Loading...
1/*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/types.h>
32#include <linux/slab.h>
33#include <linux/workqueue.h>
34#include <linux/interrupt.h>
35#include <linux/delay.h>
36#include <linux/wait.h>
37#include <linux/pci.h>
38#include <linux/pci_hotplug.h>
39#include <linux/kthread.h>
40#include "cpqphp.h"
41
42static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
43 u8 behind_bridge, struct resource_lists *resources);
44static int configure_new_function(struct controller* ctrl, struct pci_func *func,
45 u8 behind_bridge, struct resource_lists *resources);
46static void interrupt_event_handler(struct controller *ctrl);
47
48
49static struct task_struct *cpqhp_event_thread;
50static unsigned long pushbutton_pending; /* = 0 */
51
52/* delay is in jiffies to wait for */
53static void long_delay(int delay)
54{
55 /*
56 * XXX(hch): if someone is bored please convert all callers
57 * to call msleep_interruptible directly. They really want
58 * to specify timeouts in natural units and spend a lot of
59 * effort converting them to jiffies..
60 */
61 msleep_interruptible(jiffies_to_msecs(delay));
62}
63
64
65/* FIXME: The following line needs to be somewhere else... */
66#define WRONG_BUS_FREQUENCY 0x07
67static u8 handle_switch_change(u8 change, struct controller * ctrl)
68{
69 int hp_slot;
70 u8 rc = 0;
71 u16 temp_word;
72 struct pci_func *func;
73 struct event_info *taskInfo;
74
75 if (!change)
76 return 0;
77
78 /* Switch Change */
79 dbg("cpqsbd: Switch interrupt received.\n");
80
81 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
82 if (change & (0x1L << hp_slot)) {
83 /*
84 * this one changed.
85 */
86 func = cpqhp_slot_find(ctrl->bus,
87 (hp_slot + ctrl->slot_device_offset), 0);
88
89 /* this is the structure that tells the worker thread
90 * what to do
91 */
92 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
93 ctrl->next_event = (ctrl->next_event + 1) % 10;
94 taskInfo->hp_slot = hp_slot;
95
96 rc++;
97
98 temp_word = ctrl->ctrl_int_comp >> 16;
99 func->presence_save = (temp_word >> hp_slot) & 0x01;
100 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
101
102 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
103 /*
104 * Switch opened
105 */
106
107 func->switch_save = 0;
108
109 taskInfo->event_type = INT_SWITCH_OPEN;
110 } else {
111 /*
112 * Switch closed
113 */
114
115 func->switch_save = 0x10;
116
117 taskInfo->event_type = INT_SWITCH_CLOSE;
118 }
119 }
120 }
121
122 return rc;
123}
124
125/**
126 * cpqhp_find_slot - find the struct slot of given device
127 * @ctrl: scan lots of this controller
128 * @device: the device id to find
129 */
130static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
131{
132 struct slot *slot = ctrl->slot;
133
134 while (slot && (slot->device != device))
135 slot = slot->next;
136
137 return slot;
138}
139
140
141static u8 handle_presence_change(u16 change, struct controller * ctrl)
142{
143 int hp_slot;
144 u8 rc = 0;
145 u8 temp_byte;
146 u16 temp_word;
147 struct pci_func *func;
148 struct event_info *taskInfo;
149 struct slot *p_slot;
150
151 if (!change)
152 return 0;
153
154 /*
155 * Presence Change
156 */
157 dbg("cpqsbd: Presence/Notify input change.\n");
158 dbg(" Changed bits are 0x%4.4x\n", change );
159
160 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
161 if (change & (0x0101 << hp_slot)) {
162 /*
163 * this one changed.
164 */
165 func = cpqhp_slot_find(ctrl->bus,
166 (hp_slot + ctrl->slot_device_offset), 0);
167
168 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
169 ctrl->next_event = (ctrl->next_event + 1) % 10;
170 taskInfo->hp_slot = hp_slot;
171
172 rc++;
173
174 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
175 if (!p_slot)
176 return 0;
177
178 /* If the switch closed, must be a button
179 * If not in button mode, nevermind
180 */
181 if (func->switch_save && (ctrl->push_button == 1)) {
182 temp_word = ctrl->ctrl_int_comp >> 16;
183 temp_byte = (temp_word >> hp_slot) & 0x01;
184 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
185
186 if (temp_byte != func->presence_save) {
187 /*
188 * button Pressed (doesn't do anything)
189 */
190 dbg("hp_slot %d button pressed\n", hp_slot);
191 taskInfo->event_type = INT_BUTTON_PRESS;
192 } else {
193 /*
194 * button Released - TAKE ACTION!!!!
195 */
196 dbg("hp_slot %d button released\n", hp_slot);
197 taskInfo->event_type = INT_BUTTON_RELEASE;
198
199 /* Cancel if we are still blinking */
200 if ((p_slot->state == BLINKINGON_STATE)
201 || (p_slot->state == BLINKINGOFF_STATE)) {
202 taskInfo->event_type = INT_BUTTON_CANCEL;
203 dbg("hp_slot %d button cancel\n", hp_slot);
204 } else if ((p_slot->state == POWERON_STATE)
205 || (p_slot->state == POWEROFF_STATE)) {
206 /* info(msg_button_ignore, p_slot->number); */
207 taskInfo->event_type = INT_BUTTON_IGNORE;
208 dbg("hp_slot %d button ignore\n", hp_slot);
209 }
210 }
211 } else {
212 /* Switch is open, assume a presence change
213 * Save the presence state
214 */
215 temp_word = ctrl->ctrl_int_comp >> 16;
216 func->presence_save = (temp_word >> hp_slot) & 0x01;
217 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
218
219 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
220 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
221 /* Present */
222 taskInfo->event_type = INT_PRESENCE_ON;
223 } else {
224 /* Not Present */
225 taskInfo->event_type = INT_PRESENCE_OFF;
226 }
227 }
228 }
229 }
230
231 return rc;
232}
233
234
235static u8 handle_power_fault(u8 change, struct controller * ctrl)
236{
237 int hp_slot;
238 u8 rc = 0;
239 struct pci_func *func;
240 struct event_info *taskInfo;
241
242 if (!change)
243 return 0;
244
245 /*
246 * power fault
247 */
248
249 info("power fault interrupt\n");
250
251 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
252 if (change & (0x01 << hp_slot)) {
253 /*
254 * this one changed.
255 */
256 func = cpqhp_slot_find(ctrl->bus,
257 (hp_slot + ctrl->slot_device_offset), 0);
258
259 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
260 ctrl->next_event = (ctrl->next_event + 1) % 10;
261 taskInfo->hp_slot = hp_slot;
262
263 rc++;
264
265 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
266 /*
267 * power fault Cleared
268 */
269 func->status = 0x00;
270
271 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
272 } else {
273 /*
274 * power fault
275 */
276 taskInfo->event_type = INT_POWER_FAULT;
277
278 if (ctrl->rev < 4) {
279 amber_LED_on (ctrl, hp_slot);
280 green_LED_off (ctrl, hp_slot);
281 set_SOGO (ctrl);
282
283 /* this is a fatal condition, we want
284 * to crash the machine to protect from
285 * data corruption. simulated_NMI
286 * shouldn't ever return */
287 /* FIXME
288 simulated_NMI(hp_slot, ctrl); */
289
290 /* The following code causes a software
291 * crash just in case simulated_NMI did
292 * return */
293 /*FIXME
294 panic(msg_power_fault); */
295 } else {
296 /* set power fault status for this board */
297 func->status = 0xFF;
298 info("power fault bit %x set\n", hp_slot);
299 }
300 }
301 }
302 }
303
304 return rc;
305}
306
307
308/**
309 * sort_by_size - sort nodes on the list by their length, smallest first.
310 * @head: list to sort
311 */
312static int sort_by_size(struct pci_resource **head)
313{
314 struct pci_resource *current_res;
315 struct pci_resource *next_res;
316 int out_of_order = 1;
317
318 if (!(*head))
319 return 1;
320
321 if (!((*head)->next))
322 return 0;
323
324 while (out_of_order) {
325 out_of_order = 0;
326
327 /* Special case for swapping list head */
328 if (((*head)->next) &&
329 ((*head)->length > (*head)->next->length)) {
330 out_of_order++;
331 current_res = *head;
332 *head = (*head)->next;
333 current_res->next = (*head)->next;
334 (*head)->next = current_res;
335 }
336
337 current_res = *head;
338
339 while (current_res->next && current_res->next->next) {
340 if (current_res->next->length > current_res->next->next->length) {
341 out_of_order++;
342 next_res = current_res->next;
343 current_res->next = current_res->next->next;
344 current_res = current_res->next;
345 next_res->next = current_res->next;
346 current_res->next = next_res;
347 } else
348 current_res = current_res->next;
349 }
350 } /* End of out_of_order loop */
351
352 return 0;
353}
354
355
356/**
357 * sort_by_max_size - sort nodes on the list by their length, largest first.
358 * @head: list to sort
359 */
360static int sort_by_max_size(struct pci_resource **head)
361{
362 struct pci_resource *current_res;
363 struct pci_resource *next_res;
364 int out_of_order = 1;
365
366 if (!(*head))
367 return 1;
368
369 if (!((*head)->next))
370 return 0;
371
372 while (out_of_order) {
373 out_of_order = 0;
374
375 /* Special case for swapping list head */
376 if (((*head)->next) &&
377 ((*head)->length < (*head)->next->length)) {
378 out_of_order++;
379 current_res = *head;
380 *head = (*head)->next;
381 current_res->next = (*head)->next;
382 (*head)->next = current_res;
383 }
384
385 current_res = *head;
386
387 while (current_res->next && current_res->next->next) {
388 if (current_res->next->length < current_res->next->next->length) {
389 out_of_order++;
390 next_res = current_res->next;
391 current_res->next = current_res->next->next;
392 current_res = current_res->next;
393 next_res->next = current_res->next;
394 current_res->next = next_res;
395 } else
396 current_res = current_res->next;
397 }
398 } /* End of out_of_order loop */
399
400 return 0;
401}
402
403
404/**
405 * do_pre_bridge_resource_split - find node of resources that are unused
406 * @head: new list head
407 * @orig_head: original list head
408 * @alignment: max node size (?)
409 */
410static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
411 struct pci_resource **orig_head, u32 alignment)
412{
413 struct pci_resource *prevnode = NULL;
414 struct pci_resource *node;
415 struct pci_resource *split_node;
416 u32 rc;
417 u32 temp_dword;
418 dbg("do_pre_bridge_resource_split\n");
419
420 if (!(*head) || !(*orig_head))
421 return NULL;
422
423 rc = cpqhp_resource_sort_and_combine(head);
424
425 if (rc)
426 return NULL;
427
428 if ((*head)->base != (*orig_head)->base)
429 return NULL;
430
431 if ((*head)->length == (*orig_head)->length)
432 return NULL;
433
434
435 /* If we got here, there the bridge requires some of the resource, but
436 * we may be able to split some off of the front
437 */
438
439 node = *head;
440
441 if (node->length & (alignment -1)) {
442 /* this one isn't an aligned length, so we'll make a new entry
443 * and split it up.
444 */
445 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
446
447 if (!split_node)
448 return NULL;
449
450 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
451
452 split_node->base = node->base;
453 split_node->length = temp_dword;
454
455 node->length -= temp_dword;
456 node->base += split_node->length;
457
458 /* Put it in the list */
459 *head = split_node;
460 split_node->next = node;
461 }
462
463 if (node->length < alignment)
464 return NULL;
465
466 /* Now unlink it */
467 if (*head == node) {
468 *head = node->next;
469 } else {
470 prevnode = *head;
471 while (prevnode->next != node)
472 prevnode = prevnode->next;
473
474 prevnode->next = node->next;
475 }
476 node->next = NULL;
477
478 return node;
479}
480
481
482/**
483 * do_bridge_resource_split - find one node of resources that aren't in use
484 * @head: list head
485 * @alignment: max node size (?)
486 */
487static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
488{
489 struct pci_resource *prevnode = NULL;
490 struct pci_resource *node;
491 u32 rc;
492 u32 temp_dword;
493
494 rc = cpqhp_resource_sort_and_combine(head);
495
496 if (rc)
497 return NULL;
498
499 node = *head;
500
501 while (node->next) {
502 prevnode = node;
503 node = node->next;
504 kfree(prevnode);
505 }
506
507 if (node->length < alignment)
508 goto error;
509
510 if (node->base & (alignment - 1)) {
511 /* Short circuit if adjusted size is too small */
512 temp_dword = (node->base | (alignment-1)) + 1;
513 if ((node->length - (temp_dword - node->base)) < alignment)
514 goto error;
515
516 node->length -= (temp_dword - node->base);
517 node->base = temp_dword;
518 }
519
520 if (node->length & (alignment - 1))
521 /* There's stuff in use after this node */
522 goto error;
523
524 return node;
525error:
526 kfree(node);
527 return NULL;
528}
529
530
531/**
532 * get_io_resource - find first node of given size not in ISA aliasing window.
533 * @head: list to search
534 * @size: size of node to find, must be a power of two.
535 *
536 * Description: This function sorts the resource list by size and then returns
537 * returns the first node of "size" length that is not in the ISA aliasing
538 * window. If it finds a node larger than "size" it will split it up.
539 */
540static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
541{
542 struct pci_resource *prevnode;
543 struct pci_resource *node;
544 struct pci_resource *split_node;
545 u32 temp_dword;
546
547 if (!(*head))
548 return NULL;
549
550 if (cpqhp_resource_sort_and_combine(head))
551 return NULL;
552
553 if (sort_by_size(head))
554 return NULL;
555
556 for (node = *head; node; node = node->next) {
557 if (node->length < size)
558 continue;
559
560 if (node->base & (size - 1)) {
561 /* this one isn't base aligned properly
562 * so we'll make a new entry and split it up
563 */
564 temp_dword = (node->base | (size-1)) + 1;
565
566 /* Short circuit if adjusted size is too small */
567 if ((node->length - (temp_dword - node->base)) < size)
568 continue;
569
570 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
571
572 if (!split_node)
573 return NULL;
574
575 split_node->base = node->base;
576 split_node->length = temp_dword - node->base;
577 node->base = temp_dword;
578 node->length -= split_node->length;
579
580 /* Put it in the list */
581 split_node->next = node->next;
582 node->next = split_node;
583 } /* End of non-aligned base */
584
585 /* Don't need to check if too small since we already did */
586 if (node->length > size) {
587 /* this one is longer than we need
588 * so we'll make a new entry and split it up
589 */
590 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
591
592 if (!split_node)
593 return NULL;
594
595 split_node->base = node->base + size;
596 split_node->length = node->length - size;
597 node->length = size;
598
599 /* Put it in the list */
600 split_node->next = node->next;
601 node->next = split_node;
602 } /* End of too big on top end */
603
604 /* For IO make sure it's not in the ISA aliasing space */
605 if (node->base & 0x300L)
606 continue;
607
608 /* If we got here, then it is the right size
609 * Now take it out of the list and break
610 */
611 if (*head == node) {
612 *head = node->next;
613 } else {
614 prevnode = *head;
615 while (prevnode->next != node)
616 prevnode = prevnode->next;
617
618 prevnode->next = node->next;
619 }
620 node->next = NULL;
621 break;
622 }
623
624 return node;
625}
626
627
628/**
629 * get_max_resource - get largest node which has at least the given size.
630 * @head: the list to search the node in
631 * @size: the minimum size of the node to find
632 *
633 * Description: Gets the largest node that is at least "size" big from the
634 * list pointed to by head. It aligns the node on top and bottom
635 * to "size" alignment before returning it.
636 */
637static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
638{
639 struct pci_resource *max;
640 struct pci_resource *temp;
641 struct pci_resource *split_node;
642 u32 temp_dword;
643
644 if (cpqhp_resource_sort_and_combine(head))
645 return NULL;
646
647 if (sort_by_max_size(head))
648 return NULL;
649
650 for (max = *head; max; max = max->next) {
651 /* If not big enough we could probably just bail,
652 * instead we'll continue to the next.
653 */
654 if (max->length < size)
655 continue;
656
657 if (max->base & (size - 1)) {
658 /* this one isn't base aligned properly
659 * so we'll make a new entry and split it up
660 */
661 temp_dword = (max->base | (size-1)) + 1;
662
663 /* Short circuit if adjusted size is too small */
664 if ((max->length - (temp_dword - max->base)) < size)
665 continue;
666
667 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
668
669 if (!split_node)
670 return NULL;
671
672 split_node->base = max->base;
673 split_node->length = temp_dword - max->base;
674 max->base = temp_dword;
675 max->length -= split_node->length;
676
677 split_node->next = max->next;
678 max->next = split_node;
679 }
680
681 if ((max->base + max->length) & (size - 1)) {
682 /* this one isn't end aligned properly at the top
683 * so we'll make a new entry and split it up
684 */
685 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
686
687 if (!split_node)
688 return NULL;
689 temp_dword = ((max->base + max->length) & ~(size - 1));
690 split_node->base = temp_dword;
691 split_node->length = max->length + max->base
692 - split_node->base;
693 max->length -= split_node->length;
694
695 split_node->next = max->next;
696 max->next = split_node;
697 }
698
699 /* Make sure it didn't shrink too much when we aligned it */
700 if (max->length < size)
701 continue;
702
703 /* Now take it out of the list */
704 temp = *head;
705 if (temp == max) {
706 *head = max->next;
707 } else {
708 while (temp && temp->next != max) {
709 temp = temp->next;
710 }
711
712 temp->next = max->next;
713 }
714
715 max->next = NULL;
716 break;
717 }
718
719 return max;
720}
721
722
723/**
724 * get_resource - find resource of given size and split up larger ones.
725 * @head: the list to search for resources
726 * @size: the size limit to use
727 *
728 * Description: This function sorts the resource list by size and then
729 * returns the first node of "size" length. If it finds a node
730 * larger than "size" it will split it up.
731 *
732 * size must be a power of two.
733 */
734static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
735{
736 struct pci_resource *prevnode;
737 struct pci_resource *node;
738 struct pci_resource *split_node;
739 u32 temp_dword;
740
741 if (cpqhp_resource_sort_and_combine(head))
742 return NULL;
743
744 if (sort_by_size(head))
745 return NULL;
746
747 for (node = *head; node; node = node->next) {
748 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
749 __func__, size, node, node->base, node->length);
750 if (node->length < size)
751 continue;
752
753 if (node->base & (size - 1)) {
754 dbg("%s: not aligned\n", __func__);
755 /* this one isn't base aligned properly
756 * so we'll make a new entry and split it up
757 */
758 temp_dword = (node->base | (size-1)) + 1;
759
760 /* Short circuit if adjusted size is too small */
761 if ((node->length - (temp_dword - node->base)) < size)
762 continue;
763
764 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
765
766 if (!split_node)
767 return NULL;
768
769 split_node->base = node->base;
770 split_node->length = temp_dword - node->base;
771 node->base = temp_dword;
772 node->length -= split_node->length;
773
774 split_node->next = node->next;
775 node->next = split_node;
776 } /* End of non-aligned base */
777
778 /* Don't need to check if too small since we already did */
779 if (node->length > size) {
780 dbg("%s: too big\n", __func__);
781 /* this one is longer than we need
782 * so we'll make a new entry and split it up
783 */
784 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
785
786 if (!split_node)
787 return NULL;
788
789 split_node->base = node->base + size;
790 split_node->length = node->length - size;
791 node->length = size;
792
793 /* Put it in the list */
794 split_node->next = node->next;
795 node->next = split_node;
796 } /* End of too big on top end */
797
798 dbg("%s: got one!!!\n", __func__);
799 /* If we got here, then it is the right size
800 * Now take it out of the list */
801 if (*head == node) {
802 *head = node->next;
803 } else {
804 prevnode = *head;
805 while (prevnode->next != node)
806 prevnode = prevnode->next;
807
808 prevnode->next = node->next;
809 }
810 node->next = NULL;
811 break;
812 }
813 return node;
814}
815
816
817/**
818 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
819 * @head: the list to sort and clean up
820 *
821 * Description: Sorts all of the nodes in the list in ascending order by
822 * their base addresses. Also does garbage collection by
823 * combining adjacent nodes.
824 *
825 * Returns %0 if success.
826 */
827int cpqhp_resource_sort_and_combine(struct pci_resource **head)
828{
829 struct pci_resource *node1;
830 struct pci_resource *node2;
831 int out_of_order = 1;
832
833 dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
834
835 if (!(*head))
836 return 1;
837
838 dbg("*head->next = %p\n",(*head)->next);
839
840 if (!(*head)->next)
841 return 0; /* only one item on the list, already sorted! */
842
843 dbg("*head->base = 0x%x\n",(*head)->base);
844 dbg("*head->next->base = 0x%x\n",(*head)->next->base);
845 while (out_of_order) {
846 out_of_order = 0;
847
848 /* Special case for swapping list head */
849 if (((*head)->next) &&
850 ((*head)->base > (*head)->next->base)) {
851 node1 = *head;
852 (*head) = (*head)->next;
853 node1->next = (*head)->next;
854 (*head)->next = node1;
855 out_of_order++;
856 }
857
858 node1 = (*head);
859
860 while (node1->next && node1->next->next) {
861 if (node1->next->base > node1->next->next->base) {
862 out_of_order++;
863 node2 = node1->next;
864 node1->next = node1->next->next;
865 node1 = node1->next;
866 node2->next = node1->next;
867 node1->next = node2;
868 } else
869 node1 = node1->next;
870 }
871 } /* End of out_of_order loop */
872
873 node1 = *head;
874
875 while (node1 && node1->next) {
876 if ((node1->base + node1->length) == node1->next->base) {
877 /* Combine */
878 dbg("8..\n");
879 node1->length += node1->next->length;
880 node2 = node1->next;
881 node1->next = node1->next->next;
882 kfree(node2);
883 } else
884 node1 = node1->next;
885 }
886
887 return 0;
888}
889
890
891irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
892{
893 struct controller *ctrl = data;
894 u8 schedule_flag = 0;
895 u8 reset;
896 u16 misc;
897 u32 Diff;
898 u32 temp_dword;
899
900
901 misc = readw(ctrl->hpc_reg + MISC);
902 /*
903 * Check to see if it was our interrupt
904 */
905 if (!(misc & 0x000C)) {
906 return IRQ_NONE;
907 }
908
909 if (misc & 0x0004) {
910 /*
911 * Serial Output interrupt Pending
912 */
913
914 /* Clear the interrupt */
915 misc |= 0x0004;
916 writew(misc, ctrl->hpc_reg + MISC);
917
918 /* Read to clear posted writes */
919 misc = readw(ctrl->hpc_reg + MISC);
920
921 dbg ("%s - waking up\n", __func__);
922 wake_up_interruptible(&ctrl->queue);
923 }
924
925 if (misc & 0x0008) {
926 /* General-interrupt-input interrupt Pending */
927 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
928
929 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
930
931 /* Clear the interrupt */
932 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
933
934 /* Read it back to clear any posted writes */
935 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
936
937 if (!Diff)
938 /* Clear all interrupts */
939 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
940
941 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
942 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
943 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
944 }
945
946 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
947 if (reset & 0x40) {
948 /* Bus reset has completed */
949 reset &= 0xCF;
950 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
951 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
952 wake_up_interruptible(&ctrl->queue);
953 }
954
955 if (schedule_flag) {
956 wake_up_process(cpqhp_event_thread);
957 dbg("Waking even thread");
958 }
959 return IRQ_HANDLED;
960}
961
962
963/**
964 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
965 * @busnumber: bus where new node is to be located
966 *
967 * Returns pointer to the new node or %NULL if unsuccessful.
968 */
969struct pci_func *cpqhp_slot_create(u8 busnumber)
970{
971 struct pci_func *new_slot;
972 struct pci_func *next;
973
974 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
975 if (new_slot == NULL)
976 return new_slot;
977
978 new_slot->next = NULL;
979 new_slot->configured = 1;
980
981 if (cpqhp_slot_list[busnumber] == NULL) {
982 cpqhp_slot_list[busnumber] = new_slot;
983 } else {
984 next = cpqhp_slot_list[busnumber];
985 while (next->next != NULL)
986 next = next->next;
987 next->next = new_slot;
988 }
989 return new_slot;
990}
991
992
993/**
994 * slot_remove - Removes a node from the linked list of slots.
995 * @old_slot: slot to remove
996 *
997 * Returns %0 if successful, !0 otherwise.
998 */
999static int slot_remove(struct pci_func * old_slot)
1000{
1001 struct pci_func *next;
1002
1003 if (old_slot == NULL)
1004 return 1;
1005
1006 next = cpqhp_slot_list[old_slot->bus];
1007 if (next == NULL)
1008 return 1;
1009
1010 if (next == old_slot) {
1011 cpqhp_slot_list[old_slot->bus] = old_slot->next;
1012 cpqhp_destroy_board_resources(old_slot);
1013 kfree(old_slot);
1014 return 0;
1015 }
1016
1017 while ((next->next != old_slot) && (next->next != NULL))
1018 next = next->next;
1019
1020 if (next->next == old_slot) {
1021 next->next = old_slot->next;
1022 cpqhp_destroy_board_resources(old_slot);
1023 kfree(old_slot);
1024 return 0;
1025 } else
1026 return 2;
1027}
1028
1029
1030/**
1031 * bridge_slot_remove - Removes a node from the linked list of slots.
1032 * @bridge: bridge to remove
1033 *
1034 * Returns %0 if successful, !0 otherwise.
1035 */
1036static int bridge_slot_remove(struct pci_func *bridge)
1037{
1038 u8 subordinateBus, secondaryBus;
1039 u8 tempBus;
1040 struct pci_func *next;
1041
1042 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1043 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1044
1045 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1046 next = cpqhp_slot_list[tempBus];
1047
1048 while (!slot_remove(next))
1049 next = cpqhp_slot_list[tempBus];
1050 }
1051
1052 next = cpqhp_slot_list[bridge->bus];
1053
1054 if (next == NULL)
1055 return 1;
1056
1057 if (next == bridge) {
1058 cpqhp_slot_list[bridge->bus] = bridge->next;
1059 goto out;
1060 }
1061
1062 while ((next->next != bridge) && (next->next != NULL))
1063 next = next->next;
1064
1065 if (next->next != bridge)
1066 return 2;
1067 next->next = bridge->next;
1068out:
1069 kfree(bridge);
1070 return 0;
1071}
1072
1073
1074/**
1075 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1076 * @bus: bus to find
1077 * @device: device to find
1078 * @index: is %0 for first function found, %1 for the second...
1079 *
1080 * Returns pointer to the node if successful, %NULL otherwise.
1081 */
1082struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1083{
1084 int found = -1;
1085 struct pci_func *func;
1086
1087 func = cpqhp_slot_list[bus];
1088
1089 if ((func == NULL) || ((func->device == device) && (index == 0)))
1090 return func;
1091
1092 if (func->device == device)
1093 found++;
1094
1095 while (func->next != NULL) {
1096 func = func->next;
1097
1098 if (func->device == device)
1099 found++;
1100
1101 if (found == index)
1102 return func;
1103 }
1104
1105 return NULL;
1106}
1107
1108
1109/* DJZ: I don't think is_bridge will work as is.
1110 * FIXME */
1111static int is_bridge(struct pci_func * func)
1112{
1113 /* Check the header type */
1114 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1115 return 1;
1116 else
1117 return 0;
1118}
1119
1120
1121/**
1122 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1123 * @ctrl: controller to change frequency/mode for.
1124 * @adapter_speed: the speed of the adapter we want to match.
1125 * @hp_slot: the slot number where the adapter is installed.
1126 *
1127 * Returns %0 if we successfully change frequency and/or mode to match the
1128 * adapter speed.
1129 */
1130static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1131{
1132 struct slot *slot;
1133 struct pci_bus *bus = ctrl->pci_bus;
1134 u8 reg;
1135 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1136 u16 reg16;
1137 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1138
1139 if (bus->cur_bus_speed == adapter_speed)
1140 return 0;
1141
1142 /* We don't allow freq/mode changes if we find another adapter running
1143 * in another slot on this controller
1144 */
1145 for(slot = ctrl->slot; slot; slot = slot->next) {
1146 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1147 continue;
1148 if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1149 continue;
1150 if (slot->hotplug_slot->info->adapter_status == 0)
1151 continue;
1152 /* If another adapter is running on the same segment but at a
1153 * lower speed/mode, we allow the new adapter to function at
1154 * this rate if supported
1155 */
1156 if (bus->cur_bus_speed < adapter_speed)
1157 return 0;
1158
1159 return 1;
1160 }
1161
1162 /* If the controller doesn't support freq/mode changes and the
1163 * controller is running at a higher mode, we bail
1164 */
1165 if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1166 return 1;
1167
1168 /* But we allow the adapter to run at a lower rate if possible */
1169 if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1170 return 0;
1171
1172 /* We try to set the max speed supported by both the adapter and
1173 * controller
1174 */
1175 if (bus->max_bus_speed < adapter_speed) {
1176 if (bus->cur_bus_speed == bus->max_bus_speed)
1177 return 0;
1178 adapter_speed = bus->max_bus_speed;
1179 }
1180
1181 writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1182 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1183
1184 set_SOGO(ctrl);
1185 wait_for_ctrl_irq(ctrl);
1186
1187 if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1188 reg = 0xF5;
1189 else
1190 reg = 0xF4;
1191 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1192
1193 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1194 reg16 &= ~0x000F;
1195 switch(adapter_speed) {
1196 case(PCI_SPEED_133MHz_PCIX):
1197 reg = 0x75;
1198 reg16 |= 0xB;
1199 break;
1200 case(PCI_SPEED_100MHz_PCIX):
1201 reg = 0x74;
1202 reg16 |= 0xA;
1203 break;
1204 case(PCI_SPEED_66MHz_PCIX):
1205 reg = 0x73;
1206 reg16 |= 0x9;
1207 break;
1208 case(PCI_SPEED_66MHz):
1209 reg = 0x73;
1210 reg16 |= 0x1;
1211 break;
1212 default: /* 33MHz PCI 2.2 */
1213 reg = 0x71;
1214 break;
1215
1216 }
1217 reg16 |= 0xB << 12;
1218 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1219
1220 mdelay(5);
1221
1222 /* Reenable interrupts */
1223 writel(0, ctrl->hpc_reg + INT_MASK);
1224
1225 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1226
1227 /* Restart state machine */
1228 reg = ~0xF;
1229 pci_read_config_byte(ctrl->pci_dev, 0x43, ®);
1230 pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1231
1232 /* Only if mode change...*/
1233 if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1234 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1235 set_SOGO(ctrl);
1236
1237 wait_for_ctrl_irq(ctrl);
1238 mdelay(1100);
1239
1240 /* Restore LED/Slot state */
1241 writel(leds, ctrl->hpc_reg + LED_CONTROL);
1242 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1243
1244 set_SOGO(ctrl);
1245 wait_for_ctrl_irq(ctrl);
1246
1247 bus->cur_bus_speed = adapter_speed;
1248 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1249
1250 info("Successfully changed frequency/mode for adapter in slot %d\n",
1251 slot->number);
1252 return 0;
1253}
1254
1255/* the following routines constitute the bulk of the
1256 * hotplug controller logic
1257 */
1258
1259
1260/**
1261 * board_replaced - Called after a board has been replaced in the system.
1262 * @func: PCI device/function information
1263 * @ctrl: hotplug controller
1264 *
1265 * This is only used if we don't have resources for hot add.
1266 * Turns power on for the board.
1267 * Checks to see if board is the same.
1268 * If board is same, reconfigures it.
1269 * If board isn't same, turns it back off.
1270 */
1271static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1272{
1273 struct pci_bus *bus = ctrl->pci_bus;
1274 u8 hp_slot;
1275 u8 temp_byte;
1276 u8 adapter_speed;
1277 u32 rc = 0;
1278
1279 hp_slot = func->device - ctrl->slot_device_offset;
1280
1281 /*
1282 * The switch is open.
1283 */
1284 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1285 rc = INTERLOCK_OPEN;
1286 /*
1287 * The board is already on
1288 */
1289 else if (is_slot_enabled (ctrl, hp_slot))
1290 rc = CARD_FUNCTIONING;
1291 else {
1292 mutex_lock(&ctrl->crit_sect);
1293
1294 /* turn on board without attaching to the bus */
1295 enable_slot_power (ctrl, hp_slot);
1296
1297 set_SOGO(ctrl);
1298
1299 /* Wait for SOBS to be unset */
1300 wait_for_ctrl_irq (ctrl);
1301
1302 /* Change bits in slot power register to force another shift out
1303 * NOTE: this is to work around the timer bug */
1304 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1305 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1306 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1307
1308 set_SOGO(ctrl);
1309
1310 /* Wait for SOBS to be unset */
1311 wait_for_ctrl_irq (ctrl);
1312
1313 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1314 if (bus->cur_bus_speed != adapter_speed)
1315 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1316 rc = WRONG_BUS_FREQUENCY;
1317
1318 /* turn off board without attaching to the bus */
1319 disable_slot_power (ctrl, hp_slot);
1320
1321 set_SOGO(ctrl);
1322
1323 /* Wait for SOBS to be unset */
1324 wait_for_ctrl_irq (ctrl);
1325
1326 mutex_unlock(&ctrl->crit_sect);
1327
1328 if (rc)
1329 return rc;
1330
1331 mutex_lock(&ctrl->crit_sect);
1332
1333 slot_enable (ctrl, hp_slot);
1334 green_LED_blink (ctrl, hp_slot);
1335
1336 amber_LED_off (ctrl, hp_slot);
1337
1338 set_SOGO(ctrl);
1339
1340 /* Wait for SOBS to be unset */
1341 wait_for_ctrl_irq (ctrl);
1342
1343 mutex_unlock(&ctrl->crit_sect);
1344
1345 /* Wait for ~1 second because of hot plug spec */
1346 long_delay(1*HZ);
1347
1348 /* Check for a power fault */
1349 if (func->status == 0xFF) {
1350 /* power fault occurred, but it was benign */
1351 rc = POWER_FAILURE;
1352 func->status = 0;
1353 } else
1354 rc = cpqhp_valid_replace(ctrl, func);
1355
1356 if (!rc) {
1357 /* It must be the same board */
1358
1359 rc = cpqhp_configure_board(ctrl, func);
1360
1361 /* If configuration fails, turn it off
1362 * Get slot won't work for devices behind
1363 * bridges, but in this case it will always be
1364 * called for the "base" bus/dev/func of an
1365 * adapter.
1366 */
1367
1368 mutex_lock(&ctrl->crit_sect);
1369
1370 amber_LED_on (ctrl, hp_slot);
1371 green_LED_off (ctrl, hp_slot);
1372 slot_disable (ctrl, hp_slot);
1373
1374 set_SOGO(ctrl);
1375
1376 /* Wait for SOBS to be unset */
1377 wait_for_ctrl_irq (ctrl);
1378
1379 mutex_unlock(&ctrl->crit_sect);
1380
1381 if (rc)
1382 return rc;
1383 else
1384 return 1;
1385
1386 } else {
1387 /* Something is wrong
1388
1389 * Get slot won't work for devices behind bridges, but
1390 * in this case it will always be called for the "base"
1391 * bus/dev/func of an adapter.
1392 */
1393
1394 mutex_lock(&ctrl->crit_sect);
1395
1396 amber_LED_on (ctrl, hp_slot);
1397 green_LED_off (ctrl, hp_slot);
1398 slot_disable (ctrl, hp_slot);
1399
1400 set_SOGO(ctrl);
1401
1402 /* Wait for SOBS to be unset */
1403 wait_for_ctrl_irq (ctrl);
1404
1405 mutex_unlock(&ctrl->crit_sect);
1406 }
1407
1408 }
1409 return rc;
1410
1411}
1412
1413
1414/**
1415 * board_added - Called after a board has been added to the system.
1416 * @func: PCI device/function info
1417 * @ctrl: hotplug controller
1418 *
1419 * Turns power on for the board.
1420 * Configures board.
1421 */
1422static u32 board_added(struct pci_func *func, struct controller *ctrl)
1423{
1424 u8 hp_slot;
1425 u8 temp_byte;
1426 u8 adapter_speed;
1427 int index;
1428 u32 temp_register = 0xFFFFFFFF;
1429 u32 rc = 0;
1430 struct pci_func *new_slot = NULL;
1431 struct pci_bus *bus = ctrl->pci_bus;
1432 struct slot *p_slot;
1433 struct resource_lists res_lists;
1434
1435 hp_slot = func->device - ctrl->slot_device_offset;
1436 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1437 __func__, func->device, ctrl->slot_device_offset, hp_slot);
1438
1439 mutex_lock(&ctrl->crit_sect);
1440
1441 /* turn on board without attaching to the bus */
1442 enable_slot_power(ctrl, hp_slot);
1443
1444 set_SOGO(ctrl);
1445
1446 /* Wait for SOBS to be unset */
1447 wait_for_ctrl_irq (ctrl);
1448
1449 /* Change bits in slot power register to force another shift out
1450 * NOTE: this is to work around the timer bug
1451 */
1452 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1453 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1454 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1455
1456 set_SOGO(ctrl);
1457
1458 /* Wait for SOBS to be unset */
1459 wait_for_ctrl_irq (ctrl);
1460
1461 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1462 if (bus->cur_bus_speed != adapter_speed)
1463 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1464 rc = WRONG_BUS_FREQUENCY;
1465
1466 /* turn off board without attaching to the bus */
1467 disable_slot_power (ctrl, hp_slot);
1468
1469 set_SOGO(ctrl);
1470
1471 /* Wait for SOBS to be unset */
1472 wait_for_ctrl_irq(ctrl);
1473
1474 mutex_unlock(&ctrl->crit_sect);
1475
1476 if (rc)
1477 return rc;
1478
1479 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1480
1481 /* turn on board and blink green LED */
1482
1483 dbg("%s: before down\n", __func__);
1484 mutex_lock(&ctrl->crit_sect);
1485 dbg("%s: after down\n", __func__);
1486
1487 dbg("%s: before slot_enable\n", __func__);
1488 slot_enable (ctrl, hp_slot);
1489
1490 dbg("%s: before green_LED_blink\n", __func__);
1491 green_LED_blink (ctrl, hp_slot);
1492
1493 dbg("%s: before amber_LED_blink\n", __func__);
1494 amber_LED_off (ctrl, hp_slot);
1495
1496 dbg("%s: before set_SOGO\n", __func__);
1497 set_SOGO(ctrl);
1498
1499 /* Wait for SOBS to be unset */
1500 dbg("%s: before wait_for_ctrl_irq\n", __func__);
1501 wait_for_ctrl_irq (ctrl);
1502 dbg("%s: after wait_for_ctrl_irq\n", __func__);
1503
1504 dbg("%s: before up\n", __func__);
1505 mutex_unlock(&ctrl->crit_sect);
1506 dbg("%s: after up\n", __func__);
1507
1508 /* Wait for ~1 second because of hot plug spec */
1509 dbg("%s: before long_delay\n", __func__);
1510 long_delay(1*HZ);
1511 dbg("%s: after long_delay\n", __func__);
1512
1513 dbg("%s: func status = %x\n", __func__, func->status);
1514 /* Check for a power fault */
1515 if (func->status == 0xFF) {
1516 /* power fault occurred, but it was benign */
1517 temp_register = 0xFFFFFFFF;
1518 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1519 rc = POWER_FAILURE;
1520 func->status = 0;
1521 } else {
1522 /* Get vendor/device ID u32 */
1523 ctrl->pci_bus->number = func->bus;
1524 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1525 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1526 dbg("%s: temp_register is %x\n", __func__, temp_register);
1527
1528 if (rc != 0) {
1529 /* Something's wrong here */
1530 temp_register = 0xFFFFFFFF;
1531 dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1532 }
1533 /* Preset return code. It will be changed later if things go okay. */
1534 rc = NO_ADAPTER_PRESENT;
1535 }
1536
1537 /* All F's is an empty slot or an invalid board */
1538 if (temp_register != 0xFFFFFFFF) {
1539 res_lists.io_head = ctrl->io_head;
1540 res_lists.mem_head = ctrl->mem_head;
1541 res_lists.p_mem_head = ctrl->p_mem_head;
1542 res_lists.bus_head = ctrl->bus_head;
1543 res_lists.irqs = NULL;
1544
1545 rc = configure_new_device(ctrl, func, 0, &res_lists);
1546
1547 dbg("%s: back from configure_new_device\n", __func__);
1548 ctrl->io_head = res_lists.io_head;
1549 ctrl->mem_head = res_lists.mem_head;
1550 ctrl->p_mem_head = res_lists.p_mem_head;
1551 ctrl->bus_head = res_lists.bus_head;
1552
1553 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1554 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1555 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1556 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1557
1558 if (rc) {
1559 mutex_lock(&ctrl->crit_sect);
1560
1561 amber_LED_on (ctrl, hp_slot);
1562 green_LED_off (ctrl, hp_slot);
1563 slot_disable (ctrl, hp_slot);
1564
1565 set_SOGO(ctrl);
1566
1567 /* Wait for SOBS to be unset */
1568 wait_for_ctrl_irq (ctrl);
1569
1570 mutex_unlock(&ctrl->crit_sect);
1571 return rc;
1572 } else {
1573 cpqhp_save_slot_config(ctrl, func);
1574 }
1575
1576
1577 func->status = 0;
1578 func->switch_save = 0x10;
1579 func->is_a_board = 0x01;
1580
1581 /* next, we will instantiate the linux pci_dev structures (with
1582 * appropriate driver notification, if already present) */
1583 dbg("%s: configure linux pci_dev structure\n", __func__);
1584 index = 0;
1585 do {
1586 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1587 if (new_slot && !new_slot->pci_dev)
1588 cpqhp_configure_device(ctrl, new_slot);
1589 } while (new_slot);
1590
1591 mutex_lock(&ctrl->crit_sect);
1592
1593 green_LED_on (ctrl, hp_slot);
1594
1595 set_SOGO(ctrl);
1596
1597 /* Wait for SOBS to be unset */
1598 wait_for_ctrl_irq (ctrl);
1599
1600 mutex_unlock(&ctrl->crit_sect);
1601 } else {
1602 mutex_lock(&ctrl->crit_sect);
1603
1604 amber_LED_on (ctrl, hp_slot);
1605 green_LED_off (ctrl, hp_slot);
1606 slot_disable (ctrl, hp_slot);
1607
1608 set_SOGO(ctrl);
1609
1610 /* Wait for SOBS to be unset */
1611 wait_for_ctrl_irq (ctrl);
1612
1613 mutex_unlock(&ctrl->crit_sect);
1614
1615 return rc;
1616 }
1617 return 0;
1618}
1619
1620
1621/**
1622 * remove_board - Turns off slot and LEDs
1623 * @func: PCI device/function info
1624 * @replace_flag: whether replacing or adding a new device
1625 * @ctrl: target controller
1626 */
1627static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1628{
1629 int index;
1630 u8 skip = 0;
1631 u8 device;
1632 u8 hp_slot;
1633 u8 temp_byte;
1634 u32 rc;
1635 struct resource_lists res_lists;
1636 struct pci_func *temp_func;
1637
1638 if (cpqhp_unconfigure_device(func))
1639 return 1;
1640
1641 device = func->device;
1642
1643 hp_slot = func->device - ctrl->slot_device_offset;
1644 dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1645
1646 /* When we get here, it is safe to change base address registers.
1647 * We will attempt to save the base address register lengths */
1648 if (replace_flag || !ctrl->add_support)
1649 rc = cpqhp_save_base_addr_length(ctrl, func);
1650 else if (!func->bus_head && !func->mem_head &&
1651 !func->p_mem_head && !func->io_head) {
1652 /* Here we check to see if we've saved any of the board's
1653 * resources already. If so, we'll skip the attempt to
1654 * determine what's being used. */
1655 index = 0;
1656 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1657 while (temp_func) {
1658 if (temp_func->bus_head || temp_func->mem_head
1659 || temp_func->p_mem_head || temp_func->io_head) {
1660 skip = 1;
1661 break;
1662 }
1663 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1664 }
1665
1666 if (!skip)
1667 rc = cpqhp_save_used_resources(ctrl, func);
1668 }
1669 /* Change status to shutdown */
1670 if (func->is_a_board)
1671 func->status = 0x01;
1672 func->configured = 0;
1673
1674 mutex_lock(&ctrl->crit_sect);
1675
1676 green_LED_off (ctrl, hp_slot);
1677 slot_disable (ctrl, hp_slot);
1678
1679 set_SOGO(ctrl);
1680
1681 /* turn off SERR for slot */
1682 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1683 temp_byte &= ~(0x01 << hp_slot);
1684 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1685
1686 /* Wait for SOBS to be unset */
1687 wait_for_ctrl_irq (ctrl);
1688
1689 mutex_unlock(&ctrl->crit_sect);
1690
1691 if (!replace_flag && ctrl->add_support) {
1692 while (func) {
1693 res_lists.io_head = ctrl->io_head;
1694 res_lists.mem_head = ctrl->mem_head;
1695 res_lists.p_mem_head = ctrl->p_mem_head;
1696 res_lists.bus_head = ctrl->bus_head;
1697
1698 cpqhp_return_board_resources(func, &res_lists);
1699
1700 ctrl->io_head = res_lists.io_head;
1701 ctrl->mem_head = res_lists.mem_head;
1702 ctrl->p_mem_head = res_lists.p_mem_head;
1703 ctrl->bus_head = res_lists.bus_head;
1704
1705 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1706 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1707 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1708 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1709
1710 if (is_bridge(func)) {
1711 bridge_slot_remove(func);
1712 } else
1713 slot_remove(func);
1714
1715 func = cpqhp_slot_find(ctrl->bus, device, 0);
1716 }
1717
1718 /* Setup slot structure with entry for empty slot */
1719 func = cpqhp_slot_create(ctrl->bus);
1720
1721 if (func == NULL)
1722 return 1;
1723
1724 func->bus = ctrl->bus;
1725 func->device = device;
1726 func->function = 0;
1727 func->configured = 0;
1728 func->switch_save = 0x10;
1729 func->is_a_board = 0;
1730 func->p_task_event = NULL;
1731 }
1732
1733 return 0;
1734}
1735
1736static void pushbutton_helper_thread(unsigned long data)
1737{
1738 pushbutton_pending = data;
1739 wake_up_process(cpqhp_event_thread);
1740}
1741
1742
1743/* this is the main worker thread */
1744static int event_thread(void* data)
1745{
1746 struct controller *ctrl;
1747
1748 while (1) {
1749 dbg("!!!!event_thread sleeping\n");
1750 set_current_state(TASK_INTERRUPTIBLE);
1751 schedule();
1752
1753 if (kthread_should_stop())
1754 break;
1755 /* Do stuff here */
1756 if (pushbutton_pending)
1757 cpqhp_pushbutton_thread(pushbutton_pending);
1758 else
1759 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1760 interrupt_event_handler(ctrl);
1761 }
1762 dbg("event_thread signals exit\n");
1763 return 0;
1764}
1765
1766int cpqhp_event_start_thread(void)
1767{
1768 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1769 if (IS_ERR(cpqhp_event_thread)) {
1770 err ("Can't start up our event thread\n");
1771 return PTR_ERR(cpqhp_event_thread);
1772 }
1773
1774 return 0;
1775}
1776
1777
1778void cpqhp_event_stop_thread(void)
1779{
1780 kthread_stop(cpqhp_event_thread);
1781}
1782
1783
1784static int update_slot_info(struct controller *ctrl, struct slot *slot)
1785{
1786 struct hotplug_slot_info *info;
1787 int result;
1788
1789 info = kmalloc(sizeof(*info), GFP_KERNEL);
1790 if (!info)
1791 return -ENOMEM;
1792
1793 info->power_status = get_slot_enabled(ctrl, slot);
1794 info->attention_status = cpq_get_attention_status(ctrl, slot);
1795 info->latch_status = cpq_get_latch_status(ctrl, slot);
1796 info->adapter_status = get_presence_status(ctrl, slot);
1797 result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1798 kfree (info);
1799 return result;
1800}
1801
1802static void interrupt_event_handler(struct controller *ctrl)
1803{
1804 int loop = 0;
1805 int change = 1;
1806 struct pci_func *func;
1807 u8 hp_slot;
1808 struct slot *p_slot;
1809
1810 while (change) {
1811 change = 0;
1812
1813 for (loop = 0; loop < 10; loop++) {
1814 /* dbg("loop %d\n", loop); */
1815 if (ctrl->event_queue[loop].event_type != 0) {
1816 hp_slot = ctrl->event_queue[loop].hp_slot;
1817
1818 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1819 if (!func)
1820 return;
1821
1822 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1823 if (!p_slot)
1824 return;
1825
1826 dbg("hp_slot %d, func %p, p_slot %p\n",
1827 hp_slot, func, p_slot);
1828
1829 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1830 dbg("button pressed\n");
1831 } else if (ctrl->event_queue[loop].event_type ==
1832 INT_BUTTON_CANCEL) {
1833 dbg("button cancel\n");
1834 del_timer(&p_slot->task_event);
1835
1836 mutex_lock(&ctrl->crit_sect);
1837
1838 if (p_slot->state == BLINKINGOFF_STATE) {
1839 /* slot is on */
1840 dbg("turn on green LED\n");
1841 green_LED_on (ctrl, hp_slot);
1842 } else if (p_slot->state == BLINKINGON_STATE) {
1843 /* slot is off */
1844 dbg("turn off green LED\n");
1845 green_LED_off (ctrl, hp_slot);
1846 }
1847
1848 info(msg_button_cancel, p_slot->number);
1849
1850 p_slot->state = STATIC_STATE;
1851
1852 amber_LED_off (ctrl, hp_slot);
1853
1854 set_SOGO(ctrl);
1855
1856 /* Wait for SOBS to be unset */
1857 wait_for_ctrl_irq (ctrl);
1858
1859 mutex_unlock(&ctrl->crit_sect);
1860 }
1861 /*** button Released (No action on press...) */
1862 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1863 dbg("button release\n");
1864
1865 if (is_slot_enabled (ctrl, hp_slot)) {
1866 dbg("slot is on\n");
1867 p_slot->state = BLINKINGOFF_STATE;
1868 info(msg_button_off, p_slot->number);
1869 } else {
1870 dbg("slot is off\n");
1871 p_slot->state = BLINKINGON_STATE;
1872 info(msg_button_on, p_slot->number);
1873 }
1874 mutex_lock(&ctrl->crit_sect);
1875
1876 dbg("blink green LED and turn off amber\n");
1877
1878 amber_LED_off (ctrl, hp_slot);
1879 green_LED_blink (ctrl, hp_slot);
1880
1881 set_SOGO(ctrl);
1882
1883 /* Wait for SOBS to be unset */
1884 wait_for_ctrl_irq (ctrl);
1885
1886 mutex_unlock(&ctrl->crit_sect);
1887 init_timer(&p_slot->task_event);
1888 p_slot->hp_slot = hp_slot;
1889 p_slot->ctrl = ctrl;
1890/* p_slot->physical_slot = physical_slot; */
1891 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
1892 p_slot->task_event.function = pushbutton_helper_thread;
1893 p_slot->task_event.data = (u32) p_slot;
1894
1895 dbg("add_timer p_slot = %p\n", p_slot);
1896 add_timer(&p_slot->task_event);
1897 }
1898 /***********POWER FAULT */
1899 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1900 dbg("power fault\n");
1901 } else {
1902 /* refresh notification */
1903 if (p_slot)
1904 update_slot_info(ctrl, p_slot);
1905 }
1906
1907 ctrl->event_queue[loop].event_type = 0;
1908
1909 change = 1;
1910 }
1911 } /* End of FOR loop */
1912 }
1913
1914 return;
1915}
1916
1917
1918/**
1919 * cpqhp_pushbutton_thread - handle pushbutton events
1920 * @slot: target slot (struct)
1921 *
1922 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1923 * Handles all pending events and exits.
1924 */
1925void cpqhp_pushbutton_thread(unsigned long slot)
1926{
1927 u8 hp_slot;
1928 u8 device;
1929 struct pci_func *func;
1930 struct slot *p_slot = (struct slot *) slot;
1931 struct controller *ctrl = (struct controller *) p_slot->ctrl;
1932
1933 pushbutton_pending = 0;
1934 hp_slot = p_slot->hp_slot;
1935
1936 device = p_slot->device;
1937
1938 if (is_slot_enabled(ctrl, hp_slot)) {
1939 p_slot->state = POWEROFF_STATE;
1940 /* power Down board */
1941 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1942 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1943 if (!func) {
1944 dbg("Error! func NULL in %s\n", __func__);
1945 return ;
1946 }
1947
1948 if (cpqhp_process_SS(ctrl, func) != 0) {
1949 amber_LED_on(ctrl, hp_slot);
1950 green_LED_on(ctrl, hp_slot);
1951
1952 set_SOGO(ctrl);
1953
1954 /* Wait for SOBS to be unset */
1955 wait_for_ctrl_irq(ctrl);
1956 }
1957
1958 p_slot->state = STATIC_STATE;
1959 } else {
1960 p_slot->state = POWERON_STATE;
1961 /* slot is off */
1962
1963 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1964 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1965 if (!func) {
1966 dbg("Error! func NULL in %s\n", __func__);
1967 return ;
1968 }
1969
1970 if (ctrl != NULL) {
1971 if (cpqhp_process_SI(ctrl, func) != 0) {
1972 amber_LED_on(ctrl, hp_slot);
1973 green_LED_off(ctrl, hp_slot);
1974
1975 set_SOGO(ctrl);
1976
1977 /* Wait for SOBS to be unset */
1978 wait_for_ctrl_irq (ctrl);
1979 }
1980 }
1981
1982 p_slot->state = STATIC_STATE;
1983 }
1984
1985 return;
1986}
1987
1988
1989int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1990{
1991 u8 device, hp_slot;
1992 u16 temp_word;
1993 u32 tempdword;
1994 int rc;
1995 struct slot* p_slot;
1996 int physical_slot = 0;
1997
1998 tempdword = 0;
1999
2000 device = func->device;
2001 hp_slot = device - ctrl->slot_device_offset;
2002 p_slot = cpqhp_find_slot(ctrl, device);
2003 if (p_slot)
2004 physical_slot = p_slot->number;
2005
2006 /* Check to see if the interlock is closed */
2007 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2008
2009 if (tempdword & (0x01 << hp_slot)) {
2010 return 1;
2011 }
2012
2013 if (func->is_a_board) {
2014 rc = board_replaced(func, ctrl);
2015 } else {
2016 /* add board */
2017 slot_remove(func);
2018
2019 func = cpqhp_slot_create(ctrl->bus);
2020 if (func == NULL)
2021 return 1;
2022
2023 func->bus = ctrl->bus;
2024 func->device = device;
2025 func->function = 0;
2026 func->configured = 0;
2027 func->is_a_board = 1;
2028
2029 /* We have to save the presence info for these slots */
2030 temp_word = ctrl->ctrl_int_comp >> 16;
2031 func->presence_save = (temp_word >> hp_slot) & 0x01;
2032 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2033
2034 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2035 func->switch_save = 0;
2036 } else {
2037 func->switch_save = 0x10;
2038 }
2039
2040 rc = board_added(func, ctrl);
2041 if (rc) {
2042 if (is_bridge(func)) {
2043 bridge_slot_remove(func);
2044 } else
2045 slot_remove(func);
2046
2047 /* Setup slot structure with entry for empty slot */
2048 func = cpqhp_slot_create(ctrl->bus);
2049
2050 if (func == NULL)
2051 return 1;
2052
2053 func->bus = ctrl->bus;
2054 func->device = device;
2055 func->function = 0;
2056 func->configured = 0;
2057 func->is_a_board = 0;
2058
2059 /* We have to save the presence info for these slots */
2060 temp_word = ctrl->ctrl_int_comp >> 16;
2061 func->presence_save = (temp_word >> hp_slot) & 0x01;
2062 func->presence_save |=
2063 (temp_word >> (hp_slot + 7)) & 0x02;
2064
2065 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2066 func->switch_save = 0;
2067 } else {
2068 func->switch_save = 0x10;
2069 }
2070 }
2071 }
2072
2073 if (rc) {
2074 dbg("%s: rc = %d\n", __func__, rc);
2075 }
2076
2077 if (p_slot)
2078 update_slot_info(ctrl, p_slot);
2079
2080 return rc;
2081}
2082
2083
2084int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2085{
2086 u8 device, class_code, header_type, BCR;
2087 u8 index = 0;
2088 u8 replace_flag;
2089 u32 rc = 0;
2090 unsigned int devfn;
2091 struct slot* p_slot;
2092 struct pci_bus *pci_bus = ctrl->pci_bus;
2093 int physical_slot=0;
2094
2095 device = func->device;
2096 func = cpqhp_slot_find(ctrl->bus, device, index++);
2097 p_slot = cpqhp_find_slot(ctrl, device);
2098 if (p_slot) {
2099 physical_slot = p_slot->number;
2100 }
2101
2102 /* Make sure there are no video controllers here */
2103 while (func && !rc) {
2104 pci_bus->number = func->bus;
2105 devfn = PCI_DEVFN(func->device, func->function);
2106
2107 /* Check the Class Code */
2108 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2109 if (rc)
2110 return rc;
2111
2112 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2113 /* Display/Video adapter (not supported) */
2114 rc = REMOVE_NOT_SUPPORTED;
2115 } else {
2116 /* See if it's a bridge */
2117 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2118 if (rc)
2119 return rc;
2120
2121 /* If it's a bridge, check the VGA Enable bit */
2122 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2123 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2124 if (rc)
2125 return rc;
2126
2127 /* If the VGA Enable bit is set, remove isn't
2128 * supported */
2129 if (BCR & PCI_BRIDGE_CTL_VGA)
2130 rc = REMOVE_NOT_SUPPORTED;
2131 }
2132 }
2133
2134 func = cpqhp_slot_find(ctrl->bus, device, index++);
2135 }
2136
2137 func = cpqhp_slot_find(ctrl->bus, device, 0);
2138 if ((func != NULL) && !rc) {
2139 /* FIXME: Replace flag should be passed into process_SS */
2140 replace_flag = !(ctrl->add_support);
2141 rc = remove_board(func, replace_flag, ctrl);
2142 } else if (!rc) {
2143 rc = 1;
2144 }
2145
2146 if (p_slot)
2147 update_slot_info(ctrl, p_slot);
2148
2149 return rc;
2150}
2151
2152/**
2153 * switch_leds - switch the leds, go from one site to the other.
2154 * @ctrl: controller to use
2155 * @num_of_slots: number of slots to use
2156 * @work_LED: LED control value
2157 * @direction: 1 to start from the left side, 0 to start right.
2158 */
2159static void switch_leds(struct controller *ctrl, const int num_of_slots,
2160 u32 *work_LED, const int direction)
2161{
2162 int loop;
2163
2164 for (loop = 0; loop < num_of_slots; loop++) {
2165 if (direction)
2166 *work_LED = *work_LED >> 1;
2167 else
2168 *work_LED = *work_LED << 1;
2169 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2170
2171 set_SOGO(ctrl);
2172
2173 /* Wait for SOGO interrupt */
2174 wait_for_ctrl_irq(ctrl);
2175
2176 /* Get ready for next iteration */
2177 long_delay((2*HZ)/10);
2178 }
2179}
2180
2181/**
2182 * cpqhp_hardware_test - runs hardware tests
2183 * @ctrl: target controller
2184 * @test_num: the number written to the "test" file in sysfs.
2185 *
2186 * For hot plug ctrl folks to play with.
2187 */
2188int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2189{
2190 u32 save_LED;
2191 u32 work_LED;
2192 int loop;
2193 int num_of_slots;
2194
2195 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2196
2197 switch (test_num) {
2198 case 1:
2199 /* Do stuff here! */
2200
2201 /* Do that funky LED thing */
2202 /* so we can restore them later */
2203 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2204 work_LED = 0x01010101;
2205 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2206 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2207 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2208 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2209
2210 work_LED = 0x01010000;
2211 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2212 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2213 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2214 work_LED = 0x00000101;
2215 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2216 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2217 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2218
2219 work_LED = 0x01010000;
2220 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2221 for (loop = 0; loop < num_of_slots; loop++) {
2222 set_SOGO(ctrl);
2223
2224 /* Wait for SOGO interrupt */
2225 wait_for_ctrl_irq (ctrl);
2226
2227 /* Get ready for next iteration */
2228 long_delay((3*HZ)/10);
2229 work_LED = work_LED >> 16;
2230 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2231
2232 set_SOGO(ctrl);
2233
2234 /* Wait for SOGO interrupt */
2235 wait_for_ctrl_irq (ctrl);
2236
2237 /* Get ready for next iteration */
2238 long_delay((3*HZ)/10);
2239 work_LED = work_LED << 16;
2240 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2241 work_LED = work_LED << 1;
2242 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2243 }
2244
2245 /* put it back the way it was */
2246 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2247
2248 set_SOGO(ctrl);
2249
2250 /* Wait for SOBS to be unset */
2251 wait_for_ctrl_irq (ctrl);
2252 break;
2253 case 2:
2254 /* Do other stuff here! */
2255 break;
2256 case 3:
2257 /* and more... */
2258 break;
2259 }
2260 return 0;
2261}
2262
2263
2264/**
2265 * configure_new_device - Configures the PCI header information of one board.
2266 * @ctrl: pointer to controller structure
2267 * @func: pointer to function structure
2268 * @behind_bridge: 1 if this is a recursive call, 0 if not
2269 * @resources: pointer to set of resource lists
2270 *
2271 * Returns 0 if success.
2272 */
2273static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2274 u8 behind_bridge, struct resource_lists * resources)
2275{
2276 u8 temp_byte, function, max_functions, stop_it;
2277 int rc;
2278 u32 ID;
2279 struct pci_func *new_slot;
2280 int index;
2281
2282 new_slot = func;
2283
2284 dbg("%s\n", __func__);
2285 /* Check for Multi-function device */
2286 ctrl->pci_bus->number = func->bus;
2287 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2288 if (rc) {
2289 dbg("%s: rc = %d\n", __func__, rc);
2290 return rc;
2291 }
2292
2293 if (temp_byte & 0x80) /* Multi-function device */
2294 max_functions = 8;
2295 else
2296 max_functions = 1;
2297
2298 function = 0;
2299
2300 do {
2301 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2302
2303 if (rc) {
2304 dbg("configure_new_function failed %d\n",rc);
2305 index = 0;
2306
2307 while (new_slot) {
2308 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2309
2310 if (new_slot)
2311 cpqhp_return_board_resources(new_slot, resources);
2312 }
2313
2314 return rc;
2315 }
2316
2317 function++;
2318
2319 stop_it = 0;
2320
2321 /* The following loop skips to the next present function
2322 * and creates a board structure */
2323
2324 while ((function < max_functions) && (!stop_it)) {
2325 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2326
2327 if (ID == 0xFFFFFFFF) {
2328 function++;
2329 } else {
2330 /* Setup slot structure. */
2331 new_slot = cpqhp_slot_create(func->bus);
2332
2333 if (new_slot == NULL)
2334 return 1;
2335
2336 new_slot->bus = func->bus;
2337 new_slot->device = func->device;
2338 new_slot->function = function;
2339 new_slot->is_a_board = 1;
2340 new_slot->status = 0;
2341
2342 stop_it++;
2343 }
2344 }
2345
2346 } while (function < max_functions);
2347 dbg("returning from configure_new_device\n");
2348
2349 return 0;
2350}
2351
2352
2353/*
2354 * Configuration logic that involves the hotplug data structures and
2355 * their bookkeeping
2356 */
2357
2358
2359/**
2360 * configure_new_function - Configures the PCI header information of one device
2361 * @ctrl: pointer to controller structure
2362 * @func: pointer to function structure
2363 * @behind_bridge: 1 if this is a recursive call, 0 if not
2364 * @resources: pointer to set of resource lists
2365 *
2366 * Calls itself recursively for bridged devices.
2367 * Returns 0 if success.
2368 */
2369static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2370 u8 behind_bridge,
2371 struct resource_lists *resources)
2372{
2373 int cloop;
2374 u8 IRQ = 0;
2375 u8 temp_byte;
2376 u8 device;
2377 u8 class_code;
2378 u16 command;
2379 u16 temp_word;
2380 u32 temp_dword;
2381 u32 rc;
2382 u32 temp_register;
2383 u32 base;
2384 u32 ID;
2385 unsigned int devfn;
2386 struct pci_resource *mem_node;
2387 struct pci_resource *p_mem_node;
2388 struct pci_resource *io_node;
2389 struct pci_resource *bus_node;
2390 struct pci_resource *hold_mem_node;
2391 struct pci_resource *hold_p_mem_node;
2392 struct pci_resource *hold_IO_node;
2393 struct pci_resource *hold_bus_node;
2394 struct irq_mapping irqs;
2395 struct pci_func *new_slot;
2396 struct pci_bus *pci_bus;
2397 struct resource_lists temp_resources;
2398
2399 pci_bus = ctrl->pci_bus;
2400 pci_bus->number = func->bus;
2401 devfn = PCI_DEVFN(func->device, func->function);
2402
2403 /* Check for Bridge */
2404 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2405 if (rc)
2406 return rc;
2407
2408 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2409 /* set Primary bus */
2410 dbg("set Primary bus = %d\n", func->bus);
2411 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2412 if (rc)
2413 return rc;
2414
2415 /* find range of busses to use */
2416 dbg("find ranges of buses to use\n");
2417 bus_node = get_max_resource(&(resources->bus_head), 1);
2418
2419 /* If we don't have any busses to allocate, we can't continue */
2420 if (!bus_node)
2421 return -ENOMEM;
2422
2423 /* set Secondary bus */
2424 temp_byte = bus_node->base;
2425 dbg("set Secondary bus = %d\n", bus_node->base);
2426 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2427 if (rc)
2428 return rc;
2429
2430 /* set subordinate bus */
2431 temp_byte = bus_node->base + bus_node->length - 1;
2432 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2433 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2434 if (rc)
2435 return rc;
2436
2437 /* set subordinate Latency Timer and base Latency Timer */
2438 temp_byte = 0x40;
2439 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2440 if (rc)
2441 return rc;
2442 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2443 if (rc)
2444 return rc;
2445
2446 /* set Cache Line size */
2447 temp_byte = 0x08;
2448 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2449 if (rc)
2450 return rc;
2451
2452 /* Setup the IO, memory, and prefetchable windows */
2453 io_node = get_max_resource(&(resources->io_head), 0x1000);
2454 if (!io_node)
2455 return -ENOMEM;
2456 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2457 if (!mem_node)
2458 return -ENOMEM;
2459 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2460 if (!p_mem_node)
2461 return -ENOMEM;
2462 dbg("Setup the IO, memory, and prefetchable windows\n");
2463 dbg("io_node\n");
2464 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2465 io_node->length, io_node->next);
2466 dbg("mem_node\n");
2467 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2468 mem_node->length, mem_node->next);
2469 dbg("p_mem_node\n");
2470 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2471 p_mem_node->length, p_mem_node->next);
2472
2473 /* set up the IRQ info */
2474 if (!resources->irqs) {
2475 irqs.barber_pole = 0;
2476 irqs.interrupt[0] = 0;
2477 irqs.interrupt[1] = 0;
2478 irqs.interrupt[2] = 0;
2479 irqs.interrupt[3] = 0;
2480 irqs.valid_INT = 0;
2481 } else {
2482 irqs.barber_pole = resources->irqs->barber_pole;
2483 irqs.interrupt[0] = resources->irqs->interrupt[0];
2484 irqs.interrupt[1] = resources->irqs->interrupt[1];
2485 irqs.interrupt[2] = resources->irqs->interrupt[2];
2486 irqs.interrupt[3] = resources->irqs->interrupt[3];
2487 irqs.valid_INT = resources->irqs->valid_INT;
2488 }
2489
2490 /* set up resource lists that are now aligned on top and bottom
2491 * for anything behind the bridge. */
2492 temp_resources.bus_head = bus_node;
2493 temp_resources.io_head = io_node;
2494 temp_resources.mem_head = mem_node;
2495 temp_resources.p_mem_head = p_mem_node;
2496 temp_resources.irqs = &irqs;
2497
2498 /* Make copies of the nodes we are going to pass down so that
2499 * if there is a problem,we can just use these to free resources
2500 */
2501 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2502 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2503 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2504 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2505
2506 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2507 kfree(hold_bus_node);
2508 kfree(hold_IO_node);
2509 kfree(hold_mem_node);
2510 kfree(hold_p_mem_node);
2511
2512 return 1;
2513 }
2514
2515 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2516
2517 bus_node->base += 1;
2518 bus_node->length -= 1;
2519 bus_node->next = NULL;
2520
2521 /* If we have IO resources copy them and fill in the bridge's
2522 * IO range registers */
2523 if (io_node) {
2524 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2525 io_node->next = NULL;
2526
2527 /* set IO base and Limit registers */
2528 temp_byte = io_node->base >> 8;
2529 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2530
2531 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2532 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2533 } else {
2534 kfree(hold_IO_node);
2535 hold_IO_node = NULL;
2536 }
2537
2538 /* If we have memory resources copy them and fill in the
2539 * bridge's memory range registers. Otherwise, fill in the
2540 * range registers with values that disable them. */
2541 if (mem_node) {
2542 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2543 mem_node->next = NULL;
2544
2545 /* set Mem base and Limit registers */
2546 temp_word = mem_node->base >> 16;
2547 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2548
2549 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2550 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2551 } else {
2552 temp_word = 0xFFFF;
2553 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2554
2555 temp_word = 0x0000;
2556 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2557
2558 kfree(hold_mem_node);
2559 hold_mem_node = NULL;
2560 }
2561
2562 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2563 p_mem_node->next = NULL;
2564
2565 /* set Pre Mem base and Limit registers */
2566 temp_word = p_mem_node->base >> 16;
2567 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2568
2569 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2570 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2571
2572 /* Adjust this to compensate for extra adjustment in first loop
2573 */
2574 irqs.barber_pole--;
2575
2576 rc = 0;
2577
2578 /* Here we actually find the devices and configure them */
2579 for (device = 0; (device <= 0x1F) && !rc; device++) {
2580 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2581
2582 ID = 0xFFFFFFFF;
2583 pci_bus->number = hold_bus_node->base;
2584 pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2585 pci_bus->number = func->bus;
2586
2587 if (ID != 0xFFFFFFFF) { /* device present */
2588 /* Setup slot structure. */
2589 new_slot = cpqhp_slot_create(hold_bus_node->base);
2590
2591 if (new_slot == NULL) {
2592 rc = -ENOMEM;
2593 continue;
2594 }
2595
2596 new_slot->bus = hold_bus_node->base;
2597 new_slot->device = device;
2598 new_slot->function = 0;
2599 new_slot->is_a_board = 1;
2600 new_slot->status = 0;
2601
2602 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2603 dbg("configure_new_device rc=0x%x\n",rc);
2604 } /* End of IF (device in slot?) */
2605 } /* End of FOR loop */
2606
2607 if (rc)
2608 goto free_and_out;
2609 /* save the interrupt routing information */
2610 if (resources->irqs) {
2611 resources->irqs->interrupt[0] = irqs.interrupt[0];
2612 resources->irqs->interrupt[1] = irqs.interrupt[1];
2613 resources->irqs->interrupt[2] = irqs.interrupt[2];
2614 resources->irqs->interrupt[3] = irqs.interrupt[3];
2615 resources->irqs->valid_INT = irqs.valid_INT;
2616 } else if (!behind_bridge) {
2617 /* We need to hook up the interrupts here */
2618 for (cloop = 0; cloop < 4; cloop++) {
2619 if (irqs.valid_INT & (0x01 << cloop)) {
2620 rc = cpqhp_set_irq(func->bus, func->device,
2621 cloop + 1, irqs.interrupt[cloop]);
2622 if (rc)
2623 goto free_and_out;
2624 }
2625 } /* end of for loop */
2626 }
2627 /* Return unused bus resources
2628 * First use the temporary node to store information for
2629 * the board */
2630 if (hold_bus_node && bus_node && temp_resources.bus_head) {
2631 hold_bus_node->length = bus_node->base - hold_bus_node->base;
2632
2633 hold_bus_node->next = func->bus_head;
2634 func->bus_head = hold_bus_node;
2635
2636 temp_byte = temp_resources.bus_head->base - 1;
2637
2638 /* set subordinate bus */
2639 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2640
2641 if (temp_resources.bus_head->length == 0) {
2642 kfree(temp_resources.bus_head);
2643 temp_resources.bus_head = NULL;
2644 } else {
2645 return_resource(&(resources->bus_head), temp_resources.bus_head);
2646 }
2647 }
2648
2649 /* If we have IO space available and there is some left,
2650 * return the unused portion */
2651 if (hold_IO_node && temp_resources.io_head) {
2652 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2653 &hold_IO_node, 0x1000);
2654
2655 /* Check if we were able to split something off */
2656 if (io_node) {
2657 hold_IO_node->base = io_node->base + io_node->length;
2658
2659 temp_byte = (hold_IO_node->base) >> 8;
2660 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2661
2662 return_resource(&(resources->io_head), io_node);
2663 }
2664
2665 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2666
2667 /* Check if we were able to split something off */
2668 if (io_node) {
2669 /* First use the temporary node to store
2670 * information for the board */
2671 hold_IO_node->length = io_node->base - hold_IO_node->base;
2672
2673 /* If we used any, add it to the board's list */
2674 if (hold_IO_node->length) {
2675 hold_IO_node->next = func->io_head;
2676 func->io_head = hold_IO_node;
2677
2678 temp_byte = (io_node->base - 1) >> 8;
2679 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2680
2681 return_resource(&(resources->io_head), io_node);
2682 } else {
2683 /* it doesn't need any IO */
2684 temp_word = 0x0000;
2685 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2686
2687 return_resource(&(resources->io_head), io_node);
2688 kfree(hold_IO_node);
2689 }
2690 } else {
2691 /* it used most of the range */
2692 hold_IO_node->next = func->io_head;
2693 func->io_head = hold_IO_node;
2694 }
2695 } else if (hold_IO_node) {
2696 /* it used the whole range */
2697 hold_IO_node->next = func->io_head;
2698 func->io_head = hold_IO_node;
2699 }
2700 /* If we have memory space available and there is some left,
2701 * return the unused portion */
2702 if (hold_mem_node && temp_resources.mem_head) {
2703 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
2704 &hold_mem_node, 0x100000);
2705
2706 /* Check if we were able to split something off */
2707 if (mem_node) {
2708 hold_mem_node->base = mem_node->base + mem_node->length;
2709
2710 temp_word = (hold_mem_node->base) >> 16;
2711 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2712
2713 return_resource(&(resources->mem_head), mem_node);
2714 }
2715
2716 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2717
2718 /* Check if we were able to split something off */
2719 if (mem_node) {
2720 /* First use the temporary node to store
2721 * information for the board */
2722 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2723
2724 if (hold_mem_node->length) {
2725 hold_mem_node->next = func->mem_head;
2726 func->mem_head = hold_mem_node;
2727
2728 /* configure end address */
2729 temp_word = (mem_node->base - 1) >> 16;
2730 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2731
2732 /* Return unused resources to the pool */
2733 return_resource(&(resources->mem_head), mem_node);
2734 } else {
2735 /* it doesn't need any Mem */
2736 temp_word = 0x0000;
2737 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2738
2739 return_resource(&(resources->mem_head), mem_node);
2740 kfree(hold_mem_node);
2741 }
2742 } else {
2743 /* it used most of the range */
2744 hold_mem_node->next = func->mem_head;
2745 func->mem_head = hold_mem_node;
2746 }
2747 } else if (hold_mem_node) {
2748 /* it used the whole range */
2749 hold_mem_node->next = func->mem_head;
2750 func->mem_head = hold_mem_node;
2751 }
2752 /* If we have prefetchable memory space available and there
2753 * is some left at the end, return the unused portion */
2754 if (hold_p_mem_node && temp_resources.p_mem_head) {
2755 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2756 &hold_p_mem_node, 0x100000);
2757
2758 /* Check if we were able to split something off */
2759 if (p_mem_node) {
2760 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2761
2762 temp_word = (hold_p_mem_node->base) >> 16;
2763 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2764
2765 return_resource(&(resources->p_mem_head), p_mem_node);
2766 }
2767
2768 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2769
2770 /* Check if we were able to split something off */
2771 if (p_mem_node) {
2772 /* First use the temporary node to store
2773 * information for the board */
2774 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2775
2776 /* If we used any, add it to the board's list */
2777 if (hold_p_mem_node->length) {
2778 hold_p_mem_node->next = func->p_mem_head;
2779 func->p_mem_head = hold_p_mem_node;
2780
2781 temp_word = (p_mem_node->base - 1) >> 16;
2782 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2783
2784 return_resource(&(resources->p_mem_head), p_mem_node);
2785 } else {
2786 /* it doesn't need any PMem */
2787 temp_word = 0x0000;
2788 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2789
2790 return_resource(&(resources->p_mem_head), p_mem_node);
2791 kfree(hold_p_mem_node);
2792 }
2793 } else {
2794 /* it used the most of the range */
2795 hold_p_mem_node->next = func->p_mem_head;
2796 func->p_mem_head = hold_p_mem_node;
2797 }
2798 } else if (hold_p_mem_node) {
2799 /* it used the whole range */
2800 hold_p_mem_node->next = func->p_mem_head;
2801 func->p_mem_head = hold_p_mem_node;
2802 }
2803 /* We should be configuring an IRQ and the bridge's base address
2804 * registers if it needs them. Although we have never seen such
2805 * a device */
2806
2807 /* enable card */
2808 command = 0x0157; /* = PCI_COMMAND_IO |
2809 * PCI_COMMAND_MEMORY |
2810 * PCI_COMMAND_MASTER |
2811 * PCI_COMMAND_INVALIDATE |
2812 * PCI_COMMAND_PARITY |
2813 * PCI_COMMAND_SERR */
2814 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2815
2816 /* set Bridge Control Register */
2817 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2818 * PCI_BRIDGE_CTL_SERR |
2819 * PCI_BRIDGE_CTL_NO_ISA */
2820 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2821 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2822 /* Standard device */
2823 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2824
2825 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2826 /* Display (video) adapter (not supported) */
2827 return DEVICE_TYPE_NOT_SUPPORTED;
2828 }
2829 /* Figure out IO and memory needs */
2830 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2831 temp_register = 0xFFFFFFFF;
2832
2833 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2834 rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2835
2836 rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2837 dbg("CND: base = 0x%x\n", temp_register);
2838
2839 if (temp_register) { /* If this register is implemented */
2840 if ((temp_register & 0x03L) == 0x01) {
2841 /* Map IO */
2842
2843 /* set base = amount of IO space */
2844 base = temp_register & 0xFFFFFFFC;
2845 base = ~base + 1;
2846
2847 dbg("CND: length = 0x%x\n", base);
2848 io_node = get_io_resource(&(resources->io_head), base);
2849 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2850 io_node->base, io_node->length, io_node->next);
2851 dbg("func (%p) io_head (%p)\n", func, func->io_head);
2852
2853 /* allocate the resource to the board */
2854 if (io_node) {
2855 base = io_node->base;
2856
2857 io_node->next = func->io_head;
2858 func->io_head = io_node;
2859 } else
2860 return -ENOMEM;
2861 } else if ((temp_register & 0x0BL) == 0x08) {
2862 /* Map prefetchable memory */
2863 base = temp_register & 0xFFFFFFF0;
2864 base = ~base + 1;
2865
2866 dbg("CND: length = 0x%x\n", base);
2867 p_mem_node = get_resource(&(resources->p_mem_head), base);
2868
2869 /* allocate the resource to the board */
2870 if (p_mem_node) {
2871 base = p_mem_node->base;
2872
2873 p_mem_node->next = func->p_mem_head;
2874 func->p_mem_head = p_mem_node;
2875 } else
2876 return -ENOMEM;
2877 } else if ((temp_register & 0x0BL) == 0x00) {
2878 /* Map memory */
2879 base = temp_register & 0xFFFFFFF0;
2880 base = ~base + 1;
2881
2882 dbg("CND: length = 0x%x\n", base);
2883 mem_node = get_resource(&(resources->mem_head), base);
2884
2885 /* allocate the resource to the board */
2886 if (mem_node) {
2887 base = mem_node->base;
2888
2889 mem_node->next = func->mem_head;
2890 func->mem_head = mem_node;
2891 } else
2892 return -ENOMEM;
2893 } else if ((temp_register & 0x0BL) == 0x04) {
2894 /* Map memory */
2895 base = temp_register & 0xFFFFFFF0;
2896 base = ~base + 1;
2897
2898 dbg("CND: length = 0x%x\n", base);
2899 mem_node = get_resource(&(resources->mem_head), base);
2900
2901 /* allocate the resource to the board */
2902 if (mem_node) {
2903 base = mem_node->base;
2904
2905 mem_node->next = func->mem_head;
2906 func->mem_head = mem_node;
2907 } else
2908 return -ENOMEM;
2909 } else if ((temp_register & 0x0BL) == 0x06) {
2910 /* Those bits are reserved, we can't handle this */
2911 return 1;
2912 } else {
2913 /* Requesting space below 1M */
2914 return NOT_ENOUGH_RESOURCES;
2915 }
2916
2917 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2918
2919 /* Check for 64-bit base */
2920 if ((temp_register & 0x07L) == 0x04) {
2921 cloop += 4;
2922
2923 /* Upper 32 bits of address always zero
2924 * on today's systems */
2925 /* FIXME this is probably not true on
2926 * Alpha and ia64??? */
2927 base = 0;
2928 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2929 }
2930 }
2931 } /* End of base register loop */
2932 if (cpqhp_legacy_mode) {
2933 /* Figure out which interrupt pin this function uses */
2934 rc = pci_bus_read_config_byte (pci_bus, devfn,
2935 PCI_INTERRUPT_PIN, &temp_byte);
2936
2937 /* If this function needs an interrupt and we are behind
2938 * a bridge and the pin is tied to something that's
2939 * alread mapped, set this one the same */
2940 if (temp_byte && resources->irqs &&
2941 (resources->irqs->valid_INT &
2942 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2943 /* We have to share with something already set up */
2944 IRQ = resources->irqs->interrupt[(temp_byte +
2945 resources->irqs->barber_pole - 1) & 0x03];
2946 } else {
2947 /* Program IRQ based on card type */
2948 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2949
2950 if (class_code == PCI_BASE_CLASS_STORAGE)
2951 IRQ = cpqhp_disk_irq;
2952 else
2953 IRQ = cpqhp_nic_irq;
2954 }
2955
2956 /* IRQ Line */
2957 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2958 }
2959
2960 if (!behind_bridge) {
2961 rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2962 if (rc)
2963 return 1;
2964 } else {
2965 /* TBD - this code may also belong in the other clause
2966 * of this If statement */
2967 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2968 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2969 }
2970
2971 /* Latency Timer */
2972 temp_byte = 0x40;
2973 rc = pci_bus_write_config_byte(pci_bus, devfn,
2974 PCI_LATENCY_TIMER, temp_byte);
2975
2976 /* Cache Line size */
2977 temp_byte = 0x08;
2978 rc = pci_bus_write_config_byte(pci_bus, devfn,
2979 PCI_CACHE_LINE_SIZE, temp_byte);
2980
2981 /* disable ROM base Address */
2982 temp_dword = 0x00L;
2983 rc = pci_bus_write_config_word(pci_bus, devfn,
2984 PCI_ROM_ADDRESS, temp_dword);
2985
2986 /* enable card */
2987 temp_word = 0x0157; /* = PCI_COMMAND_IO |
2988 * PCI_COMMAND_MEMORY |
2989 * PCI_COMMAND_MASTER |
2990 * PCI_COMMAND_INVALIDATE |
2991 * PCI_COMMAND_PARITY |
2992 * PCI_COMMAND_SERR */
2993 rc = pci_bus_write_config_word (pci_bus, devfn,
2994 PCI_COMMAND, temp_word);
2995 } else { /* End of Not-A-Bridge else */
2996 /* It's some strange type of PCI adapter (Cardbus?) */
2997 return DEVICE_TYPE_NOT_SUPPORTED;
2998 }
2999
3000 func->configured = 1;
3001
3002 return 0;
3003free_and_out:
3004 cpqhp_destroy_resource_list (&temp_resources);
3005
3006 return_resource(&(resources-> bus_head), hold_bus_node);
3007 return_resource(&(resources-> io_head), hold_IO_node);
3008 return_resource(&(resources-> mem_head), hold_mem_node);
3009 return_resource(&(resources-> p_mem_head), hold_p_mem_node);
3010 return rc;
3011}
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Compaq Hot Plug Controller Driver
4 *
5 * Copyright (C) 1995,2001 Compaq Computer Corporation
6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7 * Copyright (C) 2001 IBM Corp.
8 *
9 * All rights reserved.
10 *
11 * Send feedback to <greg@kroah.com>
12 *
13 */
14
15#include <linux/module.h>
16#include <linux/kernel.h>
17#include <linux/types.h>
18#include <linux/slab.h>
19#include <linux/workqueue.h>
20#include <linux/interrupt.h>
21#include <linux/delay.h>
22#include <linux/wait.h>
23#include <linux/pci.h>
24#include <linux/pci_hotplug.h>
25#include <linux/kthread.h>
26#include "cpqphp.h"
27
28static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
29 u8 behind_bridge, struct resource_lists *resources);
30static int configure_new_function(struct controller *ctrl, struct pci_func *func,
31 u8 behind_bridge, struct resource_lists *resources);
32static void interrupt_event_handler(struct controller *ctrl);
33
34
35static struct task_struct *cpqhp_event_thread;
36static struct timer_list *pushbutton_pending; /* = NULL */
37
38/* delay is in jiffies to wait for */
39static void long_delay(int delay)
40{
41 /*
42 * XXX(hch): if someone is bored please convert all callers
43 * to call msleep_interruptible directly. They really want
44 * to specify timeouts in natural units and spend a lot of
45 * effort converting them to jiffies..
46 */
47 msleep_interruptible(jiffies_to_msecs(delay));
48}
49
50
51/* FIXME: The following line needs to be somewhere else... */
52#define WRONG_BUS_FREQUENCY 0x07
53static u8 handle_switch_change(u8 change, struct controller *ctrl)
54{
55 int hp_slot;
56 u8 rc = 0;
57 u16 temp_word;
58 struct pci_func *func;
59 struct event_info *taskInfo;
60
61 if (!change)
62 return 0;
63
64 /* Switch Change */
65 dbg("cpqsbd: Switch interrupt received.\n");
66
67 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
68 if (change & (0x1L << hp_slot)) {
69 /*
70 * this one changed.
71 */
72 func = cpqhp_slot_find(ctrl->bus,
73 (hp_slot + ctrl->slot_device_offset), 0);
74
75 /* this is the structure that tells the worker thread
76 * what to do
77 */
78 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
79 ctrl->next_event = (ctrl->next_event + 1) % 10;
80 taskInfo->hp_slot = hp_slot;
81
82 rc++;
83
84 temp_word = ctrl->ctrl_int_comp >> 16;
85 func->presence_save = (temp_word >> hp_slot) & 0x01;
86 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
87
88 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
89 /*
90 * Switch opened
91 */
92
93 func->switch_save = 0;
94
95 taskInfo->event_type = INT_SWITCH_OPEN;
96 } else {
97 /*
98 * Switch closed
99 */
100
101 func->switch_save = 0x10;
102
103 taskInfo->event_type = INT_SWITCH_CLOSE;
104 }
105 }
106 }
107
108 return rc;
109}
110
111/**
112 * cpqhp_find_slot - find the struct slot of given device
113 * @ctrl: scan lots of this controller
114 * @device: the device id to find
115 */
116static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
117{
118 struct slot *slot = ctrl->slot;
119
120 while (slot && (slot->device != device))
121 slot = slot->next;
122
123 return slot;
124}
125
126
127static u8 handle_presence_change(u16 change, struct controller *ctrl)
128{
129 int hp_slot;
130 u8 rc = 0;
131 u8 temp_byte;
132 u16 temp_word;
133 struct pci_func *func;
134 struct event_info *taskInfo;
135 struct slot *p_slot;
136
137 if (!change)
138 return 0;
139
140 /*
141 * Presence Change
142 */
143 dbg("cpqsbd: Presence/Notify input change.\n");
144 dbg(" Changed bits are 0x%4.4x\n", change);
145
146 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
147 if (change & (0x0101 << hp_slot)) {
148 /*
149 * this one changed.
150 */
151 func = cpqhp_slot_find(ctrl->bus,
152 (hp_slot + ctrl->slot_device_offset), 0);
153
154 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
155 ctrl->next_event = (ctrl->next_event + 1) % 10;
156 taskInfo->hp_slot = hp_slot;
157
158 rc++;
159
160 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
161 if (!p_slot)
162 return 0;
163
164 /* If the switch closed, must be a button
165 * If not in button mode, nevermind
166 */
167 if (func->switch_save && (ctrl->push_button == 1)) {
168 temp_word = ctrl->ctrl_int_comp >> 16;
169 temp_byte = (temp_word >> hp_slot) & 0x01;
170 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
171
172 if (temp_byte != func->presence_save) {
173 /*
174 * button Pressed (doesn't do anything)
175 */
176 dbg("hp_slot %d button pressed\n", hp_slot);
177 taskInfo->event_type = INT_BUTTON_PRESS;
178 } else {
179 /*
180 * button Released - TAKE ACTION!!!!
181 */
182 dbg("hp_slot %d button released\n", hp_slot);
183 taskInfo->event_type = INT_BUTTON_RELEASE;
184
185 /* Cancel if we are still blinking */
186 if ((p_slot->state == BLINKINGON_STATE)
187 || (p_slot->state == BLINKINGOFF_STATE)) {
188 taskInfo->event_type = INT_BUTTON_CANCEL;
189 dbg("hp_slot %d button cancel\n", hp_slot);
190 } else if ((p_slot->state == POWERON_STATE)
191 || (p_slot->state == POWEROFF_STATE)) {
192 /* info(msg_button_ignore, p_slot->number); */
193 taskInfo->event_type = INT_BUTTON_IGNORE;
194 dbg("hp_slot %d button ignore\n", hp_slot);
195 }
196 }
197 } else {
198 /* Switch is open, assume a presence change
199 * Save the presence state
200 */
201 temp_word = ctrl->ctrl_int_comp >> 16;
202 func->presence_save = (temp_word >> hp_slot) & 0x01;
203 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
204
205 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
206 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
207 /* Present */
208 taskInfo->event_type = INT_PRESENCE_ON;
209 } else {
210 /* Not Present */
211 taskInfo->event_type = INT_PRESENCE_OFF;
212 }
213 }
214 }
215 }
216
217 return rc;
218}
219
220
221static u8 handle_power_fault(u8 change, struct controller *ctrl)
222{
223 int hp_slot;
224 u8 rc = 0;
225 struct pci_func *func;
226 struct event_info *taskInfo;
227
228 if (!change)
229 return 0;
230
231 /*
232 * power fault
233 */
234
235 info("power fault interrupt\n");
236
237 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
238 if (change & (0x01 << hp_slot)) {
239 /*
240 * this one changed.
241 */
242 func = cpqhp_slot_find(ctrl->bus,
243 (hp_slot + ctrl->slot_device_offset), 0);
244
245 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
246 ctrl->next_event = (ctrl->next_event + 1) % 10;
247 taskInfo->hp_slot = hp_slot;
248
249 rc++;
250
251 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
252 /*
253 * power fault Cleared
254 */
255 func->status = 0x00;
256
257 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
258 } else {
259 /*
260 * power fault
261 */
262 taskInfo->event_type = INT_POWER_FAULT;
263
264 if (ctrl->rev < 4) {
265 amber_LED_on(ctrl, hp_slot);
266 green_LED_off(ctrl, hp_slot);
267 set_SOGO(ctrl);
268
269 /* this is a fatal condition, we want
270 * to crash the machine to protect from
271 * data corruption. simulated_NMI
272 * shouldn't ever return */
273 /* FIXME
274 simulated_NMI(hp_slot, ctrl); */
275
276 /* The following code causes a software
277 * crash just in case simulated_NMI did
278 * return */
279 /*FIXME
280 panic(msg_power_fault); */
281 } else {
282 /* set power fault status for this board */
283 func->status = 0xFF;
284 info("power fault bit %x set\n", hp_slot);
285 }
286 }
287 }
288 }
289
290 return rc;
291}
292
293
294/**
295 * sort_by_size - sort nodes on the list by their length, smallest first.
296 * @head: list to sort
297 */
298static int sort_by_size(struct pci_resource **head)
299{
300 struct pci_resource *current_res;
301 struct pci_resource *next_res;
302 int out_of_order = 1;
303
304 if (!(*head))
305 return 1;
306
307 if (!((*head)->next))
308 return 0;
309
310 while (out_of_order) {
311 out_of_order = 0;
312
313 /* Special case for swapping list head */
314 if (((*head)->next) &&
315 ((*head)->length > (*head)->next->length)) {
316 out_of_order++;
317 current_res = *head;
318 *head = (*head)->next;
319 current_res->next = (*head)->next;
320 (*head)->next = current_res;
321 }
322
323 current_res = *head;
324
325 while (current_res->next && current_res->next->next) {
326 if (current_res->next->length > current_res->next->next->length) {
327 out_of_order++;
328 next_res = current_res->next;
329 current_res->next = current_res->next->next;
330 current_res = current_res->next;
331 next_res->next = current_res->next;
332 current_res->next = next_res;
333 } else
334 current_res = current_res->next;
335 }
336 } /* End of out_of_order loop */
337
338 return 0;
339}
340
341
342/**
343 * sort_by_max_size - sort nodes on the list by their length, largest first.
344 * @head: list to sort
345 */
346static int sort_by_max_size(struct pci_resource **head)
347{
348 struct pci_resource *current_res;
349 struct pci_resource *next_res;
350 int out_of_order = 1;
351
352 if (!(*head))
353 return 1;
354
355 if (!((*head)->next))
356 return 0;
357
358 while (out_of_order) {
359 out_of_order = 0;
360
361 /* Special case for swapping list head */
362 if (((*head)->next) &&
363 ((*head)->length < (*head)->next->length)) {
364 out_of_order++;
365 current_res = *head;
366 *head = (*head)->next;
367 current_res->next = (*head)->next;
368 (*head)->next = current_res;
369 }
370
371 current_res = *head;
372
373 while (current_res->next && current_res->next->next) {
374 if (current_res->next->length < current_res->next->next->length) {
375 out_of_order++;
376 next_res = current_res->next;
377 current_res->next = current_res->next->next;
378 current_res = current_res->next;
379 next_res->next = current_res->next;
380 current_res->next = next_res;
381 } else
382 current_res = current_res->next;
383 }
384 } /* End of out_of_order loop */
385
386 return 0;
387}
388
389
390/**
391 * do_pre_bridge_resource_split - find node of resources that are unused
392 * @head: new list head
393 * @orig_head: original list head
394 * @alignment: max node size (?)
395 */
396static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
397 struct pci_resource **orig_head, u32 alignment)
398{
399 struct pci_resource *prevnode = NULL;
400 struct pci_resource *node;
401 struct pci_resource *split_node;
402 u32 rc;
403 u32 temp_dword;
404 dbg("do_pre_bridge_resource_split\n");
405
406 if (!(*head) || !(*orig_head))
407 return NULL;
408
409 rc = cpqhp_resource_sort_and_combine(head);
410
411 if (rc)
412 return NULL;
413
414 if ((*head)->base != (*orig_head)->base)
415 return NULL;
416
417 if ((*head)->length == (*orig_head)->length)
418 return NULL;
419
420
421 /* If we got here, there the bridge requires some of the resource, but
422 * we may be able to split some off of the front
423 */
424
425 node = *head;
426
427 if (node->length & (alignment - 1)) {
428 /* this one isn't an aligned length, so we'll make a new entry
429 * and split it up.
430 */
431 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
432
433 if (!split_node)
434 return NULL;
435
436 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
437
438 split_node->base = node->base;
439 split_node->length = temp_dword;
440
441 node->length -= temp_dword;
442 node->base += split_node->length;
443
444 /* Put it in the list */
445 *head = split_node;
446 split_node->next = node;
447 }
448
449 if (node->length < alignment)
450 return NULL;
451
452 /* Now unlink it */
453 if (*head == node) {
454 *head = node->next;
455 } else {
456 prevnode = *head;
457 while (prevnode->next != node)
458 prevnode = prevnode->next;
459
460 prevnode->next = node->next;
461 }
462 node->next = NULL;
463
464 return node;
465}
466
467
468/**
469 * do_bridge_resource_split - find one node of resources that aren't in use
470 * @head: list head
471 * @alignment: max node size (?)
472 */
473static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
474{
475 struct pci_resource *prevnode = NULL;
476 struct pci_resource *node;
477 u32 rc;
478 u32 temp_dword;
479
480 rc = cpqhp_resource_sort_and_combine(head);
481
482 if (rc)
483 return NULL;
484
485 node = *head;
486
487 while (node->next) {
488 prevnode = node;
489 node = node->next;
490 kfree(prevnode);
491 }
492
493 if (node->length < alignment)
494 goto error;
495
496 if (node->base & (alignment - 1)) {
497 /* Short circuit if adjusted size is too small */
498 temp_dword = (node->base | (alignment-1)) + 1;
499 if ((node->length - (temp_dword - node->base)) < alignment)
500 goto error;
501
502 node->length -= (temp_dword - node->base);
503 node->base = temp_dword;
504 }
505
506 if (node->length & (alignment - 1))
507 /* There's stuff in use after this node */
508 goto error;
509
510 return node;
511error:
512 kfree(node);
513 return NULL;
514}
515
516
517/**
518 * get_io_resource - find first node of given size not in ISA aliasing window.
519 * @head: list to search
520 * @size: size of node to find, must be a power of two.
521 *
522 * Description: This function sorts the resource list by size and then returns
523 * returns the first node of "size" length that is not in the ISA aliasing
524 * window. If it finds a node larger than "size" it will split it up.
525 */
526static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
527{
528 struct pci_resource *prevnode;
529 struct pci_resource *node;
530 struct pci_resource *split_node;
531 u32 temp_dword;
532
533 if (!(*head))
534 return NULL;
535
536 if (cpqhp_resource_sort_and_combine(head))
537 return NULL;
538
539 if (sort_by_size(head))
540 return NULL;
541
542 for (node = *head; node; node = node->next) {
543 if (node->length < size)
544 continue;
545
546 if (node->base & (size - 1)) {
547 /* this one isn't base aligned properly
548 * so we'll make a new entry and split it up
549 */
550 temp_dword = (node->base | (size-1)) + 1;
551
552 /* Short circuit if adjusted size is too small */
553 if ((node->length - (temp_dword - node->base)) < size)
554 continue;
555
556 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
557
558 if (!split_node)
559 return NULL;
560
561 split_node->base = node->base;
562 split_node->length = temp_dword - node->base;
563 node->base = temp_dword;
564 node->length -= split_node->length;
565
566 /* Put it in the list */
567 split_node->next = node->next;
568 node->next = split_node;
569 } /* End of non-aligned base */
570
571 /* Don't need to check if too small since we already did */
572 if (node->length > size) {
573 /* this one is longer than we need
574 * so we'll make a new entry and split it up
575 */
576 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
577
578 if (!split_node)
579 return NULL;
580
581 split_node->base = node->base + size;
582 split_node->length = node->length - size;
583 node->length = size;
584
585 /* Put it in the list */
586 split_node->next = node->next;
587 node->next = split_node;
588 } /* End of too big on top end */
589
590 /* For IO make sure it's not in the ISA aliasing space */
591 if (node->base & 0x300L)
592 continue;
593
594 /* If we got here, then it is the right size
595 * Now take it out of the list and break
596 */
597 if (*head == node) {
598 *head = node->next;
599 } else {
600 prevnode = *head;
601 while (prevnode->next != node)
602 prevnode = prevnode->next;
603
604 prevnode->next = node->next;
605 }
606 node->next = NULL;
607 break;
608 }
609
610 return node;
611}
612
613
614/**
615 * get_max_resource - get largest node which has at least the given size.
616 * @head: the list to search the node in
617 * @size: the minimum size of the node to find
618 *
619 * Description: Gets the largest node that is at least "size" big from the
620 * list pointed to by head. It aligns the node on top and bottom
621 * to "size" alignment before returning it.
622 */
623static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
624{
625 struct pci_resource *max;
626 struct pci_resource *temp;
627 struct pci_resource *split_node;
628 u32 temp_dword;
629
630 if (cpqhp_resource_sort_and_combine(head))
631 return NULL;
632
633 if (sort_by_max_size(head))
634 return NULL;
635
636 for (max = *head; max; max = max->next) {
637 /* If not big enough we could probably just bail,
638 * instead we'll continue to the next.
639 */
640 if (max->length < size)
641 continue;
642
643 if (max->base & (size - 1)) {
644 /* this one isn't base aligned properly
645 * so we'll make a new entry and split it up
646 */
647 temp_dword = (max->base | (size-1)) + 1;
648
649 /* Short circuit if adjusted size is too small */
650 if ((max->length - (temp_dword - max->base)) < size)
651 continue;
652
653 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
654
655 if (!split_node)
656 return NULL;
657
658 split_node->base = max->base;
659 split_node->length = temp_dword - max->base;
660 max->base = temp_dword;
661 max->length -= split_node->length;
662
663 split_node->next = max->next;
664 max->next = split_node;
665 }
666
667 if ((max->base + max->length) & (size - 1)) {
668 /* this one isn't end aligned properly at the top
669 * so we'll make a new entry and split it up
670 */
671 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
672
673 if (!split_node)
674 return NULL;
675 temp_dword = ((max->base + max->length) & ~(size - 1));
676 split_node->base = temp_dword;
677 split_node->length = max->length + max->base
678 - split_node->base;
679 max->length -= split_node->length;
680
681 split_node->next = max->next;
682 max->next = split_node;
683 }
684
685 /* Make sure it didn't shrink too much when we aligned it */
686 if (max->length < size)
687 continue;
688
689 /* Now take it out of the list */
690 temp = *head;
691 if (temp == max) {
692 *head = max->next;
693 } else {
694 while (temp && temp->next != max)
695 temp = temp->next;
696
697 if (temp)
698 temp->next = max->next;
699 }
700
701 max->next = NULL;
702 break;
703 }
704
705 return max;
706}
707
708
709/**
710 * get_resource - find resource of given size and split up larger ones.
711 * @head: the list to search for resources
712 * @size: the size limit to use
713 *
714 * Description: This function sorts the resource list by size and then
715 * returns the first node of "size" length. If it finds a node
716 * larger than "size" it will split it up.
717 *
718 * size must be a power of two.
719 */
720static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
721{
722 struct pci_resource *prevnode;
723 struct pci_resource *node;
724 struct pci_resource *split_node;
725 u32 temp_dword;
726
727 if (cpqhp_resource_sort_and_combine(head))
728 return NULL;
729
730 if (sort_by_size(head))
731 return NULL;
732
733 for (node = *head; node; node = node->next) {
734 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
735 __func__, size, node, node->base, node->length);
736 if (node->length < size)
737 continue;
738
739 if (node->base & (size - 1)) {
740 dbg("%s: not aligned\n", __func__);
741 /* this one isn't base aligned properly
742 * so we'll make a new entry and split it up
743 */
744 temp_dword = (node->base | (size-1)) + 1;
745
746 /* Short circuit if adjusted size is too small */
747 if ((node->length - (temp_dword - node->base)) < size)
748 continue;
749
750 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
751
752 if (!split_node)
753 return NULL;
754
755 split_node->base = node->base;
756 split_node->length = temp_dword - node->base;
757 node->base = temp_dword;
758 node->length -= split_node->length;
759
760 split_node->next = node->next;
761 node->next = split_node;
762 } /* End of non-aligned base */
763
764 /* Don't need to check if too small since we already did */
765 if (node->length > size) {
766 dbg("%s: too big\n", __func__);
767 /* this one is longer than we need
768 * so we'll make a new entry and split it up
769 */
770 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
771
772 if (!split_node)
773 return NULL;
774
775 split_node->base = node->base + size;
776 split_node->length = node->length - size;
777 node->length = size;
778
779 /* Put it in the list */
780 split_node->next = node->next;
781 node->next = split_node;
782 } /* End of too big on top end */
783
784 dbg("%s: got one!!!\n", __func__);
785 /* If we got here, then it is the right size
786 * Now take it out of the list */
787 if (*head == node) {
788 *head = node->next;
789 } else {
790 prevnode = *head;
791 while (prevnode->next != node)
792 prevnode = prevnode->next;
793
794 prevnode->next = node->next;
795 }
796 node->next = NULL;
797 break;
798 }
799 return node;
800}
801
802
803/**
804 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
805 * @head: the list to sort and clean up
806 *
807 * Description: Sorts all of the nodes in the list in ascending order by
808 * their base addresses. Also does garbage collection by
809 * combining adjacent nodes.
810 *
811 * Returns %0 if success.
812 */
813int cpqhp_resource_sort_and_combine(struct pci_resource **head)
814{
815 struct pci_resource *node1;
816 struct pci_resource *node2;
817 int out_of_order = 1;
818
819 dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
820
821 if (!(*head))
822 return 1;
823
824 dbg("*head->next = %p\n", (*head)->next);
825
826 if (!(*head)->next)
827 return 0; /* only one item on the list, already sorted! */
828
829 dbg("*head->base = 0x%x\n", (*head)->base);
830 dbg("*head->next->base = 0x%x\n", (*head)->next->base);
831 while (out_of_order) {
832 out_of_order = 0;
833
834 /* Special case for swapping list head */
835 if (((*head)->next) &&
836 ((*head)->base > (*head)->next->base)) {
837 node1 = *head;
838 (*head) = (*head)->next;
839 node1->next = (*head)->next;
840 (*head)->next = node1;
841 out_of_order++;
842 }
843
844 node1 = (*head);
845
846 while (node1->next && node1->next->next) {
847 if (node1->next->base > node1->next->next->base) {
848 out_of_order++;
849 node2 = node1->next;
850 node1->next = node1->next->next;
851 node1 = node1->next;
852 node2->next = node1->next;
853 node1->next = node2;
854 } else
855 node1 = node1->next;
856 }
857 } /* End of out_of_order loop */
858
859 node1 = *head;
860
861 while (node1 && node1->next) {
862 if ((node1->base + node1->length) == node1->next->base) {
863 /* Combine */
864 dbg("8..\n");
865 node1->length += node1->next->length;
866 node2 = node1->next;
867 node1->next = node1->next->next;
868 kfree(node2);
869 } else
870 node1 = node1->next;
871 }
872
873 return 0;
874}
875
876
877irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
878{
879 struct controller *ctrl = data;
880 u8 schedule_flag = 0;
881 u8 reset;
882 u16 misc;
883 u32 Diff;
884 u32 temp_dword;
885
886
887 misc = readw(ctrl->hpc_reg + MISC);
888 /*
889 * Check to see if it was our interrupt
890 */
891 if (!(misc & 0x000C))
892 return IRQ_NONE;
893
894 if (misc & 0x0004) {
895 /*
896 * Serial Output interrupt Pending
897 */
898
899 /* Clear the interrupt */
900 misc |= 0x0004;
901 writew(misc, ctrl->hpc_reg + MISC);
902
903 /* Read to clear posted writes */
904 misc = readw(ctrl->hpc_reg + MISC);
905
906 dbg("%s - waking up\n", __func__);
907 wake_up_interruptible(&ctrl->queue);
908 }
909
910 if (misc & 0x0008) {
911 /* General-interrupt-input interrupt Pending */
912 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
913
914 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
915
916 /* Clear the interrupt */
917 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
918
919 /* Read it back to clear any posted writes */
920 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
921
922 if (!Diff)
923 /* Clear all interrupts */
924 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
925
926 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
927 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
928 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
929 }
930
931 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
932 if (reset & 0x40) {
933 /* Bus reset has completed */
934 reset &= 0xCF;
935 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
936 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
937 wake_up_interruptible(&ctrl->queue);
938 }
939
940 if (schedule_flag) {
941 wake_up_process(cpqhp_event_thread);
942 dbg("Waking even thread");
943 }
944 return IRQ_HANDLED;
945}
946
947
948/**
949 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
950 * @busnumber: bus where new node is to be located
951 *
952 * Returns pointer to the new node or %NULL if unsuccessful.
953 */
954struct pci_func *cpqhp_slot_create(u8 busnumber)
955{
956 struct pci_func *new_slot;
957 struct pci_func *next;
958
959 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
960 if (new_slot == NULL)
961 return new_slot;
962
963 new_slot->next = NULL;
964 new_slot->configured = 1;
965
966 if (cpqhp_slot_list[busnumber] == NULL) {
967 cpqhp_slot_list[busnumber] = new_slot;
968 } else {
969 next = cpqhp_slot_list[busnumber];
970 while (next->next != NULL)
971 next = next->next;
972 next->next = new_slot;
973 }
974 return new_slot;
975}
976
977
978/**
979 * slot_remove - Removes a node from the linked list of slots.
980 * @old_slot: slot to remove
981 *
982 * Returns %0 if successful, !0 otherwise.
983 */
984static int slot_remove(struct pci_func *old_slot)
985{
986 struct pci_func *next;
987
988 if (old_slot == NULL)
989 return 1;
990
991 next = cpqhp_slot_list[old_slot->bus];
992 if (next == NULL)
993 return 1;
994
995 if (next == old_slot) {
996 cpqhp_slot_list[old_slot->bus] = old_slot->next;
997 cpqhp_destroy_board_resources(old_slot);
998 kfree(old_slot);
999 return 0;
1000 }
1001
1002 while ((next->next != old_slot) && (next->next != NULL))
1003 next = next->next;
1004
1005 if (next->next == old_slot) {
1006 next->next = old_slot->next;
1007 cpqhp_destroy_board_resources(old_slot);
1008 kfree(old_slot);
1009 return 0;
1010 } else
1011 return 2;
1012}
1013
1014
1015/**
1016 * bridge_slot_remove - Removes a node from the linked list of slots.
1017 * @bridge: bridge to remove
1018 *
1019 * Returns %0 if successful, !0 otherwise.
1020 */
1021static int bridge_slot_remove(struct pci_func *bridge)
1022{
1023 u8 subordinateBus, secondaryBus;
1024 u8 tempBus;
1025 struct pci_func *next;
1026
1027 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1028 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1029
1030 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1031 next = cpqhp_slot_list[tempBus];
1032
1033 while (!slot_remove(next))
1034 next = cpqhp_slot_list[tempBus];
1035 }
1036
1037 next = cpqhp_slot_list[bridge->bus];
1038
1039 if (next == NULL)
1040 return 1;
1041
1042 if (next == bridge) {
1043 cpqhp_slot_list[bridge->bus] = bridge->next;
1044 goto out;
1045 }
1046
1047 while ((next->next != bridge) && (next->next != NULL))
1048 next = next->next;
1049
1050 if (next->next != bridge)
1051 return 2;
1052 next->next = bridge->next;
1053out:
1054 kfree(bridge);
1055 return 0;
1056}
1057
1058
1059/**
1060 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1061 * @bus: bus to find
1062 * @device: device to find
1063 * @index: is %0 for first function found, %1 for the second...
1064 *
1065 * Returns pointer to the node if successful, %NULL otherwise.
1066 */
1067struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1068{
1069 int found = -1;
1070 struct pci_func *func;
1071
1072 func = cpqhp_slot_list[bus];
1073
1074 if ((func == NULL) || ((func->device == device) && (index == 0)))
1075 return func;
1076
1077 if (func->device == device)
1078 found++;
1079
1080 while (func->next != NULL) {
1081 func = func->next;
1082
1083 if (func->device == device)
1084 found++;
1085
1086 if (found == index)
1087 return func;
1088 }
1089
1090 return NULL;
1091}
1092
1093
1094/* DJZ: I don't think is_bridge will work as is.
1095 * FIXME */
1096static int is_bridge(struct pci_func *func)
1097{
1098 /* Check the header type */
1099 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1100 return 1;
1101 else
1102 return 0;
1103}
1104
1105
1106/**
1107 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1108 * @ctrl: controller to change frequency/mode for.
1109 * @adapter_speed: the speed of the adapter we want to match.
1110 * @hp_slot: the slot number where the adapter is installed.
1111 *
1112 * Returns %0 if we successfully change frequency and/or mode to match the
1113 * adapter speed.
1114 */
1115static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1116{
1117 struct slot *slot;
1118 struct pci_bus *bus = ctrl->pci_bus;
1119 u8 reg;
1120 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1121 u16 reg16;
1122 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1123
1124 if (bus->cur_bus_speed == adapter_speed)
1125 return 0;
1126
1127 /* We don't allow freq/mode changes if we find another adapter running
1128 * in another slot on this controller
1129 */
1130 for (slot = ctrl->slot; slot; slot = slot->next) {
1131 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1132 continue;
1133 if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1134 continue;
1135 if (slot->hotplug_slot->info->adapter_status == 0)
1136 continue;
1137 /* If another adapter is running on the same segment but at a
1138 * lower speed/mode, we allow the new adapter to function at
1139 * this rate if supported
1140 */
1141 if (bus->cur_bus_speed < adapter_speed)
1142 return 0;
1143
1144 return 1;
1145 }
1146
1147 /* If the controller doesn't support freq/mode changes and the
1148 * controller is running at a higher mode, we bail
1149 */
1150 if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1151 return 1;
1152
1153 /* But we allow the adapter to run at a lower rate if possible */
1154 if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1155 return 0;
1156
1157 /* We try to set the max speed supported by both the adapter and
1158 * controller
1159 */
1160 if (bus->max_bus_speed < adapter_speed) {
1161 if (bus->cur_bus_speed == bus->max_bus_speed)
1162 return 0;
1163 adapter_speed = bus->max_bus_speed;
1164 }
1165
1166 writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1167 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1168
1169 set_SOGO(ctrl);
1170 wait_for_ctrl_irq(ctrl);
1171
1172 if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1173 reg = 0xF5;
1174 else
1175 reg = 0xF4;
1176 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1177
1178 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1179 reg16 &= ~0x000F;
1180 switch (adapter_speed) {
1181 case(PCI_SPEED_133MHz_PCIX):
1182 reg = 0x75;
1183 reg16 |= 0xB;
1184 break;
1185 case(PCI_SPEED_100MHz_PCIX):
1186 reg = 0x74;
1187 reg16 |= 0xA;
1188 break;
1189 case(PCI_SPEED_66MHz_PCIX):
1190 reg = 0x73;
1191 reg16 |= 0x9;
1192 break;
1193 case(PCI_SPEED_66MHz):
1194 reg = 0x73;
1195 reg16 |= 0x1;
1196 break;
1197 default: /* 33MHz PCI 2.2 */
1198 reg = 0x71;
1199 break;
1200
1201 }
1202 reg16 |= 0xB << 12;
1203 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1204
1205 mdelay(5);
1206
1207 /* Reenable interrupts */
1208 writel(0, ctrl->hpc_reg + INT_MASK);
1209
1210 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1211
1212 /* Restart state machine */
1213 reg = ~0xF;
1214 pci_read_config_byte(ctrl->pci_dev, 0x43, ®);
1215 pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1216
1217 /* Only if mode change...*/
1218 if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1219 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1220 set_SOGO(ctrl);
1221
1222 wait_for_ctrl_irq(ctrl);
1223 mdelay(1100);
1224
1225 /* Restore LED/Slot state */
1226 writel(leds, ctrl->hpc_reg + LED_CONTROL);
1227 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1228
1229 set_SOGO(ctrl);
1230 wait_for_ctrl_irq(ctrl);
1231
1232 bus->cur_bus_speed = adapter_speed;
1233 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1234
1235 info("Successfully changed frequency/mode for adapter in slot %d\n",
1236 slot->number);
1237 return 0;
1238}
1239
1240/* the following routines constitute the bulk of the
1241 * hotplug controller logic
1242 */
1243
1244
1245/**
1246 * board_replaced - Called after a board has been replaced in the system.
1247 * @func: PCI device/function information
1248 * @ctrl: hotplug controller
1249 *
1250 * This is only used if we don't have resources for hot add.
1251 * Turns power on for the board.
1252 * Checks to see if board is the same.
1253 * If board is same, reconfigures it.
1254 * If board isn't same, turns it back off.
1255 */
1256static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1257{
1258 struct pci_bus *bus = ctrl->pci_bus;
1259 u8 hp_slot;
1260 u8 temp_byte;
1261 u8 adapter_speed;
1262 u32 rc = 0;
1263
1264 hp_slot = func->device - ctrl->slot_device_offset;
1265
1266 /*
1267 * The switch is open.
1268 */
1269 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1270 rc = INTERLOCK_OPEN;
1271 /*
1272 * The board is already on
1273 */
1274 else if (is_slot_enabled(ctrl, hp_slot))
1275 rc = CARD_FUNCTIONING;
1276 else {
1277 mutex_lock(&ctrl->crit_sect);
1278
1279 /* turn on board without attaching to the bus */
1280 enable_slot_power(ctrl, hp_slot);
1281
1282 set_SOGO(ctrl);
1283
1284 /* Wait for SOBS to be unset */
1285 wait_for_ctrl_irq(ctrl);
1286
1287 /* Change bits in slot power register to force another shift out
1288 * NOTE: this is to work around the timer bug */
1289 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1290 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1291 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1292
1293 set_SOGO(ctrl);
1294
1295 /* Wait for SOBS to be unset */
1296 wait_for_ctrl_irq(ctrl);
1297
1298 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1299 if (bus->cur_bus_speed != adapter_speed)
1300 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1301 rc = WRONG_BUS_FREQUENCY;
1302
1303 /* turn off board without attaching to the bus */
1304 disable_slot_power(ctrl, hp_slot);
1305
1306 set_SOGO(ctrl);
1307
1308 /* Wait for SOBS to be unset */
1309 wait_for_ctrl_irq(ctrl);
1310
1311 mutex_unlock(&ctrl->crit_sect);
1312
1313 if (rc)
1314 return rc;
1315
1316 mutex_lock(&ctrl->crit_sect);
1317
1318 slot_enable(ctrl, hp_slot);
1319 green_LED_blink(ctrl, hp_slot);
1320
1321 amber_LED_off(ctrl, hp_slot);
1322
1323 set_SOGO(ctrl);
1324
1325 /* Wait for SOBS to be unset */
1326 wait_for_ctrl_irq(ctrl);
1327
1328 mutex_unlock(&ctrl->crit_sect);
1329
1330 /* Wait for ~1 second because of hot plug spec */
1331 long_delay(1*HZ);
1332
1333 /* Check for a power fault */
1334 if (func->status == 0xFF) {
1335 /* power fault occurred, but it was benign */
1336 rc = POWER_FAILURE;
1337 func->status = 0;
1338 } else
1339 rc = cpqhp_valid_replace(ctrl, func);
1340
1341 if (!rc) {
1342 /* It must be the same board */
1343
1344 rc = cpqhp_configure_board(ctrl, func);
1345
1346 /* If configuration fails, turn it off
1347 * Get slot won't work for devices behind
1348 * bridges, but in this case it will always be
1349 * called for the "base" bus/dev/func of an
1350 * adapter.
1351 */
1352
1353 mutex_lock(&ctrl->crit_sect);
1354
1355 amber_LED_on(ctrl, hp_slot);
1356 green_LED_off(ctrl, hp_slot);
1357 slot_disable(ctrl, hp_slot);
1358
1359 set_SOGO(ctrl);
1360
1361 /* Wait for SOBS to be unset */
1362 wait_for_ctrl_irq(ctrl);
1363
1364 mutex_unlock(&ctrl->crit_sect);
1365
1366 if (rc)
1367 return rc;
1368 else
1369 return 1;
1370
1371 } else {
1372 /* Something is wrong
1373
1374 * Get slot won't work for devices behind bridges, but
1375 * in this case it will always be called for the "base"
1376 * bus/dev/func of an adapter.
1377 */
1378
1379 mutex_lock(&ctrl->crit_sect);
1380
1381 amber_LED_on(ctrl, hp_slot);
1382 green_LED_off(ctrl, hp_slot);
1383 slot_disable(ctrl, hp_slot);
1384
1385 set_SOGO(ctrl);
1386
1387 /* Wait for SOBS to be unset */
1388 wait_for_ctrl_irq(ctrl);
1389
1390 mutex_unlock(&ctrl->crit_sect);
1391 }
1392
1393 }
1394 return rc;
1395
1396}
1397
1398
1399/**
1400 * board_added - Called after a board has been added to the system.
1401 * @func: PCI device/function info
1402 * @ctrl: hotplug controller
1403 *
1404 * Turns power on for the board.
1405 * Configures board.
1406 */
1407static u32 board_added(struct pci_func *func, struct controller *ctrl)
1408{
1409 u8 hp_slot;
1410 u8 temp_byte;
1411 u8 adapter_speed;
1412 int index;
1413 u32 temp_register = 0xFFFFFFFF;
1414 u32 rc = 0;
1415 struct pci_func *new_slot = NULL;
1416 struct pci_bus *bus = ctrl->pci_bus;
1417 struct slot *p_slot;
1418 struct resource_lists res_lists;
1419
1420 hp_slot = func->device - ctrl->slot_device_offset;
1421 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1422 __func__, func->device, ctrl->slot_device_offset, hp_slot);
1423
1424 mutex_lock(&ctrl->crit_sect);
1425
1426 /* turn on board without attaching to the bus */
1427 enable_slot_power(ctrl, hp_slot);
1428
1429 set_SOGO(ctrl);
1430
1431 /* Wait for SOBS to be unset */
1432 wait_for_ctrl_irq(ctrl);
1433
1434 /* Change bits in slot power register to force another shift out
1435 * NOTE: this is to work around the timer bug
1436 */
1437 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1438 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1439 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1440
1441 set_SOGO(ctrl);
1442
1443 /* Wait for SOBS to be unset */
1444 wait_for_ctrl_irq(ctrl);
1445
1446 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1447 if (bus->cur_bus_speed != adapter_speed)
1448 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1449 rc = WRONG_BUS_FREQUENCY;
1450
1451 /* turn off board without attaching to the bus */
1452 disable_slot_power(ctrl, hp_slot);
1453
1454 set_SOGO(ctrl);
1455
1456 /* Wait for SOBS to be unset */
1457 wait_for_ctrl_irq(ctrl);
1458
1459 mutex_unlock(&ctrl->crit_sect);
1460
1461 if (rc)
1462 return rc;
1463
1464 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1465
1466 /* turn on board and blink green LED */
1467
1468 dbg("%s: before down\n", __func__);
1469 mutex_lock(&ctrl->crit_sect);
1470 dbg("%s: after down\n", __func__);
1471
1472 dbg("%s: before slot_enable\n", __func__);
1473 slot_enable(ctrl, hp_slot);
1474
1475 dbg("%s: before green_LED_blink\n", __func__);
1476 green_LED_blink(ctrl, hp_slot);
1477
1478 dbg("%s: before amber_LED_blink\n", __func__);
1479 amber_LED_off(ctrl, hp_slot);
1480
1481 dbg("%s: before set_SOGO\n", __func__);
1482 set_SOGO(ctrl);
1483
1484 /* Wait for SOBS to be unset */
1485 dbg("%s: before wait_for_ctrl_irq\n", __func__);
1486 wait_for_ctrl_irq(ctrl);
1487 dbg("%s: after wait_for_ctrl_irq\n", __func__);
1488
1489 dbg("%s: before up\n", __func__);
1490 mutex_unlock(&ctrl->crit_sect);
1491 dbg("%s: after up\n", __func__);
1492
1493 /* Wait for ~1 second because of hot plug spec */
1494 dbg("%s: before long_delay\n", __func__);
1495 long_delay(1*HZ);
1496 dbg("%s: after long_delay\n", __func__);
1497
1498 dbg("%s: func status = %x\n", __func__, func->status);
1499 /* Check for a power fault */
1500 if (func->status == 0xFF) {
1501 /* power fault occurred, but it was benign */
1502 temp_register = 0xFFFFFFFF;
1503 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1504 rc = POWER_FAILURE;
1505 func->status = 0;
1506 } else {
1507 /* Get vendor/device ID u32 */
1508 ctrl->pci_bus->number = func->bus;
1509 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1510 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1511 dbg("%s: temp_register is %x\n", __func__, temp_register);
1512
1513 if (rc != 0) {
1514 /* Something's wrong here */
1515 temp_register = 0xFFFFFFFF;
1516 dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1517 }
1518 /* Preset return code. It will be changed later if things go okay. */
1519 rc = NO_ADAPTER_PRESENT;
1520 }
1521
1522 /* All F's is an empty slot or an invalid board */
1523 if (temp_register != 0xFFFFFFFF) {
1524 res_lists.io_head = ctrl->io_head;
1525 res_lists.mem_head = ctrl->mem_head;
1526 res_lists.p_mem_head = ctrl->p_mem_head;
1527 res_lists.bus_head = ctrl->bus_head;
1528 res_lists.irqs = NULL;
1529
1530 rc = configure_new_device(ctrl, func, 0, &res_lists);
1531
1532 dbg("%s: back from configure_new_device\n", __func__);
1533 ctrl->io_head = res_lists.io_head;
1534 ctrl->mem_head = res_lists.mem_head;
1535 ctrl->p_mem_head = res_lists.p_mem_head;
1536 ctrl->bus_head = res_lists.bus_head;
1537
1538 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1539 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1540 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1541 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1542
1543 if (rc) {
1544 mutex_lock(&ctrl->crit_sect);
1545
1546 amber_LED_on(ctrl, hp_slot);
1547 green_LED_off(ctrl, hp_slot);
1548 slot_disable(ctrl, hp_slot);
1549
1550 set_SOGO(ctrl);
1551
1552 /* Wait for SOBS to be unset */
1553 wait_for_ctrl_irq(ctrl);
1554
1555 mutex_unlock(&ctrl->crit_sect);
1556 return rc;
1557 } else {
1558 cpqhp_save_slot_config(ctrl, func);
1559 }
1560
1561
1562 func->status = 0;
1563 func->switch_save = 0x10;
1564 func->is_a_board = 0x01;
1565
1566 /* next, we will instantiate the linux pci_dev structures (with
1567 * appropriate driver notification, if already present) */
1568 dbg("%s: configure linux pci_dev structure\n", __func__);
1569 index = 0;
1570 do {
1571 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1572 if (new_slot && !new_slot->pci_dev)
1573 cpqhp_configure_device(ctrl, new_slot);
1574 } while (new_slot);
1575
1576 mutex_lock(&ctrl->crit_sect);
1577
1578 green_LED_on(ctrl, hp_slot);
1579
1580 set_SOGO(ctrl);
1581
1582 /* Wait for SOBS to be unset */
1583 wait_for_ctrl_irq(ctrl);
1584
1585 mutex_unlock(&ctrl->crit_sect);
1586 } else {
1587 mutex_lock(&ctrl->crit_sect);
1588
1589 amber_LED_on(ctrl, hp_slot);
1590 green_LED_off(ctrl, hp_slot);
1591 slot_disable(ctrl, hp_slot);
1592
1593 set_SOGO(ctrl);
1594
1595 /* Wait for SOBS to be unset */
1596 wait_for_ctrl_irq(ctrl);
1597
1598 mutex_unlock(&ctrl->crit_sect);
1599
1600 return rc;
1601 }
1602 return 0;
1603}
1604
1605
1606/**
1607 * remove_board - Turns off slot and LEDs
1608 * @func: PCI device/function info
1609 * @replace_flag: whether replacing or adding a new device
1610 * @ctrl: target controller
1611 */
1612static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1613{
1614 int index;
1615 u8 skip = 0;
1616 u8 device;
1617 u8 hp_slot;
1618 u8 temp_byte;
1619 u32 rc;
1620 struct resource_lists res_lists;
1621 struct pci_func *temp_func;
1622
1623 if (cpqhp_unconfigure_device(func))
1624 return 1;
1625
1626 device = func->device;
1627
1628 hp_slot = func->device - ctrl->slot_device_offset;
1629 dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1630
1631 /* When we get here, it is safe to change base address registers.
1632 * We will attempt to save the base address register lengths */
1633 if (replace_flag || !ctrl->add_support)
1634 rc = cpqhp_save_base_addr_length(ctrl, func);
1635 else if (!func->bus_head && !func->mem_head &&
1636 !func->p_mem_head && !func->io_head) {
1637 /* Here we check to see if we've saved any of the board's
1638 * resources already. If so, we'll skip the attempt to
1639 * determine what's being used. */
1640 index = 0;
1641 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1642 while (temp_func) {
1643 if (temp_func->bus_head || temp_func->mem_head
1644 || temp_func->p_mem_head || temp_func->io_head) {
1645 skip = 1;
1646 break;
1647 }
1648 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1649 }
1650
1651 if (!skip)
1652 rc = cpqhp_save_used_resources(ctrl, func);
1653 }
1654 /* Change status to shutdown */
1655 if (func->is_a_board)
1656 func->status = 0x01;
1657 func->configured = 0;
1658
1659 mutex_lock(&ctrl->crit_sect);
1660
1661 green_LED_off(ctrl, hp_slot);
1662 slot_disable(ctrl, hp_slot);
1663
1664 set_SOGO(ctrl);
1665
1666 /* turn off SERR for slot */
1667 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1668 temp_byte &= ~(0x01 << hp_slot);
1669 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1670
1671 /* Wait for SOBS to be unset */
1672 wait_for_ctrl_irq(ctrl);
1673
1674 mutex_unlock(&ctrl->crit_sect);
1675
1676 if (!replace_flag && ctrl->add_support) {
1677 while (func) {
1678 res_lists.io_head = ctrl->io_head;
1679 res_lists.mem_head = ctrl->mem_head;
1680 res_lists.p_mem_head = ctrl->p_mem_head;
1681 res_lists.bus_head = ctrl->bus_head;
1682
1683 cpqhp_return_board_resources(func, &res_lists);
1684
1685 ctrl->io_head = res_lists.io_head;
1686 ctrl->mem_head = res_lists.mem_head;
1687 ctrl->p_mem_head = res_lists.p_mem_head;
1688 ctrl->bus_head = res_lists.bus_head;
1689
1690 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1691 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1692 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1693 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1694
1695 if (is_bridge(func)) {
1696 bridge_slot_remove(func);
1697 } else
1698 slot_remove(func);
1699
1700 func = cpqhp_slot_find(ctrl->bus, device, 0);
1701 }
1702
1703 /* Setup slot structure with entry for empty slot */
1704 func = cpqhp_slot_create(ctrl->bus);
1705
1706 if (func == NULL)
1707 return 1;
1708
1709 func->bus = ctrl->bus;
1710 func->device = device;
1711 func->function = 0;
1712 func->configured = 0;
1713 func->switch_save = 0x10;
1714 func->is_a_board = 0;
1715 func->p_task_event = NULL;
1716 }
1717
1718 return 0;
1719}
1720
1721static void pushbutton_helper_thread(struct timer_list *t)
1722{
1723 pushbutton_pending = t;
1724
1725 wake_up_process(cpqhp_event_thread);
1726}
1727
1728
1729/* this is the main worker thread */
1730static int event_thread(void *data)
1731{
1732 struct controller *ctrl;
1733
1734 while (1) {
1735 dbg("!!!!event_thread sleeping\n");
1736 set_current_state(TASK_INTERRUPTIBLE);
1737 schedule();
1738
1739 if (kthread_should_stop())
1740 break;
1741 /* Do stuff here */
1742 if (pushbutton_pending)
1743 cpqhp_pushbutton_thread(pushbutton_pending);
1744 else
1745 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
1746 interrupt_event_handler(ctrl);
1747 }
1748 dbg("event_thread signals exit\n");
1749 return 0;
1750}
1751
1752int cpqhp_event_start_thread(void)
1753{
1754 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1755 if (IS_ERR(cpqhp_event_thread)) {
1756 err("Can't start up our event thread\n");
1757 return PTR_ERR(cpqhp_event_thread);
1758 }
1759
1760 return 0;
1761}
1762
1763
1764void cpqhp_event_stop_thread(void)
1765{
1766 kthread_stop(cpqhp_event_thread);
1767}
1768
1769
1770static int update_slot_info(struct controller *ctrl, struct slot *slot)
1771{
1772 struct hotplug_slot_info *info;
1773 int result;
1774
1775 info = kmalloc(sizeof(*info), GFP_KERNEL);
1776 if (!info)
1777 return -ENOMEM;
1778
1779 info->power_status = get_slot_enabled(ctrl, slot);
1780 info->attention_status = cpq_get_attention_status(ctrl, slot);
1781 info->latch_status = cpq_get_latch_status(ctrl, slot);
1782 info->adapter_status = get_presence_status(ctrl, slot);
1783 result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1784 kfree(info);
1785 return result;
1786}
1787
1788static void interrupt_event_handler(struct controller *ctrl)
1789{
1790 int loop = 0;
1791 int change = 1;
1792 struct pci_func *func;
1793 u8 hp_slot;
1794 struct slot *p_slot;
1795
1796 while (change) {
1797 change = 0;
1798
1799 for (loop = 0; loop < 10; loop++) {
1800 /* dbg("loop %d\n", loop); */
1801 if (ctrl->event_queue[loop].event_type != 0) {
1802 hp_slot = ctrl->event_queue[loop].hp_slot;
1803
1804 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1805 if (!func)
1806 return;
1807
1808 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1809 if (!p_slot)
1810 return;
1811
1812 dbg("hp_slot %d, func %p, p_slot %p\n",
1813 hp_slot, func, p_slot);
1814
1815 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1816 dbg("button pressed\n");
1817 } else if (ctrl->event_queue[loop].event_type ==
1818 INT_BUTTON_CANCEL) {
1819 dbg("button cancel\n");
1820 del_timer(&p_slot->task_event);
1821
1822 mutex_lock(&ctrl->crit_sect);
1823
1824 if (p_slot->state == BLINKINGOFF_STATE) {
1825 /* slot is on */
1826 dbg("turn on green LED\n");
1827 green_LED_on(ctrl, hp_slot);
1828 } else if (p_slot->state == BLINKINGON_STATE) {
1829 /* slot is off */
1830 dbg("turn off green LED\n");
1831 green_LED_off(ctrl, hp_slot);
1832 }
1833
1834 info(msg_button_cancel, p_slot->number);
1835
1836 p_slot->state = STATIC_STATE;
1837
1838 amber_LED_off(ctrl, hp_slot);
1839
1840 set_SOGO(ctrl);
1841
1842 /* Wait for SOBS to be unset */
1843 wait_for_ctrl_irq(ctrl);
1844
1845 mutex_unlock(&ctrl->crit_sect);
1846 }
1847 /*** button Released (No action on press...) */
1848 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1849 dbg("button release\n");
1850
1851 if (is_slot_enabled(ctrl, hp_slot)) {
1852 dbg("slot is on\n");
1853 p_slot->state = BLINKINGOFF_STATE;
1854 info(msg_button_off, p_slot->number);
1855 } else {
1856 dbg("slot is off\n");
1857 p_slot->state = BLINKINGON_STATE;
1858 info(msg_button_on, p_slot->number);
1859 }
1860 mutex_lock(&ctrl->crit_sect);
1861
1862 dbg("blink green LED and turn off amber\n");
1863
1864 amber_LED_off(ctrl, hp_slot);
1865 green_LED_blink(ctrl, hp_slot);
1866
1867 set_SOGO(ctrl);
1868
1869 /* Wait for SOBS to be unset */
1870 wait_for_ctrl_irq(ctrl);
1871
1872 mutex_unlock(&ctrl->crit_sect);
1873 timer_setup(&p_slot->task_event,
1874 pushbutton_helper_thread,
1875 0);
1876 p_slot->hp_slot = hp_slot;
1877 p_slot->ctrl = ctrl;
1878/* p_slot->physical_slot = physical_slot; */
1879 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
1880
1881 dbg("add_timer p_slot = %p\n", p_slot);
1882 add_timer(&p_slot->task_event);
1883 }
1884 /***********POWER FAULT */
1885 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1886 dbg("power fault\n");
1887 } else {
1888 /* refresh notification */
1889 update_slot_info(ctrl, p_slot);
1890 }
1891
1892 ctrl->event_queue[loop].event_type = 0;
1893
1894 change = 1;
1895 }
1896 } /* End of FOR loop */
1897 }
1898
1899 return;
1900}
1901
1902
1903/**
1904 * cpqhp_pushbutton_thread - handle pushbutton events
1905 * @slot: target slot (struct)
1906 *
1907 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1908 * Handles all pending events and exits.
1909 */
1910void cpqhp_pushbutton_thread(struct timer_list *t)
1911{
1912 u8 hp_slot;
1913 u8 device;
1914 struct pci_func *func;
1915 struct slot *p_slot = from_timer(p_slot, t, task_event);
1916 struct controller *ctrl = (struct controller *) p_slot->ctrl;
1917
1918 pushbutton_pending = NULL;
1919 hp_slot = p_slot->hp_slot;
1920
1921 device = p_slot->device;
1922
1923 if (is_slot_enabled(ctrl, hp_slot)) {
1924 p_slot->state = POWEROFF_STATE;
1925 /* power Down board */
1926 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1927 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1928 if (!func) {
1929 dbg("Error! func NULL in %s\n", __func__);
1930 return;
1931 }
1932
1933 if (cpqhp_process_SS(ctrl, func) != 0) {
1934 amber_LED_on(ctrl, hp_slot);
1935 green_LED_on(ctrl, hp_slot);
1936
1937 set_SOGO(ctrl);
1938
1939 /* Wait for SOBS to be unset */
1940 wait_for_ctrl_irq(ctrl);
1941 }
1942
1943 p_slot->state = STATIC_STATE;
1944 } else {
1945 p_slot->state = POWERON_STATE;
1946 /* slot is off */
1947
1948 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1949 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1950 if (!func) {
1951 dbg("Error! func NULL in %s\n", __func__);
1952 return;
1953 }
1954
1955 if (ctrl != NULL) {
1956 if (cpqhp_process_SI(ctrl, func) != 0) {
1957 amber_LED_on(ctrl, hp_slot);
1958 green_LED_off(ctrl, hp_slot);
1959
1960 set_SOGO(ctrl);
1961
1962 /* Wait for SOBS to be unset */
1963 wait_for_ctrl_irq(ctrl);
1964 }
1965 }
1966
1967 p_slot->state = STATIC_STATE;
1968 }
1969
1970 return;
1971}
1972
1973
1974int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1975{
1976 u8 device, hp_slot;
1977 u16 temp_word;
1978 u32 tempdword;
1979 int rc;
1980 struct slot *p_slot;
1981 int physical_slot = 0;
1982
1983 tempdword = 0;
1984
1985 device = func->device;
1986 hp_slot = device - ctrl->slot_device_offset;
1987 p_slot = cpqhp_find_slot(ctrl, device);
1988 if (p_slot)
1989 physical_slot = p_slot->number;
1990
1991 /* Check to see if the interlock is closed */
1992 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
1993
1994 if (tempdword & (0x01 << hp_slot))
1995 return 1;
1996
1997 if (func->is_a_board) {
1998 rc = board_replaced(func, ctrl);
1999 } else {
2000 /* add board */
2001 slot_remove(func);
2002
2003 func = cpqhp_slot_create(ctrl->bus);
2004 if (func == NULL)
2005 return 1;
2006
2007 func->bus = ctrl->bus;
2008 func->device = device;
2009 func->function = 0;
2010 func->configured = 0;
2011 func->is_a_board = 1;
2012
2013 /* We have to save the presence info for these slots */
2014 temp_word = ctrl->ctrl_int_comp >> 16;
2015 func->presence_save = (temp_word >> hp_slot) & 0x01;
2016 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2017
2018 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2019 func->switch_save = 0;
2020 } else {
2021 func->switch_save = 0x10;
2022 }
2023
2024 rc = board_added(func, ctrl);
2025 if (rc) {
2026 if (is_bridge(func)) {
2027 bridge_slot_remove(func);
2028 } else
2029 slot_remove(func);
2030
2031 /* Setup slot structure with entry for empty slot */
2032 func = cpqhp_slot_create(ctrl->bus);
2033
2034 if (func == NULL)
2035 return 1;
2036
2037 func->bus = ctrl->bus;
2038 func->device = device;
2039 func->function = 0;
2040 func->configured = 0;
2041 func->is_a_board = 0;
2042
2043 /* We have to save the presence info for these slots */
2044 temp_word = ctrl->ctrl_int_comp >> 16;
2045 func->presence_save = (temp_word >> hp_slot) & 0x01;
2046 func->presence_save |=
2047 (temp_word >> (hp_slot + 7)) & 0x02;
2048
2049 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2050 func->switch_save = 0;
2051 } else {
2052 func->switch_save = 0x10;
2053 }
2054 }
2055 }
2056
2057 if (rc)
2058 dbg("%s: rc = %d\n", __func__, rc);
2059
2060 if (p_slot)
2061 update_slot_info(ctrl, p_slot);
2062
2063 return rc;
2064}
2065
2066
2067int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2068{
2069 u8 device, class_code, header_type, BCR;
2070 u8 index = 0;
2071 u8 replace_flag;
2072 u32 rc = 0;
2073 unsigned int devfn;
2074 struct slot *p_slot;
2075 struct pci_bus *pci_bus = ctrl->pci_bus;
2076 int physical_slot = 0;
2077
2078 device = func->device;
2079 func = cpqhp_slot_find(ctrl->bus, device, index++);
2080 p_slot = cpqhp_find_slot(ctrl, device);
2081 if (p_slot)
2082 physical_slot = p_slot->number;
2083
2084 /* Make sure there are no video controllers here */
2085 while (func && !rc) {
2086 pci_bus->number = func->bus;
2087 devfn = PCI_DEVFN(func->device, func->function);
2088
2089 /* Check the Class Code */
2090 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2091 if (rc)
2092 return rc;
2093
2094 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2095 /* Display/Video adapter (not supported) */
2096 rc = REMOVE_NOT_SUPPORTED;
2097 } else {
2098 /* See if it's a bridge */
2099 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2100 if (rc)
2101 return rc;
2102
2103 /* If it's a bridge, check the VGA Enable bit */
2104 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2105 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2106 if (rc)
2107 return rc;
2108
2109 /* If the VGA Enable bit is set, remove isn't
2110 * supported */
2111 if (BCR & PCI_BRIDGE_CTL_VGA)
2112 rc = REMOVE_NOT_SUPPORTED;
2113 }
2114 }
2115
2116 func = cpqhp_slot_find(ctrl->bus, device, index++);
2117 }
2118
2119 func = cpqhp_slot_find(ctrl->bus, device, 0);
2120 if ((func != NULL) && !rc) {
2121 /* FIXME: Replace flag should be passed into process_SS */
2122 replace_flag = !(ctrl->add_support);
2123 rc = remove_board(func, replace_flag, ctrl);
2124 } else if (!rc) {
2125 rc = 1;
2126 }
2127
2128 if (p_slot)
2129 update_slot_info(ctrl, p_slot);
2130
2131 return rc;
2132}
2133
2134/**
2135 * switch_leds - switch the leds, go from one site to the other.
2136 * @ctrl: controller to use
2137 * @num_of_slots: number of slots to use
2138 * @work_LED: LED control value
2139 * @direction: 1 to start from the left side, 0 to start right.
2140 */
2141static void switch_leds(struct controller *ctrl, const int num_of_slots,
2142 u32 *work_LED, const int direction)
2143{
2144 int loop;
2145
2146 for (loop = 0; loop < num_of_slots; loop++) {
2147 if (direction)
2148 *work_LED = *work_LED >> 1;
2149 else
2150 *work_LED = *work_LED << 1;
2151 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2152
2153 set_SOGO(ctrl);
2154
2155 /* Wait for SOGO interrupt */
2156 wait_for_ctrl_irq(ctrl);
2157
2158 /* Get ready for next iteration */
2159 long_delay((2*HZ)/10);
2160 }
2161}
2162
2163/**
2164 * cpqhp_hardware_test - runs hardware tests
2165 * @ctrl: target controller
2166 * @test_num: the number written to the "test" file in sysfs.
2167 *
2168 * For hot plug ctrl folks to play with.
2169 */
2170int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2171{
2172 u32 save_LED;
2173 u32 work_LED;
2174 int loop;
2175 int num_of_slots;
2176
2177 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2178
2179 switch (test_num) {
2180 case 1:
2181 /* Do stuff here! */
2182
2183 /* Do that funky LED thing */
2184 /* so we can restore them later */
2185 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2186 work_LED = 0x01010101;
2187 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2188 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2189 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2190 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2191
2192 work_LED = 0x01010000;
2193 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2194 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2195 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2196 work_LED = 0x00000101;
2197 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2198 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2199 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2200
2201 work_LED = 0x01010000;
2202 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2203 for (loop = 0; loop < num_of_slots; loop++) {
2204 set_SOGO(ctrl);
2205
2206 /* Wait for SOGO interrupt */
2207 wait_for_ctrl_irq(ctrl);
2208
2209 /* Get ready for next iteration */
2210 long_delay((3*HZ)/10);
2211 work_LED = work_LED >> 16;
2212 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2213
2214 set_SOGO(ctrl);
2215
2216 /* Wait for SOGO interrupt */
2217 wait_for_ctrl_irq(ctrl);
2218
2219 /* Get ready for next iteration */
2220 long_delay((3*HZ)/10);
2221 work_LED = work_LED << 16;
2222 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2223 work_LED = work_LED << 1;
2224 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2225 }
2226
2227 /* put it back the way it was */
2228 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2229
2230 set_SOGO(ctrl);
2231
2232 /* Wait for SOBS to be unset */
2233 wait_for_ctrl_irq(ctrl);
2234 break;
2235 case 2:
2236 /* Do other stuff here! */
2237 break;
2238 case 3:
2239 /* and more... */
2240 break;
2241 }
2242 return 0;
2243}
2244
2245
2246/**
2247 * configure_new_device - Configures the PCI header information of one board.
2248 * @ctrl: pointer to controller structure
2249 * @func: pointer to function structure
2250 * @behind_bridge: 1 if this is a recursive call, 0 if not
2251 * @resources: pointer to set of resource lists
2252 *
2253 * Returns 0 if success.
2254 */
2255static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
2256 u8 behind_bridge, struct resource_lists *resources)
2257{
2258 u8 temp_byte, function, max_functions, stop_it;
2259 int rc;
2260 u32 ID;
2261 struct pci_func *new_slot;
2262 int index;
2263
2264 new_slot = func;
2265
2266 dbg("%s\n", __func__);
2267 /* Check for Multi-function device */
2268 ctrl->pci_bus->number = func->bus;
2269 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2270 if (rc) {
2271 dbg("%s: rc = %d\n", __func__, rc);
2272 return rc;
2273 }
2274
2275 if (temp_byte & 0x80) /* Multi-function device */
2276 max_functions = 8;
2277 else
2278 max_functions = 1;
2279
2280 function = 0;
2281
2282 do {
2283 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2284
2285 if (rc) {
2286 dbg("configure_new_function failed %d\n", rc);
2287 index = 0;
2288
2289 while (new_slot) {
2290 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2291
2292 if (new_slot)
2293 cpqhp_return_board_resources(new_slot, resources);
2294 }
2295
2296 return rc;
2297 }
2298
2299 function++;
2300
2301 stop_it = 0;
2302
2303 /* The following loop skips to the next present function
2304 * and creates a board structure */
2305
2306 while ((function < max_functions) && (!stop_it)) {
2307 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2308
2309 if (ID == 0xFFFFFFFF) {
2310 function++;
2311 } else {
2312 /* Setup slot structure. */
2313 new_slot = cpqhp_slot_create(func->bus);
2314
2315 if (new_slot == NULL)
2316 return 1;
2317
2318 new_slot->bus = func->bus;
2319 new_slot->device = func->device;
2320 new_slot->function = function;
2321 new_slot->is_a_board = 1;
2322 new_slot->status = 0;
2323
2324 stop_it++;
2325 }
2326 }
2327
2328 } while (function < max_functions);
2329 dbg("returning from configure_new_device\n");
2330
2331 return 0;
2332}
2333
2334
2335/*
2336 * Configuration logic that involves the hotplug data structures and
2337 * their bookkeeping
2338 */
2339
2340
2341/**
2342 * configure_new_function - Configures the PCI header information of one device
2343 * @ctrl: pointer to controller structure
2344 * @func: pointer to function structure
2345 * @behind_bridge: 1 if this is a recursive call, 0 if not
2346 * @resources: pointer to set of resource lists
2347 *
2348 * Calls itself recursively for bridged devices.
2349 * Returns 0 if success.
2350 */
2351static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2352 u8 behind_bridge,
2353 struct resource_lists *resources)
2354{
2355 int cloop;
2356 u8 IRQ = 0;
2357 u8 temp_byte;
2358 u8 device;
2359 u8 class_code;
2360 u16 command;
2361 u16 temp_word;
2362 u32 temp_dword;
2363 u32 rc;
2364 u32 temp_register;
2365 u32 base;
2366 u32 ID;
2367 unsigned int devfn;
2368 struct pci_resource *mem_node;
2369 struct pci_resource *p_mem_node;
2370 struct pci_resource *io_node;
2371 struct pci_resource *bus_node;
2372 struct pci_resource *hold_mem_node;
2373 struct pci_resource *hold_p_mem_node;
2374 struct pci_resource *hold_IO_node;
2375 struct pci_resource *hold_bus_node;
2376 struct irq_mapping irqs;
2377 struct pci_func *new_slot;
2378 struct pci_bus *pci_bus;
2379 struct resource_lists temp_resources;
2380
2381 pci_bus = ctrl->pci_bus;
2382 pci_bus->number = func->bus;
2383 devfn = PCI_DEVFN(func->device, func->function);
2384
2385 /* Check for Bridge */
2386 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2387 if (rc)
2388 return rc;
2389
2390 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2391 /* set Primary bus */
2392 dbg("set Primary bus = %d\n", func->bus);
2393 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2394 if (rc)
2395 return rc;
2396
2397 /* find range of buses to use */
2398 dbg("find ranges of buses to use\n");
2399 bus_node = get_max_resource(&(resources->bus_head), 1);
2400
2401 /* If we don't have any buses to allocate, we can't continue */
2402 if (!bus_node)
2403 return -ENOMEM;
2404
2405 /* set Secondary bus */
2406 temp_byte = bus_node->base;
2407 dbg("set Secondary bus = %d\n", bus_node->base);
2408 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2409 if (rc)
2410 return rc;
2411
2412 /* set subordinate bus */
2413 temp_byte = bus_node->base + bus_node->length - 1;
2414 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2415 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2416 if (rc)
2417 return rc;
2418
2419 /* set subordinate Latency Timer and base Latency Timer */
2420 temp_byte = 0x40;
2421 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2422 if (rc)
2423 return rc;
2424 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2425 if (rc)
2426 return rc;
2427
2428 /* set Cache Line size */
2429 temp_byte = 0x08;
2430 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2431 if (rc)
2432 return rc;
2433
2434 /* Setup the IO, memory, and prefetchable windows */
2435 io_node = get_max_resource(&(resources->io_head), 0x1000);
2436 if (!io_node)
2437 return -ENOMEM;
2438 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2439 if (!mem_node)
2440 return -ENOMEM;
2441 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2442 if (!p_mem_node)
2443 return -ENOMEM;
2444 dbg("Setup the IO, memory, and prefetchable windows\n");
2445 dbg("io_node\n");
2446 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2447 io_node->length, io_node->next);
2448 dbg("mem_node\n");
2449 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2450 mem_node->length, mem_node->next);
2451 dbg("p_mem_node\n");
2452 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2453 p_mem_node->length, p_mem_node->next);
2454
2455 /* set up the IRQ info */
2456 if (!resources->irqs) {
2457 irqs.barber_pole = 0;
2458 irqs.interrupt[0] = 0;
2459 irqs.interrupt[1] = 0;
2460 irqs.interrupt[2] = 0;
2461 irqs.interrupt[3] = 0;
2462 irqs.valid_INT = 0;
2463 } else {
2464 irqs.barber_pole = resources->irqs->barber_pole;
2465 irqs.interrupt[0] = resources->irqs->interrupt[0];
2466 irqs.interrupt[1] = resources->irqs->interrupt[1];
2467 irqs.interrupt[2] = resources->irqs->interrupt[2];
2468 irqs.interrupt[3] = resources->irqs->interrupt[3];
2469 irqs.valid_INT = resources->irqs->valid_INT;
2470 }
2471
2472 /* set up resource lists that are now aligned on top and bottom
2473 * for anything behind the bridge. */
2474 temp_resources.bus_head = bus_node;
2475 temp_resources.io_head = io_node;
2476 temp_resources.mem_head = mem_node;
2477 temp_resources.p_mem_head = p_mem_node;
2478 temp_resources.irqs = &irqs;
2479
2480 /* Make copies of the nodes we are going to pass down so that
2481 * if there is a problem,we can just use these to free resources
2482 */
2483 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2484 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2485 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2486 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2487
2488 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2489 kfree(hold_bus_node);
2490 kfree(hold_IO_node);
2491 kfree(hold_mem_node);
2492 kfree(hold_p_mem_node);
2493
2494 return 1;
2495 }
2496
2497 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2498
2499 bus_node->base += 1;
2500 bus_node->length -= 1;
2501 bus_node->next = NULL;
2502
2503 /* If we have IO resources copy them and fill in the bridge's
2504 * IO range registers */
2505 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2506 io_node->next = NULL;
2507
2508 /* set IO base and Limit registers */
2509 temp_byte = io_node->base >> 8;
2510 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2511
2512 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2513 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2514
2515 /* Copy the memory resources and fill in the bridge's memory
2516 * range registers.
2517 */
2518 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2519 mem_node->next = NULL;
2520
2521 /* set Mem base and Limit registers */
2522 temp_word = mem_node->base >> 16;
2523 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2524
2525 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2526 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2527
2528 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2529 p_mem_node->next = NULL;
2530
2531 /* set Pre Mem base and Limit registers */
2532 temp_word = p_mem_node->base >> 16;
2533 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2534
2535 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2536 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2537
2538 /* Adjust this to compensate for extra adjustment in first loop
2539 */
2540 irqs.barber_pole--;
2541
2542 rc = 0;
2543
2544 /* Here we actually find the devices and configure them */
2545 for (device = 0; (device <= 0x1F) && !rc; device++) {
2546 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2547
2548 ID = 0xFFFFFFFF;
2549 pci_bus->number = hold_bus_node->base;
2550 pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2551 pci_bus->number = func->bus;
2552
2553 if (ID != 0xFFFFFFFF) { /* device present */
2554 /* Setup slot structure. */
2555 new_slot = cpqhp_slot_create(hold_bus_node->base);
2556
2557 if (new_slot == NULL) {
2558 rc = -ENOMEM;
2559 continue;
2560 }
2561
2562 new_slot->bus = hold_bus_node->base;
2563 new_slot->device = device;
2564 new_slot->function = 0;
2565 new_slot->is_a_board = 1;
2566 new_slot->status = 0;
2567
2568 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2569 dbg("configure_new_device rc=0x%x\n", rc);
2570 } /* End of IF (device in slot?) */
2571 } /* End of FOR loop */
2572
2573 if (rc)
2574 goto free_and_out;
2575 /* save the interrupt routing information */
2576 if (resources->irqs) {
2577 resources->irqs->interrupt[0] = irqs.interrupt[0];
2578 resources->irqs->interrupt[1] = irqs.interrupt[1];
2579 resources->irqs->interrupt[2] = irqs.interrupt[2];
2580 resources->irqs->interrupt[3] = irqs.interrupt[3];
2581 resources->irqs->valid_INT = irqs.valid_INT;
2582 } else if (!behind_bridge) {
2583 /* We need to hook up the interrupts here */
2584 for (cloop = 0; cloop < 4; cloop++) {
2585 if (irqs.valid_INT & (0x01 << cloop)) {
2586 rc = cpqhp_set_irq(func->bus, func->device,
2587 cloop + 1, irqs.interrupt[cloop]);
2588 if (rc)
2589 goto free_and_out;
2590 }
2591 } /* end of for loop */
2592 }
2593 /* Return unused bus resources
2594 * First use the temporary node to store information for
2595 * the board */
2596 if (bus_node && temp_resources.bus_head) {
2597 hold_bus_node->length = bus_node->base - hold_bus_node->base;
2598
2599 hold_bus_node->next = func->bus_head;
2600 func->bus_head = hold_bus_node;
2601
2602 temp_byte = temp_resources.bus_head->base - 1;
2603
2604 /* set subordinate bus */
2605 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2606
2607 if (temp_resources.bus_head->length == 0) {
2608 kfree(temp_resources.bus_head);
2609 temp_resources.bus_head = NULL;
2610 } else {
2611 return_resource(&(resources->bus_head), temp_resources.bus_head);
2612 }
2613 }
2614
2615 /* If we have IO space available and there is some left,
2616 * return the unused portion */
2617 if (hold_IO_node && temp_resources.io_head) {
2618 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2619 &hold_IO_node, 0x1000);
2620
2621 /* Check if we were able to split something off */
2622 if (io_node) {
2623 hold_IO_node->base = io_node->base + io_node->length;
2624
2625 temp_byte = (hold_IO_node->base) >> 8;
2626 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2627
2628 return_resource(&(resources->io_head), io_node);
2629 }
2630
2631 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2632
2633 /* Check if we were able to split something off */
2634 if (io_node) {
2635 /* First use the temporary node to store
2636 * information for the board */
2637 hold_IO_node->length = io_node->base - hold_IO_node->base;
2638
2639 /* If we used any, add it to the board's list */
2640 if (hold_IO_node->length) {
2641 hold_IO_node->next = func->io_head;
2642 func->io_head = hold_IO_node;
2643
2644 temp_byte = (io_node->base - 1) >> 8;
2645 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2646
2647 return_resource(&(resources->io_head), io_node);
2648 } else {
2649 /* it doesn't need any IO */
2650 temp_word = 0x0000;
2651 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2652
2653 return_resource(&(resources->io_head), io_node);
2654 kfree(hold_IO_node);
2655 }
2656 } else {
2657 /* it used most of the range */
2658 hold_IO_node->next = func->io_head;
2659 func->io_head = hold_IO_node;
2660 }
2661 } else if (hold_IO_node) {
2662 /* it used the whole range */
2663 hold_IO_node->next = func->io_head;
2664 func->io_head = hold_IO_node;
2665 }
2666 /* If we have memory space available and there is some left,
2667 * return the unused portion */
2668 if (hold_mem_node && temp_resources.mem_head) {
2669 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
2670 &hold_mem_node, 0x100000);
2671
2672 /* Check if we were able to split something off */
2673 if (mem_node) {
2674 hold_mem_node->base = mem_node->base + mem_node->length;
2675
2676 temp_word = (hold_mem_node->base) >> 16;
2677 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2678
2679 return_resource(&(resources->mem_head), mem_node);
2680 }
2681
2682 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2683
2684 /* Check if we were able to split something off */
2685 if (mem_node) {
2686 /* First use the temporary node to store
2687 * information for the board */
2688 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2689
2690 if (hold_mem_node->length) {
2691 hold_mem_node->next = func->mem_head;
2692 func->mem_head = hold_mem_node;
2693
2694 /* configure end address */
2695 temp_word = (mem_node->base - 1) >> 16;
2696 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2697
2698 /* Return unused resources to the pool */
2699 return_resource(&(resources->mem_head), mem_node);
2700 } else {
2701 /* it doesn't need any Mem */
2702 temp_word = 0x0000;
2703 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2704
2705 return_resource(&(resources->mem_head), mem_node);
2706 kfree(hold_mem_node);
2707 }
2708 } else {
2709 /* it used most of the range */
2710 hold_mem_node->next = func->mem_head;
2711 func->mem_head = hold_mem_node;
2712 }
2713 } else if (hold_mem_node) {
2714 /* it used the whole range */
2715 hold_mem_node->next = func->mem_head;
2716 func->mem_head = hold_mem_node;
2717 }
2718 /* If we have prefetchable memory space available and there
2719 * is some left at the end, return the unused portion */
2720 if (temp_resources.p_mem_head) {
2721 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2722 &hold_p_mem_node, 0x100000);
2723
2724 /* Check if we were able to split something off */
2725 if (p_mem_node) {
2726 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2727
2728 temp_word = (hold_p_mem_node->base) >> 16;
2729 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2730
2731 return_resource(&(resources->p_mem_head), p_mem_node);
2732 }
2733
2734 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2735
2736 /* Check if we were able to split something off */
2737 if (p_mem_node) {
2738 /* First use the temporary node to store
2739 * information for the board */
2740 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2741
2742 /* If we used any, add it to the board's list */
2743 if (hold_p_mem_node->length) {
2744 hold_p_mem_node->next = func->p_mem_head;
2745 func->p_mem_head = hold_p_mem_node;
2746
2747 temp_word = (p_mem_node->base - 1) >> 16;
2748 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2749
2750 return_resource(&(resources->p_mem_head), p_mem_node);
2751 } else {
2752 /* it doesn't need any PMem */
2753 temp_word = 0x0000;
2754 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2755
2756 return_resource(&(resources->p_mem_head), p_mem_node);
2757 kfree(hold_p_mem_node);
2758 }
2759 } else {
2760 /* it used the most of the range */
2761 hold_p_mem_node->next = func->p_mem_head;
2762 func->p_mem_head = hold_p_mem_node;
2763 }
2764 } else if (hold_p_mem_node) {
2765 /* it used the whole range */
2766 hold_p_mem_node->next = func->p_mem_head;
2767 func->p_mem_head = hold_p_mem_node;
2768 }
2769 /* We should be configuring an IRQ and the bridge's base address
2770 * registers if it needs them. Although we have never seen such
2771 * a device */
2772
2773 /* enable card */
2774 command = 0x0157; /* = PCI_COMMAND_IO |
2775 * PCI_COMMAND_MEMORY |
2776 * PCI_COMMAND_MASTER |
2777 * PCI_COMMAND_INVALIDATE |
2778 * PCI_COMMAND_PARITY |
2779 * PCI_COMMAND_SERR */
2780 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
2781
2782 /* set Bridge Control Register */
2783 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2784 * PCI_BRIDGE_CTL_SERR |
2785 * PCI_BRIDGE_CTL_NO_ISA */
2786 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2787 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2788 /* Standard device */
2789 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2790
2791 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2792 /* Display (video) adapter (not supported) */
2793 return DEVICE_TYPE_NOT_SUPPORTED;
2794 }
2795 /* Figure out IO and memory needs */
2796 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2797 temp_register = 0xFFFFFFFF;
2798
2799 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2800 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
2801
2802 rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
2803 dbg("CND: base = 0x%x\n", temp_register);
2804
2805 if (temp_register) { /* If this register is implemented */
2806 if ((temp_register & 0x03L) == 0x01) {
2807 /* Map IO */
2808
2809 /* set base = amount of IO space */
2810 base = temp_register & 0xFFFFFFFC;
2811 base = ~base + 1;
2812
2813 dbg("CND: length = 0x%x\n", base);
2814 io_node = get_io_resource(&(resources->io_head), base);
2815 if (!io_node)
2816 return -ENOMEM;
2817 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2818 io_node->base, io_node->length, io_node->next);
2819 dbg("func (%p) io_head (%p)\n", func, func->io_head);
2820
2821 /* allocate the resource to the board */
2822 base = io_node->base;
2823 io_node->next = func->io_head;
2824 func->io_head = io_node;
2825 } else if ((temp_register & 0x0BL) == 0x08) {
2826 /* Map prefetchable memory */
2827 base = temp_register & 0xFFFFFFF0;
2828 base = ~base + 1;
2829
2830 dbg("CND: length = 0x%x\n", base);
2831 p_mem_node = get_resource(&(resources->p_mem_head), base);
2832
2833 /* allocate the resource to the board */
2834 if (p_mem_node) {
2835 base = p_mem_node->base;
2836
2837 p_mem_node->next = func->p_mem_head;
2838 func->p_mem_head = p_mem_node;
2839 } else
2840 return -ENOMEM;
2841 } else if ((temp_register & 0x0BL) == 0x00) {
2842 /* Map memory */
2843 base = temp_register & 0xFFFFFFF0;
2844 base = ~base + 1;
2845
2846 dbg("CND: length = 0x%x\n", base);
2847 mem_node = get_resource(&(resources->mem_head), base);
2848
2849 /* allocate the resource to the board */
2850 if (mem_node) {
2851 base = mem_node->base;
2852
2853 mem_node->next = func->mem_head;
2854 func->mem_head = mem_node;
2855 } else
2856 return -ENOMEM;
2857 } else {
2858 /* Reserved bits or requesting space below 1M */
2859 return NOT_ENOUGH_RESOURCES;
2860 }
2861
2862 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2863
2864 /* Check for 64-bit base */
2865 if ((temp_register & 0x07L) == 0x04) {
2866 cloop += 4;
2867
2868 /* Upper 32 bits of address always zero
2869 * on today's systems */
2870 /* FIXME this is probably not true on
2871 * Alpha and ia64??? */
2872 base = 0;
2873 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2874 }
2875 }
2876 } /* End of base register loop */
2877 if (cpqhp_legacy_mode) {
2878 /* Figure out which interrupt pin this function uses */
2879 rc = pci_bus_read_config_byte(pci_bus, devfn,
2880 PCI_INTERRUPT_PIN, &temp_byte);
2881
2882 /* If this function needs an interrupt and we are behind
2883 * a bridge and the pin is tied to something that's
2884 * already mapped, set this one the same */
2885 if (temp_byte && resources->irqs &&
2886 (resources->irqs->valid_INT &
2887 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2888 /* We have to share with something already set up */
2889 IRQ = resources->irqs->interrupt[(temp_byte +
2890 resources->irqs->barber_pole - 1) & 0x03];
2891 } else {
2892 /* Program IRQ based on card type */
2893 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2894
2895 if (class_code == PCI_BASE_CLASS_STORAGE)
2896 IRQ = cpqhp_disk_irq;
2897 else
2898 IRQ = cpqhp_nic_irq;
2899 }
2900
2901 /* IRQ Line */
2902 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2903 }
2904
2905 if (!behind_bridge) {
2906 rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2907 if (rc)
2908 return 1;
2909 } else {
2910 /* TBD - this code may also belong in the other clause
2911 * of this If statement */
2912 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2913 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2914 }
2915
2916 /* Latency Timer */
2917 temp_byte = 0x40;
2918 rc = pci_bus_write_config_byte(pci_bus, devfn,
2919 PCI_LATENCY_TIMER, temp_byte);
2920
2921 /* Cache Line size */
2922 temp_byte = 0x08;
2923 rc = pci_bus_write_config_byte(pci_bus, devfn,
2924 PCI_CACHE_LINE_SIZE, temp_byte);
2925
2926 /* disable ROM base Address */
2927 temp_dword = 0x00L;
2928 rc = pci_bus_write_config_word(pci_bus, devfn,
2929 PCI_ROM_ADDRESS, temp_dword);
2930
2931 /* enable card */
2932 temp_word = 0x0157; /* = PCI_COMMAND_IO |
2933 * PCI_COMMAND_MEMORY |
2934 * PCI_COMMAND_MASTER |
2935 * PCI_COMMAND_INVALIDATE |
2936 * PCI_COMMAND_PARITY |
2937 * PCI_COMMAND_SERR */
2938 rc = pci_bus_write_config_word(pci_bus, devfn,
2939 PCI_COMMAND, temp_word);
2940 } else { /* End of Not-A-Bridge else */
2941 /* It's some strange type of PCI adapter (Cardbus?) */
2942 return DEVICE_TYPE_NOT_SUPPORTED;
2943 }
2944
2945 func->configured = 1;
2946
2947 return 0;
2948free_and_out:
2949 cpqhp_destroy_resource_list(&temp_resources);
2950
2951 return_resource(&(resources->bus_head), hold_bus_node);
2952 return_resource(&(resources->io_head), hold_IO_node);
2953 return_resource(&(resources->mem_head), hold_mem_node);
2954 return_resource(&(resources->p_mem_head), hold_p_mem_node);
2955 return rc;
2956}