Loading...
1/*
2 * Micro Crystal RV-3029C2 rtc class driver
3 *
4 * Author: Gregory Hermant <gregory.hermant@calao-systems.com>
5 *
6 * based on previously existing rtc class drivers
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * NOTE: Currently this driver only supports the bare minimum for read
13 * and write the RTC and alarms. The extra features provided by this chip
14 * (trickle charger, eeprom, T° compensation) are unavailable.
15 */
16
17#include <linux/module.h>
18#include <linux/i2c.h>
19#include <linux/bcd.h>
20#include <linux/rtc.h>
21
22/* Register map */
23/* control section */
24#define RV3029C2_ONOFF_CTRL 0x00
25#define RV3029C2_IRQ_CTRL 0x01
26#define RV3029C2_IRQ_CTRL_AIE (1 << 0)
27#define RV3029C2_IRQ_FLAGS 0x02
28#define RV3029C2_IRQ_FLAGS_AF (1 << 0)
29#define RV3029C2_STATUS 0x03
30#define RV3029C2_STATUS_VLOW1 (1 << 2)
31#define RV3029C2_STATUS_VLOW2 (1 << 3)
32#define RV3029C2_STATUS_SR (1 << 4)
33#define RV3029C2_STATUS_PON (1 << 5)
34#define RV3029C2_STATUS_EEBUSY (1 << 7)
35#define RV3029C2_RST_CTRL 0x04
36#define RV3029C2_CONTROL_SECTION_LEN 0x05
37
38/* watch section */
39#define RV3029C2_W_SEC 0x08
40#define RV3029C2_W_MINUTES 0x09
41#define RV3029C2_W_HOURS 0x0A
42#define RV3029C2_REG_HR_12_24 (1<<6) /* 24h/12h mode */
43#define RV3029C2_REG_HR_PM (1<<5) /* PM/AM bit in 12h mode */
44#define RV3029C2_W_DATE 0x0B
45#define RV3029C2_W_DAYS 0x0C
46#define RV3029C2_W_MONTHS 0x0D
47#define RV3029C2_W_YEARS 0x0E
48#define RV3029C2_WATCH_SECTION_LEN 0x07
49
50/* alarm section */
51#define RV3029C2_A_SC 0x10
52#define RV3029C2_A_MN 0x11
53#define RV3029C2_A_HR 0x12
54#define RV3029C2_A_DT 0x13
55#define RV3029C2_A_DW 0x14
56#define RV3029C2_A_MO 0x15
57#define RV3029C2_A_YR 0x16
58#define RV3029C2_ALARM_SECTION_LEN 0x07
59
60/* timer section */
61#define RV3029C2_TIMER_LOW 0x18
62#define RV3029C2_TIMER_HIGH 0x19
63
64/* temperature section */
65#define RV3029C2_TEMP_PAGE 0x20
66
67/* eeprom data section */
68#define RV3029C2_E2P_EEDATA1 0x28
69#define RV3029C2_E2P_EEDATA2 0x29
70
71/* eeprom control section */
72#define RV3029C2_CONTROL_E2P_EECTRL 0x30
73#define RV3029C2_TRICKLE_1K (1<<0) /* 1K resistance */
74#define RV3029C2_TRICKLE_5K (1<<1) /* 5K resistance */
75#define RV3029C2_TRICKLE_20K (1<<2) /* 20K resistance */
76#define RV3029C2_TRICKLE_80K (1<<3) /* 80K resistance */
77#define RV3029C2_CONTROL_E2P_XTALOFFSET 0x31
78#define RV3029C2_CONTROL_E2P_QCOEF 0x32
79#define RV3029C2_CONTROL_E2P_TURNOVER 0x33
80
81/* user ram section */
82#define RV3029C2_USR1_RAM_PAGE 0x38
83#define RV3029C2_USR1_SECTION_LEN 0x04
84#define RV3029C2_USR2_RAM_PAGE 0x3C
85#define RV3029C2_USR2_SECTION_LEN 0x04
86
87static int
88rv3029c2_i2c_read_regs(struct i2c_client *client, u8 reg, u8 *buf,
89 unsigned len)
90{
91 int ret;
92
93 if ((reg > RV3029C2_USR1_RAM_PAGE + 7) ||
94 (reg + len > RV3029C2_USR1_RAM_PAGE + 8))
95 return -EINVAL;
96
97 ret = i2c_smbus_read_i2c_block_data(client, reg, len, buf);
98 if (ret < 0)
99 return ret;
100 if (ret < len)
101 return -EIO;
102 return 0;
103}
104
105static int
106rv3029c2_i2c_write_regs(struct i2c_client *client, u8 reg, u8 const buf[],
107 unsigned len)
108{
109 if ((reg > RV3029C2_USR1_RAM_PAGE + 7) ||
110 (reg + len > RV3029C2_USR1_RAM_PAGE + 8))
111 return -EINVAL;
112
113 return i2c_smbus_write_i2c_block_data(client, reg, len, buf);
114}
115
116static int
117rv3029c2_i2c_get_sr(struct i2c_client *client, u8 *buf)
118{
119 int ret = rv3029c2_i2c_read_regs(client, RV3029C2_STATUS, buf, 1);
120
121 if (ret < 0)
122 return -EIO;
123 dev_dbg(&client->dev, "status = 0x%.2x (%d)\n", buf[0], buf[0]);
124 return 0;
125}
126
127static int
128rv3029c2_i2c_set_sr(struct i2c_client *client, u8 val)
129{
130 u8 buf[1];
131 int sr;
132
133 buf[0] = val;
134 sr = rv3029c2_i2c_write_regs(client, RV3029C2_STATUS, buf, 1);
135 dev_dbg(&client->dev, "status = 0x%.2x (%d)\n", buf[0], buf[0]);
136 if (sr < 0)
137 return -EIO;
138 return 0;
139}
140
141static int
142rv3029c2_i2c_read_time(struct i2c_client *client, struct rtc_time *tm)
143{
144 u8 buf[1];
145 int ret;
146 u8 regs[RV3029C2_WATCH_SECTION_LEN] = { 0, };
147
148 ret = rv3029c2_i2c_get_sr(client, buf);
149 if (ret < 0) {
150 dev_err(&client->dev, "%s: reading SR failed\n", __func__);
151 return -EIO;
152 }
153
154 ret = rv3029c2_i2c_read_regs(client, RV3029C2_W_SEC , regs,
155 RV3029C2_WATCH_SECTION_LEN);
156 if (ret < 0) {
157 dev_err(&client->dev, "%s: reading RTC section failed\n",
158 __func__);
159 return ret;
160 }
161
162 tm->tm_sec = bcd2bin(regs[RV3029C2_W_SEC-RV3029C2_W_SEC]);
163 tm->tm_min = bcd2bin(regs[RV3029C2_W_MINUTES-RV3029C2_W_SEC]);
164
165 /* HR field has a more complex interpretation */
166 {
167 const u8 _hr = regs[RV3029C2_W_HOURS-RV3029C2_W_SEC];
168 if (_hr & RV3029C2_REG_HR_12_24) {
169 /* 12h format */
170 tm->tm_hour = bcd2bin(_hr & 0x1f);
171 if (_hr & RV3029C2_REG_HR_PM) /* PM flag set */
172 tm->tm_hour += 12;
173 } else /* 24h format */
174 tm->tm_hour = bcd2bin(_hr & 0x3f);
175 }
176
177 tm->tm_mday = bcd2bin(regs[RV3029C2_W_DATE-RV3029C2_W_SEC]);
178 tm->tm_mon = bcd2bin(regs[RV3029C2_W_MONTHS-RV3029C2_W_SEC]) - 1;
179 tm->tm_year = bcd2bin(regs[RV3029C2_W_YEARS-RV3029C2_W_SEC]) + 100;
180 tm->tm_wday = bcd2bin(regs[RV3029C2_W_DAYS-RV3029C2_W_SEC]) - 1;
181
182 return 0;
183}
184
185static int rv3029c2_rtc_read_time(struct device *dev, struct rtc_time *tm)
186{
187 return rv3029c2_i2c_read_time(to_i2c_client(dev), tm);
188}
189
190static int
191rv3029c2_i2c_read_alarm(struct i2c_client *client, struct rtc_wkalrm *alarm)
192{
193 struct rtc_time *const tm = &alarm->time;
194 int ret;
195 u8 regs[8];
196
197 ret = rv3029c2_i2c_get_sr(client, regs);
198 if (ret < 0) {
199 dev_err(&client->dev, "%s: reading SR failed\n", __func__);
200 return -EIO;
201 }
202
203 ret = rv3029c2_i2c_read_regs(client, RV3029C2_A_SC, regs,
204 RV3029C2_ALARM_SECTION_LEN);
205
206 if (ret < 0) {
207 dev_err(&client->dev, "%s: reading alarm section failed\n",
208 __func__);
209 return ret;
210 }
211
212 tm->tm_sec = bcd2bin(regs[RV3029C2_A_SC-RV3029C2_A_SC] & 0x7f);
213 tm->tm_min = bcd2bin(regs[RV3029C2_A_MN-RV3029C2_A_SC] & 0x7f);
214 tm->tm_hour = bcd2bin(regs[RV3029C2_A_HR-RV3029C2_A_SC] & 0x3f);
215 tm->tm_mday = bcd2bin(regs[RV3029C2_A_DT-RV3029C2_A_SC] & 0x3f);
216 tm->tm_mon = bcd2bin(regs[RV3029C2_A_MO-RV3029C2_A_SC] & 0x1f) - 1;
217 tm->tm_year = bcd2bin(regs[RV3029C2_A_YR-RV3029C2_A_SC] & 0x7f) + 100;
218 tm->tm_wday = bcd2bin(regs[RV3029C2_A_DW-RV3029C2_A_SC] & 0x07) - 1;
219
220 return 0;
221}
222
223static int
224rv3029c2_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
225{
226 return rv3029c2_i2c_read_alarm(to_i2c_client(dev), alarm);
227}
228
229static int rv3029c2_rtc_i2c_alarm_set_irq(struct i2c_client *client,
230 int enable)
231{
232 int ret;
233 u8 buf[1];
234
235 /* enable AIE irq */
236 ret = rv3029c2_i2c_read_regs(client, RV3029C2_IRQ_CTRL, buf, 1);
237 if (ret < 0) {
238 dev_err(&client->dev, "can't read INT reg\n");
239 return ret;
240 }
241 if (enable)
242 buf[0] |= RV3029C2_IRQ_CTRL_AIE;
243 else
244 buf[0] &= ~RV3029C2_IRQ_CTRL_AIE;
245
246 ret = rv3029c2_i2c_write_regs(client, RV3029C2_IRQ_CTRL, buf, 1);
247 if (ret < 0) {
248 dev_err(&client->dev, "can't set INT reg\n");
249 return ret;
250 }
251
252 return 0;
253}
254
255static int rv3029c2_rtc_i2c_set_alarm(struct i2c_client *client,
256 struct rtc_wkalrm *alarm)
257{
258 struct rtc_time *const tm = &alarm->time;
259 int ret;
260 u8 regs[8];
261
262 /*
263 * The clock has an 8 bit wide bcd-coded register (they never learn)
264 * for the year. tm_year is an offset from 1900 and we are interested
265 * in the 2000-2099 range, so any value less than 100 is invalid.
266 */
267 if (tm->tm_year < 100)
268 return -EINVAL;
269
270 ret = rv3029c2_i2c_get_sr(client, regs);
271 if (ret < 0) {
272 dev_err(&client->dev, "%s: reading SR failed\n", __func__);
273 return -EIO;
274 }
275 regs[RV3029C2_A_SC-RV3029C2_A_SC] = bin2bcd(tm->tm_sec & 0x7f);
276 regs[RV3029C2_A_MN-RV3029C2_A_SC] = bin2bcd(tm->tm_min & 0x7f);
277 regs[RV3029C2_A_HR-RV3029C2_A_SC] = bin2bcd(tm->tm_hour & 0x3f);
278 regs[RV3029C2_A_DT-RV3029C2_A_SC] = bin2bcd(tm->tm_mday & 0x3f);
279 regs[RV3029C2_A_MO-RV3029C2_A_SC] = bin2bcd((tm->tm_mon & 0x1f) - 1);
280 regs[RV3029C2_A_DW-RV3029C2_A_SC] = bin2bcd((tm->tm_wday & 7) - 1);
281 regs[RV3029C2_A_YR-RV3029C2_A_SC] = bin2bcd((tm->tm_year & 0x7f) - 100);
282
283 ret = rv3029c2_i2c_write_regs(client, RV3029C2_A_SC, regs,
284 RV3029C2_ALARM_SECTION_LEN);
285 if (ret < 0)
286 return ret;
287
288 if (alarm->enabled) {
289 u8 buf[1];
290
291 /* clear AF flag */
292 ret = rv3029c2_i2c_read_regs(client, RV3029C2_IRQ_FLAGS,
293 buf, 1);
294 if (ret < 0) {
295 dev_err(&client->dev, "can't read alarm flag\n");
296 return ret;
297 }
298 buf[0] &= ~RV3029C2_IRQ_FLAGS_AF;
299 ret = rv3029c2_i2c_write_regs(client, RV3029C2_IRQ_FLAGS,
300 buf, 1);
301 if (ret < 0) {
302 dev_err(&client->dev, "can't set alarm flag\n");
303 return ret;
304 }
305 /* enable AIE irq */
306 ret = rv3029c2_rtc_i2c_alarm_set_irq(client, 1);
307 if (ret)
308 return ret;
309
310 dev_dbg(&client->dev, "alarm IRQ armed\n");
311 } else {
312 /* disable AIE irq */
313 ret = rv3029c2_rtc_i2c_alarm_set_irq(client, 1);
314 if (ret)
315 return ret;
316
317 dev_dbg(&client->dev, "alarm IRQ disabled\n");
318 }
319
320 return 0;
321}
322
323static int rv3029c2_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
324{
325 return rv3029c2_rtc_i2c_set_alarm(to_i2c_client(dev), alarm);
326}
327
328static int
329rv3029c2_i2c_set_time(struct i2c_client *client, struct rtc_time const *tm)
330{
331 u8 regs[8];
332 int ret;
333
334 /*
335 * The clock has an 8 bit wide bcd-coded register (they never learn)
336 * for the year. tm_year is an offset from 1900 and we are interested
337 * in the 2000-2099 range, so any value less than 100 is invalid.
338 */
339 if (tm->tm_year < 100)
340 return -EINVAL;
341
342 regs[RV3029C2_W_SEC-RV3029C2_W_SEC] = bin2bcd(tm->tm_sec);
343 regs[RV3029C2_W_MINUTES-RV3029C2_W_SEC] = bin2bcd(tm->tm_min);
344 regs[RV3029C2_W_HOURS-RV3029C2_W_SEC] = bin2bcd(tm->tm_hour);
345 regs[RV3029C2_W_DATE-RV3029C2_W_SEC] = bin2bcd(tm->tm_mday);
346 regs[RV3029C2_W_MONTHS-RV3029C2_W_SEC] = bin2bcd(tm->tm_mon+1);
347 regs[RV3029C2_W_DAYS-RV3029C2_W_SEC] = bin2bcd((tm->tm_wday & 7)+1);
348 regs[RV3029C2_W_YEARS-RV3029C2_W_SEC] = bin2bcd(tm->tm_year - 100);
349
350 ret = rv3029c2_i2c_write_regs(client, RV3029C2_W_SEC, regs,
351 RV3029C2_WATCH_SECTION_LEN);
352 if (ret < 0)
353 return ret;
354
355 ret = rv3029c2_i2c_get_sr(client, regs);
356 if (ret < 0) {
357 dev_err(&client->dev, "%s: reading SR failed\n", __func__);
358 return ret;
359 }
360 /* clear PON bit */
361 ret = rv3029c2_i2c_set_sr(client, (regs[0] & ~RV3029C2_STATUS_PON));
362 if (ret < 0) {
363 dev_err(&client->dev, "%s: reading SR failed\n", __func__);
364 return ret;
365 }
366
367 return 0;
368}
369
370static int rv3029c2_rtc_set_time(struct device *dev, struct rtc_time *tm)
371{
372 return rv3029c2_i2c_set_time(to_i2c_client(dev), tm);
373}
374
375static const struct rtc_class_ops rv3029c2_rtc_ops = {
376 .read_time = rv3029c2_rtc_read_time,
377 .set_time = rv3029c2_rtc_set_time,
378 .read_alarm = rv3029c2_rtc_read_alarm,
379 .set_alarm = rv3029c2_rtc_set_alarm,
380};
381
382static struct i2c_device_id rv3029c2_id[] = {
383 { "rv3029c2", 0 },
384 { }
385};
386MODULE_DEVICE_TABLE(i2c, rv3029c2_id);
387
388static int __devinit
389rv3029c2_probe(struct i2c_client *client, const struct i2c_device_id *id)
390{
391 struct rtc_device *rtc;
392 int rc = 0;
393 u8 buf[1];
394
395 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_EMUL))
396 return -ENODEV;
397
398 rtc = rtc_device_register(client->name,
399 &client->dev, &rv3029c2_rtc_ops,
400 THIS_MODULE);
401
402 if (IS_ERR(rtc))
403 return PTR_ERR(rtc);
404
405 i2c_set_clientdata(client, rtc);
406
407 rc = rv3029c2_i2c_get_sr(client, buf);
408 if (rc < 0) {
409 dev_err(&client->dev, "reading status failed\n");
410 goto exit_unregister;
411 }
412
413 return 0;
414
415exit_unregister:
416 rtc_device_unregister(rtc);
417
418 return rc;
419}
420
421static int __devexit rv3029c2_remove(struct i2c_client *client)
422{
423 struct rtc_device *rtc = i2c_get_clientdata(client);
424
425 rtc_device_unregister(rtc);
426
427 return 0;
428}
429
430static struct i2c_driver rv3029c2_driver = {
431 .driver = {
432 .name = "rtc-rv3029c2",
433 },
434 .probe = rv3029c2_probe,
435 .remove = __devexit_p(rv3029c2_remove),
436 .id_table = rv3029c2_id,
437};
438
439module_i2c_driver(rv3029c2_driver);
440
441MODULE_AUTHOR("Gregory Hermant <gregory.hermant@calao-systems.com>");
442MODULE_DESCRIPTION("Micro Crystal RV3029C2 RTC driver");
443MODULE_LICENSE("GPL");
1/*
2 * Micro Crystal RV-3029 / RV-3049 rtc class driver
3 *
4 * Author: Gregory Hermant <gregory.hermant@calao-systems.com>
5 * Michael Buesch <m@bues.ch>
6 *
7 * based on previously existing rtc class drivers
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 */
14
15#include <linux/module.h>
16#include <linux/i2c.h>
17#include <linux/spi/spi.h>
18#include <linux/bcd.h>
19#include <linux/rtc.h>
20#include <linux/delay.h>
21#include <linux/of.h>
22#include <linux/hwmon.h>
23#include <linux/hwmon-sysfs.h>
24#include <linux/regmap.h>
25
26/* Register map */
27/* control section */
28#define RV3029_ONOFF_CTRL 0x00
29#define RV3029_ONOFF_CTRL_WE BIT(0)
30#define RV3029_ONOFF_CTRL_TE BIT(1)
31#define RV3029_ONOFF_CTRL_TAR BIT(2)
32#define RV3029_ONOFF_CTRL_EERE BIT(3)
33#define RV3029_ONOFF_CTRL_SRON BIT(4)
34#define RV3029_ONOFF_CTRL_TD0 BIT(5)
35#define RV3029_ONOFF_CTRL_TD1 BIT(6)
36#define RV3029_ONOFF_CTRL_CLKINT BIT(7)
37#define RV3029_IRQ_CTRL 0x01
38#define RV3029_IRQ_CTRL_AIE BIT(0)
39#define RV3029_IRQ_CTRL_TIE BIT(1)
40#define RV3029_IRQ_CTRL_V1IE BIT(2)
41#define RV3029_IRQ_CTRL_V2IE BIT(3)
42#define RV3029_IRQ_CTRL_SRIE BIT(4)
43#define RV3029_IRQ_FLAGS 0x02
44#define RV3029_IRQ_FLAGS_AF BIT(0)
45#define RV3029_IRQ_FLAGS_TF BIT(1)
46#define RV3029_IRQ_FLAGS_V1IF BIT(2)
47#define RV3029_IRQ_FLAGS_V2IF BIT(3)
48#define RV3029_IRQ_FLAGS_SRF BIT(4)
49#define RV3029_STATUS 0x03
50#define RV3029_STATUS_VLOW1 BIT(2)
51#define RV3029_STATUS_VLOW2 BIT(3)
52#define RV3029_STATUS_SR BIT(4)
53#define RV3029_STATUS_PON BIT(5)
54#define RV3029_STATUS_EEBUSY BIT(7)
55#define RV3029_RST_CTRL 0x04
56#define RV3029_RST_CTRL_SYSR BIT(4)
57#define RV3029_CONTROL_SECTION_LEN 0x05
58
59/* watch section */
60#define RV3029_W_SEC 0x08
61#define RV3029_W_MINUTES 0x09
62#define RV3029_W_HOURS 0x0A
63#define RV3029_REG_HR_12_24 BIT(6) /* 24h/12h mode */
64#define RV3029_REG_HR_PM BIT(5) /* PM/AM bit in 12h mode */
65#define RV3029_W_DATE 0x0B
66#define RV3029_W_DAYS 0x0C
67#define RV3029_W_MONTHS 0x0D
68#define RV3029_W_YEARS 0x0E
69#define RV3029_WATCH_SECTION_LEN 0x07
70
71/* alarm section */
72#define RV3029_A_SC 0x10
73#define RV3029_A_MN 0x11
74#define RV3029_A_HR 0x12
75#define RV3029_A_DT 0x13
76#define RV3029_A_DW 0x14
77#define RV3029_A_MO 0x15
78#define RV3029_A_YR 0x16
79#define RV3029_A_AE_X BIT(7)
80#define RV3029_ALARM_SECTION_LEN 0x07
81
82/* timer section */
83#define RV3029_TIMER_LOW 0x18
84#define RV3029_TIMER_HIGH 0x19
85
86/* temperature section */
87#define RV3029_TEMP_PAGE 0x20
88
89/* eeprom data section */
90#define RV3029_E2P_EEDATA1 0x28
91#define RV3029_E2P_EEDATA2 0x29
92#define RV3029_E2PDATA_SECTION_LEN 0x02
93
94/* eeprom control section */
95#define RV3029_CONTROL_E2P_EECTRL 0x30
96#define RV3029_EECTRL_THP BIT(0) /* temp scan interval */
97#define RV3029_EECTRL_THE BIT(1) /* thermometer enable */
98#define RV3029_EECTRL_FD0 BIT(2) /* CLKOUT */
99#define RV3029_EECTRL_FD1 BIT(3) /* CLKOUT */
100#define RV3029_TRICKLE_1K BIT(4) /* 1.5K resistance */
101#define RV3029_TRICKLE_5K BIT(5) /* 5K resistance */
102#define RV3029_TRICKLE_20K BIT(6) /* 20K resistance */
103#define RV3029_TRICKLE_80K BIT(7) /* 80K resistance */
104#define RV3029_TRICKLE_MASK (RV3029_TRICKLE_1K |\
105 RV3029_TRICKLE_5K |\
106 RV3029_TRICKLE_20K |\
107 RV3029_TRICKLE_80K)
108#define RV3029_TRICKLE_SHIFT 4
109#define RV3029_CONTROL_E2P_XOFFS 0x31 /* XTAL offset */
110#define RV3029_CONTROL_E2P_XOFFS_SIGN BIT(7) /* Sign: 1->pos, 0->neg */
111#define RV3029_CONTROL_E2P_QCOEF 0x32 /* XTAL temp drift coef */
112#define RV3029_CONTROL_E2P_TURNOVER 0x33 /* XTAL turnover temp (in *C) */
113#define RV3029_CONTROL_E2P_TOV_MASK 0x3F /* XTAL turnover temp mask */
114
115/* user ram section */
116#define RV3029_USR1_RAM_PAGE 0x38
117#define RV3029_USR1_SECTION_LEN 0x04
118#define RV3029_USR2_RAM_PAGE 0x3C
119#define RV3029_USR2_SECTION_LEN 0x04
120
121struct rv3029_data {
122 struct device *dev;
123 struct rtc_device *rtc;
124 struct regmap *regmap;
125 int irq;
126};
127
128static int rv3029_read_regs(struct device *dev, u8 reg, u8 *buf,
129 unsigned int len)
130{
131 struct rv3029_data *rv3029 = dev_get_drvdata(dev);
132
133 if ((reg > RV3029_USR1_RAM_PAGE + 7) ||
134 (reg + len > RV3029_USR1_RAM_PAGE + 8))
135 return -EINVAL;
136
137 return regmap_bulk_read(rv3029->regmap, reg, buf, len);
138}
139
140static int rv3029_write_regs(struct device *dev, u8 reg, u8 const buf[],
141 unsigned int len)
142{
143 struct rv3029_data *rv3029 = dev_get_drvdata(dev);
144
145 if ((reg > RV3029_USR1_RAM_PAGE + 7) ||
146 (reg + len > RV3029_USR1_RAM_PAGE + 8))
147 return -EINVAL;
148
149 return regmap_bulk_write(rv3029->regmap, reg, buf, len);
150}
151
152static int rv3029_update_bits(struct device *dev, u8 reg, u8 mask, u8 set)
153{
154 u8 buf;
155 int ret;
156
157 ret = rv3029_read_regs(dev, reg, &buf, 1);
158 if (ret < 0)
159 return ret;
160 buf &= ~mask;
161 buf |= set & mask;
162 ret = rv3029_write_regs(dev, reg, &buf, 1);
163 if (ret < 0)
164 return ret;
165
166 return 0;
167}
168
169static int rv3029_get_sr(struct device *dev, u8 *buf)
170{
171 int ret = rv3029_read_regs(dev, RV3029_STATUS, buf, 1);
172
173 if (ret < 0)
174 return -EIO;
175 dev_dbg(dev, "status = 0x%.2x (%d)\n", buf[0], buf[0]);
176 return 0;
177}
178
179static int rv3029_set_sr(struct device *dev, u8 val)
180{
181 u8 buf[1];
182 int sr;
183
184 buf[0] = val;
185 sr = rv3029_write_regs(dev, RV3029_STATUS, buf, 1);
186 dev_dbg(dev, "status = 0x%.2x (%d)\n", buf[0], buf[0]);
187 if (sr < 0)
188 return -EIO;
189 return 0;
190}
191
192static int rv3029_eeprom_busywait(struct device *dev)
193{
194 int i, ret;
195 u8 sr;
196
197 for (i = 100; i > 0; i--) {
198 ret = rv3029_get_sr(dev, &sr);
199 if (ret < 0)
200 break;
201 if (!(sr & RV3029_STATUS_EEBUSY))
202 break;
203 usleep_range(1000, 10000);
204 }
205 if (i <= 0) {
206 dev_err(dev, "EEPROM busy wait timeout.\n");
207 return -ETIMEDOUT;
208 }
209
210 return ret;
211}
212
213static int rv3029_eeprom_exit(struct device *dev)
214{
215 /* Re-enable eeprom refresh */
216 return rv3029_update_bits(dev, RV3029_ONOFF_CTRL,
217 RV3029_ONOFF_CTRL_EERE,
218 RV3029_ONOFF_CTRL_EERE);
219}
220
221static int rv3029_eeprom_enter(struct device *dev)
222{
223 int ret;
224 u8 sr;
225
226 /* Check whether we are in the allowed voltage range. */
227 ret = rv3029_get_sr(dev, &sr);
228 if (ret < 0)
229 return ret;
230 if (sr & (RV3029_STATUS_VLOW1 | RV3029_STATUS_VLOW2)) {
231 /* We clear the bits and retry once just in case
232 * we had a brown out in early startup.
233 */
234 sr &= ~RV3029_STATUS_VLOW1;
235 sr &= ~RV3029_STATUS_VLOW2;
236 ret = rv3029_set_sr(dev, sr);
237 if (ret < 0)
238 return ret;
239 usleep_range(1000, 10000);
240 ret = rv3029_get_sr(dev, &sr);
241 if (ret < 0)
242 return ret;
243 if (sr & (RV3029_STATUS_VLOW1 | RV3029_STATUS_VLOW2)) {
244 dev_err(dev,
245 "Supply voltage is too low to safely access the EEPROM.\n");
246 return -ENODEV;
247 }
248 }
249
250 /* Disable eeprom refresh. */
251 ret = rv3029_update_bits(dev, RV3029_ONOFF_CTRL, RV3029_ONOFF_CTRL_EERE,
252 0);
253 if (ret < 0)
254 return ret;
255
256 /* Wait for any previous eeprom accesses to finish. */
257 ret = rv3029_eeprom_busywait(dev);
258 if (ret < 0)
259 rv3029_eeprom_exit(dev);
260
261 return ret;
262}
263
264static int rv3029_eeprom_read(struct device *dev, u8 reg,
265 u8 buf[], size_t len)
266{
267 int ret, err;
268
269 err = rv3029_eeprom_enter(dev);
270 if (err < 0)
271 return err;
272
273 ret = rv3029_read_regs(dev, reg, buf, len);
274
275 err = rv3029_eeprom_exit(dev);
276 if (err < 0)
277 return err;
278
279 return ret;
280}
281
282static int rv3029_eeprom_write(struct device *dev, u8 reg,
283 u8 const buf[], size_t len)
284{
285 int ret;
286 size_t i;
287 u8 tmp;
288
289 ret = rv3029_eeprom_enter(dev);
290 if (ret < 0)
291 return ret;
292
293 for (i = 0; i < len; i++, reg++) {
294 ret = rv3029_read_regs(dev, reg, &tmp, 1);
295 if (ret < 0)
296 break;
297 if (tmp != buf[i]) {
298 ret = rv3029_write_regs(dev, reg, &buf[i], 1);
299 if (ret < 0)
300 break;
301 }
302 ret = rv3029_eeprom_busywait(dev);
303 if (ret < 0)
304 break;
305 }
306
307 ret = rv3029_eeprom_exit(dev);
308 if (ret < 0)
309 return ret;
310
311 return 0;
312}
313
314static int rv3029_eeprom_update_bits(struct device *dev,
315 u8 reg, u8 mask, u8 set)
316{
317 u8 buf;
318 int ret;
319
320 ret = rv3029_eeprom_read(dev, reg, &buf, 1);
321 if (ret < 0)
322 return ret;
323 buf &= ~mask;
324 buf |= set & mask;
325 ret = rv3029_eeprom_write(dev, reg, &buf, 1);
326 if (ret < 0)
327 return ret;
328
329 return 0;
330}
331
332static irqreturn_t rv3029_handle_irq(int irq, void *dev_id)
333{
334 struct device *dev = dev_id;
335 struct rv3029_data *rv3029 = dev_get_drvdata(dev);
336 struct mutex *lock = &rv3029->rtc->ops_lock;
337 unsigned long events = 0;
338 u8 flags, controls;
339 int ret;
340
341 mutex_lock(lock);
342
343 ret = rv3029_read_regs(dev, RV3029_IRQ_CTRL, &controls, 1);
344 if (ret) {
345 dev_warn(dev, "Read IRQ Control Register error %d\n", ret);
346 mutex_unlock(lock);
347 return IRQ_NONE;
348 }
349
350 ret = rv3029_read_regs(dev, RV3029_IRQ_FLAGS, &flags, 1);
351 if (ret) {
352 dev_warn(dev, "Read IRQ Flags Register error %d\n", ret);
353 mutex_unlock(lock);
354 return IRQ_NONE;
355 }
356
357 if (flags & RV3029_IRQ_FLAGS_AF) {
358 flags &= ~RV3029_IRQ_FLAGS_AF;
359 controls &= ~RV3029_IRQ_CTRL_AIE;
360 events |= RTC_AF;
361 }
362
363 if (events) {
364 rtc_update_irq(rv3029->rtc, 1, events);
365 rv3029_write_regs(dev, RV3029_IRQ_FLAGS, &flags, 1);
366 rv3029_write_regs(dev, RV3029_IRQ_CTRL, &controls, 1);
367 }
368 mutex_unlock(lock);
369
370 return IRQ_HANDLED;
371}
372
373static int rv3029_read_time(struct device *dev, struct rtc_time *tm)
374{
375 u8 buf[1];
376 int ret;
377 u8 regs[RV3029_WATCH_SECTION_LEN] = { 0, };
378
379 ret = rv3029_get_sr(dev, buf);
380 if (ret < 0) {
381 dev_err(dev, "%s: reading SR failed\n", __func__);
382 return -EIO;
383 }
384
385 ret = rv3029_read_regs(dev, RV3029_W_SEC, regs,
386 RV3029_WATCH_SECTION_LEN);
387 if (ret < 0) {
388 dev_err(dev, "%s: reading RTC section failed\n", __func__);
389 return ret;
390 }
391
392 tm->tm_sec = bcd2bin(regs[RV3029_W_SEC - RV3029_W_SEC]);
393 tm->tm_min = bcd2bin(regs[RV3029_W_MINUTES - RV3029_W_SEC]);
394
395 /* HR field has a more complex interpretation */
396 {
397 const u8 _hr = regs[RV3029_W_HOURS - RV3029_W_SEC];
398
399 if (_hr & RV3029_REG_HR_12_24) {
400 /* 12h format */
401 tm->tm_hour = bcd2bin(_hr & 0x1f);
402 if (_hr & RV3029_REG_HR_PM) /* PM flag set */
403 tm->tm_hour += 12;
404 } else /* 24h format */
405 tm->tm_hour = bcd2bin(_hr & 0x3f);
406 }
407
408 tm->tm_mday = bcd2bin(regs[RV3029_W_DATE - RV3029_W_SEC]);
409 tm->tm_mon = bcd2bin(regs[RV3029_W_MONTHS - RV3029_W_SEC]) - 1;
410 tm->tm_year = bcd2bin(regs[RV3029_W_YEARS - RV3029_W_SEC]) + 100;
411 tm->tm_wday = bcd2bin(regs[RV3029_W_DAYS - RV3029_W_SEC]) - 1;
412
413 return 0;
414}
415
416static int rv3029_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
417{
418 struct rtc_time *const tm = &alarm->time;
419 int ret;
420 u8 regs[8], controls, flags;
421
422 ret = rv3029_get_sr(dev, regs);
423 if (ret < 0) {
424 dev_err(dev, "%s: reading SR failed\n", __func__);
425 return -EIO;
426 }
427
428 ret = rv3029_read_regs(dev, RV3029_A_SC, regs,
429 RV3029_ALARM_SECTION_LEN);
430
431 if (ret < 0) {
432 dev_err(dev, "%s: reading alarm section failed\n", __func__);
433 return ret;
434 }
435
436 ret = rv3029_read_regs(dev, RV3029_IRQ_CTRL, &controls, 1);
437 if (ret) {
438 dev_err(dev, "Read IRQ Control Register error %d\n", ret);
439 return ret;
440 }
441 ret = rv3029_read_regs(dev, RV3029_IRQ_FLAGS, &flags, 1);
442 if (ret < 0) {
443 dev_err(dev, "Read IRQ Flags Register error %d\n", ret);
444 return ret;
445 }
446
447 tm->tm_sec = bcd2bin(regs[RV3029_A_SC - RV3029_A_SC] & 0x7f);
448 tm->tm_min = bcd2bin(regs[RV3029_A_MN - RV3029_A_SC] & 0x7f);
449 tm->tm_hour = bcd2bin(regs[RV3029_A_HR - RV3029_A_SC] & 0x3f);
450 tm->tm_mday = bcd2bin(regs[RV3029_A_DT - RV3029_A_SC] & 0x3f);
451 tm->tm_mon = bcd2bin(regs[RV3029_A_MO - RV3029_A_SC] & 0x1f) - 1;
452 tm->tm_year = bcd2bin(regs[RV3029_A_YR - RV3029_A_SC] & 0x7f) + 100;
453 tm->tm_wday = bcd2bin(regs[RV3029_A_DW - RV3029_A_SC] & 0x07) - 1;
454
455 alarm->enabled = !!(controls & RV3029_IRQ_CTRL_AIE);
456 alarm->pending = (flags & RV3029_IRQ_FLAGS_AF) && alarm->enabled;
457
458 return 0;
459}
460
461static int rv3029_alarm_irq_enable(struct device *dev, unsigned int enable)
462{
463 int ret;
464 u8 controls;
465
466 ret = rv3029_read_regs(dev, RV3029_IRQ_CTRL, &controls, 1);
467 if (ret < 0) {
468 dev_warn(dev, "Read IRQ Control Register error %d\n", ret);
469 return ret;
470 }
471
472 /* enable/disable AIE irq */
473 if (enable)
474 controls |= RV3029_IRQ_CTRL_AIE;
475 else
476 controls &= ~RV3029_IRQ_CTRL_AIE;
477
478 ret = rv3029_write_regs(dev, RV3029_IRQ_CTRL, &controls, 1);
479 if (ret < 0) {
480 dev_err(dev, "can't update INT reg\n");
481 return ret;
482 }
483
484 return 0;
485}
486
487static int rv3029_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
488{
489 struct rtc_time *const tm = &alarm->time;
490 int ret;
491 u8 regs[8];
492
493 /*
494 * The clock has an 8 bit wide bcd-coded register (they never learn)
495 * for the year. tm_year is an offset from 1900 and we are interested
496 * in the 2000-2099 range, so any value less than 100 is invalid.
497 */
498 if (tm->tm_year < 100)
499 return -EINVAL;
500
501 ret = rv3029_get_sr(dev, regs);
502 if (ret < 0) {
503 dev_err(dev, "%s: reading SR failed\n", __func__);
504 return -EIO;
505 }
506
507 /* Activate all the alarms with AE_x bit */
508 regs[RV3029_A_SC - RV3029_A_SC] = bin2bcd(tm->tm_sec) | RV3029_A_AE_X;
509 regs[RV3029_A_MN - RV3029_A_SC] = bin2bcd(tm->tm_min) | RV3029_A_AE_X;
510 regs[RV3029_A_HR - RV3029_A_SC] = (bin2bcd(tm->tm_hour) & 0x3f)
511 | RV3029_A_AE_X;
512 regs[RV3029_A_DT - RV3029_A_SC] = (bin2bcd(tm->tm_mday) & 0x3f)
513 | RV3029_A_AE_X;
514 regs[RV3029_A_MO - RV3029_A_SC] = (bin2bcd(tm->tm_mon + 1) & 0x1f)
515 | RV3029_A_AE_X;
516 regs[RV3029_A_DW - RV3029_A_SC] = (bin2bcd(tm->tm_wday + 1) & 0x7)
517 | RV3029_A_AE_X;
518 regs[RV3029_A_YR - RV3029_A_SC] = (bin2bcd(tm->tm_year - 100))
519 | RV3029_A_AE_X;
520
521 /* Write the alarm */
522 ret = rv3029_write_regs(dev, RV3029_A_SC, regs,
523 RV3029_ALARM_SECTION_LEN);
524 if (ret < 0)
525 return ret;
526
527 if (alarm->enabled) {
528 /* enable AIE irq */
529 ret = rv3029_alarm_irq_enable(dev, 1);
530 if (ret)
531 return ret;
532 } else {
533 /* disable AIE irq */
534 ret = rv3029_alarm_irq_enable(dev, 0);
535 if (ret)
536 return ret;
537 }
538
539 return 0;
540}
541
542static int rv3029_set_time(struct device *dev, struct rtc_time *tm)
543{
544 u8 regs[8];
545 int ret;
546
547 /*
548 * The clock has an 8 bit wide bcd-coded register (they never learn)
549 * for the year. tm_year is an offset from 1900 and we are interested
550 * in the 2000-2099 range, so any value less than 100 is invalid.
551 */
552 if (tm->tm_year < 100)
553 return -EINVAL;
554
555 regs[RV3029_W_SEC - RV3029_W_SEC] = bin2bcd(tm->tm_sec);
556 regs[RV3029_W_MINUTES - RV3029_W_SEC] = bin2bcd(tm->tm_min);
557 regs[RV3029_W_HOURS - RV3029_W_SEC] = bin2bcd(tm->tm_hour);
558 regs[RV3029_W_DATE - RV3029_W_SEC] = bin2bcd(tm->tm_mday);
559 regs[RV3029_W_MONTHS - RV3029_W_SEC] = bin2bcd(tm->tm_mon + 1);
560 regs[RV3029_W_DAYS - RV3029_W_SEC] = bin2bcd(tm->tm_wday + 1) & 0x7;
561 regs[RV3029_W_YEARS - RV3029_W_SEC] = bin2bcd(tm->tm_year - 100);
562
563 ret = rv3029_write_regs(dev, RV3029_W_SEC, regs,
564 RV3029_WATCH_SECTION_LEN);
565 if (ret < 0)
566 return ret;
567
568 ret = rv3029_get_sr(dev, regs);
569 if (ret < 0) {
570 dev_err(dev, "%s: reading SR failed\n", __func__);
571 return ret;
572 }
573 /* clear PON bit */
574 ret = rv3029_set_sr(dev, (regs[0] & ~RV3029_STATUS_PON));
575 if (ret < 0) {
576 dev_err(dev, "%s: reading SR failed\n", __func__);
577 return ret;
578 }
579
580 return 0;
581}
582
583static const struct rv3029_trickle_tab_elem {
584 u32 r; /* resistance in ohms */
585 u8 conf; /* trickle config bits */
586} rv3029_trickle_tab[] = {
587 {
588 .r = 1076,
589 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K |
590 RV3029_TRICKLE_20K | RV3029_TRICKLE_80K,
591 }, {
592 .r = 1091,
593 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K |
594 RV3029_TRICKLE_20K,
595 }, {
596 .r = 1137,
597 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K |
598 RV3029_TRICKLE_80K,
599 }, {
600 .r = 1154,
601 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K,
602 }, {
603 .r = 1371,
604 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_20K |
605 RV3029_TRICKLE_80K,
606 }, {
607 .r = 1395,
608 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_20K,
609 }, {
610 .r = 1472,
611 .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_80K,
612 }, {
613 .r = 1500,
614 .conf = RV3029_TRICKLE_1K,
615 }, {
616 .r = 3810,
617 .conf = RV3029_TRICKLE_5K | RV3029_TRICKLE_20K |
618 RV3029_TRICKLE_80K,
619 }, {
620 .r = 4000,
621 .conf = RV3029_TRICKLE_5K | RV3029_TRICKLE_20K,
622 }, {
623 .r = 4706,
624 .conf = RV3029_TRICKLE_5K | RV3029_TRICKLE_80K,
625 }, {
626 .r = 5000,
627 .conf = RV3029_TRICKLE_5K,
628 }, {
629 .r = 16000,
630 .conf = RV3029_TRICKLE_20K | RV3029_TRICKLE_80K,
631 }, {
632 .r = 20000,
633 .conf = RV3029_TRICKLE_20K,
634 }, {
635 .r = 80000,
636 .conf = RV3029_TRICKLE_80K,
637 },
638};
639
640static void rv3029_trickle_config(struct device *dev)
641{
642 struct device_node *of_node = dev->of_node;
643 const struct rv3029_trickle_tab_elem *elem;
644 int i, err;
645 u32 ohms;
646 u8 trickle_set_bits;
647
648 if (!of_node)
649 return;
650
651 /* Configure the trickle charger. */
652 err = of_property_read_u32(of_node, "trickle-resistor-ohms", &ohms);
653 if (err) {
654 /* Disable trickle charger. */
655 trickle_set_bits = 0;
656 } else {
657 /* Enable trickle charger. */
658 for (i = 0; i < ARRAY_SIZE(rv3029_trickle_tab); i++) {
659 elem = &rv3029_trickle_tab[i];
660 if (elem->r >= ohms)
661 break;
662 }
663 trickle_set_bits = elem->conf;
664 dev_info(dev,
665 "Trickle charger enabled at %d ohms resistance.\n",
666 elem->r);
667 }
668 err = rv3029_eeprom_update_bits(dev, RV3029_CONTROL_E2P_EECTRL,
669 RV3029_TRICKLE_MASK,
670 trickle_set_bits);
671 if (err < 0)
672 dev_err(dev, "Failed to update trickle charger config\n");
673}
674
675#ifdef CONFIG_RTC_DRV_RV3029_HWMON
676
677static int rv3029_read_temp(struct device *dev, int *temp_mC)
678{
679 int ret;
680 u8 temp;
681
682 ret = rv3029_read_regs(dev, RV3029_TEMP_PAGE, &temp, 1);
683 if (ret < 0)
684 return ret;
685
686 *temp_mC = ((int)temp - 60) * 1000;
687
688 return 0;
689}
690
691static ssize_t rv3029_hwmon_show_temp(struct device *dev,
692 struct device_attribute *attr,
693 char *buf)
694{
695 int ret, temp_mC;
696
697 ret = rv3029_read_temp(dev, &temp_mC);
698 if (ret < 0)
699 return ret;
700
701 return sprintf(buf, "%d\n", temp_mC);
702}
703
704static ssize_t rv3029_hwmon_set_update_interval(struct device *dev,
705 struct device_attribute *attr,
706 const char *buf,
707 size_t count)
708{
709 unsigned long interval_ms;
710 int ret;
711 u8 th_set_bits = 0;
712
713 ret = kstrtoul(buf, 10, &interval_ms);
714 if (ret < 0)
715 return ret;
716
717 if (interval_ms != 0) {
718 th_set_bits |= RV3029_EECTRL_THE;
719 if (interval_ms >= 16000)
720 th_set_bits |= RV3029_EECTRL_THP;
721 }
722 ret = rv3029_eeprom_update_bits(dev, RV3029_CONTROL_E2P_EECTRL,
723 RV3029_EECTRL_THE | RV3029_EECTRL_THP,
724 th_set_bits);
725 if (ret < 0)
726 return ret;
727
728 return count;
729}
730
731static ssize_t rv3029_hwmon_show_update_interval(struct device *dev,
732 struct device_attribute *attr,
733 char *buf)
734{
735 int ret, interval_ms;
736 u8 eectrl;
737
738 ret = rv3029_eeprom_read(dev, RV3029_CONTROL_E2P_EECTRL,
739 &eectrl, 1);
740 if (ret < 0)
741 return ret;
742
743 if (eectrl & RV3029_EECTRL_THE) {
744 if (eectrl & RV3029_EECTRL_THP)
745 interval_ms = 16000;
746 else
747 interval_ms = 1000;
748 } else {
749 interval_ms = 0;
750 }
751
752 return sprintf(buf, "%d\n", interval_ms);
753}
754
755static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, rv3029_hwmon_show_temp,
756 NULL, 0);
757static SENSOR_DEVICE_ATTR(update_interval, S_IWUSR | S_IRUGO,
758 rv3029_hwmon_show_update_interval,
759 rv3029_hwmon_set_update_interval, 0);
760
761static struct attribute *rv3029_hwmon_attrs[] = {
762 &sensor_dev_attr_temp1_input.dev_attr.attr,
763 &sensor_dev_attr_update_interval.dev_attr.attr,
764 NULL,
765};
766ATTRIBUTE_GROUPS(rv3029_hwmon);
767
768static void rv3029_hwmon_register(struct device *dev, const char *name)
769{
770 struct rv3029_data *rv3029 = dev_get_drvdata(dev);
771 struct device *hwmon_dev;
772
773 hwmon_dev = devm_hwmon_device_register_with_groups(dev, name, rv3029,
774 rv3029_hwmon_groups);
775 if (IS_ERR(hwmon_dev)) {
776 dev_warn(dev, "unable to register hwmon device %ld\n",
777 PTR_ERR(hwmon_dev));
778 }
779}
780
781#else /* CONFIG_RTC_DRV_RV3029_HWMON */
782
783static void rv3029_hwmon_register(struct device *dev, const char *name)
784{
785}
786
787#endif /* CONFIG_RTC_DRV_RV3029_HWMON */
788
789static struct rtc_class_ops rv3029_rtc_ops = {
790 .read_time = rv3029_read_time,
791 .set_time = rv3029_set_time,
792};
793
794static int rv3029_probe(struct device *dev, struct regmap *regmap, int irq,
795 const char *name)
796{
797 struct rv3029_data *rv3029;
798 int rc = 0;
799 u8 buf[1];
800
801 rv3029 = devm_kzalloc(dev, sizeof(*rv3029), GFP_KERNEL);
802 if (!rv3029)
803 return -ENOMEM;
804
805 rv3029->regmap = regmap;
806 rv3029->irq = irq;
807 rv3029->dev = dev;
808 dev_set_drvdata(dev, rv3029);
809
810 rc = rv3029_get_sr(dev, buf);
811 if (rc < 0) {
812 dev_err(dev, "reading status failed\n");
813 return rc;
814 }
815
816 rv3029_trickle_config(dev);
817 rv3029_hwmon_register(dev, name);
818
819 rv3029->rtc = devm_rtc_device_register(dev, name, &rv3029_rtc_ops,
820 THIS_MODULE);
821 if (IS_ERR(rv3029->rtc)) {
822 dev_err(dev, "unable to register the class device\n");
823 return PTR_ERR(rv3029->rtc);
824 }
825
826 if (rv3029->irq > 0) {
827 rc = devm_request_threaded_irq(dev, rv3029->irq,
828 NULL, rv3029_handle_irq,
829 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
830 "rv3029", dev);
831 if (rc) {
832 dev_warn(dev, "unable to request IRQ, alarms disabled\n");
833 rv3029->irq = 0;
834 } else {
835 rv3029_rtc_ops.read_alarm = rv3029_read_alarm;
836 rv3029_rtc_ops.set_alarm = rv3029_set_alarm;
837 rv3029_rtc_ops.alarm_irq_enable = rv3029_alarm_irq_enable;
838 }
839 }
840
841 return 0;
842}
843
844#if IS_ENABLED(CONFIG_I2C)
845
846static int rv3029_i2c_probe(struct i2c_client *client,
847 const struct i2c_device_id *id)
848{
849 struct regmap *regmap;
850 static const struct regmap_config config = {
851 .reg_bits = 8,
852 .val_bits = 8,
853 };
854
855 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_I2C_BLOCK |
856 I2C_FUNC_SMBUS_BYTE)) {
857 dev_err(&client->dev, "Adapter does not support SMBUS_I2C_BLOCK or SMBUS_I2C_BYTE\n");
858 return -ENODEV;
859 }
860
861 regmap = devm_regmap_init_i2c(client, &config);
862 if (IS_ERR(regmap)) {
863 dev_err(&client->dev, "%s: regmap allocation failed: %ld\n",
864 __func__, PTR_ERR(regmap));
865 return PTR_ERR(regmap);
866 }
867
868 return rv3029_probe(&client->dev, regmap, client->irq, client->name);
869}
870
871static const struct i2c_device_id rv3029_id[] = {
872 { "rv3029", 0 },
873 { "rv3029c2", 0 },
874 { }
875};
876MODULE_DEVICE_TABLE(i2c, rv3029_id);
877
878static const struct of_device_id rv3029_of_match[] = {
879 { .compatible = "microcrystal,rv3029" },
880 /* Backward compatibility only, do not use compatibles below: */
881 { .compatible = "rv3029" },
882 { .compatible = "rv3029c2" },
883 { .compatible = "mc,rv3029c2" },
884 { }
885};
886MODULE_DEVICE_TABLE(of, rv3029_of_match);
887
888static struct i2c_driver rv3029_driver = {
889 .driver = {
890 .name = "rtc-rv3029c2",
891 .of_match_table = of_match_ptr(rv3029_of_match),
892 },
893 .probe = rv3029_i2c_probe,
894 .id_table = rv3029_id,
895};
896
897static int rv3029_register_driver(void)
898{
899 return i2c_add_driver(&rv3029_driver);
900}
901
902static void rv3029_unregister_driver(void)
903{
904 i2c_del_driver(&rv3029_driver);
905}
906
907#else
908
909static int rv3029_register_driver(void)
910{
911 return 0;
912}
913
914static void rv3029_unregister_driver(void)
915{
916}
917
918#endif
919
920#if IS_ENABLED(CONFIG_SPI_MASTER)
921
922static int rv3049_probe(struct spi_device *spi)
923{
924 static const struct regmap_config config = {
925 .reg_bits = 8,
926 .val_bits = 8,
927 };
928 struct regmap *regmap;
929
930 regmap = devm_regmap_init_spi(spi, &config);
931 if (IS_ERR(regmap)) {
932 dev_err(&spi->dev, "%s: regmap allocation failed: %ld\n",
933 __func__, PTR_ERR(regmap));
934 return PTR_ERR(regmap);
935 }
936
937 return rv3029_probe(&spi->dev, regmap, spi->irq, "rv3049");
938}
939
940static struct spi_driver rv3049_driver = {
941 .driver = {
942 .name = "rv3049",
943 },
944 .probe = rv3049_probe,
945};
946
947static int rv3049_register_driver(void)
948{
949 return spi_register_driver(&rv3049_driver);
950}
951
952static void rv3049_unregister_driver(void)
953{
954 spi_unregister_driver(&rv3049_driver);
955}
956
957#else
958
959static int rv3049_register_driver(void)
960{
961 return 0;
962}
963
964static void rv3049_unregister_driver(void)
965{
966}
967
968#endif
969
970static int __init rv30x9_init(void)
971{
972 int ret;
973
974 ret = rv3029_register_driver();
975 if (ret) {
976 pr_err("Failed to register rv3029 driver: %d\n", ret);
977 return ret;
978 }
979
980 ret = rv3049_register_driver();
981 if (ret) {
982 pr_err("Failed to register rv3049 driver: %d\n", ret);
983 rv3029_unregister_driver();
984 }
985
986 return ret;
987}
988module_init(rv30x9_init)
989
990static void __exit rv30x9_exit(void)
991{
992 rv3049_unregister_driver();
993 rv3029_unregister_driver();
994}
995module_exit(rv30x9_exit)
996
997MODULE_AUTHOR("Gregory Hermant <gregory.hermant@calao-systems.com>");
998MODULE_AUTHOR("Michael Buesch <m@bues.ch>");
999MODULE_DESCRIPTION("Micro Crystal RV3029/RV3049 RTC driver");
1000MODULE_LICENSE("GPL");
1001MODULE_ALIAS("spi:rv3049");