigned long		*ebitmap;
 148
 149	unsigned long		bitmap[0];
 150};
 151
 152struct scrub_ctx {
 153	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 154	struct btrfs_fs_info	*fs_info;
 155	int			first_free;
 156	int			curr;
 157	atomic_t		bios_in_flight;
 158	atomic_t		workers_pending;
 159	spinlock_t		list_lock;
 160	wait_queue_head_t	list_wait;
 161	u16			csum_size;
 162	struct list_head	csum_list;
 163	atomic_t		cancel_req;
 164	int			readonly;
 165	int			pages_per_rd_bio;
 166
 167	int			is_dev_replace;
 168
 169	struct scrub_bio        *wr_curr_bio;
 170	struct mutex            wr_lock;
 171	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 172	struct btrfs_device     *wr_tgtdev;
 173	bool                    flush_all_writes;
 174
 175	/*
 176	 * statistics
 177	 */
 178	struct btrfs_scrub_progress stat;
 179	spinlock_t		stat_lock;
 180
 181	/*
 182	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 183	 * decrement bios_in_flight and workers_pending and then do a wakeup
 184	 * on the list_wait wait queue. We must ensure the main scrub task
 185	 * doesn't free the scrub context before or while the workers are
 186	 * doing the wakeup() call.
 187	 */
 188	refcount_t              refs;
 189};
 190
 191struct scrub_fixup_nodatasum {
 192	struct scrub_ctx	*sctx;
 193	struct btrfs_device	*dev;
 194	u64			logical;
 195	struct btrfs_root	*root;
 196	struct btrfs_work	work;
 197	int			mirror_num;
 198};
 199
 200struct scrub_nocow_inode {
 201	u64			inum;
 202	u64			offset;
 203	u64			root;
 204	struct list_head	list;
 205};
 206
 207struct scrub_copy_nocow_ctx {
 208	struct scrub_ctx	*sctx;
 209	u64			logical;
 210	u64			len;
 211	int			mirror_num;
 212	u64			physical_for_dev_replace;
 213	struct list_head	inodes;
 214	struct btrfs_work	work;
 215};
 216
 217struct scrub_warning {
 218	struct btrfs_path	*path;
 219	u64			extent_item_size;
 
 
 220	const char		*errstr;
 221	u64			physical;
 222	u64			logical;
 223	struct btrfs_device	*dev;
 
 
 224};
 225
 226struct full_stripe_lock {
 227	struct rb_node node;
 228	u64 logical;
 229	u64 refs;
 230	struct mutex mutex;
 231};
 232
 233static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 234static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 235static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
 236static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
 237static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 238static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 239				     struct scrub_block *sblocks_for_recheck);
 240static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 241				struct scrub_block *sblock,
 242				int retry_failed_mirror);
 243static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 
 
 
 
 
 
 
 
 244static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 245					     struct scrub_block *sblock_good);
 
 246static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 247					    struct scrub_block *sblock_good,
 248					    int page_num, int force_write);
 249static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 250static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 251					   int page_num);
 252static int scrub_checksum_data(struct scrub_block *sblock);
 253static int scrub_checksum_tree_block(struct scrub_block *sblock);
 254static int scrub_checksum_super(struct scrub_block *sblock);
 255static void scrub_block_get(struct scrub_block *sblock);
 256static void scrub_block_put(struct scrub_block *sblock);
 257static void scrub_page_get(struct scrub_page *spage);
 258static void scrub_page_put(struct scrub_page *spage);
 259static void scrub_parity_get(struct scrub_parity *sparity);
 260static void scrub_parity_put(struct scrub_parity *sparity);
 261static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 262				    struct scrub_page *spage);
 263static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 264		       u64 physical, struct btrfs_device *dev, u64 flags,
 265		       u64 gen, int mirror_num, u8 *csum, int force,
 266		       u64 physical_for_dev_replace);
 267static void scrub_bio_end_io(struct bio *bio);
 268static void scrub_bio_end_io_worker(struct btrfs_work *work);
 269static void scrub_block_complete(struct scrub_block *sblock);
 270static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 271			       u64 extent_logical, u64 extent_len,
 272			       u64 *extent_physical,
 273			       struct btrfs_device **extent_dev,
 274			       int *extent_mirror_num);
 275static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 276				    struct scrub_page *spage);
 277static void scrub_wr_submit(struct scrub_ctx *sctx);
 278static void scrub_wr_bio_end_io(struct bio *bio);
 279static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 280static int write_page_nocow(struct scrub_ctx *sctx,
 281			    u64 physical_for_dev_replace, struct page *page);
 282static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
 283				      struct scrub_copy_nocow_ctx *ctx);
 284static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 285			    int mirror_num, u64 physical_for_dev_replace);
 286static void copy_nocow_pages_worker(struct btrfs_work *work);
 287static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 288static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 289static void scrub_put_ctx(struct scrub_ctx *sctx);
 290
 291static inline int scrub_is_page_on_raid56(struct scrub_page *page)
 292{
 293	return page->recover &&
 294	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 295}
 296
 297static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 298{
 299	refcount_inc(&sctx->refs);
 300	atomic_inc(&sctx->bios_in_flight);
 301}
 302
 303static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 304{
 305	atomic_dec(&sctx->bios_in_flight);
 306	wake_up(&sctx->list_wait);
 307	scrub_put_ctx(sctx);
 308}
 309
 310static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 311{
 312	while (atomic_read(&fs_info->scrub_pause_req)) {
 313		mutex_unlock(&fs_info->scrub_lock);
 314		wait_event(fs_info->scrub_pause_wait,
 315		   atomic_read(&fs_info->scrub_pause_req) == 0);
 316		mutex_lock(&fs_info->scrub_lock);
 317	}
 318}
 319
 320static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 321{
 322	atomic_inc(&fs_info->scrubs_paused);
 323	wake_up(&fs_info->scrub_pause_wait);
 324}
 325
 326static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 327{
 328	mutex_lock(&fs_info->scrub_lock);
 329	__scrub_blocked_if_needed(fs_info);
 330	atomic_dec(&fs_info->scrubs_paused);
 331	mutex_unlock(&fs_info->scrub_lock);
 332
 333	wake_up(&fs_info->scrub_pause_wait);
 334}
 335
 336static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 337{
 338	scrub_pause_on(fs_info);
 339	scrub_pause_off(fs_info);
 340}
 341
 342/*
 343 * Insert new full stripe lock into full stripe locks tree
 344 *
 345 * Return pointer to existing or newly inserted full_stripe_lock structure if
 346 * everything works well.
 347 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 348 *
 349 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 350 * function
 351 */
 352static struct full_stripe_lock *insert_full_stripe_lock(
 353		struct btrfs_full_stripe_locks_tree *locks_root,
 354		u64 fstripe_logical)
 355{
 356	struct rb_node **p;
 357	struct rb_node *parent = NULL;
 358	struct full_stripe_lock *entry;
 359	struct full_stripe_lock *ret;
 360
 361	lockdep_assert_held(&locks_root->lock);
 362
 363	p = &locks_root->root.rb_node;
 364	while (*p) {
 365		parent = *p;
 366		entry = rb_entry(parent, struct full_stripe_lock, node);
 367		if (fstripe_logical < entry->logical) {
 368			p = &(*p)->rb_left;
 369		} else if (fstripe_logical > entry->logical) {
 370			p = &(*p)->rb_right;
 371		} else {
 372			entry->refs++;
 373			return entry;
 374		}
 375	}
 376
 377	/* Insert new lock */
 378	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 379	if (!ret)
 380		return ERR_PTR(-ENOMEM);
 381	ret->logical = fstripe_logical;
 382	ret->refs = 1;
 383	mutex_init(&ret->mutex);
 384
 385	rb_link_node(&ret->node, parent, p);
 386	rb_insert_color(&ret->node, &locks_root->root);
 387	return ret;
 388}
 389
 390/*
 391 * Search for a full stripe lock of a block group
 392 *
 393 * Return pointer to existing full stripe lock if found
 394 * Return NULL if not found
 395 */
 396static struct full_stripe_lock *search_full_stripe_lock(
 397		struct btrfs_full_stripe_locks_tree *locks_root,
 398		u64 fstripe_logical)
 399{
 400	struct rb_node *node;
 401	struct full_stripe_lock *entry;
 402
 403	lockdep_assert_held(&locks_root->lock);
 404
 405	node = locks_root->root.rb_node;
 406	while (node) {
 407		entry = rb_entry(node, struct full_stripe_lock, node);
 408		if (fstripe_logical < entry->logical)
 409			node = node->rb_left;
 410		else if (fstripe_logical > entry->logical)
 411			node = node->rb_right;
 412		else
 413			return entry;
 414	}
 415	return NULL;
 416}
 417
 418/*
 419 * Helper to get full stripe logical from a normal bytenr.
 420 *
 421 * Caller must ensure @cache is a RAID56 block group.
 422 */
 423static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
 424				   u64 bytenr)
 425{
 426	u64 ret;
 427
 428	/*
 429	 * Due to chunk item size limit, full stripe length should not be
 430	 * larger than U32_MAX. Just a sanity check here.
 431	 */
 432	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 433
 434	/*
 435	 * round_down() can only handle power of 2, while RAID56 full
 436	 * stripe length can be 64KiB * n, so we need to manually round down.
 437	 */
 438	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
 439		cache->full_stripe_len + cache->key.objectid;
 440	return ret;
 441}
 442
 443/*
 444 * Lock a full stripe to avoid concurrency of recovery and read
 445 *
 446 * It's only used for profiles with parities (RAID5/6), for other profiles it
 447 * does nothing.
 448 *
 449 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 450 * So caller must call unlock_full_stripe() at the same context.
 451 *
 452 * Return <0 if encounters error.
 453 */
 454static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 455			    bool *locked_ret)
 456{
 457	struct btrfs_block_group_cache *bg_cache;
 458	struct btrfs_full_stripe_locks_tree *locks_root;
 459	struct full_stripe_lock *existing;
 460	u64 fstripe_start;
 461	int ret = 0;
 462
 463	*locked_ret = false;
 464	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 465	if (!bg_cache) {
 466		ASSERT(0);
 467		return -ENOENT;
 468	}
 469
 470	/* Profiles not based on parity don't need full stripe lock */
 471	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 472		goto out;
 473	locks_root = &bg_cache->full_stripe_locks_root;
 474
 475	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 476
 477	/* Now insert the full stripe lock */
 478	mutex_lock(&locks_root->lock);
 479	existing = insert_full_stripe_lock(locks_root, fstripe_start);
 480	mutex_unlock(&locks_root->lock);
 481	if (IS_ERR(existing)) {
 482		ret = PTR_ERR(existing);
 483		goto out;
 484	}
 485	mutex_lock(&existing->mutex);
 486	*locked_ret = true;
 487out:
 488	btrfs_put_block_group(bg_cache);
 489	return ret;
 490}
 491
 492/*
 493 * Unlock a full stripe.
 494 *
 495 * NOTE: Caller must ensure it's the same context calling corresponding
 496 * lock_full_stripe().
 497 *
 498 * Return 0 if we unlock full stripe without problem.
 499 * Return <0 for error
 500 */
 501static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 502			      bool locked)
 503{
 504	struct btrfs_block_group_cache *bg_cache;
 505	struct btrfs_full_stripe_locks_tree *locks_root;
 506	struct full_stripe_lock *fstripe_lock;
 507	u64 fstripe_start;
 508	bool freeit = false;
 509	int ret = 0;
 510
 511	/* If we didn't acquire full stripe lock, no need to continue */
 512	if (!locked)
 513		return 0;
 514
 515	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 516	if (!bg_cache) {
 517		ASSERT(0);
 518		return -ENOENT;
 519	}
 520	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 521		goto out;
 522
 523	locks_root = &bg_cache->full_stripe_locks_root;
 524	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 525
 526	mutex_lock(&locks_root->lock);
 527	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 528	/* Unpaired unlock_full_stripe() detected */
 529	if (!fstripe_lock) {
 530		WARN_ON(1);
 531		ret = -ENOENT;
 532		mutex_unlock(&locks_root->lock);
 533		goto out;
 534	}
 535
 536	if (fstripe_lock->refs == 0) {
 537		WARN_ON(1);
 538		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 539			fstripe_lock->logical);
 540	} else {
 541		fstripe_lock->refs--;
 542	}
 543
 544	if (fstripe_lock->refs == 0) {
 545		rb_erase(&fstripe_lock->node, &locks_root->root);
 546		freeit = true;
 547	}
 548	mutex_unlock(&locks_root->lock);
 549
 550	mutex_unlock(&fstripe_lock->mutex);
 551	if (freeit)
 552		kfree(fstripe_lock);
 553out:
 554	btrfs_put_block_group(bg_cache);
 555	return ret;
 556}
 557
 558/*
 559 * used for workers that require transaction commits (i.e., for the
 560 * NOCOW case)
 561 */
 562static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
 563{
 564	struct btrfs_fs_info *fs_info = sctx->fs_info;
 565
 566	refcount_inc(&sctx->refs);
 567	/*
 568	 * increment scrubs_running to prevent cancel requests from
 569	 * completing as long as a worker is running. we must also
 570	 * increment scrubs_paused to prevent deadlocking on pause
 571	 * requests used for transactions commits (as the worker uses a
 572	 * transaction context). it is safe to regard the worker
 573	 * as paused for all matters practical. effectively, we only
 574	 * avoid cancellation requests from completing.
 575	 */
 576	mutex_lock(&fs_info->scrub_lock);
 577	atomic_inc(&fs_info->scrubs_running);
 578	atomic_inc(&fs_info->scrubs_paused);
 579	mutex_unlock(&fs_info->scrub_lock);
 580
 581	/*
 582	 * check if @scrubs_running=@scrubs_paused condition
 583	 * inside wait_event() is not an atomic operation.
 584	 * which means we may inc/dec @scrub_running/paused
 585	 * at any time. Let's wake up @scrub_pause_wait as
 586	 * much as we can to let commit transaction blocked less.
 587	 */
 588	wake_up(&fs_info->scrub_pause_wait);
 589
 590	atomic_inc(&sctx->workers_pending);
 591}
 592
 593/* used for workers that require transaction commits */
 594static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
 595{
 596	struct btrfs_fs_info *fs_info = sctx->fs_info;
 597
 598	/*
 599	 * see scrub_pending_trans_workers_inc() why we're pretending
 600	 * to be paused in the scrub counters
 601	 */
 602	mutex_lock(&fs_info->scrub_lock);
 603	atomic_dec(&fs_info->scrubs_running);
 604	atomic_dec(&fs_info->scrubs_paused);
 605	mutex_unlock(&fs_info->scrub_lock);
 606	atomic_dec(&sctx->workers_pending);
 607	wake_up(&fs_info->scrub_pause_wait);
 608	wake_up(&sctx->list_wait);
 609	scrub_put_ctx(sctx);
 610}
 611
 612static void scrub_free_csums(struct scrub_ctx *sctx)
 613{
 614	while (!list_empty(&sctx->csum_list)) {
 615		struct btrfs_ordered_sum *sum;
 616		sum = list_first_entry(&sctx->csum_list,
 617				       struct btrfs_ordered_sum, list);
 618		list_del(&sum->list);
 619		kfree(sum);
 620	}
 621}
 622
 623static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 624{
 625	int i;
 626
 627	if (!sctx)
 628		return;
 629
 630	/* this can happen when scrub is cancelled */
 631	if (sctx->curr != -1) {
 632		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 633
 634		for (i = 0; i < sbio->page_count; i++) {
 635			WARN_ON(!sbio->pagev[i]->page);
 
 636			scrub_block_put(sbio->pagev[i]->sblock);
 637		}
 638		bio_put(sbio->bio);
 639	}
 640
 641	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 642		struct scrub_bio *sbio = sctx->bios[i];
 643
 644		if (!sbio)
 645			break;
 646		kfree(sbio);
 647	}
 648
 649	kfree(sctx->wr_curr_bio);
 650	scrub_free_csums(sctx);
 651	kfree(sctx);
 652}
 653
 654static void scrub_put_ctx(struct scrub_ctx *sctx)
 655{
 656	if (refcount_dec_and_test(&sctx->refs))
 657		scrub_free_ctx(sctx);
 658}
 659
 660static noinline_for_stack
 661struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
 662{
 663	struct scrub_ctx *sctx;
 664	int		i;
 665	struct btrfs_fs_info *fs_info = dev->fs_info;
 
 666
 667	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 668	if (!sctx)
 
 
 669		goto nomem;
 670	refcount_set(&sctx->refs, 1);
 671	sctx->is_dev_replace = is_dev_replace;
 672	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 673	sctx->curr = -1;
 674	sctx->fs_info = dev->fs_info;
 675	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 676		struct scrub_bio *sbio;
 677
 678		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 679		if (!sbio)
 680			goto nomem;
 681		sctx->bios[i] = sbio;
 682
 683		sbio->index = i;
 684		sbio->sctx = sctx;
 685		sbio->page_count = 0;
 686		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
 687				scrub_bio_end_io_worker, NULL, NULL);
 688
 689		if (i != SCRUB_BIOS_PER_SCTX - 1)
 690			sctx->bios[i]->next_free = i + 1;
 691		else
 692			sctx->bios[i]->next_free = -1;
 693	}
 694	sctx->first_free = 0;
 695	atomic_set(&sctx->bios_in_flight, 0);
 696	atomic_set(&sctx->workers_pending, 0);
 697	atomic_set(&sctx->cancel_req, 0);
 698	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 699	INIT_LIST_HEAD(&sctx->csum_list);
 700
 701	spin_lock_init(&sctx->list_lock);
 702	spin_lock_init(&sctx->stat_lock);
 703	init_waitqueue_head(&sctx->list_wait);
 704
 705	WARN_ON(sctx->wr_curr_bio != NULL);
 706	mutex_init(&sctx->wr_lock);
 707	sctx->wr_curr_bio = NULL;
 708	if (is_dev_replace) {
 709		WARN_ON(!fs_info->dev_replace.tgtdev);
 710		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
 711		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 712		sctx->flush_all_writes = false;
 713	}
 714
 715	return sctx;
 716
 717nomem:
 718	scrub_free_ctx(sctx);
 719	return ERR_PTR(-ENOMEM);
 720}
 721
 722static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 723				     void *warn_ctx)
 724{
 725	u64 isize;
 726	u32 nlink;
 727	int ret;
 728	int i;
 729	unsigned nofs_flag;
 730	struct extent_buffer *eb;
 731	struct btrfs_inode_item *inode_item;
 732	struct scrub_warning *swarn = warn_ctx;
 733	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 734	struct inode_fs_paths *ipath = NULL;
 735	struct btrfs_root *local_root;
 736	struct btrfs_key root_key;
 737	struct btrfs_key key;
 738
 739	root_key.objectid = root;
 740	root_key.type = BTRFS_ROOT_ITEM_KEY;
 741	root_key.offset = (u64)-1;
 742	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 743	if (IS_ERR(local_root)) {
 744		ret = PTR_ERR(local_root);
 745		goto err;
 746	}
 747
 748	/*
 749	 * this makes the path point to (inum INODE_ITEM ioff)
 750	 */
 751	key.objectid = inum;
 752	key.type = BTRFS_INODE_ITEM_KEY;
 753	key.offset = 0;
 754
 755	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 756	if (ret) {
 757		btrfs_release_path(swarn->path);
 758		goto err;
 759	}
 760
 761	eb = swarn->path->nodes[0];
 762	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 763					struct btrfs_inode_item);
 764	isize = btrfs_inode_size(eb, inode_item);
 765	nlink = btrfs_inode_nlink(eb, inode_item);
 766	btrfs_release_path(swarn->path);
 767
 768	/*
 769	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 770	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 771	 * not seem to be strictly necessary.
 772	 */
 773	nofs_flag = memalloc_nofs_save();
 774	ipath = init_ipath(4096, local_root, swarn->path);
 775	memalloc_nofs_restore(nofs_flag);
 776	if (IS_ERR(ipath)) {
 777		ret = PTR_ERR(ipath);
 778		ipath = NULL;
 779		goto err;
 780	}
 781	ret = paths_from_inode(inum, ipath);
 782
 783	if (ret < 0)
 784		goto err;
 785
 786	/*
 787	 * we deliberately ignore the bit ipath might have been too small to
 788	 * hold all of the paths here
 789	 */
 790	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 791		btrfs_warn_in_rcu(fs_info,
 792"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
 793				  swarn->errstr, swarn->logical,
 794				  rcu_str_deref(swarn->dev->name),
 795				  swarn->physical,
 796				  root, inum, offset,
 797				  min(isize - offset, (u64)PAGE_SIZE), nlink,
 798				  (char *)(unsigned long)ipath->fspath->val[i]);
 799
 800	free_ipath(ipath);
 801	return 0;
 802
 803err:
 804	btrfs_warn_in_rcu(fs_info,
 805			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 806			  swarn->errstr, swarn->logical,
 807			  rcu_str_deref(swarn->dev->name),
 808			  swarn->physical,
 809			  root, inum, offset, ret);
 810
 811	free_ipath(ipath);
 812	return 0;
 813}
 814
 815static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 816{
 817	struct btrfs_device *dev;
 818	struct btrfs_fs_info *fs_info;
 819	struct btrfs_path *path;
 820	struct btrfs_key found_key;
 821	struct extent_buffer *eb;
 822	struct btrfs_extent_item *ei;
 823	struct scrub_warning swarn;
 
 
 
 
 824	unsigned long ptr = 0;
 
 825	u64 extent_item_pos;
 826	u64 flags = 0;
 827	u64 ref_root;
 828	u32 item_size;
 829	u8 ref_level = 0;
 830	int ret;
 831
 832	WARN_ON(sblock->page_count < 1);
 833	dev = sblock->pagev[0]->dev;
 834	fs_info = sblock->sctx->fs_info;
 835
 836	path = btrfs_alloc_path();
 837	if (!path)
 838		return;
 839
 840	swarn.physical = sblock->pagev[0]->physical;
 841	swarn.logical = sblock->pagev[0]->logical;
 
 
 
 842	swarn.errstr = errstr;
 843	swarn.dev = NULL;
 
 
 844
 845	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 846				  &flags);
 
 
 847	if (ret < 0)
 848		goto out;
 849
 850	extent_item_pos = swarn.logical - found_key.objectid;
 851	swarn.extent_item_size = found_key.offset;
 852
 853	eb = path->nodes[0];
 854	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 855	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 
 856
 857	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 858		do {
 859			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 860						      item_size, &ref_root,
 861						      &ref_level);
 862			btrfs_warn_in_rcu(fs_info,
 863"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 864				errstr, swarn.logical,
 865				rcu_str_deref(dev->name),
 866				swarn.physical,
 867				ref_level ? "node" : "leaf",
 868				ret < 0 ? -1 : ref_level,
 869				ret < 0 ? -1 : ref_root);
 870		} while (ret != 1);
 871		btrfs_release_path(path);
 872	} else {
 873		btrfs_release_path(path);
 874		swarn.path = path;
 875		swarn.dev = dev;
 876		iterate_extent_inodes(fs_info, found_key.objectid,
 877					extent_item_pos, 1,
 878					scrub_print_warning_inode, &swarn, false);
 879	}
 880
 881out:
 882	btrfs_free_path(path);
 
 
 883}
 884
 885static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
 886{
 887	struct page *page = NULL;
 888	unsigned long index;
 889	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
 890	int ret;
 891	int corrected = 0;
 892	struct btrfs_key key;
 893	struct inode *inode = NULL;
 894	struct btrfs_fs_info *fs_info;
 895	u64 end = offset + PAGE_SIZE - 1;
 896	struct btrfs_root *local_root;
 897	int srcu_index;
 898
 899	key.objectid = root;
 900	key.type = BTRFS_ROOT_ITEM_KEY;
 901	key.offset = (u64)-1;
 902
 903	fs_info = fixup->root->fs_info;
 904	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
 905
 906	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
 907	if (IS_ERR(local_root)) {
 908		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 909		return PTR_ERR(local_root);
 910	}
 911
 912	key.type = BTRFS_INODE_ITEM_KEY;
 913	key.objectid = inum;
 914	key.offset = 0;
 915	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
 916	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 917	if (IS_ERR(inode))
 918		return PTR_ERR(inode);
 919
 920	index = offset >> PAGE_SHIFT;
 921
 922	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 923	if (!page) {
 924		ret = -ENOMEM;
 925		goto out;
 926	}
 927
 928	if (PageUptodate(page)) {
 
 929		if (PageDirty(page)) {
 930			/*
 931			 * we need to write the data to the defect sector. the
 932			 * data that was in that sector is not in memory,
 933			 * because the page was modified. we must not write the
 934			 * modified page to that sector.
 935			 *
 936			 * TODO: what could be done here: wait for the delalloc
 937			 *       runner to write out that page (might involve
 938			 *       COW) and see whether the sector is still
 939			 *       referenced afterwards.
 940			 *
 941			 * For the meantime, we'll treat this error
 942			 * incorrectable, although there is a chance that a
 943			 * later scrub will find the bad sector again and that
 944			 * there's no dirty page in memory, then.
 945			 */
 946			ret = -EIO;
 947			goto out;
 948		}
 949		ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
 
 950					fixup->logical, page,
 951					offset - page_offset(page),
 952					fixup->mirror_num);
 953		unlock_page(page);
 954		corrected = !ret;
 955	} else {
 956		/*
 957		 * we need to get good data first. the general readpage path
 958		 * will call repair_io_failure for us, we just have to make
 959		 * sure we read the bad mirror.
 960		 */
 961		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 962					EXTENT_DAMAGED);
 963		if (ret) {
 964			/* set_extent_bits should give proper error */
 965			WARN_ON(ret > 0);
 966			if (ret > 0)
 967				ret = -EFAULT;
 968			goto out;
 969		}
 970
 971		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 972						btrfs_get_extent,
 973						fixup->mirror_num);
 974		wait_on_page_locked(page);
 975
 976		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 977						end, EXTENT_DAMAGED, 0, NULL);
 978		if (!corrected)
 979			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 980						EXTENT_DAMAGED);
 981	}
 982
 983out:
 984	if (page)
 985		put_page(page);
 986
 987	iput(inode);
 988
 989	if (ret < 0)
 990		return ret;
 991
 992	if (ret == 0 && corrected) {
 993		/*
 994		 * we only need to call readpage for one of the inodes belonging
 995		 * to this extent. so make iterate_extent_inodes stop
 996		 */
 997		return 1;
 998	}
 999
1000	return -EIO;
1001}
1002
1003static void scrub_fixup_nodatasum(struct btrfs_work *work)
1004{
1005	struct btrfs_fs_info *fs_info;
1006	int ret;
1007	struct scrub_fixup_nodatasum *fixup;
1008	struct scrub_ctx *sctx;
1009	struct btrfs_trans_handle *trans = NULL;
 
1010	struct btrfs_path *path;
1011	int uncorrectable = 0;
1012
1013	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1014	sctx = fixup->sctx;
1015	fs_info = fixup->root->fs_info;
1016
1017	path = btrfs_alloc_path();
1018	if (!path) {
1019		spin_lock(&sctx->stat_lock);
1020		++sctx->stat.malloc_errors;
1021		spin_unlock(&sctx->stat_lock);
1022		uncorrectable = 1;
1023		goto out;
1024	}
1025
1026	trans = btrfs_join_transaction(fixup->root);
1027	if (IS_ERR(trans)) {
1028		uncorrectable = 1;
1029		goto out;
1030	}
1031
1032	/*
1033	 * the idea is to trigger a regular read through the standard path. we
1034	 * read a page from the (failed) logical address by specifying the
1035	 * corresponding copynum of the failed sector. thus, that readpage is
1036	 * expected to fail.
1037	 * that is the point where on-the-fly error correction will kick in
1038	 * (once it's finished) and rewrite the failed sector if a good copy
1039	 * can be found.
1040	 */
1041	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
1042					  scrub_fixup_readpage, fixup, false);
 
1043	if (ret < 0) {
1044		uncorrectable = 1;
1045		goto out;
1046	}
1047	WARN_ON(ret != 1);
1048
1049	spin_lock(&sctx->stat_lock);
1050	++sctx->stat.corrected_errors;
1051	spin_unlock(&sctx->stat_lock);
1052
1053out:
1054	if (trans && !IS_ERR(trans))
1055		btrfs_end_transaction(trans);
1056	if (uncorrectable) {
1057		spin_lock(&sctx->stat_lock);
1058		++sctx->stat.uncorrectable_errors;
1059		spin_unlock(&sctx->stat_lock);
1060		btrfs_dev_replace_stats_inc(
1061			&fs_info->dev_replace.num_uncorrectable_read_errors);
1062		btrfs_err_rl_in_rcu(fs_info,
1063		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
1064			fixup->logical, rcu_str_deref(fixup->dev->name));
1065	}
1066
1067	btrfs_free_path(path);
1068	kfree(fixup);
1069
1070	scrub_pending_trans_workers_dec(sctx);
1071}
1072
1073static inline void scrub_get_recover(struct scrub_recover *recover)
1074{
1075	refcount_inc(&recover->refs);
1076}
1077
1078static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
1079				     struct scrub_recover *recover)
1080{
1081	if (refcount_dec_and_test(&recover->refs)) {
1082		btrfs_bio_counter_dec(fs_info);
1083		btrfs_put_bbio(recover->bbio);
1084		kfree(recover);
1085	}
1086}
1087
1088/*
1089 * scrub_handle_errored_block gets called when either verification of the
1090 * pages failed or the bio failed to read, e.g. with EIO. In the latter
1091 * case, this function handles all pages in the bio, even though only one
1092 * may be bad.
1093 * The goal of this function is to repair the errored block by using the
1094 * contents of one of the mirrors.
1095 */
1096static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1097{
1098	struct scrub_ctx *sctx = sblock_to_check->sctx;
1099	struct btrfs_device *dev;
1100	struct btrfs_fs_info *fs_info;
 
1101	u64 logical;
 
1102	unsigned int failed_mirror_index;
1103	unsigned int is_metadata;
1104	unsigned int have_csum;
 
1105	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
1106	struct scrub_block *sblock_bad;
1107	int ret;
1108	int mirror_index;
1109	int page_num;
1110	int success;
1111	bool full_stripe_locked;
1112	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1113				      DEFAULT_RATELIMIT_BURST);
1114
1115	BUG_ON(sblock_to_check->page_count < 1);
1116	fs_info = sctx->fs_info;
1117	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1118		/*
1119		 * if we find an error in a super block, we just report it.
1120		 * They will get written with the next transaction commit
1121		 * anyway
1122		 */
1123		spin_lock(&sctx->stat_lock);
1124		++sctx->stat.super_errors;
1125		spin_unlock(&sctx->stat_lock);
1126		return 0;
1127	}
1128	logical = sblock_to_check->pagev[0]->logical;
1129	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
1130	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
1131	is_metadata = !(sblock_to_check->pagev[0]->flags &
1132			BTRFS_EXTENT_FLAG_DATA);
1133	have_csum = sblock_to_check->pagev[0]->have_csum;
1134	dev = sblock_to_check->pagev[0]->dev;
1135
1136	/*
1137	 * For RAID5/6, race can happen for a different device scrub thread.
1138	 * For data corruption, Parity and Data threads will both try
1139	 * to recovery the data.
1140	 * Race can lead to doubly added csum error, or even unrecoverable
1141	 * error.
1142	 */
1143	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1144	if (ret < 0) {
1145		spin_lock(&sctx->stat_lock);
1146		if (ret == -ENOMEM)
1147			sctx->stat.malloc_errors++;
1148		sctx->stat.read_errors++;
1149		sctx->stat.uncorrectable_errors++;
1150		spin_unlock(&sctx->stat_lock);
1151		return ret;
1152	}
1153
1154	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
1155		sblocks_for_recheck = NULL;
1156		goto nodatasum_case;
1157	}
1158
1159	/*
1160	 * read all mirrors one after the other. This includes to
1161	 * re-read the extent or metadata block that failed (that was
1162	 * the cause that this fixup code is called) another time,
1163	 * page by page this time in order to know which pages
1164	 * caused I/O errors and which ones are good (for all mirrors).
1165	 * It is the goal to handle the situation when more than one
1166	 * mirror contains I/O errors, but the errors do not
1167	 * overlap, i.e. the data can be repaired by selecting the
1168	 * pages from those mirrors without I/O error on the
1169	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
1170	 * would be that mirror #1 has an I/O error on the first page,
1171	 * the second page is good, and mirror #2 has an I/O error on
1172	 * the second page, but the first page is good.
1173	 * Then the first page of the first mirror can be repaired by
1174	 * taking the first page of the second mirror, and the
1175	 * second page of the second mirror can be repaired by
1176	 * copying the contents of the 2nd page of the 1st mirror.
1177	 * One more note: if the pages of one mirror contain I/O
1178	 * errors, the checksum cannot be verified. In order to get
1179	 * the best data for repairing, the first attempt is to find
1180	 * a mirror without I/O errors and with a validated checksum.
1181	 * Only if this is not possible, the pages are picked from
1182	 * mirrors with I/O errors without considering the checksum.
1183	 * If the latter is the case, at the end, the checksum of the
1184	 * repaired area is verified in order to correctly maintain
1185	 * the statistics.
1186	 */
1187
1188	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
1189				      sizeof(*sblocks_for_recheck), GFP_NOFS);
 
1190	if (!sblocks_for_recheck) {
1191		spin_lock(&sctx->stat_lock);
1192		sctx->stat.malloc_errors++;
1193		sctx->stat.read_errors++;
1194		sctx->stat.uncorrectable_errors++;
1195		spin_unlock(&sctx->stat_lock);
1196		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 
1197		goto out;
1198	}
1199
1200	/* setup the context, map the logical blocks and alloc the pages */
1201	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 
1202	if (ret) {
1203		spin_lock(&sctx->stat_lock);
1204		sctx->stat.read_errors++;
1205		sctx->stat.uncorrectable_errors++;
1206		spin_unlock(&sctx->stat_lock);
1207		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 
1208		goto out;
1209	}
1210	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1211	sblock_bad = sblocks_for_recheck + failed_mirror_index;
1212
1213	/* build and submit the bios for the failed mirror, check checksums */
1214	scrub_recheck_block(fs_info, sblock_bad, 1);
 
 
 
 
 
 
 
 
 
 
1215
1216	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1217	    sblock_bad->no_io_error_seen) {
1218		/*
1219		 * the error disappeared after reading page by page, or
1220		 * the area was part of a huge bio and other parts of the
1221		 * bio caused I/O errors, or the block layer merged several
1222		 * read requests into one and the error is caused by a
1223		 * different bio (usually one of the two latter cases is
1224		 * the cause)
1225		 */
1226		spin_lock(&sctx->stat_lock);
1227		sctx->stat.unverified_errors++;
1228		sblock_to_check->data_corrected = 1;
1229		spin_unlock(&sctx->stat_lock);
1230
1231		if (sctx->is_dev_replace)
1232			scrub_write_block_to_dev_replace(sblock_bad);
1233		goto out;
1234	}
1235
1236	if (!sblock_bad->no_io_error_seen) {
1237		spin_lock(&sctx->stat_lock);
1238		sctx->stat.read_errors++;
1239		spin_unlock(&sctx->stat_lock);
1240		if (__ratelimit(&_rs))
1241			scrub_print_warning("i/o error", sblock_to_check);
1242		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 
1243	} else if (sblock_bad->checksum_error) {
1244		spin_lock(&sctx->stat_lock);
1245		sctx->stat.csum_errors++;
1246		spin_unlock(&sctx->stat_lock);
1247		if (__ratelimit(&_rs))
1248			scrub_print_warning("checksum error", sblock_to_check);
1249		btrfs_dev_stat_inc_and_print(dev,
1250					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1251	} else if (sblock_bad->header_error) {
1252		spin_lock(&sctx->stat_lock);
1253		sctx->stat.verify_errors++;
1254		spin_unlock(&sctx->stat_lock);
1255		if (__ratelimit(&_rs))
1256			scrub_print_warning("checksum/header error",
1257					    sblock_to_check);
1258		if (sblock_bad->generation_error)
1259			btrfs_dev_stat_inc_and_print(dev,
1260				BTRFS_DEV_STAT_GENERATION_ERRS);
1261		else
1262			btrfs_dev_stat_inc_and_print(dev,
1263				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1264	}
1265
1266	if (sctx->readonly) {
1267		ASSERT(!sctx->is_dev_replace);
1268		goto out;
1269	}
1270
1271	if (!is_metadata && !have_csum) {
1272		struct scrub_fixup_nodatasum *fixup_nodatasum;
1273
1274		WARN_ON(sctx->is_dev_replace);
1275
1276nodatasum_case:
1277
1278		/*
1279		 * !is_metadata and !have_csum, this means that the data
1280		 * might not be COWed, that it might be modified
1281		 * concurrently. The general strategy to work on the
1282		 * commit root does not help in the case when COW is not
1283		 * used.
1284		 */
1285		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1286		if (!fixup_nodatasum)
1287			goto did_not_correct_error;
1288		fixup_nodatasum->sctx = sctx;
1289		fixup_nodatasum->dev = dev;
1290		fixup_nodatasum->logical = logical;
1291		fixup_nodatasum->root = fs_info->extent_root;
1292		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1293		scrub_pending_trans_workers_inc(sctx);
1294		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1295				scrub_fixup_nodatasum, NULL, NULL);
1296		btrfs_queue_work(fs_info->scrub_workers,
1297				 &fixup_nodatasum->work);
 
 
 
 
 
 
 
 
 
 
 
 
1298		goto out;
1299	}
1300
1301	/*
1302	 * now build and submit the bios for the other mirrors, check
1303	 * checksums.
1304	 * First try to pick the mirror which is completely without I/O
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1305	 * errors and also does not have a checksum error.
1306	 * If one is found, and if a checksum is present, the full block
1307	 * that is known to contain an error is rewritten. Afterwards
1308	 * the block is known to be corrected.
1309	 * If a mirror is found which is completely correct, and no
1310	 * checksum is present, only those pages are rewritten that had
1311	 * an I/O error in the block to be repaired, since it cannot be
1312	 * determined, which copy of the other pages is better (and it
1313	 * could happen otherwise that a correct page would be
1314	 * overwritten by a bad one).
1315	 */
1316	for (mirror_index = 0; ;mirror_index++) {
1317		struct scrub_block *sblock_other;
1318
1319		if (mirror_index == failed_mirror_index)
1320			continue;
1321
1322		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1323		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1324			if (mirror_index >= BTRFS_MAX_MIRRORS)
1325				break;
1326			if (!sblocks_for_recheck[mirror_index].page_count)
1327				break;
1328
1329			sblock_other = sblocks_for_recheck + mirror_index;
1330		} else {
1331			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1332			int max_allowed = r->bbio->num_stripes -
1333						r->bbio->num_tgtdevs;
1334
1335			if (mirror_index >= max_allowed)
1336				break;
1337			if (!sblocks_for_recheck[1].page_count)
1338				break;
1339
1340			ASSERT(failed_mirror_index == 0);
1341			sblock_other = sblocks_for_recheck + 1;
1342			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1343		}
1344
1345		/* build and submit the bios, check checksums */
1346		scrub_recheck_block(fs_info, sblock_other, 0);
1347
1348		if (!sblock_other->header_error &&
1349		    !sblock_other->checksum_error &&
1350		    sblock_other->no_io_error_seen) {
1351			if (sctx->is_dev_replace) {
1352				scrub_write_block_to_dev_replace(sblock_other);
 
 
 
 
1353				goto corrected_error;
1354			} else {
1355				ret = scrub_repair_block_from_good_copy(
1356						sblock_bad, sblock_other);
1357				if (!ret)
1358					goto corrected_error;
1359			}
1360		}
1361	}
1362
1363	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1364		goto did_not_correct_error;
1365
1366	/*
1367	 * In case of I/O errors in the area that is supposed to be
1368	 * repaired, continue by picking good copies of those pages.
1369	 * Select the good pages from mirrors to rewrite bad pages from
1370	 * the area to fix. Afterwards verify the checksum of the block
1371	 * that is supposed to be repaired. This verification step is
1372	 * only done for the purpose of statistic counting and for the
1373	 * final scrub report, whether errors remain.
1374	 * A perfect algorithm could make use of the checksum and try
1375	 * all possible combinations of pages from the different mirrors
1376	 * until the checksum verification succeeds. For example, when
1377	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1378	 * of mirror #2 is readable but the final checksum test fails,
1379	 * then the 2nd page of mirror #3 could be tried, whether now
1380	 * the final checksum succeeds. But this would be a rare
1381	 * exception and is therefore not implemented. At least it is
1382	 * avoided that the good copy is overwritten.
1383	 * A more useful improvement would be to pick the sectors
1384	 * without I/O error based on sector sizes (512 bytes on legacy
1385	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1386	 * mirror could be repaired by taking 512 byte of a different
1387	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1388	 * area are unreadable.
1389	 */
 
 
 
 
 
1390	success = 1;
1391	for (page_num = 0; page_num < sblock_bad->page_count;
1392	     page_num++) {
1393		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1394		struct scrub_block *sblock_other = NULL;
1395
1396		/* skip no-io-error page in scrub */
1397		if (!page_bad->io_error && !sctx->is_dev_replace)
1398			continue;
1399
1400		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1401			/*
1402			 * In case of dev replace, if raid56 rebuild process
1403			 * didn't work out correct data, then copy the content
1404			 * in sblock_bad to make sure target device is identical
1405			 * to source device, instead of writing garbage data in
1406			 * sblock_for_recheck array to target device.
1407			 */
1408			sblock_other = NULL;
1409		} else if (page_bad->io_error) {
1410			/* try to find no-io-error page in mirrors */
1411			for (mirror_index = 0;
1412			     mirror_index < BTRFS_MAX_MIRRORS &&
1413			     sblocks_for_recheck[mirror_index].page_count > 0;
1414			     mirror_index++) {
1415				if (!sblocks_for_recheck[mirror_index].
1416				    pagev[page_num]->io_error) {
1417					sblock_other = sblocks_for_recheck +
1418						       mirror_index;
1419					break;
1420				}
1421			}
1422			if (!sblock_other)
1423				success = 0;
1424		}
1425
1426		if (sctx->is_dev_replace) {
1427			/*
1428			 * did not find a mirror to fetch the page
1429			 * from. scrub_write_page_to_dev_replace()
1430			 * handles this case (page->io_error), by
1431			 * filling the block with zeros before
1432			 * submitting the write request
1433			 */
1434			if (!sblock_other)
1435				sblock_other = sblock_bad;
1436
1437			if (scrub_write_page_to_dev_replace(sblock_other,
1438							    page_num) != 0) {
1439				btrfs_dev_replace_stats_inc(
1440					&fs_info->dev_replace.num_write_errors);
1441				success = 0;
1442			}
1443		} else if (sblock_other) {
1444			ret = scrub_repair_page_from_good_copy(sblock_bad,
1445							       sblock_other,
1446							       page_num, 0);
1447			if (0 == ret)
1448				page_bad->io_error = 0;
1449			else
1450				success = 0;
1451		}
1452	}
1453
1454	if (success && !sctx->is_dev_replace) {
1455		if (is_metadata || have_csum) {
1456			/*
1457			 * need to verify the checksum now that all
1458			 * sectors on disk are repaired (the write
1459			 * request for data to be repaired is on its way).
1460			 * Just be lazy and use scrub_recheck_block()
1461			 * which re-reads the data before the checksum
1462			 * is verified, but most likely the data comes out
1463			 * of the page cache.
1464			 */
1465			scrub_recheck_block(fs_info, sblock_bad, 1);
1466			if (!sblock_bad->header_error &&
 
 
1467			    !sblock_bad->checksum_error &&
1468			    sblock_bad->no_io_error_seen)
1469				goto corrected_error;
1470			else
1471				goto did_not_correct_error;
1472		} else {
1473corrected_error:
1474			spin_lock(&sctx->stat_lock);
1475			sctx->stat.corrected_errors++;
1476			sblock_to_check->data_corrected = 1;
1477			spin_unlock(&sctx->stat_lock);
1478			btrfs_err_rl_in_rcu(fs_info,
1479				"fixed up error at logical %llu on dev %s",
1480				logical, rcu_str_deref(dev->name));
1481		}
1482	} else {
1483did_not_correct_error:
1484		spin_lock(&sctx->stat_lock);
1485		sctx->stat.uncorrectable_errors++;
1486		spin_unlock(&sctx->stat_lock);
1487		btrfs_err_rl_in_rcu(fs_info,
1488			"unable to fixup (regular) error at logical %llu on dev %s",
1489			logical, rcu_str_deref(dev->name));
 
1490	}
1491
1492out:
1493	if (sblocks_for_recheck) {
1494		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1495		     mirror_index++) {
1496			struct scrub_block *sblock = sblocks_for_recheck +
1497						     mirror_index;
1498			struct scrub_recover *recover;
1499			int page_index;
1500
1501			for (page_index = 0; page_index < sblock->page_count;
1502			     page_index++) {
1503				sblock->pagev[page_index]->sblock = NULL;
1504				recover = sblock->pagev[page_index]->recover;
1505				if (recover) {
1506					scrub_put_recover(fs_info, recover);
1507					sblock->pagev[page_index]->recover =
1508									NULL;
1509				}
1510				scrub_page_put(sblock->pagev[page_index]);
1511			}
1512		}
1513		kfree(sblocks_for_recheck);
1514	}
1515
1516	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1517	if (ret < 0)
1518		return ret;
1519	return 0;
1520}
1521
1522static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1523{
1524	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1525		return 2;
1526	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1527		return 3;
1528	else
1529		return (int)bbio->num_stripes;
1530}
1531
1532static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1533						 u64 *raid_map,
1534						 u64 mapped_length,
1535						 int nstripes, int mirror,
1536						 int *stripe_index,
1537						 u64 *stripe_offset)
1538{
1539	int i;
1540
1541	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1542		/* RAID5/6 */
1543		for (i = 0; i < nstripes; i++) {
1544			if (raid_map[i] == RAID6_Q_STRIPE ||
1545			    raid_map[i] == RAID5_P_STRIPE)
1546				continue;
1547
1548			if (logical >= raid_map[i] &&
1549			    logical < raid_map[i] + mapped_length)
1550				break;
1551		}
1552
1553		*stripe_index = i;
1554		*stripe_offset = logical - raid_map[i];
1555	} else {
1556		/* The other RAID type */
1557		*stripe_index = mirror;
1558		*stripe_offset = 0;
1559	}
1560}
1561
1562static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1563				     struct scrub_block *sblocks_for_recheck)
1564{
1565	struct scrub_ctx *sctx = original_sblock->sctx;
1566	struct btrfs_fs_info *fs_info = sctx->fs_info;
1567	u64 length = original_sblock->page_count * PAGE_SIZE;
1568	u64 logical = original_sblock->pagev[0]->logical;
1569	u64 generation = original_sblock->pagev[0]->generation;
1570	u64 flags = original_sblock->pagev[0]->flags;
1571	u64 have_csum = original_sblock->pagev[0]->have_csum;
1572	struct scrub_recover *recover;
1573	struct btrfs_bio *bbio;
1574	u64 sublen;
1575	u64 mapped_length;
1576	u64 stripe_offset;
1577	int stripe_index;
1578	int page_index = 0;
1579	int mirror_index;
1580	int nmirrors;
1581	int ret;
1582
1583	/*
1584	 * note: the two members refs and outstanding_pages
1585	 * are not used (and not set) in the blocks that are used for
1586	 * the recheck procedure
1587	 */
1588
 
1589	while (length > 0) {
1590		sublen = min_t(u64, length, PAGE_SIZE);
1591		mapped_length = sublen;
1592		bbio = NULL;
1593
1594		/*
1595		 * with a length of PAGE_SIZE, each returned stripe
1596		 * represents one mirror
1597		 */
1598		btrfs_bio_counter_inc_blocked(fs_info);
1599		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1600				logical, &mapped_length, &bbio);
1601		if (ret || !bbio || mapped_length < sublen) {
1602			btrfs_put_bbio(bbio);
1603			btrfs_bio_counter_dec(fs_info);
1604			return -EIO;
1605		}
1606
1607		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1608		if (!recover) {
1609			btrfs_put_bbio(bbio);
1610			btrfs_bio_counter_dec(fs_info);
1611			return -ENOMEM;
1612		}
1613
1614		refcount_set(&recover->refs, 1);
1615		recover->bbio = bbio;
1616		recover->map_length = mapped_length;
1617
1618		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1619
1620		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1621
1622		for (mirror_index = 0; mirror_index < nmirrors;
1623		     mirror_index++) {
1624			struct scrub_block *sblock;
1625			struct scrub_page *page;
1626
 
 
 
1627			sblock = sblocks_for_recheck + mirror_index;
1628			sblock->sctx = sctx;
1629
1630			page = kzalloc(sizeof(*page), GFP_NOFS);
1631			if (!page) {
1632leave_nomem:
1633				spin_lock(&sctx->stat_lock);
1634				sctx->stat.malloc_errors++;
1635				spin_unlock(&sctx->stat_lock);
1636				scrub_put_recover(fs_info, recover);
1637				return -ENOMEM;
1638			}
1639			scrub_page_get(page);
1640			sblock->pagev[page_index] = page;
1641			page->sblock = sblock;
1642			page->flags = flags;
1643			page->generation = generation;
1644			page->logical = logical;
1645			page->have_csum = have_csum;
1646			if (have_csum)
1647				memcpy(page->csum,
1648				       original_sblock->pagev[0]->csum,
1649				       sctx->csum_size);
1650
1651			scrub_stripe_index_and_offset(logical,
1652						      bbio->map_type,
1653						      bbio->raid_map,
1654						      mapped_length,
1655						      bbio->num_stripes -
1656						      bbio->num_tgtdevs,
1657						      mirror_index,
1658						      &stripe_index,
1659						      &stripe_offset);
1660			page->physical = bbio->stripes[stripe_index].physical +
1661					 stripe_offset;
1662			page->dev = bbio->stripes[stripe_index].dev;
1663
1664			BUG_ON(page_index >= original_sblock->page_count);
1665			page->physical_for_dev_replace =
1666				original_sblock->pagev[page_index]->
1667				physical_for_dev_replace;
1668			/* for missing devices, dev->bdev is NULL */
 
1669			page->mirror_num = mirror_index + 1;
 
 
 
 
 
 
 
1670			sblock->page_count++;
1671			page->page = alloc_page(GFP_NOFS);
1672			if (!page->page)
1673				goto leave_nomem;
1674
1675			scrub_get_recover(recover);
1676			page->recover = recover;
1677		}
1678		scrub_put_recover(fs_info, recover);
1679		length -= sublen;
1680		logical += sublen;
1681		page_index++;
1682	}
1683
1684	return 0;
1685}
1686
1687static void scrub_bio_wait_endio(struct bio *bio)
1688{
1689	complete(bio->bi_private);
1690}
1691
1692static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1693					struct bio *bio,
1694					struct scrub_page *page)
1695{
1696	DECLARE_COMPLETION_ONSTACK(done);
1697	int ret;
1698	int mirror_num;
1699
1700	bio->bi_iter.bi_sector = page->logical >> 9;
1701	bio->bi_private = &done;
1702	bio->bi_end_io = scrub_bio_wait_endio;
1703
1704	mirror_num = page->sblock->pagev[0]->mirror_num;
1705	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1706				    page->recover->map_length,
1707				    mirror_num, 0);
1708	if (ret)
1709		return ret;
1710
1711	wait_for_completion_io(&done);
1712	return blk_status_to_errno(bio->bi_status);
1713}
1714
1715static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1716					  struct scrub_block *sblock)
1717{
1718	struct scrub_page *first_page = sblock->pagev[0];
1719	struct bio *bio;
1720	int page_num;
1721
1722	/* All pages in sblock belong to the same stripe on the same device. */
1723	ASSERT(first_page->dev);
1724	if (!first_page->dev->bdev)
1725		goto out;
1726
1727	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1728	bio_set_dev(bio, first_page->dev->bdev);
1729
1730	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1731		struct scrub_page *page = sblock->pagev[page_num];
1732
1733		WARN_ON(!page->page);
1734		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1735	}
1736
1737	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1738		bio_put(bio);
1739		goto out;
1740	}
1741
1742	bio_put(bio);
1743
1744	scrub_recheck_block_checksum(sblock);
1745
1746	return;
1747out:
1748	for (page_num = 0; page_num < sblock->page_count; page_num++)
1749		sblock->pagev[page_num]->io_error = 1;
1750
1751	sblock->no_io_error_seen = 0;
1752}
1753
1754/*
1755 * this function will check the on disk data for checksum errors, header
1756 * errors and read I/O errors. If any I/O errors happen, the exact pages
1757 * which are errored are marked as being bad. The goal is to enable scrub
1758 * to take those pages that are not errored from all the mirrors so that
1759 * the pages that are errored in the just handled mirror can be repaired.
1760 */
1761static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1762				struct scrub_block *sblock,
1763				int retry_failed_mirror)
 
1764{
1765	int page_num;
1766
1767	sblock->no_io_error_seen = 1;
1768
1769	/* short cut for raid56 */
1770	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1771		return scrub_recheck_block_on_raid56(fs_info, sblock);
1772
1773	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1774		struct bio *bio;
1775		struct scrub_page *page = sblock->pagev[page_num];
 
 
1776
1777		if (page->dev->bdev == NULL) {
1778			page->io_error = 1;
1779			sblock->no_io_error_seen = 0;
1780			continue;
1781		}
1782
1783		WARN_ON(!page->page);
1784		bio = btrfs_io_bio_alloc(1);
1785		bio_set_dev(bio, page->dev->bdev);
1786
1787		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1788		bio->bi_iter.bi_sector = page->physical >> 9;
1789		bio->bi_opf = REQ_OP_READ;
 
1790
1791		if (btrfsic_submit_bio_wait(bio)) {
1792			page->io_error = 1;
1793			sblock->no_io_error_seen = 0;
 
1794		}
 
1795
 
 
 
 
 
 
1796		bio_put(bio);
1797	}
1798
1799	if (sblock->no_io_error_seen)
1800		scrub_recheck_block_checksum(sblock);
 
 
 
 
1801}
1802
1803static inline int scrub_check_fsid(u8 fsid[],
1804				   struct scrub_page *spage)
 
 
 
1805{
1806	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1807	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808
1809	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1810	return !ret;
 
1811}
1812
1813static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1814{
1815	sblock->header_error = 0;
1816	sblock->checksum_error = 0;
1817	sblock->generation_error = 0;
1818
1819	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1820		scrub_checksum_data(sblock);
1821	else
1822		scrub_checksum_tree_block(sblock);
1823}
1824
1825static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1826					     struct scrub_block *sblock_good)
 
1827{
1828	int page_num;
1829	int ret = 0;
1830
1831	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1832		int ret_sub;
1833
1834		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1835							   sblock_good,
1836							   page_num, 1);
 
1837		if (ret_sub)
1838			ret = ret_sub;
1839	}
1840
1841	return ret;
1842}
1843
1844static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1845					    struct scrub_block *sblock_good,
1846					    int page_num, int force_write)
1847{
1848	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1849	struct scrub_page *page_good = sblock_good->pagev[page_num];
1850	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1851
1852	BUG_ON(page_bad->page == NULL);
1853	BUG_ON(page_good->page == NULL);
1854	if (force_write || sblock_bad->header_error ||
1855	    sblock_bad->checksum_error || page_bad->io_error) {
1856		struct bio *bio;
1857		int ret;
 
1858
1859		if (!page_bad->dev->bdev) {
1860			btrfs_warn_rl(fs_info,
1861				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1862			return -EIO;
1863		}
1864
1865		bio = btrfs_io_bio_alloc(1);
1866		bio_set_dev(bio, page_bad->dev->bdev);
1867		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1868		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1869
1870		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1871		if (PAGE_SIZE != ret) {
1872			bio_put(bio);
1873			return -EIO;
1874		}
 
1875
1876		if (btrfsic_submit_bio_wait(bio)) {
 
 
1877			btrfs_dev_stat_inc_and_print(page_bad->dev,
1878				BTRFS_DEV_STAT_WRITE_ERRS);
1879			btrfs_dev_replace_stats_inc(
1880				&fs_info->dev_replace.num_write_errors);
1881			bio_put(bio);
1882			return -EIO;
1883		}
1884		bio_put(bio);
1885	}
1886
1887	return 0;
1888}
1889
1890static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1891{
1892	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1893	int page_num;
1894
1895	/*
1896	 * This block is used for the check of the parity on the source device,
1897	 * so the data needn't be written into the destination device.
1898	 */
1899	if (sblock->sparity)
1900		return;
1901
1902	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1903		int ret;
1904
1905		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1906		if (ret)
1907			btrfs_dev_replace_stats_inc(
1908				&fs_info->dev_replace.num_write_errors);
1909	}
1910}
1911
1912static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1913					   int page_num)
1914{
1915	struct scrub_page *spage = sblock->pagev[page_num];
1916
1917	BUG_ON(spage->page == NULL);
1918	if (spage->io_error) {
1919		void *mapped_buffer = kmap_atomic(spage->page);
1920
1921		clear_page(mapped_buffer);
1922		flush_dcache_page(spage->page);
1923		kunmap_atomic(mapped_buffer);
1924	}
1925	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1926}
1927
1928static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1929				    struct scrub_page *spage)
1930{
1931	struct scrub_bio *sbio;
1932	int ret;
1933
1934	mutex_lock(&sctx->wr_lock);
1935again:
1936	if (!sctx->wr_curr_bio) {
1937		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1938					      GFP_KERNEL);
1939		if (!sctx->wr_curr_bio) {
1940			mutex_unlock(&sctx->wr_lock);
1941			return -ENOMEM;
1942		}
1943		sctx->wr_curr_bio->sctx = sctx;
1944		sctx->wr_curr_bio->page_count = 0;
1945	}
1946	sbio = sctx->wr_curr_bio;
1947	if (sbio->page_count == 0) {
1948		struct bio *bio;
1949
1950		sbio->physical = spage->physical_for_dev_replace;
1951		sbio->logical = spage->logical;
1952		sbio->dev = sctx->wr_tgtdev;
1953		bio = sbio->bio;
1954		if (!bio) {
1955			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1956			sbio->bio = bio;
1957		}
1958
1959		bio->bi_private = sbio;
1960		bio->bi_end_io = scrub_wr_bio_end_io;
1961		bio_set_dev(bio, sbio->dev->bdev);
1962		bio->bi_iter.bi_sector = sbio->physical >> 9;
1963		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1964		sbio->status = 0;
1965	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1966		   spage->physical_for_dev_replace ||
1967		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1968		   spage->logical) {
1969		scrub_wr_submit(sctx);
1970		goto again;
1971	}
1972
1973	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1974	if (ret != PAGE_SIZE) {
1975		if (sbio->page_count < 1) {
1976			bio_put(sbio->bio);
1977			sbio->bio = NULL;
1978			mutex_unlock(&sctx->wr_lock);
1979			return -EIO;
1980		}
1981		scrub_wr_submit(sctx);
1982		goto again;
1983	}
1984
1985	sbio->pagev[sbio->page_count] = spage;
1986	scrub_page_get(spage);
1987	sbio->page_count++;
1988	if (sbio->page_count == sctx->pages_per_wr_bio)
1989		scrub_wr_submit(sctx);
1990	mutex_unlock(&sctx->wr_lock);
1991
1992	return 0;
1993}
1994
1995static void scrub_wr_submit(struct scrub_ctx *sctx)
1996{
1997	struct scrub_bio *sbio;
1998
1999	if (!sctx->wr_curr_bio)
2000		return;
2001
2002	sbio = sctx->wr_curr_bio;
2003	sctx->wr_curr_bio = NULL;
2004	WARN_ON(!sbio->bio->bi_disk);
2005	scrub_pending_bio_inc(sctx);
2006	/* process all writes in a single worker thread. Then the block layer
2007	 * orders the requests before sending them to the driver which
2008	 * doubled the write performance on spinning disks when measured
2009	 * with Linux 3.5 */
2010	btrfsic_submit_bio(sbio->bio);
2011}
2012
2013static void scrub_wr_bio_end_io(struct bio *bio)
2014{
2015	struct scrub_bio *sbio = bio->bi_private;
2016	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2017
2018	sbio->status = bio->bi_status;
2019	sbio->bio = bio;
2020
2021	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
2022			 scrub_wr_bio_end_io_worker, NULL, NULL);
2023	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
2024}
2025
2026static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
2027{
2028	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2029	struct scrub_ctx *sctx = sbio->sctx;
2030	int i;
2031
2032	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
2033	if (sbio->status) {
2034		struct btrfs_dev_replace *dev_replace =
2035			&sbio->sctx->fs_info->dev_replace;
2036
2037		for (i = 0; i < sbio->page_count; i++) {
2038			struct scrub_page *spage = sbio->pagev[i];
2039
2040			spage->io_error = 1;
2041			btrfs_dev_replace_stats_inc(&dev_replace->
2042						    num_write_errors);
2043		}
2044	}
2045
2046	for (i = 0; i < sbio->page_count; i++)
2047		scrub_page_put(sbio->pagev[i]);
2048
2049	bio_put(sbio->bio);
2050	kfree(sbio);
2051	scrub_pending_bio_dec(sctx);
2052}
2053
2054static int scrub_checksum(struct scrub_block *sblock)
2055{
2056	u64 flags;
2057	int ret;
2058
2059	/*
2060	 * No need to initialize these stats currently,
2061	 * because this function only use return value
2062	 * instead of these stats value.
2063	 *
2064	 * Todo:
2065	 * always use stats
2066	 */
2067	sblock->header_error = 0;
2068	sblock->generation_error = 0;
2069	sblock->checksum_error = 0;
2070
2071	WARN_ON(sblock->page_count < 1);
2072	flags = sblock->pagev[0]->flags;
2073	ret = 0;
2074	if (flags & BTRFS_EXTENT_FLAG_DATA)
2075		ret = scrub_checksum_data(sblock);
2076	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2077		ret = scrub_checksum_tree_block(sblock);
2078	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
2079		(void)scrub_checksum_super(sblock);
2080	else
2081		WARN_ON(1);
2082	if (ret)
2083		scrub_handle_errored_block(sblock);
2084
2085	return ret;
2086}
2087
2088static int scrub_checksum_data(struct scrub_block *sblock)
2089{
2090	struct scrub_ctx *sctx = sblock->sctx;
2091	u8 csum[BTRFS_CSUM_SIZE];
2092	u8 *on_disk_csum;
2093	struct page *page;
2094	void *buffer;
2095	u32 crc = ~(u32)0;
 
 
2096	u64 len;
2097	int index;
2098
2099	BUG_ON(sblock->page_count < 1);
2100	if (!sblock->pagev[0]->have_csum)
2101		return 0;
2102
2103	on_disk_csum = sblock->pagev[0]->csum;
2104	page = sblock->pagev[0]->page;
2105	buffer = kmap_atomic(page);
2106
2107	len = sctx->fs_info->sectorsize;
2108	index = 0;
2109	for (;;) {
2110		u64 l = min_t(u64, len, PAGE_SIZE);
2111
2112		crc = btrfs_csum_data(buffer, crc, l);
2113		kunmap_atomic(buffer);
2114		len -= l;
2115		if (len == 0)
2116			break;
2117		index++;
2118		BUG_ON(index >= sblock->page_count);
2119		BUG_ON(!sblock->pagev[index]->page);
2120		page = sblock->pagev[index]->page;
2121		buffer = kmap_atomic(page);
2122	}
2123
2124	btrfs_csum_final(crc, csum);
2125	if (memcmp(csum, on_disk_csum, sctx->csum_size))
2126		sblock->checksum_error = 1;
2127
2128	return sblock->checksum_error;
2129}
2130
2131static int scrub_checksum_tree_block(struct scrub_block *sblock)
2132{
2133	struct scrub_ctx *sctx = sblock->sctx;
2134	struct btrfs_header *h;
2135	struct btrfs_fs_info *fs_info = sctx->fs_info;
 
2136	u8 calculated_csum[BTRFS_CSUM_SIZE];
2137	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2138	struct page *page;
2139	void *mapped_buffer;
2140	u64 mapped_size;
2141	void *p;
2142	u32 crc = ~(u32)0;
 
 
2143	u64 len;
2144	int index;
2145
2146	BUG_ON(sblock->page_count < 1);
2147	page = sblock->pagev[0]->page;
2148	mapped_buffer = kmap_atomic(page);
2149	h = (struct btrfs_header *)mapped_buffer;
2150	memcpy(on_disk_csum, h->csum, sctx->csum_size);
2151
2152	/*
2153	 * we don't use the getter functions here, as we
2154	 * a) don't have an extent buffer and
2155	 * b) the page is already kmapped
2156	 */
2157	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2158		sblock->header_error = 1;
2159
2160	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
2161		sblock->header_error = 1;
2162		sblock->generation_error = 1;
2163	}
 
2164
2165	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2166		sblock->header_error = 1;
2167
2168	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2169		   BTRFS_UUID_SIZE))
2170		sblock->header_error = 1;
2171
2172	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
 
2173	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2174	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2175	index = 0;
2176	for (;;) {
2177		u64 l = min_t(u64, len, mapped_size);
2178
2179		crc = btrfs_csum_data(p, crc, l);
2180		kunmap_atomic(mapped_buffer);
2181		len -= l;
2182		if (len == 0)
2183			break;
2184		index++;
2185		BUG_ON(index >= sblock->page_count);
2186		BUG_ON(!sblock->pagev[index]->page);
2187		page = sblock->pagev[index]->page;
2188		mapped_buffer = kmap_atomic(page);
2189		mapped_size = PAGE_SIZE;
2190		p = mapped_buffer;
2191	}
2192
2193	btrfs_csum_final(crc, calculated_csum);
2194	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2195		sblock->checksum_error = 1;
2196
2197	return sblock->header_error || sblock->checksum_error;
2198}
2199
2200static int scrub_checksum_super(struct scrub_block *sblock)
2201{
2202	struct btrfs_super_block *s;
2203	struct scrub_ctx *sctx = sblock->sctx;
 
 
2204	u8 calculated_csum[BTRFS_CSUM_SIZE];
2205	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2206	struct page *page;
2207	void *mapped_buffer;
2208	u64 mapped_size;
2209	void *p;
2210	u32 crc = ~(u32)0;
2211	int fail_gen = 0;
2212	int fail_cor = 0;
2213	u64 len;
2214	int index;
2215
2216	BUG_ON(sblock->page_count < 1);
2217	page = sblock->pagev[0]->page;
2218	mapped_buffer = kmap_atomic(page);
2219	s = (struct btrfs_super_block *)mapped_buffer;
2220	memcpy(on_disk_csum, s->csum, sctx->csum_size);
2221
2222	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2223		++fail_cor;
2224
2225	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2226		++fail_gen;
2227
2228	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2229		++fail_cor;
2230
2231	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2232	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2233	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2234	index = 0;
2235	for (;;) {
2236		u64 l = min_t(u64, len, mapped_size);
2237
2238		crc = btrfs_csum_data(p, crc, l);
2239		kunmap_atomic(mapped_buffer);
2240		len -= l;
2241		if (len == 0)
2242			break;
2243		index++;
2244		BUG_ON(index >= sblock->page_count);
2245		BUG_ON(!sblock->pagev[index]->page);
2246		page = sblock->pagev[index]->page;
2247		mapped_buffer = kmap_atomic(page);
2248		mapped_size = PAGE_SIZE;
2249		p = mapped_buffer;
2250	}
2251
2252	btrfs_csum_final(crc, calculated_csum);
2253	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2254		++fail_cor;
2255
2256	if (fail_cor + fail_gen) {
2257		/*
2258		 * if we find an error in a super block, we just report it.
2259		 * They will get written with the next transaction commit
2260		 * anyway
2261		 */
2262		spin_lock(&sctx->stat_lock);
2263		++sctx->stat.super_errors;
2264		spin_unlock(&sctx->stat_lock);
2265		if (fail_cor)
2266			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2267				BTRFS_DEV_STAT_CORRUPTION_ERRS);
2268		else
2269			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2270				BTRFS_DEV_STAT_GENERATION_ERRS);
2271	}
2272
2273	return fail_cor + fail_gen;
2274}
2275
2276static void scrub_block_get(struct scrub_block *sblock)
2277{
2278	refcount_inc(&sblock->refs);
2279}
2280
2281static void scrub_block_put(struct scrub_block *sblock)
2282{
2283	if (refcount_dec_and_test(&sblock->refs)) {
2284		int i;
2285
2286		if (sblock->sparity)
2287			scrub_parity_put(sblock->sparity);
2288
2289		for (i = 0; i < sblock->page_count; i++)
2290			scrub_page_put(sblock->pagev[i]);
 
2291		kfree(sblock);
2292	}
2293}
2294
2295static void scrub_page_get(struct scrub_page *spage)
2296{
2297	atomic_inc(&spage->refs);
2298}
2299
2300static void scrub_page_put(struct scrub_page *spage)
2301{
2302	if (atomic_dec_and_test(&spage->refs)) {
2303		if (spage->page)
2304			__free_page(spage->page);
2305		kfree(spage);
2306	}
2307}
2308
2309static void scrub_submit(struct scrub_ctx *sctx)
2310{
2311	struct scrub_bio *sbio;
2312
2313	if (sctx->curr == -1)
2314		return;
2315
2316	sbio = sctx->bios[sctx->curr];
2317	sctx->curr = -1;
2318	scrub_pending_bio_inc(sctx);
2319	btrfsic_submit_bio(sbio->bio);
 
2320}
2321
2322static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2323				    struct scrub_page *spage)
2324{
2325	struct scrub_block *sblock = spage->sblock;
2326	struct scrub_bio *sbio;
2327	int ret;
2328
2329again:
2330	/*
2331	 * grab a fresh bio or wait for one to become available
2332	 */
2333	while (sctx->curr == -1) {
2334		spin_lock(&sctx->list_lock);
2335		sctx->curr = sctx->first_free;
2336		if (sctx->curr != -1) {
2337			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2338			sctx->bios[sctx->curr]->next_free = -1;
2339			sctx->bios[sctx->curr]->page_count = 0;
2340			spin_unlock(&sctx->list_lock);
2341		} else {
2342			spin_unlock(&sctx->list_lock);
2343			wait_event(sctx->list_wait, sctx->first_free != -1);
2344		}
2345	}
2346	sbio = sctx->bios[sctx->curr];
2347	if (sbio->page_count == 0) {
2348		struct bio *bio;
2349
2350		sbio->physical = spage->physical;
2351		sbio->logical = spage->logical;
2352		sbio->dev = spage->dev;
2353		bio = sbio->bio;
2354		if (!bio) {
2355			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
 
 
2356			sbio->bio = bio;
2357		}
2358
2359		bio->bi_private = sbio;
2360		bio->bi_end_io = scrub_bio_end_io;
2361		bio_set_dev(bio, sbio->dev->bdev);
2362		bio->bi_iter.bi_sector = sbio->physical >> 9;
2363		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2364		sbio->status = 0;
2365	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2366		   spage->physical ||
2367		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2368		   spage->logical ||
2369		   sbio->dev != spage->dev) {
2370		scrub_submit(sctx);
2371		goto again;
2372	}
2373
2374	sbio->pagev[sbio->page_count] = spage;
2375	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2376	if (ret != PAGE_SIZE) {
2377		if (sbio->page_count < 1) {
2378			bio_put(sbio->bio);
2379			sbio->bio = NULL;
2380			return -EIO;
2381		}
2382		scrub_submit(sctx);
2383		goto again;
2384	}
2385
2386	scrub_block_get(sblock); /* one for the page added to the bio */
2387	atomic_inc(&sblock->outstanding_pages);
2388	sbio->page_count++;
2389	if (sbio->page_count == sctx->pages_per_rd_bio)
2390		scrub_submit(sctx);
2391
2392	return 0;
2393}
2394
2395static void scrub_missing_raid56_end_io(struct bio *bio)
2396{
2397	struct scrub_block *sblock = bio->bi_private;
2398	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2399
2400	if (bio->bi_status)
2401		sblock->no_io_error_seen = 0;
2402
2403	bio_put(bio);
2404
2405	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2406}
2407
2408static void scrub_missing_raid56_worker(struct btrfs_work *work)
2409{
2410	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2411	struct scrub_ctx *sctx = sblock->sctx;
2412	struct btrfs_fs_info *fs_info = sctx->fs_info;
2413	u64 logical;
2414	struct btrfs_device *dev;
2415
2416	logical = sblock->pagev[0]->logical;
2417	dev = sblock->pagev[0]->dev;
2418
2419	if (sblock->no_io_error_seen)
2420		scrub_recheck_block_checksum(sblock);
2421
2422	if (!sblock->no_io_error_seen) {
2423		spin_lock(&sctx->stat_lock);
2424		sctx->stat.read_errors++;
2425		spin_unlock(&sctx->stat_lock);
2426		btrfs_err_rl_in_rcu(fs_info,
2427			"IO error rebuilding logical %llu for dev %s",
2428			logical, rcu_str_deref(dev->name));
2429	} else if (sblock->header_error || sblock->checksum_error) {
2430		spin_lock(&sctx->stat_lock);
2431		sctx->stat.uncorrectable_errors++;
2432		spin_unlock(&sctx->stat_lock);
2433		btrfs_err_rl_in_rcu(fs_info,
2434			"failed to rebuild valid logical %llu for dev %s",
2435			logical, rcu_str_deref(dev->name));
2436	} else {
2437		scrub_write_block_to_dev_replace(sblock);
2438	}
2439
2440	scrub_block_put(sblock);
2441
2442	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2443		mutex_lock(&sctx->wr_lock);
2444		scrub_wr_submit(sctx);
2445		mutex_unlock(&sctx->wr_lock);
2446	}
2447
2448	scrub_pending_bio_dec(sctx);
2449}
2450
2451static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2452{
2453	struct scrub_ctx *sctx = sblock->sctx;
2454	struct btrfs_fs_info *fs_info = sctx->fs_info;
2455	u64 length = sblock->page_count * PAGE_SIZE;
2456	u64 logical = sblock->pagev[0]->logical;
2457	struct btrfs_bio *bbio = NULL;
2458	struct bio *bio;
2459	struct btrfs_raid_bio *rbio;
2460	int ret;
2461	int i;
2462
2463	btrfs_bio_counter_inc_blocked(fs_info);
2464	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2465			&length, &bbio);
2466	if (ret || !bbio || !bbio->raid_map)
2467		goto bbio_out;
2468
2469	if (WARN_ON(!sctx->is_dev_replace ||
2470		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2471		/*
2472		 * We shouldn't be scrubbing a missing device. Even for dev
2473		 * replace, we should only get here for RAID 5/6. We either
2474		 * managed to mount something with no mirrors remaining or
2475		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2476		 */
2477		goto bbio_out;
2478	}
2479
2480	bio = btrfs_io_bio_alloc(0);
2481	bio->bi_iter.bi_sector = logical >> 9;
2482	bio->bi_private = sblock;
2483	bio->bi_end_io = scrub_missing_raid56_end_io;
2484
2485	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2486	if (!rbio)
2487		goto rbio_out;
2488
2489	for (i = 0; i < sblock->page_count; i++) {
2490		struct scrub_page *spage = sblock->pagev[i];
2491
2492		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2493	}
2494
2495	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2496			scrub_missing_raid56_worker, NULL, NULL);
2497	scrub_block_get(sblock);
2498	scrub_pending_bio_inc(sctx);
2499	raid56_submit_missing_rbio(rbio);
2500	return;
2501
2502rbio_out:
2503	bio_put(bio);
2504bbio_out:
2505	btrfs_bio_counter_dec(fs_info);
2506	btrfs_put_bbio(bbio);
2507	spin_lock(&sctx->stat_lock);
2508	sctx->stat.malloc_errors++;
2509	spin_unlock(&sctx->stat_lock);
2510}
2511
2512static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2513		       u64 physical, struct btrfs_device *dev, u64 flags,
2514		       u64 gen, int mirror_num, u8 *csum, int force,
2515		       u64 physical_for_dev_replace)
2516{
2517	struct scrub_block *sblock;
2518	int index;
2519
2520	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2521	if (!sblock) {
2522		spin_lock(&sctx->stat_lock);
2523		sctx->stat.malloc_errors++;
2524		spin_unlock(&sctx->stat_lock);
2525		return -ENOMEM;
2526	}
2527
2528	/* one ref inside this function, plus one for each page added to
2529	 * a bio later on */
2530	refcount_set(&sblock->refs, 1);
2531	sblock->sctx = sctx;
2532	sblock->no_io_error_seen = 1;
2533
2534	for (index = 0; len > 0; index++) {
2535		struct scrub_page *spage;
2536		u64 l = min_t(u64, len, PAGE_SIZE);
2537
2538		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2539		if (!spage) {
2540leave_nomem:
2541			spin_lock(&sctx->stat_lock);
2542			sctx->stat.malloc_errors++;
2543			spin_unlock(&sctx->stat_lock);
2544			scrub_block_put(sblock);
 
 
 
 
2545			return -ENOMEM;
2546		}
2547		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2548		scrub_page_get(spage);
2549		sblock->pagev[index] = spage;
2550		spage->sblock = sblock;
2551		spage->dev = dev;
2552		spage->flags = flags;
2553		spage->generation = gen;
2554		spage->logical = logical;
2555		spage->physical = physical;
2556		spage->physical_for_dev_replace = physical_for_dev_replace;
2557		spage->mirror_num = mirror_num;
2558		if (csum) {
2559			spage->have_csum = 1;
2560			memcpy(spage->csum, csum, sctx->csum_size);
2561		} else {
2562			spage->have_csum = 0;
2563		}
2564		sblock->page_count++;
2565		spage->page = alloc_page(GFP_KERNEL);
2566		if (!spage->page)
2567			goto leave_nomem;
2568		len -= l;
2569		logical += l;
2570		physical += l;
2571		physical_for_dev_replace += l;
2572	}
2573
2574	WARN_ON(sblock->page_count == 0);
2575	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2576		/*
2577		 * This case should only be hit for RAID 5/6 device replace. See
2578		 * the comment in scrub_missing_raid56_pages() for details.
2579		 */
2580		scrub_missing_raid56_pages(sblock);
2581	} else {
2582		for (index = 0; index < sblock->page_count; index++) {
2583			struct scrub_page *spage = sblock->pagev[index];
2584			int ret;
2585
2586			ret = scrub_add_page_to_rd_bio(sctx, spage);
2587			if (ret) {
2588				scrub_block_put(sblock);
2589				return ret;
2590			}
2591		}
 
2592
2593		if (force)
2594			scrub_submit(sctx);
2595	}
2596
2597	/* last one frees, either here or in bio completion for last page */
2598	scrub_block_put(sblock);
2599	return 0;
2600}
2601
2602static void scrub_bio_end_io(struct bio *bio)
2603{
2604	struct scrub_bio *sbio = bio->bi_private;
2605	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
 
2606
2607	sbio->status = bio->bi_status;
2608	sbio->bio = bio;
2609
2610	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2611}
2612
2613static void scrub_bio_end_io_worker(struct btrfs_work *work)
2614{
2615	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2616	struct scrub_ctx *sctx = sbio->sctx;
2617	int i;
2618
2619	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2620	if (sbio->status) {
2621		for (i = 0; i < sbio->page_count; i++) {
2622			struct scrub_page *spage = sbio->pagev[i];
2623
2624			spage->io_error = 1;
2625			spage->sblock->no_io_error_seen = 0;
2626		}
2627	}
2628
2629	/* now complete the scrub_block items that have all pages completed */
2630	for (i = 0; i < sbio->page_count; i++) {
2631		struct scrub_page *spage = sbio->pagev[i];
2632		struct scrub_block *sblock = spage->sblock;
2633
2634		if (atomic_dec_and_test(&sblock->outstanding_pages))
2635			scrub_block_complete(sblock);
2636		scrub_block_put(sblock);
2637	}
2638
2639	bio_put(sbio->bio);
2640	sbio->bio = NULL;
2641	spin_lock(&sctx->list_lock);
2642	sbio->next_free = sctx->first_free;
2643	sctx->first_free = sbio->index;
2644	spin_unlock(&sctx->list_lock);
2645
2646	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2647		mutex_lock(&sctx->wr_lock);
2648		scrub_wr_submit(sctx);
2649		mutex_unlock(&sctx->wr_lock);
 
 
2650	}
2651
2652	scrub_pending_bio_dec(sctx);
2653}
2654
2655static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2656				       unsigned long *bitmap,
2657				       u64 start, u64 len)
2658{
2659	u64 offset;
2660	u64 nsectors64;
2661	u32 nsectors;
2662	int sectorsize = sparity->sctx->fs_info->sectorsize;
2663
2664	if (len >= sparity->stripe_len) {
2665		bitmap_set(bitmap, 0, sparity->nsectors);
2666		return;
2667	}
2668
2669	start -= sparity->logic_start;
2670	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2671	offset = div_u64(offset, sectorsize);
2672	nsectors64 = div_u64(len, sectorsize);
2673
2674	ASSERT(nsectors64 < UINT_MAX);
2675	nsectors = (u32)nsectors64;
2676
2677	if (offset + nsectors <= sparity->nsectors) {
2678		bitmap_set(bitmap, offset, nsectors);
2679		return;
2680	}
2681
2682	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2683	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2684}
2685
2686static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2687						   u64 start, u64 len)
2688{
2689	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2690}
2691
2692static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2693						  u64 start, u64 len)
2694{
2695	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2696}
2697
2698static void scrub_block_complete(struct scrub_block *sblock)
2699{
2700	int corrupted = 0;
2701
2702	if (!sblock->no_io_error_seen) {
2703		corrupted = 1;
2704		scrub_handle_errored_block(sblock);
2705	} else {
2706		/*
2707		 * if has checksum error, write via repair mechanism in
2708		 * dev replace case, otherwise write here in dev replace
2709		 * case.
2710		 */
2711		corrupted = scrub_checksum(sblock);
2712		if (!corrupted && sblock->sctx->is_dev_replace)
2713			scrub_write_block_to_dev_replace(sblock);
2714	}
2715
2716	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2717		u64 start = sblock->pagev[0]->logical;
2718		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2719			  PAGE_SIZE;
2720
2721		scrub_parity_mark_sectors_error(sblock->sparity,
2722						start, end - start);
2723	}
2724}
2725
2726static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
 
2727{
2728	struct btrfs_ordered_sum *sum = NULL;
2729	unsigned long index;
 
2730	unsigned long num_sectors;
2731
2732	while (!list_empty(&sctx->csum_list)) {
2733		sum = list_first_entry(&sctx->csum_list,
2734				       struct btrfs_ordered_sum, list);
2735		if (sum->bytenr > logical)
2736			return 0;
2737		if (sum->bytenr + sum->len > logical)
2738			break;
2739
2740		++sctx->stat.csum_discards;
2741		list_del(&sum->list);
2742		kfree(sum);
2743		sum = NULL;
2744	}
2745	if (!sum)
2746		return 0;
2747
2748	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2749	ASSERT(index < UINT_MAX);
2750
2751	num_sectors = sum->len / sctx->fs_info->sectorsize;
2752	memcpy(csum, sum->sums + index, sctx->csum_size);
2753	if (index == num_sectors - 1) {
 
 
 
2754		list_del(&sum->list);
2755		kfree(sum);
2756	}
2757	return 1;
2758}
2759
2760/* scrub extent tries to collect up to 64 kB for each bio */
2761static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2762			u64 logical, u64 len,
2763			u64 physical, struct btrfs_device *dev, u64 flags,
2764			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2765{
2766	int ret;
2767	u8 csum[BTRFS_CSUM_SIZE];
2768	u32 blocksize;
2769
2770	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2771		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2772			blocksize = map->stripe_len;
2773		else
2774			blocksize = sctx->fs_info->sectorsize;
2775		spin_lock(&sctx->stat_lock);
2776		sctx->stat.data_extents_scrubbed++;
2777		sctx->stat.data_bytes_scrubbed += len;
2778		spin_unlock(&sctx->stat_lock);
2779	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2780		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2781			blocksize = map->stripe_len;
2782		else
2783			blocksize = sctx->fs_info->nodesize;
2784		spin_lock(&sctx->stat_lock);
2785		sctx->stat.tree_extents_scrubbed++;
2786		sctx->stat.tree_bytes_scrubbed += len;
2787		spin_unlock(&sctx->stat_lock);
2788	} else {
2789		blocksize = sctx->fs_info->sectorsize;
2790		WARN_ON(1);
2791	}
2792
2793	while (len) {
2794		u64 l = min_t(u64, len, blocksize);
2795		int have_csum = 0;
2796
2797		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2798			/* push csums to sbio */
2799			have_csum = scrub_find_csum(sctx, logical, csum);
2800			if (have_csum == 0)
2801				++sctx->stat.no_csum;
2802			if (sctx->is_dev_replace && !have_csum) {
2803				ret = copy_nocow_pages(sctx, logical, l,
2804						       mirror_num,
2805						      physical_for_dev_replace);
2806				goto behind_scrub_pages;
2807			}
2808		}
2809		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2810				  mirror_num, have_csum ? csum : NULL, 0,
2811				  physical_for_dev_replace);
2812behind_scrub_pages:
2813		if (ret)
2814			return ret;
2815		len -= l;
2816		logical += l;
2817		physical += l;
2818		physical_for_dev_replace += l;
2819	}
2820	return 0;
2821}
2822
2823static int scrub_pages_for_parity(struct scrub_parity *sparity,
2824				  u64 logical, u64 len,
2825				  u64 physical, struct btrfs_device *dev,
2826				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2827{
2828	struct scrub_ctx *sctx = sparity->sctx;
2829	struct scrub_block *sblock;
2830	int index;
2831
2832	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2833	if (!sblock) {
2834		spin_lock(&sctx->stat_lock);
2835		sctx->stat.malloc_errors++;
2836		spin_unlock(&sctx->stat_lock);
2837		return -ENOMEM;
2838	}
2839
2840	/* one ref inside this function, plus one for each page added to
2841	 * a bio later on */
2842	refcount_set(&sblock->refs, 1);
2843	sblock->sctx = sctx;
2844	sblock->no_io_error_seen = 1;
2845	sblock->sparity = sparity;
2846	scrub_parity_get(sparity);
2847
2848	for (index = 0; len > 0; index++) {
2849		struct scrub_page *spage;
2850		u64 l = min_t(u64, len, PAGE_SIZE);
2851
2852		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2853		if (!spage) {
2854leave_nomem:
2855			spin_lock(&sctx->stat_lock);
2856			sctx->stat.malloc_errors++;
2857			spin_unlock(&sctx->stat_lock);
2858			scrub_block_put(sblock);
2859			return -ENOMEM;
2860		}
2861		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2862		/* For scrub block */
2863		scrub_page_get(spage);
2864		sblock->pagev[index] = spage;
2865		/* For scrub parity */
2866		scrub_page_get(spage);
2867		list_add_tail(&spage->list, &sparity->spages);
2868		spage->sblock = sblock;
2869		spage->dev = dev;
2870		spage->flags = flags;
2871		spage->generation = gen;
2872		spage->logical = logical;
2873		spage->physical = physical;
2874		spage->mirror_num = mirror_num;
2875		if (csum) {
2876			spage->have_csum = 1;
2877			memcpy(spage->csum, csum, sctx->csum_size);
2878		} else {
2879			spage->have_csum = 0;
2880		}
2881		sblock->page_count++;
2882		spage->page = alloc_page(GFP_KERNEL);
2883		if (!spage->page)
2884			goto leave_nomem;
2885		len -= l;
2886		logical += l;
2887		physical += l;
2888	}
2889
2890	WARN_ON(sblock->page_count == 0);
2891	for (index = 0; index < sblock->page_count; index++) {
2892		struct scrub_page *spage = sblock->pagev[index];
2893		int ret;
2894
2895		ret = scrub_add_page_to_rd_bio(sctx, spage);
2896		if (ret) {
2897			scrub_block_put(sblock);
2898			return ret;
2899		}
2900	}
2901
2902	/* last one frees, either here or in bio completion for last page */
2903	scrub_block_put(sblock);
2904	return 0;
2905}
2906
2907static int scrub_extent_for_parity(struct scrub_parity *sparity,
2908				   u64 logical, u64 len,
2909				   u64 physical, struct btrfs_device *dev,
2910				   u64 flags, u64 gen, int mirror_num)
2911{
2912	struct scrub_ctx *sctx = sparity->sctx;
2913	int ret;
2914	u8 csum[BTRFS_CSUM_SIZE];
2915	u32 blocksize;
2916
2917	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2918		scrub_parity_mark_sectors_error(sparity, logical, len);
2919		return 0;
2920	}
2921
2922	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2923		blocksize = sparity->stripe_len;
2924	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2925		blocksize = sparity->stripe_len;
2926	} else {
2927		blocksize = sctx->fs_info->sectorsize;
2928		WARN_ON(1);
2929	}
2930
2931	while (len) {
2932		u64 l = min_t(u64, len, blocksize);
2933		int have_csum = 0;
2934
2935		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2936			/* push csums to sbio */
2937			have_csum = scrub_find_csum(sctx, logical, csum);
2938			if (have_csum == 0)
2939				goto skip;
2940		}
2941		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2942					     flags, gen, mirror_num,
2943					     have_csum ? csum : NULL);
2944		if (ret)
2945			return ret;
2946skip:
2947		len -= l;
2948		logical += l;
2949		physical += l;
2950	}
2951	return 0;
2952}
2953
2954/*
2955 * Given a physical address, this will calculate it's
2956 * logical offset. if this is a parity stripe, it will return
2957 * the most left data stripe's logical offset.
2958 *
2959 * return 0 if it is a data stripe, 1 means parity stripe.
2960 */
2961static int get_raid56_logic_offset(u64 physical, int num,
2962				   struct map_lookup *map, u64 *offset,
2963				   u64 *stripe_start)
2964{
2965	int i;
2966	int j = 0;
2967	u64 stripe_nr;
2968	u64 last_offset;
2969	u32 stripe_index;
2970	u32 rot;
2971
2972	last_offset = (physical - map->stripes[num].physical) *
2973		      nr_data_stripes(map);
2974	if (stripe_start)
2975		*stripe_start = last_offset;
2976
2977	*offset = last_offset;
2978	for (i = 0; i < nr_data_stripes(map); i++) {
2979		*offset = last_offset + i * map->stripe_len;
2980
2981		stripe_nr = div64_u64(*offset, map->stripe_len);
2982		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2983
2984		/* Work out the disk rotation on this stripe-set */
2985		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2986		/* calculate which stripe this data locates */
2987		rot += i;
2988		stripe_index = rot % map->num_stripes;
2989		if (stripe_index == num)
2990			return 0;
2991		if (stripe_index < num)
2992			j++;
2993	}
2994	*offset = last_offset + j * map->stripe_len;
2995	return 1;
2996}
2997
2998static void scrub_free_parity(struct scrub_parity *sparity)
2999{
3000	struct scrub_ctx *sctx = sparity->sctx;
3001	struct scrub_page *curr, *next;
3002	int nbits;
3003
3004	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
3005	if (nbits) {
3006		spin_lock(&sctx->stat_lock);
3007		sctx->stat.read_errors += nbits;
3008		sctx->stat.uncorrectable_errors += nbits;
3009		spin_unlock(&sctx->stat_lock);
3010	}
3011
3012	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
3013		list_del_init(&curr->list);
3014		scrub_page_put(curr);
3015	}
3016
3017	kfree(sparity);
3018}
3019
3020static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
3021{
3022	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
3023						    work);
3024	struct scrub_ctx *sctx = sparity->sctx;
3025
3026	scrub_free_parity(sparity);
3027	scrub_pending_bio_dec(sctx);
3028}
3029
3030static void scrub_parity_bio_endio(struct bio *bio)
3031{
3032	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
3033	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
3034
3035	if (bio->bi_status)
3036		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3037			  sparity->nsectors);
3038
3039	bio_put(bio);
3040
3041	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
3042			scrub_parity_bio_endio_worker, NULL, NULL);
3043	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3044}
3045
3046static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
3047{
3048	struct scrub_ctx *sctx = sparity->sctx;
3049	struct btrfs_fs_info *fs_info = sctx->fs_info;
3050	struct bio *bio;
3051	struct btrfs_raid_bio *rbio;
3052	struct btrfs_bio *bbio = NULL;
3053	u64 length;
3054	int ret;
3055
3056	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
3057			   sparity->nsectors))
3058		goto out;
3059
3060	length = sparity->logic_end - sparity->logic_start;
3061
3062	btrfs_bio_counter_inc_blocked(fs_info);
3063	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3064			       &length, &bbio);
3065	if (ret || !bbio || !bbio->raid_map)
3066		goto bbio_out;
3067
3068	bio = btrfs_io_bio_alloc(0);
3069	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
3070	bio->bi_private = sparity;
3071	bio->bi_end_io = scrub_parity_bio_endio;
3072
3073	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3074					      length, sparity->scrub_dev,
3075					      sparity->dbitmap,
3076					      sparity->nsectors);
3077	if (!rbio)
3078		goto rbio_out;
3079
3080	scrub_pending_bio_inc(sctx);
3081	raid56_parity_submit_scrub_rbio(rbio);
3082	return;
3083
3084rbio_out:
3085	bio_put(bio);
3086bbio_out:
3087	btrfs_bio_counter_dec(fs_info);
3088	btrfs_put_bbio(bbio);
3089	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3090		  sparity->nsectors);
3091	spin_lock(&sctx->stat_lock);
3092	sctx->stat.malloc_errors++;
3093	spin_unlock(&sctx->stat_lock);
3094out:
3095	scrub_free_parity(sparity);
3096}
3097
3098static inline int scrub_calc_parity_bitmap_len(int nsectors)
3099{
3100	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3101}
3102
3103static void scrub_parity_get(struct scrub_parity *sparity)
3104{
3105	refcount_inc(&sparity->refs);
3106}
3107
3108static void scrub_parity_put(struct scrub_parity *sparity)
3109{
3110	if (!refcount_dec_and_test(&sparity->refs))
3111		return;
3112
3113	scrub_parity_check_and_repair(sparity);
3114}
3115
3116static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3117						  struct map_lookup *map,
3118						  struct btrfs_device *sdev,
3119						  struct btrfs_path *path,
3120						  u64 logic_start,
3121						  u64 logic_end)
3122{
3123	struct btrfs_fs_info *fs_info = sctx->fs_info;
3124	struct btrfs_root *root = fs_info->extent_root;
3125	struct btrfs_root *csum_root = fs_info->csum_root;
3126	struct btrfs_extent_item *extent;
3127	struct btrfs_bio *bbio = NULL;
3128	u64 flags;
3129	int ret;
3130	int slot;
3131	struct extent_buffer *l;
3132	struct btrfs_key key;
3133	u64 generation;
3134	u64 extent_logical;
3135	u64 extent_physical;
3136	u64 extent_len;
3137	u64 mapped_length;
3138	struct btrfs_device *extent_dev;
3139	struct scrub_parity *sparity;
3140	int nsectors;
3141	int bitmap_len;
3142	int extent_mirror_num;
3143	int stop_loop = 0;
3144
3145	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3146	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
3147	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
3148			  GFP_NOFS);
3149	if (!sparity) {
3150		spin_lock(&sctx->stat_lock);
3151		sctx->stat.malloc_errors++;
3152		spin_unlock(&sctx->stat_lock);
3153		return -ENOMEM;
3154	}
3155
3156	sparity->stripe_len = map->stripe_len;
3157	sparity->nsectors = nsectors;
3158	sparity->sctx = sctx;
3159	sparity->scrub_dev = sdev;
3160	sparity->logic_start = logic_start;
3161	sparity->logic_end = logic_end;
3162	refcount_set(&sparity->refs, 1);
3163	INIT_LIST_HEAD(&sparity->spages);
3164	sparity->dbitmap = sparity->bitmap;
3165	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
3166
3167	ret = 0;
3168	while (logic_start < logic_end) {
3169		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3170			key.type = BTRFS_METADATA_ITEM_KEY;
3171		else
3172			key.type = BTRFS_EXTENT_ITEM_KEY;
3173		key.objectid = logic_start;
3174		key.offset = (u64)-1;
3175
3176		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3177		if (ret < 0)
3178			goto out;
3179
3180		if (ret > 0) {
3181			ret = btrfs_previous_extent_item(root, path, 0);
3182			if (ret < 0)
3183				goto out;
3184			if (ret > 0) {
3185				btrfs_release_path(path);
3186				ret = btrfs_search_slot(NULL, root, &key,
3187							path, 0, 0);
3188				if (ret < 0)
3189					goto out;
3190			}
3191		}
3192
3193		stop_loop = 0;
3194		while (1) {
3195			u64 bytes;
3196
3197			l = path->nodes[0];
3198			slot = path->slots[0];
3199			if (slot >= btrfs_header_nritems(l)) {
3200				ret = btrfs_next_leaf(root, path);
3201				if (ret == 0)
3202					continue;
3203				if (ret < 0)
3204					goto out;
3205
3206				stop_loop = 1;
3207				break;
3208			}
3209			btrfs_item_key_to_cpu(l, &key, slot);
3210
3211			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3212			    key.type != BTRFS_METADATA_ITEM_KEY)
3213				goto next;
3214
3215			if (key.type == BTRFS_METADATA_ITEM_KEY)
3216				bytes = fs_info->nodesize;
3217			else
3218				bytes = key.offset;
3219
3220			if (key.objectid + bytes <= logic_start)
3221				goto next;
3222
3223			if (key.objectid >= logic_end) {
3224				stop_loop = 1;
3225				break;
3226			}
3227
3228			while (key.objectid >= logic_start + map->stripe_len)
3229				logic_start += map->stripe_len;
3230
3231			extent = btrfs_item_ptr(l, slot,
3232						struct btrfs_extent_item);
3233			flags = btrfs_extent_flags(l, extent);
3234			generation = btrfs_extent_generation(l, extent);
3235
3236			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3237			    (key.objectid < logic_start ||
3238			     key.objectid + bytes >
3239			     logic_start + map->stripe_len)) {
3240				btrfs_err(fs_info,
3241					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3242					  key.objectid, logic_start);
3243				spin_lock(&sctx->stat_lock);
3244				sctx->stat.uncorrectable_errors++;
3245				spin_unlock(&sctx->stat_lock);
3246				goto next;
3247			}
3248again:
3249			extent_logical = key.objectid;
3250			extent_len = bytes;
3251
3252			if (extent_logical < logic_start) {
3253				extent_len -= logic_start - extent_logical;
3254				extent_logical = logic_start;
3255			}
3256
3257			if (extent_logical + extent_len >
3258			    logic_start + map->stripe_len)
3259				extent_len = logic_start + map->stripe_len -
3260					     extent_logical;
3261
3262			scrub_parity_mark_sectors_data(sparity, extent_logical,
3263						       extent_len);
3264
3265			mapped_length = extent_len;
3266			bbio = NULL;
3267			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3268					extent_logical, &mapped_length, &bbio,
3269					0);
3270			if (!ret) {
3271				if (!bbio || mapped_length < extent_len)
3272					ret = -EIO;
3273			}
3274			if (ret) {
3275				btrfs_put_bbio(bbio);
3276				goto out;
3277			}
3278			extent_physical = bbio->stripes[0].physical;
3279			extent_mirror_num = bbio->mirror_num;
3280			extent_dev = bbio->stripes[0].dev;
3281			btrfs_put_bbio(bbio);
3282
3283			ret = btrfs_lookup_csums_range(csum_root,
3284						extent_logical,
3285						extent_logical + extent_len - 1,
3286						&sctx->csum_list, 1);
3287			if (ret)
3288				goto out;
3289
3290			ret = scrub_extent_for_parity(sparity, extent_logical,
3291						      extent_len,
3292						      extent_physical,
3293						      extent_dev, flags,
3294						      generation,
3295						      extent_mirror_num);
3296
3297			scrub_free_csums(sctx);
3298
3299			if (ret)
3300				goto out;
3301
3302			if (extent_logical + extent_len <
3303			    key.objectid + bytes) {
3304				logic_start += map->stripe_len;
3305
3306				if (logic_start >= logic_end) {
3307					stop_loop = 1;
3308					break;
3309				}
3310
3311				if (logic_start < key.objectid + bytes) {
3312					cond_resched();
3313					goto again;
3314				}
3315			}
3316next:
3317			path->slots[0]++;
3318		}
3319
3320		btrfs_release_path(path);
3321
3322		if (stop_loop)
3323			break;
3324
3325		logic_start += map->stripe_len;
3326	}
3327out:
3328	if (ret < 0)
3329		scrub_parity_mark_sectors_error(sparity, logic_start,
3330						logic_end - logic_start);
3331	scrub_parity_put(sparity);
3332	scrub_submit(sctx);
3333	mutex_lock(&sctx->wr_lock);
3334	scrub_wr_submit(sctx);
3335	mutex_unlock(&sctx->wr_lock);
3336
3337	btrfs_release_path(path);
3338	return ret < 0 ? ret : 0;
3339}
3340
3341static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3342					   struct map_lookup *map,
3343					   struct btrfs_device *scrub_dev,
3344					   int num, u64 base, u64 length,
3345					   int is_dev_replace)
3346{
3347	struct btrfs_path *path, *ppath;
3348	struct btrfs_fs_info *fs_info = sctx->fs_info;
3349	struct btrfs_root *root = fs_info->extent_root;
3350	struct btrfs_root *csum_root = fs_info->csum_root;
3351	struct btrfs_extent_item *extent;
3352	struct blk_plug plug;
3353	u64 flags;
3354	int ret;
3355	int slot;
 
3356	u64 nstripes;
3357	struct extent_buffer *l;
 
3358	u64 physical;
3359	u64 logical;
3360	u64 logic_end;
3361	u64 physical_end;
3362	u64 generation;
3363	int mirror_num;
3364	struct reada_control *reada1;
3365	struct reada_control *reada2;
3366	struct btrfs_key key;
3367	struct btrfs_key key_end;
 
3368	u64 increment = map->stripe_len;
3369	u64 offset;
3370	u64 extent_logical;
3371	u64 extent_physical;
3372	u64 extent_len;
3373	u64 stripe_logical;
3374	u64 stripe_end;
3375	struct btrfs_device *extent_dev;
3376	int extent_mirror_num;
3377	int stop_loop = 0;
3378
3379	physical = map->stripes[num].physical;
3380	offset = 0;
3381	nstripes = div64_u64(length, map->stripe_len);
3382	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3383		offset = map->stripe_len * num;
3384		increment = map->stripe_len * map->num_stripes;
3385		mirror_num = 1;
3386	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3387		int factor = map->num_stripes / map->sub_stripes;
3388		offset = map->stripe_len * (num / map->sub_stripes);
3389		increment = map->stripe_len * factor;
3390		mirror_num = num % map->sub_stripes + 1;
3391	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3392		increment = map->stripe_len;
3393		mirror_num = num % map->num_stripes + 1;
3394	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3395		increment = map->stripe_len;
3396		mirror_num = num % map->num_stripes + 1;
3397	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3398		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3399		increment = map->stripe_len * nr_data_stripes(map);
3400		mirror_num = 1;
3401	} else {
3402		increment = map->stripe_len;
3403		mirror_num = 1;
3404	}
3405
3406	path = btrfs_alloc_path();
3407	if (!path)
3408		return -ENOMEM;
3409
3410	ppath = btrfs_alloc_path();
3411	if (!ppath) {
3412		btrfs_free_path(path);
3413		return -ENOMEM;
3414	}
3415
3416	/*
3417	 * work on commit root. The related disk blocks are static as
3418	 * long as COW is applied. This means, it is save to rewrite
3419	 * them to repair disk errors without any race conditions
3420	 */
3421	path->search_commit_root = 1;
3422	path->skip_locking = 1;
3423
3424	ppath->search_commit_root = 1;
3425	ppath->skip_locking = 1;
3426	/*
3427	 * trigger the readahead for extent tree csum tree and wait for
3428	 * completion. During readahead, the scrub is officially paused
3429	 * to not hold off transaction commits
3430	 */
3431	logical = base + offset;
3432	physical_end = physical + nstripes * map->stripe_len;
3433	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3434		get_raid56_logic_offset(physical_end, num,
3435					map, &logic_end, NULL);
3436		logic_end += base;
3437	} else {
3438		logic_end = logical + increment * nstripes;
3439	}
3440	wait_event(sctx->list_wait,
3441		   atomic_read(&sctx->bios_in_flight) == 0);
3442	scrub_blocked_if_needed(fs_info);
3443
3444	/* FIXME it might be better to start readahead at commit root */
3445	key.objectid = logical;
3446	key.type = BTRFS_EXTENT_ITEM_KEY;
3447	key.offset = (u64)0;
3448	key_end.objectid = logic_end;
3449	key_end.type = BTRFS_METADATA_ITEM_KEY;
3450	key_end.offset = (u64)-1;
3451	reada1 = btrfs_reada_add(root, &key, &key_end);
3452
3453	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3454	key.type = BTRFS_EXTENT_CSUM_KEY;
3455	key.offset = logical;
3456	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3457	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3458	key_end.offset = logic_end;
3459	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3460
3461	if (!IS_ERR(reada1))
3462		btrfs_reada_wait(reada1);
3463	if (!IS_ERR(reada2))
3464		btrfs_reada_wait(reada2);
3465
 
 
 
 
 
 
 
 
 
 
3466
3467	/*
3468	 * collect all data csums for the stripe to avoid seeking during
3469	 * the scrub. This might currently (crc32) end up to be about 1MB
3470	 */
3471	blk_start_plug(&plug);
3472
3473	/*
3474	 * now find all extents for each stripe and scrub them
3475	 */
 
 
3476	ret = 0;
3477	while (physical < physical_end) {
3478		/*
3479		 * canceled?
3480		 */
3481		if (atomic_read(&fs_info->scrub_cancel_req) ||
3482		    atomic_read(&sctx->cancel_req)) {
3483			ret = -ECANCELED;
3484			goto out;
3485		}
3486		/*
3487		 * check to see if we have to pause
3488		 */
3489		if (atomic_read(&fs_info->scrub_pause_req)) {
3490			/* push queued extents */
3491			sctx->flush_all_writes = true;
3492			scrub_submit(sctx);
3493			mutex_lock(&sctx->wr_lock);
3494			scrub_wr_submit(sctx);
3495			mutex_unlock(&sctx->wr_lock);
3496			wait_event(sctx->list_wait,
3497				   atomic_read(&sctx->bios_in_flight) == 0);
3498			sctx->flush_all_writes = false;
3499			scrub_blocked_if_needed(fs_info);
3500		}
3501
3502		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3503			ret = get_raid56_logic_offset(physical, num, map,
3504						      &logical,
3505						      &stripe_logical);
3506			logical += base;
3507			if (ret) {
3508				/* it is parity strip */
3509				stripe_logical += base;
3510				stripe_end = stripe_logical + increment;
3511				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3512							  ppath, stripe_logical,
3513							  stripe_end);
3514				if (ret)
3515					goto out;
3516				goto skip;
3517			}
3518		}
3519
3520		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3521			key.type = BTRFS_METADATA_ITEM_KEY;
3522		else
3523			key.type = BTRFS_EXTENT_ITEM_KEY;
3524		key.objectid = logical;
3525		key.offset = (u64)-1;
 
3526
3527		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3528		if (ret < 0)
3529			goto out;
3530
3531		if (ret > 0) {
3532			ret = btrfs_previous_extent_item(root, path, 0);
 
3533			if (ret < 0)
3534				goto out;
3535			if (ret > 0) {
3536				/* there's no smaller item, so stick with the
3537				 * larger one */
3538				btrfs_release_path(path);
3539				ret = btrfs_search_slot(NULL, root, &key,
3540							path, 0, 0);
3541				if (ret < 0)
3542					goto out;
3543			}
3544		}
3545
3546		stop_loop = 0;
3547		while (1) {
3548			u64 bytes;
3549
3550			l = path->nodes[0];
3551			slot = path->slots[0];
3552			if (slot >= btrfs_header_nritems(l)) {
3553				ret = btrfs_next_leaf(root, path);
3554				if (ret == 0)
3555					continue;
3556				if (ret < 0)
3557					goto out;
3558
3559				stop_loop = 1;
3560				break;
3561			}
3562			btrfs_item_key_to_cpu(l, &key, slot);
3563
3564			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3565			    key.type != BTRFS_METADATA_ITEM_KEY)
3566				goto next;
3567
3568			if (key.type == BTRFS_METADATA_ITEM_KEY)
3569				bytes = fs_info->nodesize;
3570			else
3571				bytes = key.offset;
3572
3573			if (key.objectid + bytes <= logical)
3574				goto next;
3575
3576			if (key.objectid >= logical + map->stripe_len) {
3577				/* out of this device extent */
3578				if (key.objectid >= logic_end)
3579					stop_loop = 1;
3580				break;
3581			}
3582
3583			extent = btrfs_item_ptr(l, slot,
3584						struct btrfs_extent_item);
3585			flags = btrfs_extent_flags(l, extent);
3586			generation = btrfs_extent_generation(l, extent);
3587
3588			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3589			    (key.objectid < logical ||
3590			     key.objectid + bytes >
3591			     logical + map->stripe_len)) {
3592				btrfs_err(fs_info,
3593					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3594				       key.objectid, logical);
3595				spin_lock(&sctx->stat_lock);
3596				sctx->stat.uncorrectable_errors++;
3597				spin_unlock(&sctx->stat_lock);
3598				goto next;
3599			}
3600
3601again:
3602			extent_logical = key.objectid;
3603			extent_len = bytes;
3604
3605			/*
3606			 * trim extent to this stripe
3607			 */
3608			if (extent_logical < logical) {
3609				extent_len -= logical - extent_logical;
3610				extent_logical = logical;
3611			}
3612			if (extent_logical + extent_len >
3613			    logical + map->stripe_len) {
3614				extent_len = logical + map->stripe_len -
3615					     extent_logical;
3616			}
3617
3618			extent_physical = extent_logical - logical + physical;
3619			extent_dev = scrub_dev;
3620			extent_mirror_num = mirror_num;
3621			if (is_dev_replace)
3622				scrub_remap_extent(fs_info, extent_logical,
3623						   extent_len, &extent_physical,
3624						   &extent_dev,
3625						   &extent_mirror_num);
3626
3627			ret = btrfs_lookup_csums_range(csum_root,
3628						       extent_logical,
3629						       extent_logical +
3630						       extent_len - 1,
3631						       &sctx->csum_list, 1);
3632			if (ret)
3633				goto out;
3634
3635			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3636					   extent_physical, extent_dev, flags,
3637					   generation, extent_mirror_num,
3638					   extent_logical - logical + physical);
3639
3640			scrub_free_csums(sctx);
3641
3642			if (ret)
3643				goto out;
3644
3645			if (extent_logical + extent_len <
3646			    key.objectid + bytes) {
3647				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3648					/*
3649					 * loop until we find next data stripe
3650					 * or we have finished all stripes.
3651					 */
3652loop:
3653					physical += map->stripe_len;
3654					ret = get_raid56_logic_offset(physical,
3655							num, map, &logical,
3656							&stripe_logical);
3657					logical += base;
3658
3659					if (ret && physical < physical_end) {
3660						stripe_logical += base;
3661						stripe_end = stripe_logical +
3662								increment;
3663						ret = scrub_raid56_parity(sctx,
3664							map, scrub_dev, ppath,
3665							stripe_logical,
3666							stripe_end);
3667						if (ret)
3668							goto out;
3669						goto loop;
3670					}
3671				} else {
3672					physical += map->stripe_len;
3673					logical += increment;
3674				}
3675				if (logical < key.objectid + bytes) {
3676					cond_resched();
3677					goto again;
3678				}
3679
3680				if (physical >= physical_end) {
3681					stop_loop = 1;
3682					break;
3683				}
3684			}
3685next:
3686			path->slots[0]++;
3687		}
3688		btrfs_release_path(path);
3689skip:
3690		logical += increment;
3691		physical += map->stripe_len;
3692		spin_lock(&sctx->stat_lock);
3693		if (stop_loop)
3694			sctx->stat.last_physical = map->stripes[num].physical +
3695						   length;
3696		else
3697			sctx->stat.last_physical = physical;
3698		spin_unlock(&sctx->stat_lock);
3699		if (stop_loop)
3700			break;
3701	}
3702out:
3703	/* push queued extents */
3704	scrub_submit(sctx);
3705	mutex_lock(&sctx->wr_lock);
3706	scrub_wr_submit(sctx);
3707	mutex_unlock(&sctx->wr_lock);
3708
 
3709	blk_finish_plug(&plug);
3710	btrfs_free_path(path);
3711	btrfs_free_path(ppath);
3712	return ret < 0 ? ret : 0;
3713}
3714
3715static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3716					  struct btrfs_device *scrub_dev,
3717					  u64 chunk_offset, u64 length,
3718					  u64 dev_offset,
3719					  struct btrfs_block_group_cache *cache,
3720					  int is_dev_replace)
3721{
3722	struct btrfs_fs_info *fs_info = sctx->fs_info;
3723	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3724	struct map_lookup *map;
3725	struct extent_map *em;
3726	int i;
3727	int ret = 0;
3728
3729	read_lock(&map_tree->map_tree.lock);
3730	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3731	read_unlock(&map_tree->map_tree.lock);
3732
3733	if (!em) {
3734		/*
3735		 * Might have been an unused block group deleted by the cleaner
3736		 * kthread or relocation.
3737		 */
3738		spin_lock(&cache->lock);
3739		if (!cache->removed)
3740			ret = -EINVAL;
3741		spin_unlock(&cache->lock);
3742
3743		return ret;
3744	}
3745
3746	map = em->map_lookup;
3747	if (em->start != chunk_offset)
3748		goto out;
3749
3750	if (em->len < length)
3751		goto out;
3752
3753	for (i = 0; i < map->num_stripes; ++i) {
3754		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3755		    map->stripes[i].physical == dev_offset) {
3756			ret = scrub_stripe(sctx, map, scrub_dev, i,
3757					   chunk_offset, length,
3758					   is_dev_replace);
3759			if (ret)
3760				goto out;
3761		}
3762	}
3763out:
3764	free_extent_map(em);
3765
3766	return ret;
3767}
3768
3769static noinline_for_stack
3770int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3771			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3772			   int is_dev_replace)
3773{
3774	struct btrfs_dev_extent *dev_extent = NULL;
3775	struct btrfs_path *path;
3776	struct btrfs_fs_info *fs_info = sctx->fs_info;
3777	struct btrfs_root *root = fs_info->dev_root;
3778	u64 length;
 
 
3779	u64 chunk_offset;
3780	int ret = 0;
3781	int ro_set;
3782	int slot;
3783	struct extent_buffer *l;
3784	struct btrfs_key key;
3785	struct btrfs_key found_key;
3786	struct btrfs_block_group_cache *cache;
3787	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3788
3789	path = btrfs_alloc_path();
3790	if (!path)
3791		return -ENOMEM;
3792
3793	path->reada = READA_FORWARD;
3794	path->search_commit_root = 1;
3795	path->skip_locking = 1;
3796
3797	key.objectid = scrub_dev->devid;
3798	key.offset = 0ull;
3799	key.type = BTRFS_DEV_EXTENT_KEY;
3800
 
3801	while (1) {
3802		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3803		if (ret < 0)
3804			break;
3805		if (ret > 0) {
3806			if (path->slots[0] >=
3807			    btrfs_header_nritems(path->nodes[0])) {
3808				ret = btrfs_next_leaf(root, path);
3809				if (ret < 0)
3810					break;
3811				if (ret > 0) {
3812					ret = 0;
3813					break;
3814				}
3815			} else {
3816				ret = 0;
3817			}
3818		}
3819
3820		l = path->nodes[0];
3821		slot = path->slots[0];
3822
3823		btrfs_item_key_to_cpu(l, &found_key, slot);
3824
3825		if (found_key.objectid != scrub_dev->devid)
3826			break;
3827
3828		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3829			break;
3830
3831		if (found_key.offset >= end)
3832			break;
3833
3834		if (found_key.offset < key.offset)
3835			break;
3836
3837		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3838		length = btrfs_dev_extent_length(l, dev_extent);
3839
3840		if (found_key.offset + length <= start)
3841			goto skip;
 
 
 
3842
 
 
3843		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3844
3845		/*
3846		 * get a reference on the corresponding block group to prevent
3847		 * the chunk from going away while we scrub it
3848		 */
3849		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3850
3851		/* some chunks are removed but not committed to disk yet,
3852		 * continue scrubbing */
3853		if (!cache)
3854			goto skip;
3855
3856		/*
3857		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3858		 * to avoid deadlock caused by:
3859		 * btrfs_inc_block_group_ro()
3860		 * -> btrfs_wait_for_commit()
3861		 * -> btrfs_commit_transaction()
3862		 * -> btrfs_scrub_pause()
3863		 */
3864		scrub_pause_on(fs_info);
3865		ret = btrfs_inc_block_group_ro(fs_info, cache);
3866		if (!ret && is_dev_replace) {
3867			/*
3868			 * If we are doing a device replace wait for any tasks
3869			 * that started dellaloc right before we set the block
3870			 * group to RO mode, as they might have just allocated
3871			 * an extent from it or decided they could do a nocow
3872			 * write. And if any such tasks did that, wait for their
3873			 * ordered extents to complete and then commit the
3874			 * current transaction, so that we can later see the new
3875			 * extent items in the extent tree - the ordered extents
3876			 * create delayed data references (for cow writes) when
3877			 * they complete, which will be run and insert the
3878			 * corresponding extent items into the extent tree when
3879			 * we commit the transaction they used when running
3880			 * inode.c:btrfs_finish_ordered_io(). We later use
3881			 * the commit root of the extent tree to find extents
3882			 * to copy from the srcdev into the tgtdev, and we don't
3883			 * want to miss any new extents.
3884			 */
3885			btrfs_wait_block_group_reservations(cache);
3886			btrfs_wait_nocow_writers(cache);
3887			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3888						       cache->key.objectid,
3889						       cache->key.offset);
3890			if (ret > 0) {
3891				struct btrfs_trans_handle *trans;
3892
3893				trans = btrfs_join_transaction(root);
3894				if (IS_ERR(trans))
3895					ret = PTR_ERR(trans);
3896				else
3897					ret = btrfs_commit_transaction(trans);
3898				if (ret) {
3899					scrub_pause_off(fs_info);
3900					btrfs_put_block_group(cache);
3901					break;
3902				}
3903			}
3904		}
3905		scrub_pause_off(fs_info);
3906
3907		if (ret == 0) {
3908			ro_set = 1;
3909		} else if (ret == -ENOSPC) {
3910			/*
3911			 * btrfs_inc_block_group_ro return -ENOSPC when it
3912			 * failed in creating new chunk for metadata.
3913			 * It is not a problem for scrub/replace, because
3914			 * metadata are always cowed, and our scrub paused
3915			 * commit_transactions.
3916			 */
3917			ro_set = 0;
3918		} else {
3919			btrfs_warn(fs_info,
3920				   "failed setting block group ro: %d", ret);
3921			btrfs_put_block_group(cache);
3922			break;
3923		}
3924
3925		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3926		dev_replace->cursor_right = found_key.offset + length;
3927		dev_replace->cursor_left = found_key.offset;
3928		dev_replace->item_needs_writeback = 1;
3929		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3930		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3931				  found_key.offset, cache, is_dev_replace);
3932
3933		/*
3934		 * flush, submit all pending read and write bios, afterwards
3935		 * wait for them.
3936		 * Note that in the dev replace case, a read request causes
3937		 * write requests that are submitted in the read completion
3938		 * worker. Therefore in the current situation, it is required
3939		 * that all write requests are flushed, so that all read and
3940		 * write requests are really completed when bios_in_flight
3941		 * changes to 0.
3942		 */
3943		sctx->flush_all_writes = true;
3944		scrub_submit(sctx);
3945		mutex_lock(&sctx->wr_lock);
3946		scrub_wr_submit(sctx);
3947		mutex_unlock(&sctx->wr_lock);
3948
3949		wait_event(sctx->list_wait,
3950			   atomic_read(&sctx->bios_in_flight) == 0);
3951
3952		scrub_pause_on(fs_info);
3953
3954		/*
3955		 * must be called before we decrease @scrub_paused.
3956		 * make sure we don't block transaction commit while
3957		 * we are waiting pending workers finished.
3958		 */
3959		wait_event(sctx->list_wait,
3960			   atomic_read(&sctx->workers_pending) == 0);
3961		sctx->flush_all_writes = false;
3962
3963		scrub_pause_off(fs_info);
3964
3965		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3966		dev_replace->cursor_left = dev_replace->cursor_right;
3967		dev_replace->item_needs_writeback = 1;
3968		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3969
3970		if (ro_set)
3971			btrfs_dec_block_group_ro(cache);
3972
3973		/*
3974		 * We might have prevented the cleaner kthread from deleting
3975		 * this block group if it was already unused because we raced
3976		 * and set it to RO mode first. So add it back to the unused
3977		 * list, otherwise it might not ever be deleted unless a manual
3978		 * balance is triggered or it becomes used and unused again.
3979		 */
3980		spin_lock(&cache->lock);
3981		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3982		    btrfs_block_group_used(&cache->item) == 0) {
3983			spin_unlock(&cache->lock);
3984			spin_lock(&fs_info->unused_bgs_lock);
3985			if (list_empty(&cache->bg_list)) {
3986				btrfs_get_block_group(cache);
3987				list_add_tail(&cache->bg_list,
3988					      &fs_info->unused_bgs);
3989			}
3990			spin_unlock(&fs_info->unused_bgs_lock);
3991		} else {
3992			spin_unlock(&cache->lock);
3993		}
3994
3995		btrfs_put_block_group(cache);
3996		if (ret)
3997			break;
3998		if (is_dev_replace &&
3999		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4000			ret = -EIO;
4001			break;
4002		}
4003		if (sctx->stat.malloc_errors > 0) {
4004			ret = -ENOMEM;
4005			break;
4006		}
4007skip:
4008		key.offset = found_key.offset + length;
4009		btrfs_release_path(path);
4010	}
4011
4012	btrfs_free_path(path);
4013
4014	return ret;
 
 
 
 
4015}
4016
4017static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
4018					   struct btrfs_device *scrub_dev)
4019{
4020	int	i;
4021	u64	bytenr;
4022	u64	gen;
4023	int	ret;
4024	struct btrfs_fs_info *fs_info = sctx->fs_info;
 
4025
4026	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4027		return -EIO;
4028
4029	/* Seed devices of a new filesystem has their own generation. */
4030	if (scrub_dev->fs_devices != fs_info->fs_devices)
4031		gen = scrub_dev->generation;
4032	else
4033		gen = fs_info->last_trans_committed;
4034
4035	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4036		bytenr = btrfs_sb_offset(i);
4037		if (bytenr + BTRFS_SUPER_INFO_SIZE >
4038		    scrub_dev->commit_total_bytes)
4039			break;
4040
4041		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4042				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4043				  NULL, 1, bytenr);
4044		if (ret)
4045			return ret;
4046	}
4047	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4048
4049	return 0;
4050}
4051
4052/*
4053 * get a reference count on fs_info->scrub_workers. start worker if necessary
4054 */
4055static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4056						int is_dev_replace)
4057{
4058	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4059	int max_active = fs_info->thread_pool_size;
4060
 
4061	if (fs_info->scrub_workers_refcnt == 0) {
4062		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
4063				flags, is_dev_replace ? 1 : max_active, 4);
4064		if (!fs_info->scrub_workers)
4065			goto fail_scrub_workers;
4066
4067		fs_info->scrub_wr_completion_workers =
4068			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4069					      max_active, 2);
4070		if (!fs_info->scrub_wr_completion_workers)
4071			goto fail_scrub_wr_completion_workers;
4072
4073		fs_info->scrub_nocow_workers =
4074			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4075		if (!fs_info->scrub_nocow_workers)
4076			goto fail_scrub_nocow_workers;
4077		fs_info->scrub_parity_workers =
4078			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4079					      max_active, 2);
4080		if (!fs_info->scrub_parity_workers)
4081			goto fail_scrub_parity_workers;
4082	}
4083	++fs_info->scrub_workers_refcnt;
4084	return 0;
 
 
 
 
 
 
 
 
4085
4086fail_scrub_parity_workers:
4087	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4088fail_scrub_nocow_workers:
4089	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4090fail_scrub_wr_completion_workers:
4091	btrfs_destroy_workqueue(fs_info->scrub_workers);
4092fail_scrub_workers:
4093	return -ENOMEM;
4094}
4095
4096static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
4097{
4098	if (--fs_info->scrub_workers_refcnt == 0) {
4099		btrfs_destroy_workqueue(fs_info->scrub_workers);
4100		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4101		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4102		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4103	}
4104	WARN_ON(fs_info->scrub_workers_refcnt < 0);
 
4105}
4106
4107int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4108		    u64 end, struct btrfs_scrub_progress *progress,
4109		    int readonly, int is_dev_replace)
4110{
4111	struct scrub_ctx *sctx;
 
4112	int ret;
4113	struct btrfs_device *dev;
4114	struct rcu_string *name;
4115
4116	if (btrfs_fs_closing(fs_info))
 
 
 
 
 
 
 
 
 
4117		return -EINVAL;
 
4118
4119	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4120		/*
4121		 * in this case scrub is unable to calculate the checksum
4122		 * the way scrub is implemented. Do not handle this
4123		 * situation at all because it won't ever happen.
4124		 */
4125		btrfs_err(fs_info,
4126			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4127		       fs_info->nodesize,
4128		       BTRFS_STRIPE_LEN);
4129		return -EINVAL;
4130	}
4131
4132	if (fs_info->sectorsize != PAGE_SIZE) {
4133		/* not supported for data w/o checksums */
4134		btrfs_err_rl(fs_info,
4135			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4136		       fs_info->sectorsize, PAGE_SIZE);
4137		return -EINVAL;
4138	}
4139
4140	if (fs_info->nodesize >
4141	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4142	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4143		/*
4144		 * would exhaust the array bounds of pagev member in
4145		 * struct scrub_block
4146		 */
4147		btrfs_err(fs_info,
4148			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4149		       fs_info->nodesize,
4150		       SCRUB_MAX_PAGES_PER_BLOCK,
4151		       fs_info->sectorsize,
4152		       SCRUB_MAX_PAGES_PER_BLOCK);
4153		return -EINVAL;
4154	}
4155
4156
4157	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4158	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4159	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4160		     !is_dev_replace)) {
4161		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4162		return -ENODEV;
4163	}
 
4164
4165	if (!is_dev_replace && !readonly &&
4166	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4167		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4168		rcu_read_lock();
4169		name = rcu_dereference(dev->name);
4170		btrfs_err(fs_info, "scrub: device %s is not writable",
4171			  name->str);
4172		rcu_read_unlock();
4173		return -EROFS;
4174	}
4175
4176	mutex_lock(&fs_info->scrub_lock);
4177	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4178	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4179		mutex_unlock(&fs_info->scrub_lock);
4180		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4181		return -EIO;
 
4182	}
4183
4184	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
4185	if (dev->scrub_ctx ||
4186	    (!is_dev_replace &&
4187	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4188		btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4189		mutex_unlock(&fs_info->scrub_lock);
4190		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 
4191		return -EINPROGRESS;
4192	}
4193	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4194
4195	ret = scrub_workers_get(fs_info, is_dev_replace);
4196	if (ret) {
4197		mutex_unlock(&fs_info->scrub_lock);
4198		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4199		return ret;
4200	}
4201
4202	sctx = scrub_setup_ctx(dev, is_dev_replace);
4203	if (IS_ERR(sctx)) {
4204		mutex_unlock(&fs_info->scrub_lock);
4205		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4206		scrub_workers_put(fs_info);
4207		return PTR_ERR(sctx);
4208	}
4209	sctx->readonly = readonly;
4210	dev->scrub_ctx = sctx;
4211	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4212
4213	/*
4214	 * checking @scrub_pause_req here, we can avoid
4215	 * race between committing transaction and scrubbing.
4216	 */
4217	__scrub_blocked_if_needed(fs_info);
4218	atomic_inc(&fs_info->scrubs_running);
4219	mutex_unlock(&fs_info->scrub_lock);
 
4220
4221	if (!is_dev_replace) {
4222		/*
4223		 * by holding device list mutex, we can
4224		 * kick off writing super in log tree sync.
4225		 */
4226		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4227		ret = scrub_supers(sctx, dev);
4228		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4229	}
4230
4231	if (!ret)
4232		ret = scrub_enumerate_chunks(sctx, dev, start, end,
4233					     is_dev_replace);
4234
4235	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4236	atomic_dec(&fs_info->scrubs_running);
4237	wake_up(&fs_info->scrub_pause_wait);
4238
4239	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4240
4241	if (progress)
4242		memcpy(progress, &sctx->stat, sizeof(*progress));
4243
4244	mutex_lock(&fs_info->scrub_lock);
4245	dev->scrub_ctx = NULL;
4246	scrub_workers_put(fs_info);
4247	mutex_unlock(&fs_info->scrub_lock);
4248
4249	scrub_put_ctx(sctx);
 
4250
4251	return ret;
4252}
4253
4254void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4255{
 
 
4256	mutex_lock(&fs_info->scrub_lock);
4257	atomic_inc(&fs_info->scrub_pause_req);
4258	while (atomic_read(&fs_info->scrubs_paused) !=
4259	       atomic_read(&fs_info->scrubs_running)) {
4260		mutex_unlock(&fs_info->scrub_lock);
4261		wait_event(fs_info->scrub_pause_wait,
4262			   atomic_read(&fs_info->scrubs_paused) ==
4263			   atomic_read(&fs_info->scrubs_running));
4264		mutex_lock(&fs_info->scrub_lock);
4265	}
4266	mutex_unlock(&fs_info->scrub_lock);
4267}
4268
4269void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4270{
 
 
4271	atomic_dec(&fs_info->scrub_pause_req);
4272	wake_up(&fs_info->scrub_pause_wait);
4273}
4274
4275int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
 
 
 
 
 
4276{
 
 
 
 
 
 
4277	mutex_lock(&fs_info->scrub_lock);
4278	if (!atomic_read(&fs_info->scrubs_running)) {
4279		mutex_unlock(&fs_info->scrub_lock);
4280		return -ENOTCONN;
4281	}
4282
4283	atomic_inc(&fs_info->scrub_cancel_req);
4284	while (atomic_read(&fs_info->scrubs_running)) {
4285		mutex_unlock(&fs_info->scrub_lock);
4286		wait_event(fs_info->scrub_pause_wait,
4287			   atomic_read(&fs_info->scrubs_running) == 0);
4288		mutex_lock(&fs_info->scrub_lock);
4289	}
4290	atomic_dec(&fs_info->scrub_cancel_req);
4291	mutex_unlock(&fs_info->scrub_lock);
4292
4293	return 0;
4294}
4295
4296int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4297			   struct btrfs_device *dev)
4298{
4299	struct scrub_ctx *sctx;
 
 
 
 
 
 
4300
4301	mutex_lock(&fs_info->scrub_lock);
4302	sctx = dev->scrub_ctx;
4303	if (!sctx) {
4304		mutex_unlock(&fs_info->scrub_lock);
4305		return -ENOTCONN;
4306	}
4307	atomic_inc(&sctx->cancel_req);
4308	while (dev->scrub_ctx) {
4309		mutex_unlock(&fs_info->scrub_lock);
4310		wait_event(fs_info->scrub_pause_wait,
4311			   dev->scrub_ctx == NULL);
4312		mutex_lock(&fs_info->scrub_lock);
4313	}
4314	mutex_unlock(&fs_info->scrub_lock);
4315
4316	return 0;
4317}
4318
4319int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4320			 struct btrfs_scrub_progress *progress)
4321{
 
4322	struct btrfs_device *dev;
4323	struct scrub_ctx *sctx = NULL;
4324
4325	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4326	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4327	if (dev)
4328		sctx = dev->scrub_ctx;
4329	if (sctx)
4330		memcpy(progress, &sctx->stat, sizeof(*progress));
4331	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4332
4333	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4334}
4335
4336static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4337			       u64 extent_logical, u64 extent_len,
4338			       u64 *extent_physical,
4339			       struct btrfs_device **extent_dev,
4340			       int *extent_mirror_num)
4341{
4342	u64 mapped_length;
4343	struct btrfs_bio *bbio = NULL;
4344	int ret;
4345
4346	mapped_length = extent_len;
4347	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4348			      &mapped_length, &bbio, 0);
4349	if (ret || !bbio || mapped_length < extent_len ||
4350	    !bbio->stripes[0].dev->bdev) {
4351		btrfs_put_bbio(bbio);
4352		return;
4353	}
4354
4355	*extent_physical = bbio->stripes[0].physical;
4356	*extent_mirror_num = bbio->mirror_num;
4357	*extent_dev = bbio->stripes[0].dev;
4358	btrfs_put_bbio(bbio);
4359}
4360
4361static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4362			    int mirror_num, u64 physical_for_dev_replace)
4363{
4364	struct scrub_copy_nocow_ctx *nocow_ctx;
4365	struct btrfs_fs_info *fs_info = sctx->fs_info;
4366
4367	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4368	if (!nocow_ctx) {
4369		spin_lock(&sctx->stat_lock);
4370		sctx->stat.malloc_errors++;
4371		spin_unlock(&sctx->stat_lock);
4372		return -ENOMEM;
4373	}
4374
4375	scrub_pending_trans_workers_inc(sctx);
4376
4377	nocow_ctx->sctx = sctx;
4378	nocow_ctx->logical = logical;
4379	nocow_ctx->len = len;
4380	nocow_ctx->mirror_num = mirror_num;
4381	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4382	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4383			copy_nocow_pages_worker, NULL, NULL);
4384	INIT_LIST_HEAD(&nocow_ctx->inodes);
4385	btrfs_queue_work(fs_info->scrub_nocow_workers,
4386			 &nocow_ctx->work);
4387
4388	return 0;
4389}
4390
4391static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4392{
4393	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4394	struct scrub_nocow_inode *nocow_inode;
4395
4396	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4397	if (!nocow_inode)
4398		return -ENOMEM;
4399	nocow_inode->inum = inum;
4400	nocow_inode->offset = offset;
4401	nocow_inode->root = root;
4402	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4403	return 0;
4404}
4405
4406#define COPY_COMPLETE 1
4407
4408static void copy_nocow_pages_worker(struct btrfs_work *work)
4409{
4410	struct scrub_copy_nocow_ctx *nocow_ctx =
4411		container_of(work, struct scrub_copy_nocow_ctx, work);
4412	struct scrub_ctx *sctx = nocow_ctx->sctx;
4413	struct btrfs_fs_info *fs_info = sctx->fs_info;
4414	struct btrfs_root *root = fs_info->extent_root;
4415	u64 logical = nocow_ctx->logical;
4416	u64 len = nocow_ctx->len;
4417	int mirror_num = nocow_ctx->mirror_num;
4418	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4419	int ret;
4420	struct btrfs_trans_handle *trans = NULL;
4421	struct btrfs_path *path;
4422	int not_written = 0;
4423
4424	path = btrfs_alloc_path();
4425	if (!path) {
4426		spin_lock(&sctx->stat_lock);
4427		sctx->stat.malloc_errors++;
4428		spin_unlock(&sctx->stat_lock);
4429		not_written = 1;
4430		goto out;
4431	}
4432
4433	trans = btrfs_join_transaction(root);
4434	if (IS_ERR(trans)) {
4435		not_written = 1;
4436		goto out;
4437	}
4438
4439	ret = iterate_inodes_from_logical(logical, fs_info, path,
4440			record_inode_for_nocow, nocow_ctx, false);
4441	if (ret != 0 && ret != -ENOENT) {
4442		btrfs_warn(fs_info,
4443			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4444			   logical, physical_for_dev_replace, len, mirror_num,
4445			   ret);
4446		not_written = 1;
4447		goto out;
4448	}
4449
4450	btrfs_end_transaction(trans);
4451	trans = NULL;
4452	while (!list_empty(&nocow_ctx->inodes)) {
4453		struct scrub_nocow_inode *entry;
4454		entry = list_first_entry(&nocow_ctx->inodes,
4455					 struct scrub_nocow_inode,
4456					 list);
4457		list_del_init(&entry->list);
4458		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4459						 entry->root, nocow_ctx);
4460		kfree(entry);
4461		if (ret == COPY_COMPLETE) {
4462			ret = 0;
4463			break;
4464		} else if (ret) {
4465			break;
4466		}
4467	}
4468out:
4469	while (!list_empty(&nocow_ctx->inodes)) {
4470		struct scrub_nocow_inode *entry;
4471		entry = list_first_entry(&nocow_ctx->inodes,
4472					 struct scrub_nocow_inode,
4473					 list);
4474		list_del_init(&entry->list);
4475		kfree(entry);
4476	}
4477	if (trans && !IS_ERR(trans))
4478		btrfs_end_transaction(trans);
4479	if (not_written)
4480		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4481					    num_uncorrectable_read_errors);
4482
4483	btrfs_free_path(path);
4484	kfree(nocow_ctx);
4485
4486	scrub_pending_trans_workers_dec(sctx);
4487}
4488
4489static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4490				 u64 logical)
4491{
4492	struct extent_state *cached_state = NULL;
4493	struct btrfs_ordered_extent *ordered;
4494	struct extent_io_tree *io_tree;
4495	struct extent_map *em;
4496	u64 lockstart = start, lockend = start + len - 1;
4497	int ret = 0;
4498
4499	io_tree = &inode->io_tree;
4500
4501	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4502	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4503	if (ordered) {
4504		btrfs_put_ordered_extent(ordered);
4505		ret = 1;
4506		goto out_unlock;
4507	}
4508
4509	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4510	if (IS_ERR(em)) {
4511		ret = PTR_ERR(em);
4512		goto out_unlock;
4513	}
4514
4515	/*
4516	 * This extent does not actually cover the logical extent anymore,
4517	 * move on to the next inode.
4518	 */
4519	if (em->block_start > logical ||
4520	    em->block_start + em->block_len < logical + len ||
4521	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4522		free_extent_map(em);
4523		ret = 1;
4524		goto out_unlock;
4525	}
4526	free_extent_map(em);
 
4527
4528out_unlock:
4529	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state);
4530	return ret;
4531}
4532
4533static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4534				      struct scrub_copy_nocow_ctx *nocow_ctx)
4535{
4536	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4537	struct btrfs_key key;
4538	struct inode *inode;
4539	struct page *page;
4540	struct btrfs_root *local_root;
4541	struct extent_io_tree *io_tree;
4542	u64 physical_for_dev_replace;
4543	u64 nocow_ctx_logical;
4544	u64 len = nocow_ctx->len;
4545	unsigned long index;
4546	int srcu_index;
4547	int ret = 0;
4548	int err = 0;
4549
4550	key.objectid = root;
4551	key.type = BTRFS_ROOT_ITEM_KEY;
4552	key.offset = (u64)-1;
4553
4554	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4555
4556	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4557	if (IS_ERR(local_root)) {
4558		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4559		return PTR_ERR(local_root);
4560	}
4561
4562	key.type = BTRFS_INODE_ITEM_KEY;
4563	key.objectid = inum;
4564	key.offset = 0;
4565	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4566	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4567	if (IS_ERR(inode))
4568		return PTR_ERR(inode);
4569
4570	/* Avoid truncate/dio/punch hole.. */
4571	inode_lock(inode);
4572	inode_dio_wait(inode);
4573
4574	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4575	io_tree = &BTRFS_I(inode)->io_tree;
4576	nocow_ctx_logical = nocow_ctx->logical;
4577
4578	ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4579			nocow_ctx_logical);
4580	if (ret) {
4581		ret = ret > 0 ? 0 : ret;
4582		goto out;
4583	}
4584
4585	while (len >= PAGE_SIZE) {
4586		index = offset >> PAGE_SHIFT;
4587again:
4588		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4589		if (!page) {
4590			btrfs_err(fs_info, "find_or_create_page() failed");
4591			ret = -ENOMEM;
4592			goto out;
4593		}
4594
4595		if (PageUptodate(page)) {
4596			if (PageDirty(page))
4597				goto next_page;
4598		} else {
4599			ClearPageError(page);
4600			err = extent_read_full_page(io_tree, page,
4601							   btrfs_get_extent,
4602							   nocow_ctx->mirror_num);
4603			if (err) {
4604				ret = err;
4605				goto next_page;
4606			}
4607
4608			lock_page(page);
4609			/*
4610			 * If the page has been remove from the page cache,
4611			 * the data on it is meaningless, because it may be
4612			 * old one, the new data may be written into the new
4613			 * page in the page cache.
4614			 */
4615			if (page->mapping != inode->i_mapping) {
4616				unlock_page(page);
4617				put_page(page);
4618				goto again;
4619			}
4620			if (!PageUptodate(page)) {
4621				ret = -EIO;
4622				goto next_page;
4623			}
4624		}
4625
4626		ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4627					    nocow_ctx_logical);
4628		if (ret) {
4629			ret = ret > 0 ? 0 : ret;
4630			goto next_page;
4631		}
4632
4633		err = write_page_nocow(nocow_ctx->sctx,
4634				       physical_for_dev_replace, page);
4635		if (err)
4636			ret = err;
4637next_page:
4638		unlock_page(page);
4639		put_page(page);
4640
4641		if (ret)
4642			break;
4643
4644		offset += PAGE_SIZE;
4645		physical_for_dev_replace += PAGE_SIZE;
4646		nocow_ctx_logical += PAGE_SIZE;
4647		len -= PAGE_SIZE;
4648	}
4649	ret = COPY_COMPLETE;
4650out:
4651	inode_unlock(inode);
4652	iput(inode);
4653	return ret;
4654}
4655
4656static int write_page_nocow(struct scrub_ctx *sctx,
4657			    u64 physical_for_dev_replace, struct page *page)
4658{
4659	struct bio *bio;
4660	struct btrfs_device *dev;
 
4661
4662	dev = sctx->wr_tgtdev;
4663	if (!dev)
4664		return -EIO;
4665	if (!dev->bdev) {
4666		btrfs_warn_rl(dev->fs_info,
4667			"scrub write_page_nocow(bdev == NULL) is unexpected");
4668		return -EIO;
4669	}
4670	bio = btrfs_io_bio_alloc(1);
4671	bio->bi_iter.bi_size = 0;
4672	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4673	bio_set_dev(bio, dev->bdev);
4674	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4675	/* bio_add_page won't fail on a freshly allocated bio */
4676	bio_add_page(bio, page, PAGE_SIZE, 0);
4677
4678	if (btrfsic_submit_bio_wait(bio)) {
4679		bio_put(bio);
4680		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4681		return -EIO;
4682	}
4683
4684	bio_put(bio);
4685	return 0;
4686}