Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v3.5.6
 
  1/*
  2 * Functions for working with the Flattened Device Tree data format
  3 *
  4 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
  5 * benh@kernel.crashing.org
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * version 2 as published by the Free Software Foundation.
 10 */
 11
 
 
 
 12#include <linux/kernel.h>
 13#include <linux/initrd.h>
 14#include <linux/module.h>
 
 
 15#include <linux/of.h>
 16#include <linux/of_fdt.h>
 
 
 17#include <linux/string.h>
 18#include <linux/errno.h>
 19#include <linux/slab.h>
 
 
 
 
 20
 21#include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
 22#ifdef CONFIG_PPC
 23#include <asm/machdep.h>
 24#endif /* CONFIG_PPC */
 25
 26#include <asm/page.h>
 27
 28char *of_fdt_get_string(struct boot_param_header *blob, u32 offset)
 29{
 30	return ((char *)blob) +
 31		be32_to_cpu(blob->off_dt_strings) + offset;
 32}
 33
 34/**
 35 * of_fdt_get_property - Given a node in the given flat blob, return
 36 * the property ptr
 
 
 
 
 37 */
 38void *of_fdt_get_property(struct boot_param_header *blob,
 39		       unsigned long node, const char *name,
 40		       unsigned long *size)
 41{
 42	unsigned long p = node;
 43
 44	do {
 45		u32 tag = be32_to_cpup((__be32 *)p);
 46		u32 sz, noff;
 47		const char *nstr;
 
 
 
 48
 49		p += 4;
 50		if (tag == OF_DT_NOP)
 51			continue;
 52		if (tag != OF_DT_PROP)
 53			return NULL;
 54
 55		sz = be32_to_cpup((__be32 *)p);
 56		noff = be32_to_cpup((__be32 *)(p + 4));
 57		p += 8;
 58		if (be32_to_cpu(blob->version) < 0x10)
 59			p = ALIGN(p, sz >= 8 ? 8 : 4);
 60
 61		nstr = of_fdt_get_string(blob, noff);
 62		if (nstr == NULL) {
 63			pr_warning("Can't find property index name !\n");
 64			return NULL;
 65		}
 66		if (strcmp(name, nstr) == 0) {
 67			if (size)
 68				*size = sz;
 69			return (void *)p;
 70		}
 71		p += sz;
 72		p = ALIGN(p, 4);
 73	} while (1);
 
 
 
 74}
 75
 76/**
 77 * of_fdt_is_compatible - Return true if given node from the given blob has
 78 * compat in its compatible list
 79 * @blob: A device tree blob
 80 * @node: node to test
 81 * @compat: compatible string to compare with compatible list.
 82 *
 83 * On match, returns a non-zero value with smaller values returned for more
 84 * specific compatible values.
 85 */
 86int of_fdt_is_compatible(struct boot_param_header *blob,
 87		      unsigned long node, const char *compat)
 88{
 89	const char *cp;
 90	unsigned long cplen, l, score = 0;
 
 91
 92	cp = of_fdt_get_property(blob, node, "compatible", &cplen);
 93	if (cp == NULL)
 94		return 0;
 95	while (cplen > 0) {
 96		score++;
 97		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
 98			return score;
 99		l = strlen(cp) + 1;
100		cp += l;
101		cplen -= l;
102	}
103
104	return 0;
105}
106
107/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108 * of_fdt_match - Return true if node matches a list of compatible values
109 */
110int of_fdt_match(struct boot_param_header *blob, unsigned long node,
111                 const char *const *compat)
112{
113	unsigned int tmp, score = 0;
114
115	if (!compat)
116		return 0;
117
118	while (*compat) {
119		tmp = of_fdt_is_compatible(blob, node, *compat);
120		if (tmp && (score == 0 || (tmp < score)))
121			score = tmp;
122		compat++;
123	}
124
125	return score;
126}
127
128static void *unflatten_dt_alloc(unsigned long *mem, unsigned long size,
129				       unsigned long align)
130{
131	void *res;
132
133	*mem = ALIGN(*mem, align);
134	res = (void *)*mem;
135	*mem += size;
136
137	return res;
138}
139
140/**
141 * unflatten_dt_node - Alloc and populate a device_node from the flat tree
142 * @blob: The parent device tree blob
143 * @mem: Memory chunk to use for allocating device nodes and properties
144 * @p: pointer to node in flat tree
145 * @dad: Parent struct device_node
146 * @allnextpp: pointer to ->allnext from last allocated device_node
147 * @fpsize: Size of the node path up at the current depth.
148 */
149static unsigned long unflatten_dt_node(struct boot_param_header *blob,
150				unsigned long mem,
151				unsigned long *p,
152				struct device_node *dad,
153				struct device_node ***allnextpp,
154				unsigned long fpsize)
155{
156	struct device_node *np;
157	struct property *pp, **prev_pp = NULL;
158	char *pathp;
159	u32 tag;
160	unsigned int l, allocl;
161	int has_name = 0;
162	int new_format = 0;
163
164	tag = be32_to_cpup((__be32 *)(*p));
165	if (tag != OF_DT_BEGIN_NODE) {
166		pr_err("Weird tag at start of node: %x\n", tag);
167		return mem;
168	}
169	*p += 4;
170	pathp = (char *)*p;
171	l = allocl = strlen(pathp) + 1;
172	*p = ALIGN(*p + l, 4);
173
174	/* version 0x10 has a more compact unit name here instead of the full
175	 * path. we accumulate the full path size using "fpsize", we'll rebuild
176	 * it later. We detect this because the first character of the name is
177	 * not '/'.
178	 */
179	if ((*pathp) != '/') {
180		new_format = 1;
181		if (fpsize == 0) {
182			/* root node: special case. fpsize accounts for path
183			 * plus terminating zero. root node only has '/', so
184			 * fpsize should be 2, but we want to avoid the first
185			 * level nodes to have two '/' so we use fpsize 1 here
186			 */
187			fpsize = 1;
188			allocl = 2;
189		} else {
190			/* account for '/' and path size minus terminal 0
191			 * already in 'l'
192			 */
193			fpsize += l;
194			allocl = fpsize;
195		}
196	}
197
198	np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
199				__alignof__(struct device_node));
200	if (allnextpp) {
201		memset(np, 0, sizeof(*np));
202		np->full_name = ((char *)np) + sizeof(struct device_node);
203		if (new_format) {
204			char *fn = np->full_name;
205			/* rebuild full path for new format */
206			if (dad && dad->parent) {
207				strcpy(fn, dad->full_name);
208#ifdef DEBUG
209				if ((strlen(fn) + l + 1) != allocl) {
210					pr_debug("%s: p: %d, l: %d, a: %d\n",
211						pathp, (int)strlen(fn),
212						l, allocl);
213				}
214#endif
215				fn += strlen(fn);
216			}
217			*(fn++) = '/';
218			memcpy(fn, pathp, l);
219		} else
220			memcpy(np->full_name, pathp, l);
221		prev_pp = &np->properties;
222		**allnextpp = np;
223		*allnextpp = &np->allnext;
224		if (dad != NULL) {
225			np->parent = dad;
226			/* we temporarily use the next field as `last_child'*/
227			if (dad->next == NULL)
228				dad->child = np;
229			else
230				dad->next->sibling = np;
231			dad->next = np;
232		}
233		kref_init(&np->kref);
234	}
235	/* process properties */
236	while (1) {
237		u32 sz, noff;
238		char *pname;
239
240		tag = be32_to_cpup((__be32 *)(*p));
241		if (tag == OF_DT_NOP) {
242			*p += 4;
243			continue;
244		}
245		if (tag != OF_DT_PROP)
246			break;
247		*p += 4;
248		sz = be32_to_cpup((__be32 *)(*p));
249		noff = be32_to_cpup((__be32 *)((*p) + 4));
250		*p += 8;
251		if (be32_to_cpu(blob->version) < 0x10)
252			*p = ALIGN(*p, sz >= 8 ? 8 : 4);
253
254		pname = of_fdt_get_string(blob, noff);
255		if (pname == NULL) {
256			pr_info("Can't find property name in list !\n");
257			break;
258		}
259		if (strcmp(pname, "name") == 0)
260			has_name = 1;
261		l = strlen(pname) + 1;
262		pp = unflatten_dt_alloc(&mem, sizeof(struct property),
263					__alignof__(struct property));
264		if (allnextpp) {
265			/* We accept flattened tree phandles either in
266			 * ePAPR-style "phandle" properties, or the
267			 * legacy "linux,phandle" properties.  If both
268			 * appear and have different values, things
269			 * will get weird.  Don't do that. */
270			if ((strcmp(pname, "phandle") == 0) ||
271			    (strcmp(pname, "linux,phandle") == 0)) {
272				if (np->phandle == 0)
273					np->phandle = be32_to_cpup((__be32*)*p);
274			}
275			/* And we process the "ibm,phandle" property
276			 * used in pSeries dynamic device tree
277			 * stuff */
278			if (strcmp(pname, "ibm,phandle") == 0)
279				np->phandle = be32_to_cpup((__be32 *)*p);
280			pp->name = pname;
281			pp->length = sz;
282			pp->value = (void *)*p;
283			*prev_pp = pp;
284			prev_pp = &pp->next;
285		}
286		*p = ALIGN((*p) + sz, 4);
 
 
 
 
 
 
 
 
 
 
 
 
287	}
288	/* with version 0x10 we may not have the name property, recreate
289	 * it here from the unit name if absent
 
290	 */
291	if (!has_name) {
292		char *p1 = pathp, *ps = pathp, *pa = NULL;
293		int sz;
294
295		while (*p1) {
296			if ((*p1) == '@')
297				pa = p1;
298			if ((*p1) == '/')
299				ps = p1 + 1;
300			p1++;
301		}
 
302		if (pa < ps)
303			pa = p1;
304		sz = (pa - ps) + 1;
305		pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
306					__alignof__(struct property));
307		if (allnextpp) {
308			pp->name = "name";
309			pp->length = sz;
310			pp->value = pp + 1;
311			*prev_pp = pp;
312			prev_pp = &pp->next;
313			memcpy(pp->value, ps, sz - 1);
314			((char *)pp->value)[sz - 1] = 0;
315			pr_debug("fixed up name for %s -> %s\n", pathp,
316				(char *)pp->value);
317		}
318	}
319	if (allnextpp) {
320		*prev_pp = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321		np->name = of_get_property(np, "name", NULL);
322		np->type = of_get_property(np, "device_type", NULL);
323
324		if (!np->name)
325			np->name = "<NULL>";
326		if (!np->type)
327			np->type = "<NULL>";
328	}
329	while (tag == OF_DT_BEGIN_NODE || tag == OF_DT_NOP) {
330		if (tag == OF_DT_NOP)
331			*p += 4;
332		else
333			mem = unflatten_dt_node(blob, mem, p, np, allnextpp,
334						fpsize);
335		tag = be32_to_cpup((__be32 *)(*p));
336	}
337	if (tag != OF_DT_END_NODE) {
338		pr_err("Weird tag at end of node: %x\n", tag);
339		return mem;
 
 
 
 
340	}
341	*p += 4;
342	return mem;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
343}
344
345/**
346 * __unflatten_device_tree - create tree of device_nodes from flat blob
347 *
348 * unflattens a device-tree, creating the
349 * tree of struct device_node. It also fills the "name" and "type"
350 * pointers of the nodes so the normal device-tree walking functions
351 * can be used.
352 * @blob: The blob to expand
 
353 * @mynodes: The device_node tree created by the call
354 * @dt_alloc: An allocator that provides a virtual address to memory
355 * for the resulting tree
 
 
 
 
356 */
357static void __unflatten_device_tree(struct boot_param_header *blob,
358			     struct device_node **mynodes,
359			     void * (*dt_alloc)(u64 size, u64 align))
 
 
360{
361	unsigned long start, mem, size;
362	struct device_node **allnextp = mynodes;
363
364	pr_debug(" -> unflatten_device_tree()\n");
365
366	if (!blob) {
367		pr_debug("No device tree pointer\n");
368		return;
369	}
370
371	pr_debug("Unflattening device tree:\n");
372	pr_debug("magic: %08x\n", be32_to_cpu(blob->magic));
373	pr_debug("size: %08x\n", be32_to_cpu(blob->totalsize));
374	pr_debug("version: %08x\n", be32_to_cpu(blob->version));
375
376	if (be32_to_cpu(blob->magic) != OF_DT_HEADER) {
377		pr_err("Invalid device tree blob header\n");
378		return;
379	}
380
381	/* First pass, scan for size */
382	start = ((unsigned long)blob) +
383		be32_to_cpu(blob->off_dt_struct);
384	size = unflatten_dt_node(blob, 0, &start, NULL, NULL, 0);
385	size = (size | 3) + 1;
386
387	pr_debug("  size is %lx, allocating...\n", size);
 
388
389	/* Allocate memory for the expanded device tree */
390	mem = (unsigned long)
391		dt_alloc(size + 4, __alignof__(struct device_node));
 
 
 
392
393	((__be32 *)mem)[size / 4] = cpu_to_be32(0xdeadbeef);
394
395	pr_debug("  unflattening %lx...\n", mem);
396
397	/* Second pass, do actual unflattening */
398	start = ((unsigned long)blob) +
399		be32_to_cpu(blob->off_dt_struct);
400	unflatten_dt_node(blob, mem, &start, NULL, &allnextp, 0);
401	if (be32_to_cpup((__be32 *)start) != OF_DT_END)
402		pr_warning("Weird tag at end of tree: %08x\n", *((u32 *)start));
403	if (be32_to_cpu(((__be32 *)mem)[size / 4]) != 0xdeadbeef)
404		pr_warning("End of tree marker overwritten: %08x\n",
405			   be32_to_cpu(((__be32 *)mem)[size / 4]));
406	*allnextp = NULL;
 
 
 
 
407
408	pr_debug(" <- unflatten_device_tree()\n");
 
409}
410
411static void *kernel_tree_alloc(u64 size, u64 align)
412{
413	return kzalloc(size, GFP_KERNEL);
414}
415
 
 
416/**
417 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
 
 
 
418 *
419 * unflattens the device-tree passed by the firmware, creating the
420 * tree of struct device_node. It also fills the "name" and "type"
421 * pointers of the nodes so the normal device-tree walking functions
422 * can be used.
 
 
 
423 */
424void of_fdt_unflatten_tree(unsigned long *blob,
425			struct device_node **mynodes)
426{
427	struct boot_param_header *device_tree =
428		(struct boot_param_header *)blob;
429	__unflatten_device_tree(device_tree, mynodes, &kernel_tree_alloc);
 
 
 
 
 
 
430}
431EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
432
433/* Everything below here references initial_boot_params directly. */
434int __initdata dt_root_addr_cells;
435int __initdata dt_root_size_cells;
436
437struct boot_param_header *initial_boot_params;
438
439#ifdef CONFIG_OF_EARLY_FLATTREE
440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
441/**
442 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
443 * @it: callback function
444 * @data: context data pointer
445 *
446 * This function is used to scan the flattened device-tree, it is
447 * used to extract the memory information at boot before we can
448 * unflatten the tree
449 */
450int __init of_scan_flat_dt(int (*it)(unsigned long node,
451				     const char *uname, int depth,
452				     void *data),
453			   void *data)
454{
455	unsigned long p = ((unsigned long)initial_boot_params) +
456		be32_to_cpu(initial_boot_params->off_dt_struct);
457	int rc = 0;
458	int depth = -1;
459
460	do {
461		u32 tag = be32_to_cpup((__be32 *)p);
462		char *pathp;
463
464		p += 4;
465		if (tag == OF_DT_END_NODE) {
466			depth--;
467			continue;
468		}
469		if (tag == OF_DT_NOP)
470			continue;
471		if (tag == OF_DT_END)
472			break;
473		if (tag == OF_DT_PROP) {
474			u32 sz = be32_to_cpup((__be32 *)p);
475			p += 8;
476			if (be32_to_cpu(initial_boot_params->version) < 0x10)
477				p = ALIGN(p, sz >= 8 ? 8 : 4);
478			p += sz;
479			p = ALIGN(p, 4);
480			continue;
481		}
482		if (tag != OF_DT_BEGIN_NODE) {
483			pr_err("Invalid tag %x in flat device tree!\n", tag);
484			return -EINVAL;
485		}
486		depth++;
487		pathp = (char *)p;
488		p = ALIGN(p + strlen(pathp) + 1, 4);
489		if ((*pathp) == '/') {
490			char *lp, *np;
491			for (lp = NULL, np = pathp; *np; np++)
492				if ((*np) == '/')
493					lp = np+1;
494			if (lp != NULL)
495				pathp = lp;
496		}
497		rc = it(p, pathp, depth, data);
498		if (rc != 0)
499			break;
500	} while (1);
501
 
 
 
 
 
 
 
 
 
502	return rc;
503}
504
505/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
506 * of_get_flat_dt_root - find the root node in the flat blob
507 */
508unsigned long __init of_get_flat_dt_root(void)
509{
510	unsigned long p = ((unsigned long)initial_boot_params) +
511		be32_to_cpu(initial_boot_params->off_dt_struct);
512
513	while (be32_to_cpup((__be32 *)p) == OF_DT_NOP)
514		p += 4;
515	BUG_ON(be32_to_cpup((__be32 *)p) != OF_DT_BEGIN_NODE);
516	p += 4;
517	return ALIGN(p + strlen((char *)p) + 1, 4);
 
518}
519
520/**
521 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
522 *
523 * This function can be used within scan_flattened_dt callback to get
524 * access to properties
525 */
526void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
527				 unsigned long *size)
528{
529	return of_fdt_get_property(initial_boot_params, node, name, size);
530}
531
532/**
533 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
534 * @node: node to test
535 * @compat: compatible string to compare with compatible list.
536 */
537int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
538{
539	return of_fdt_is_compatible(initial_boot_params, node, compat);
540}
541
542/**
543 * of_flat_dt_match - Return true if node matches a list of compatible values
544 */
545int __init of_flat_dt_match(unsigned long node, const char *const *compat)
546{
547	return of_fdt_match(initial_boot_params, node, compat);
548}
549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
550#ifdef CONFIG_BLK_DEV_INITRD
 
 
 
 
 
 
 
 
 
 
551/**
552 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
553 * @node: reference to node containing initrd location ('chosen')
554 */
555void __init early_init_dt_check_for_initrd(unsigned long node)
556{
557	unsigned long start, end, len;
558	__be32 *prop;
 
559
560	pr_debug("Looking for initrd properties... ");
561
562	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
563	if (!prop)
564		return;
565	start = of_read_ulong(prop, len/4);
566
567	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
568	if (!prop)
569		return;
570	end = of_read_ulong(prop, len/4);
 
 
571
572	early_init_dt_setup_initrd_arch(start, end);
573	pr_debug("initrd_start=0x%lx  initrd_end=0x%lx\n", start, end);
574}
575#else
576inline void early_init_dt_check_for_initrd(unsigned long node)
577{
578}
579#endif /* CONFIG_BLK_DEV_INITRD */
580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
581/**
582 * early_init_dt_scan_root - fetch the top level address and size cells
583 */
584int __init early_init_dt_scan_root(unsigned long node, const char *uname,
585				   int depth, void *data)
586{
587	__be32 *prop;
588
589	if (depth != 0)
590		return 0;
591
592	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
593	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
594
595	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
596	if (prop)
597		dt_root_size_cells = be32_to_cpup(prop);
598	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
599
600	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
601	if (prop)
602		dt_root_addr_cells = be32_to_cpup(prop);
603	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
604
605	/* break now */
606	return 1;
607}
608
609u64 __init dt_mem_next_cell(int s, __be32 **cellp)
610{
611	__be32 *p = *cellp;
612
613	*cellp = p + s;
614	return of_read_number(p, s);
615}
616
617/**
618 * early_init_dt_scan_memory - Look for an parse memory nodes
619 */
620int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
621				     int depth, void *data)
622{
623	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
624	__be32 *reg, *endp;
625	unsigned long l;
 
626
627	/* We are scanning "memory" nodes only */
628	if (type == NULL) {
629		/*
630		 * The longtrail doesn't have a device_type on the
631		 * /memory node, so look for the node called /memory@0.
632		 */
633		if (depth != 1 || strcmp(uname, "memory@0") != 0)
634			return 0;
635	} else if (strcmp(type, "memory") != 0)
636		return 0;
637
638	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
639	if (reg == NULL)
640		reg = of_get_flat_dt_prop(node, "reg", &l);
641	if (reg == NULL)
642		return 0;
643
644	endp = reg + (l / sizeof(__be32));
 
645
646	pr_debug("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
647	    uname, l, reg[0], reg[1], reg[2], reg[3]);
648
649	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
650		u64 base, size;
651
652		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
653		size = dt_mem_next_cell(dt_root_size_cells, &reg);
654
655		if (size == 0)
656			continue;
657		pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
658		    (unsigned long long)size);
659
660		early_init_dt_add_memory_arch(base, size);
 
 
 
 
 
 
 
661	}
662
663	return 0;
664}
665
666int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
667				     int depth, void *data)
668{
669	unsigned long l;
670	char *p;
671
672	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
673
674	if (depth != 1 || !data ||
675	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
676		return 0;
677
678	early_init_dt_check_for_initrd(node);
679
680	/* Retrieve command line */
681	p = of_get_flat_dt_prop(node, "bootargs", &l);
682	if (p != NULL && l > 0)
683		strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
684
685	/*
686	 * CONFIG_CMDLINE is meant to be a default in case nothing else
687	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
688	 * is set in which case we override whatever was found earlier.
689	 */
690#ifdef CONFIG_CMDLINE
691#ifndef CONFIG_CMDLINE_FORCE
 
 
 
 
 
 
692	if (!((char *)data)[0])
693#endif
694		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
 
695#endif /* CONFIG_CMDLINE */
696
697	pr_debug("Command line is: %s\n", (char*)data);
698
699	/* break now */
700	return 1;
701}
702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
703/**
704 * unflatten_device_tree - create tree of device_nodes from flat blob
705 *
706 * unflattens the device-tree passed by the firmware, creating the
707 * tree of struct device_node. It also fills the "name" and "type"
708 * pointers of the nodes so the normal device-tree walking functions
709 * can be used.
710 */
711void __init unflatten_device_tree(void)
712{
713	__unflatten_device_tree(initial_boot_params, &allnodes,
714				early_init_dt_alloc_memory_arch);
715
716	/* Get pointer to "/chosen" and "/aliasas" nodes for use everywhere */
717	of_alias_scan(early_init_dt_alloc_memory_arch);
 
 
718}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719
720#endif /* CONFIG_OF_EARLY_FLATTREE */
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions for working with the Flattened Device Tree data format
   4 *
   5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
   6 * benh@kernel.crashing.org
 
 
 
 
   7 */
   8
   9#define pr_fmt(fmt)	"OF: fdt: " fmt
  10
  11#include <linux/crc32.h>
  12#include <linux/kernel.h>
  13#include <linux/initrd.h>
  14#include <linux/bootmem.h>
  15#include <linux/memblock.h>
  16#include <linux/mutex.h>
  17#include <linux/of.h>
  18#include <linux/of_fdt.h>
  19#include <linux/of_reserved_mem.h>
  20#include <linux/sizes.h>
  21#include <linux/string.h>
  22#include <linux/errno.h>
  23#include <linux/slab.h>
  24#include <linux/libfdt.h>
  25#include <linux/debugfs.h>
  26#include <linux/serial_core.h>
  27#include <linux/sysfs.h>
  28
  29#include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
 
 
 
 
  30#include <asm/page.h>
  31
  32#include "of_private.h"
 
 
 
 
  33
  34/*
  35 * of_fdt_limit_memory - limit the number of regions in the /memory node
  36 * @limit: maximum entries
  37 *
  38 * Adjust the flattened device tree to have at most 'limit' number of
  39 * memory entries in the /memory node. This function may be called
  40 * any time after initial_boot_param is set.
  41 */
  42void of_fdt_limit_memory(int limit)
 
 
  43{
  44	int memory;
  45	int len;
  46	const void *val;
  47	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  48	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  49	const __be32 *addr_prop;
  50	const __be32 *size_prop;
  51	int root_offset;
  52	int cell_size;
  53
  54	root_offset = fdt_path_offset(initial_boot_params, "/");
  55	if (root_offset < 0)
  56		return;
 
 
  57
  58	addr_prop = fdt_getprop(initial_boot_params, root_offset,
  59				"#address-cells", NULL);
  60	if (addr_prop)
  61		nr_address_cells = fdt32_to_cpu(*addr_prop);
  62
  63	size_prop = fdt_getprop(initial_boot_params, root_offset,
  64				"#size-cells", NULL);
  65	if (size_prop)
  66		nr_size_cells = fdt32_to_cpu(*size_prop);
  67
  68	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
  69
  70	memory = fdt_path_offset(initial_boot_params, "/memory");
  71	if (memory > 0) {
  72		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
  73		if (len > limit*cell_size) {
  74			len = limit*cell_size;
  75			pr_debug("Limiting number of entries to %d\n", limit);
  76			fdt_setprop(initial_boot_params, memory, "reg", val,
  77					len);
  78		}
  79	}
  80}
  81
  82/**
  83 * of_fdt_is_compatible - Return true if given node from the given blob has
  84 * compat in its compatible list
  85 * @blob: A device tree blob
  86 * @node: node to test
  87 * @compat: compatible string to compare with compatible list.
  88 *
  89 * On match, returns a non-zero value with smaller values returned for more
  90 * specific compatible values.
  91 */
  92static int of_fdt_is_compatible(const void *blob,
  93		      unsigned long node, const char *compat)
  94{
  95	const char *cp;
  96	int cplen;
  97	unsigned long l, score = 0;
  98
  99	cp = fdt_getprop(blob, node, "compatible", &cplen);
 100	if (cp == NULL)
 101		return 0;
 102	while (cplen > 0) {
 103		score++;
 104		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
 105			return score;
 106		l = strlen(cp) + 1;
 107		cp += l;
 108		cplen -= l;
 109	}
 110
 111	return 0;
 112}
 113
 114/**
 115 * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
 116 * @blob: A device tree blob
 117 * @node: node to test
 118 *
 119 * Returns true if the node has a "big-endian" property, or if the kernel
 120 * was compiled for BE *and* the node has a "native-endian" property.
 121 * Returns false otherwise.
 122 */
 123bool of_fdt_is_big_endian(const void *blob, unsigned long node)
 124{
 125	if (fdt_getprop(blob, node, "big-endian", NULL))
 126		return true;
 127	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 128	    fdt_getprop(blob, node, "native-endian", NULL))
 129		return true;
 130	return false;
 131}
 132
 133static bool of_fdt_device_is_available(const void *blob, unsigned long node)
 134{
 135	const char *status = fdt_getprop(blob, node, "status", NULL);
 136
 137	if (!status)
 138		return true;
 139
 140	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
 141		return true;
 142
 143	return false;
 144}
 145
 146/**
 147 * of_fdt_match - Return true if node matches a list of compatible values
 148 */
 149int of_fdt_match(const void *blob, unsigned long node,
 150                 const char *const *compat)
 151{
 152	unsigned int tmp, score = 0;
 153
 154	if (!compat)
 155		return 0;
 156
 157	while (*compat) {
 158		tmp = of_fdt_is_compatible(blob, node, *compat);
 159		if (tmp && (score == 0 || (tmp < score)))
 160			score = tmp;
 161		compat++;
 162	}
 163
 164	return score;
 165}
 166
 167static void *unflatten_dt_alloc(void **mem, unsigned long size,
 168				       unsigned long align)
 169{
 170	void *res;
 171
 172	*mem = PTR_ALIGN(*mem, align);
 173	res = *mem;
 174	*mem += size;
 175
 176	return res;
 177}
 178
 179static void populate_properties(const void *blob,
 180				int offset,
 181				void **mem,
 182				struct device_node *np,
 183				const char *nodename,
 184				bool dryrun)
 185{
 186	struct property *pp, **pprev = NULL;
 187	int cur;
 188	bool has_name = false;
 189
 190	pprev = &np->properties;
 191	for (cur = fdt_first_property_offset(blob, offset);
 192	     cur >= 0;
 193	     cur = fdt_next_property_offset(blob, cur)) {
 194		const __be32 *val;
 195		const char *pname;
 196		u32 sz;
 197
 198		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
 199		if (!val) {
 200			pr_warn("Cannot locate property at 0x%x\n", cur);
 201			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202		}
 
 203
 204		if (!pname) {
 205			pr_warn("Cannot find property name at 0x%x\n", cur);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 206			continue;
 207		}
 208
 209		if (!strcmp(pname, "name"))
 210			has_name = true;
 211
 212		pp = unflatten_dt_alloc(mem, sizeof(struct property),
 
 
 
 
 
 
 
 
 
 
 
 
 
 213					__alignof__(struct property));
 214		if (dryrun)
 215			continue;
 216
 217		/* We accept flattened tree phandles either in
 218		 * ePAPR-style "phandle" properties, or the
 219		 * legacy "linux,phandle" properties.  If both
 220		 * appear and have different values, things
 221		 * will get weird. Don't do that.
 222		 */
 223		if (!strcmp(pname, "phandle") ||
 224		    !strcmp(pname, "linux,phandle")) {
 225			if (!np->phandle)
 226				np->phandle = be32_to_cpup(val);
 
 
 
 
 
 
 
 
 227		}
 228
 229		/* And we process the "ibm,phandle" property
 230		 * used in pSeries dynamic device tree
 231		 * stuff
 232		 */
 233		if (!strcmp(pname, "ibm,phandle"))
 234			np->phandle = be32_to_cpup(val);
 235
 236		pp->name   = (char *)pname;
 237		pp->length = sz;
 238		pp->value  = (__be32 *)val;
 239		*pprev     = pp;
 240		pprev      = &pp->next;
 241	}
 242
 243	/* With version 0x10 we may not have the name property,
 244	 * recreate it here from the unit name if absent
 245	 */
 246	if (!has_name) {
 247		const char *p = nodename, *ps = p, *pa = NULL;
 248		int len;
 249
 250		while (*p) {
 251			if ((*p) == '@')
 252				pa = p;
 253			else if ((*p) == '/')
 254				ps = p + 1;
 255			p++;
 256		}
 257
 258		if (pa < ps)
 259			pa = p;
 260		len = (pa - ps) + 1;
 261		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
 262					__alignof__(struct property));
 263		if (!dryrun) {
 264			pp->name   = "name";
 265			pp->length = len;
 266			pp->value  = pp + 1;
 267			*pprev     = pp;
 268			pprev      = &pp->next;
 269			memcpy(pp->value, ps, len - 1);
 270			((char *)pp->value)[len - 1] = 0;
 271			pr_debug("fixed up name for %s -> %s\n",
 272				 nodename, (char *)pp->value);
 273		}
 274	}
 275
 276	if (!dryrun)
 277		*pprev = NULL;
 278}
 279
 280static bool populate_node(const void *blob,
 281			  int offset,
 282			  void **mem,
 283			  struct device_node *dad,
 284			  struct device_node **pnp,
 285			  bool dryrun)
 286{
 287	struct device_node *np;
 288	const char *pathp;
 289	unsigned int l, allocl;
 290
 291	pathp = fdt_get_name(blob, offset, &l);
 292	if (!pathp) {
 293		*pnp = NULL;
 294		return false;
 295	}
 296
 297	allocl = ++l;
 298
 299	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
 300				__alignof__(struct device_node));
 301	if (!dryrun) {
 302		char *fn;
 303		of_node_init(np);
 304		np->full_name = fn = ((char *)np) + sizeof(*np);
 305
 306		memcpy(fn, pathp, l);
 307
 308		if (dad != NULL) {
 309			np->parent = dad;
 310			np->sibling = dad->child;
 311			dad->child = np;
 312		}
 313	}
 314
 315	populate_properties(blob, offset, mem, np, pathp, dryrun);
 316	if (!dryrun) {
 317		np->name = of_get_property(np, "name", NULL);
 318		np->type = of_get_property(np, "device_type", NULL);
 319
 320		if (!np->name)
 321			np->name = "<NULL>";
 322		if (!np->type)
 323			np->type = "<NULL>";
 324	}
 325
 326	*pnp = np;
 327	return true;
 328}
 329
 330static void reverse_nodes(struct device_node *parent)
 331{
 332	struct device_node *child, *next;
 333
 334	/* In-depth first */
 335	child = parent->child;
 336	while (child) {
 337		reverse_nodes(child);
 338
 339		child = child->sibling;
 340	}
 341
 342	/* Reverse the nodes in the child list */
 343	child = parent->child;
 344	parent->child = NULL;
 345	while (child) {
 346		next = child->sibling;
 347
 348		child->sibling = parent->child;
 349		parent->child = child;
 350		child = next;
 351	}
 352}
 353
 354/**
 355 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
 356 * @blob: The parent device tree blob
 357 * @mem: Memory chunk to use for allocating device nodes and properties
 358 * @dad: Parent struct device_node
 359 * @nodepp: The device_node tree created by the call
 360 *
 361 * It returns the size of unflattened device tree or error code
 362 */
 363static int unflatten_dt_nodes(const void *blob,
 364			      void *mem,
 365			      struct device_node *dad,
 366			      struct device_node **nodepp)
 367{
 368	struct device_node *root;
 369	int offset = 0, depth = 0, initial_depth = 0;
 370#define FDT_MAX_DEPTH	64
 371	struct device_node *nps[FDT_MAX_DEPTH];
 372	void *base = mem;
 373	bool dryrun = !base;
 374
 375	if (nodepp)
 376		*nodepp = NULL;
 377
 378	/*
 379	 * We're unflattening device sub-tree if @dad is valid. There are
 380	 * possibly multiple nodes in the first level of depth. We need
 381	 * set @depth to 1 to make fdt_next_node() happy as it bails
 382	 * immediately when negative @depth is found. Otherwise, the device
 383	 * nodes except the first one won't be unflattened successfully.
 384	 */
 385	if (dad)
 386		depth = initial_depth = 1;
 387
 388	root = dad;
 389	nps[depth] = dad;
 390
 391	for (offset = 0;
 392	     offset >= 0 && depth >= initial_depth;
 393	     offset = fdt_next_node(blob, offset, &depth)) {
 394		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
 395			continue;
 396
 397		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
 398		    !of_fdt_device_is_available(blob, offset))
 399			continue;
 400
 401		if (!populate_node(blob, offset, &mem, nps[depth],
 402				   &nps[depth+1], dryrun))
 403			return mem - base;
 404
 405		if (!dryrun && nodepp && !*nodepp)
 406			*nodepp = nps[depth+1];
 407		if (!dryrun && !root)
 408			root = nps[depth+1];
 409	}
 410
 411	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
 412		pr_err("Error %d processing FDT\n", offset);
 413		return -EINVAL;
 414	}
 415
 416	/*
 417	 * Reverse the child list. Some drivers assumes node order matches .dts
 418	 * node order
 419	 */
 420	if (!dryrun)
 421		reverse_nodes(root);
 422
 423	return mem - base;
 424}
 425
 426/**
 427 * __unflatten_device_tree - create tree of device_nodes from flat blob
 428 *
 429 * unflattens a device-tree, creating the
 430 * tree of struct device_node. It also fills the "name" and "type"
 431 * pointers of the nodes so the normal device-tree walking functions
 432 * can be used.
 433 * @blob: The blob to expand
 434 * @dad: Parent device node
 435 * @mynodes: The device_node tree created by the call
 436 * @dt_alloc: An allocator that provides a virtual address to memory
 437 * for the resulting tree
 438 * @detached: if true set OF_DETACHED on @mynodes
 439 *
 440 * Returns NULL on failure or the memory chunk containing the unflattened
 441 * device tree on success.
 442 */
 443void *__unflatten_device_tree(const void *blob,
 444			      struct device_node *dad,
 445			      struct device_node **mynodes,
 446			      void *(*dt_alloc)(u64 size, u64 align),
 447			      bool detached)
 448{
 449	int size;
 450	void *mem;
 451
 452	pr_debug(" -> unflatten_device_tree()\n");
 453
 454	if (!blob) {
 455		pr_debug("No device tree pointer\n");
 456		return NULL;
 457	}
 458
 459	pr_debug("Unflattening device tree:\n");
 460	pr_debug("magic: %08x\n", fdt_magic(blob));
 461	pr_debug("size: %08x\n", fdt_totalsize(blob));
 462	pr_debug("version: %08x\n", fdt_version(blob));
 463
 464	if (fdt_check_header(blob)) {
 465		pr_err("Invalid device tree blob header\n");
 466		return NULL;
 467	}
 468
 469	/* First pass, scan for size */
 470	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
 471	if (size < 0)
 472		return NULL;
 
 473
 474	size = ALIGN(size, 4);
 475	pr_debug("  size is %d, allocating...\n", size);
 476
 477	/* Allocate memory for the expanded device tree */
 478	mem = dt_alloc(size + 4, __alignof__(struct device_node));
 479	if (!mem)
 480		return NULL;
 481
 482	memset(mem, 0, size);
 483
 484	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
 485
 486	pr_debug("  unflattening %p...\n", mem);
 487
 488	/* Second pass, do actual unflattening */
 489	unflatten_dt_nodes(blob, mem, dad, mynodes);
 490	if (be32_to_cpup(mem + size) != 0xdeadbeef)
 
 
 
 
 491		pr_warning("End of tree marker overwritten: %08x\n",
 492			   be32_to_cpup(mem + size));
 493
 494	if (detached && mynodes) {
 495		of_node_set_flag(*mynodes, OF_DETACHED);
 496		pr_debug("unflattened tree is detached\n");
 497	}
 498
 499	pr_debug(" <- unflatten_device_tree()\n");
 500	return mem;
 501}
 502
 503static void *kernel_tree_alloc(u64 size, u64 align)
 504{
 505	return kzalloc(size, GFP_KERNEL);
 506}
 507
 508static DEFINE_MUTEX(of_fdt_unflatten_mutex);
 509
 510/**
 511 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
 512 * @blob: Flat device tree blob
 513 * @dad: Parent device node
 514 * @mynodes: The device tree created by the call
 515 *
 516 * unflattens the device-tree passed by the firmware, creating the
 517 * tree of struct device_node. It also fills the "name" and "type"
 518 * pointers of the nodes so the normal device-tree walking functions
 519 * can be used.
 520 *
 521 * Returns NULL on failure or the memory chunk containing the unflattened
 522 * device tree on success.
 523 */
 524void *of_fdt_unflatten_tree(const unsigned long *blob,
 525			    struct device_node *dad,
 526			    struct device_node **mynodes)
 527{
 528	void *mem;
 529
 530	mutex_lock(&of_fdt_unflatten_mutex);
 531	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
 532				      true);
 533	mutex_unlock(&of_fdt_unflatten_mutex);
 534
 535	return mem;
 536}
 537EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
 538
 539/* Everything below here references initial_boot_params directly. */
 540int __initdata dt_root_addr_cells;
 541int __initdata dt_root_size_cells;
 542
 543void *initial_boot_params;
 544
 545#ifdef CONFIG_OF_EARLY_FLATTREE
 546
 547static u32 of_fdt_crc32;
 548
 549/**
 550 * res_mem_reserve_reg() - reserve all memory described in 'reg' property
 551 */
 552static int __init __reserved_mem_reserve_reg(unsigned long node,
 553					     const char *uname)
 554{
 555	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
 556	phys_addr_t base, size;
 557	int len;
 558	const __be32 *prop;
 559	int nomap, first = 1;
 560
 561	prop = of_get_flat_dt_prop(node, "reg", &len);
 562	if (!prop)
 563		return -ENOENT;
 564
 565	if (len && len % t_len != 0) {
 566		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
 567		       uname);
 568		return -EINVAL;
 569	}
 570
 571	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
 572
 573	while (len >= t_len) {
 574		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
 575		size = dt_mem_next_cell(dt_root_size_cells, &prop);
 576
 577		if (size &&
 578		    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
 579			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
 580				uname, &base, (unsigned long)size / SZ_1M);
 581		else
 582			pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
 583				uname, &base, (unsigned long)size / SZ_1M);
 584
 585		len -= t_len;
 586		if (first) {
 587			fdt_reserved_mem_save_node(node, uname, base, size);
 588			first = 0;
 589		}
 590	}
 591	return 0;
 592}
 593
 594/**
 595 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
 596 * in /reserved-memory matches the values supported by the current implementation,
 597 * also check if ranges property has been provided
 598 */
 599static int __init __reserved_mem_check_root(unsigned long node)
 600{
 601	const __be32 *prop;
 602
 603	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
 604	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
 605		return -EINVAL;
 606
 607	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
 608	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
 609		return -EINVAL;
 610
 611	prop = of_get_flat_dt_prop(node, "ranges", NULL);
 612	if (!prop)
 613		return -EINVAL;
 614	return 0;
 615}
 616
 617/**
 618 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
 619 */
 620static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
 621					  int depth, void *data)
 622{
 623	static int found;
 624	int err;
 625
 626	if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
 627		if (__reserved_mem_check_root(node) != 0) {
 628			pr_err("Reserved memory: unsupported node format, ignoring\n");
 629			/* break scan */
 630			return 1;
 631		}
 632		found = 1;
 633		/* scan next node */
 634		return 0;
 635	} else if (!found) {
 636		/* scan next node */
 637		return 0;
 638	} else if (found && depth < 2) {
 639		/* scanning of /reserved-memory has been finished */
 640		return 1;
 641	}
 642
 643	if (!of_fdt_device_is_available(initial_boot_params, node))
 644		return 0;
 645
 646	err = __reserved_mem_reserve_reg(node, uname);
 647	if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
 648		fdt_reserved_mem_save_node(node, uname, 0, 0);
 649
 650	/* scan next node */
 651	return 0;
 652}
 653
 654/**
 655 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
 656 *
 657 * This function grabs memory from early allocator for device exclusive use
 658 * defined in device tree structures. It should be called by arch specific code
 659 * once the early allocator (i.e. memblock) has been fully activated.
 660 */
 661void __init early_init_fdt_scan_reserved_mem(void)
 662{
 663	int n;
 664	u64 base, size;
 665
 666	if (!initial_boot_params)
 667		return;
 668
 669	/* Process header /memreserve/ fields */
 670	for (n = 0; ; n++) {
 671		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
 672		if (!size)
 673			break;
 674		early_init_dt_reserve_memory_arch(base, size, 0);
 675	}
 676
 677	of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
 678	fdt_init_reserved_mem();
 679}
 680
 681/**
 682 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
 683 */
 684void __init early_init_fdt_reserve_self(void)
 685{
 686	if (!initial_boot_params)
 687		return;
 688
 689	/* Reserve the dtb region */
 690	early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
 691					  fdt_totalsize(initial_boot_params),
 692					  0);
 693}
 694
 695/**
 696 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
 697 * @it: callback function
 698 * @data: context data pointer
 699 *
 700 * This function is used to scan the flattened device-tree, it is
 701 * used to extract the memory information at boot before we can
 702 * unflatten the tree
 703 */
 704int __init of_scan_flat_dt(int (*it)(unsigned long node,
 705				     const char *uname, int depth,
 706				     void *data),
 707			   void *data)
 708{
 709	const void *blob = initial_boot_params;
 710	const char *pathp;
 711	int offset, rc = 0, depth = -1;
 712
 713	if (!blob)
 714		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 715
 716	for (offset = fdt_next_node(blob, -1, &depth);
 717	     offset >= 0 && depth >= 0 && !rc;
 718	     offset = fdt_next_node(blob, offset, &depth)) {
 719
 720		pathp = fdt_get_name(blob, offset, NULL);
 721		if (*pathp == '/')
 722			pathp = kbasename(pathp);
 723		rc = it(offset, pathp, depth, data);
 724	}
 725	return rc;
 726}
 727
 728/**
 729 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
 730 * @it: callback function
 731 * @data: context data pointer
 732 *
 733 * This function is used to scan sub-nodes of a node.
 734 */
 735int __init of_scan_flat_dt_subnodes(unsigned long parent,
 736				    int (*it)(unsigned long node,
 737					      const char *uname,
 738					      void *data),
 739				    void *data)
 740{
 741	const void *blob = initial_boot_params;
 742	int node;
 743
 744	fdt_for_each_subnode(node, blob, parent) {
 745		const char *pathp;
 746		int rc;
 747
 748		pathp = fdt_get_name(blob, node, NULL);
 749		if (*pathp == '/')
 750			pathp = kbasename(pathp);
 751		rc = it(node, pathp, data);
 752		if (rc)
 753			return rc;
 754	}
 755	return 0;
 756}
 757
 758/**
 759 * of_get_flat_dt_subnode_by_name - get the subnode by given name
 760 *
 761 * @node: the parent node
 762 * @uname: the name of subnode
 763 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
 764 */
 765
 766int of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
 767{
 768	return fdt_subnode_offset(initial_boot_params, node, uname);
 769}
 770
 771/**
 772 * of_get_flat_dt_root - find the root node in the flat blob
 773 */
 774unsigned long __init of_get_flat_dt_root(void)
 775{
 776	return 0;
 777}
 778
 779/**
 780 * of_get_flat_dt_size - Return the total size of the FDT
 781 */
 782int __init of_get_flat_dt_size(void)
 783{
 784	return fdt_totalsize(initial_boot_params);
 785}
 786
 787/**
 788 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
 789 *
 790 * This function can be used within scan_flattened_dt callback to get
 791 * access to properties
 792 */
 793const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
 794				       int *size)
 795{
 796	return fdt_getprop(initial_boot_params, node, name, size);
 797}
 798
 799/**
 800 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
 801 * @node: node to test
 802 * @compat: compatible string to compare with compatible list.
 803 */
 804int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
 805{
 806	return of_fdt_is_compatible(initial_boot_params, node, compat);
 807}
 808
 809/**
 810 * of_flat_dt_match - Return true if node matches a list of compatible values
 811 */
 812int __init of_flat_dt_match(unsigned long node, const char *const *compat)
 813{
 814	return of_fdt_match(initial_boot_params, node, compat);
 815}
 816
 817/**
 818 * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle
 819 */
 820uint32_t __init of_get_flat_dt_phandle(unsigned long node)
 821{
 822	return fdt_get_phandle(initial_boot_params, node);
 823}
 824
 825struct fdt_scan_status {
 826	const char *name;
 827	int namelen;
 828	int depth;
 829	int found;
 830	int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
 831	void *data;
 832};
 833
 834const char * __init of_flat_dt_get_machine_name(void)
 835{
 836	const char *name;
 837	unsigned long dt_root = of_get_flat_dt_root();
 838
 839	name = of_get_flat_dt_prop(dt_root, "model", NULL);
 840	if (!name)
 841		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
 842	return name;
 843}
 844
 845/**
 846 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
 847 *
 848 * @default_match: A machine specific ptr to return in case of no match.
 849 * @get_next_compat: callback function to return next compatible match table.
 850 *
 851 * Iterate through machine match tables to find the best match for the machine
 852 * compatible string in the FDT.
 853 */
 854const void * __init of_flat_dt_match_machine(const void *default_match,
 855		const void * (*get_next_compat)(const char * const**))
 856{
 857	const void *data = NULL;
 858	const void *best_data = default_match;
 859	const char *const *compat;
 860	unsigned long dt_root;
 861	unsigned int best_score = ~1, score = 0;
 862
 863	dt_root = of_get_flat_dt_root();
 864	while ((data = get_next_compat(&compat))) {
 865		score = of_flat_dt_match(dt_root, compat);
 866		if (score > 0 && score < best_score) {
 867			best_data = data;
 868			best_score = score;
 869		}
 870	}
 871	if (!best_data) {
 872		const char *prop;
 873		int size;
 874
 875		pr_err("\n unrecognized device tree list:\n[ ");
 876
 877		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
 878		if (prop) {
 879			while (size > 0) {
 880				printk("'%s' ", prop);
 881				size -= strlen(prop) + 1;
 882				prop += strlen(prop) + 1;
 883			}
 884		}
 885		printk("]\n\n");
 886		return NULL;
 887	}
 888
 889	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
 890
 891	return best_data;
 892}
 893
 894#ifdef CONFIG_BLK_DEV_INITRD
 895#ifndef __early_init_dt_declare_initrd
 896static void __early_init_dt_declare_initrd(unsigned long start,
 897					   unsigned long end)
 898{
 899	initrd_start = (unsigned long)__va(start);
 900	initrd_end = (unsigned long)__va(end);
 901	initrd_below_start_ok = 1;
 902}
 903#endif
 904
 905/**
 906 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
 907 * @node: reference to node containing initrd location ('chosen')
 908 */
 909static void __init early_init_dt_check_for_initrd(unsigned long node)
 910{
 911	u64 start, end;
 912	int len;
 913	const __be32 *prop;
 914
 915	pr_debug("Looking for initrd properties... ");
 916
 917	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
 918	if (!prop)
 919		return;
 920	start = of_read_number(prop, len/4);
 921
 922	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
 923	if (!prop)
 924		return;
 925	end = of_read_number(prop, len/4);
 926
 927	__early_init_dt_declare_initrd(start, end);
 928
 929	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n",
 930		 (unsigned long long)start, (unsigned long long)end);
 931}
 932#else
 933static inline void early_init_dt_check_for_initrd(unsigned long node)
 934{
 935}
 936#endif /* CONFIG_BLK_DEV_INITRD */
 937
 938#ifdef CONFIG_SERIAL_EARLYCON
 939
 940int __init early_init_dt_scan_chosen_stdout(void)
 941{
 942	int offset;
 943	const char *p, *q, *options = NULL;
 944	int l;
 945	const struct earlycon_id **p_match;
 946	const void *fdt = initial_boot_params;
 947
 948	offset = fdt_path_offset(fdt, "/chosen");
 949	if (offset < 0)
 950		offset = fdt_path_offset(fdt, "/chosen@0");
 951	if (offset < 0)
 952		return -ENOENT;
 953
 954	p = fdt_getprop(fdt, offset, "stdout-path", &l);
 955	if (!p)
 956		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
 957	if (!p || !l)
 958		return -ENOENT;
 959
 960	q = strchrnul(p, ':');
 961	if (*q != '\0')
 962		options = q + 1;
 963	l = q - p;
 964
 965	/* Get the node specified by stdout-path */
 966	offset = fdt_path_offset_namelen(fdt, p, l);
 967	if (offset < 0) {
 968		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
 969		return 0;
 970	}
 971
 972	for (p_match = __earlycon_table; p_match < __earlycon_table_end;
 973	     p_match++) {
 974		const struct earlycon_id *match = *p_match;
 975
 976		if (!match->compatible[0])
 977			continue;
 978
 979		if (fdt_node_check_compatible(fdt, offset, match->compatible))
 980			continue;
 981
 982		of_setup_earlycon(match, offset, options);
 983		return 0;
 984	}
 985	return -ENODEV;
 986}
 987#endif
 988
 989/**
 990 * early_init_dt_scan_root - fetch the top level address and size cells
 991 */
 992int __init early_init_dt_scan_root(unsigned long node, const char *uname,
 993				   int depth, void *data)
 994{
 995	const __be32 *prop;
 996
 997	if (depth != 0)
 998		return 0;
 999
1000	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1001	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1002
1003	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1004	if (prop)
1005		dt_root_size_cells = be32_to_cpup(prop);
1006	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1007
1008	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1009	if (prop)
1010		dt_root_addr_cells = be32_to_cpup(prop);
1011	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1012
1013	/* break now */
1014	return 1;
1015}
1016
1017u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1018{
1019	const __be32 *p = *cellp;
1020
1021	*cellp = p + s;
1022	return of_read_number(p, s);
1023}
1024
1025/**
1026 * early_init_dt_scan_memory - Look for and parse memory nodes
1027 */
1028int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1029				     int depth, void *data)
1030{
1031	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1032	const __be32 *reg, *endp;
1033	int l;
1034	bool hotpluggable;
1035
1036	/* We are scanning "memory" nodes only */
1037	if (type == NULL) {
1038		/*
1039		 * The longtrail doesn't have a device_type on the
1040		 * /memory node, so look for the node called /memory@0.
1041		 */
1042		if (!IS_ENABLED(CONFIG_PPC32) || depth != 1 || strcmp(uname, "memory@0") != 0)
1043			return 0;
1044	} else if (strcmp(type, "memory") != 0)
1045		return 0;
1046
1047	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1048	if (reg == NULL)
1049		reg = of_get_flat_dt_prop(node, "reg", &l);
1050	if (reg == NULL)
1051		return 0;
1052
1053	endp = reg + (l / sizeof(__be32));
1054	hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1055
1056	pr_debug("memory scan node %s, reg size %d,\n", uname, l);
 
1057
1058	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1059		u64 base, size;
1060
1061		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1062		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1063
1064		if (size == 0)
1065			continue;
1066		pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
1067		    (unsigned long long)size);
1068
1069		early_init_dt_add_memory_arch(base, size);
1070
1071		if (!hotpluggable)
1072			continue;
1073
1074		if (early_init_dt_mark_hotplug_memory_arch(base, size))
1075			pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1076				base, base + size);
1077	}
1078
1079	return 0;
1080}
1081
1082int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1083				     int depth, void *data)
1084{
1085	int l;
1086	const char *p;
1087
1088	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1089
1090	if (depth != 1 || !data ||
1091	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1092		return 0;
1093
1094	early_init_dt_check_for_initrd(node);
1095
1096	/* Retrieve command line */
1097	p = of_get_flat_dt_prop(node, "bootargs", &l);
1098	if (p != NULL && l > 0)
1099		strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
1100
1101	/*
1102	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1103	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1104	 * is set in which case we override whatever was found earlier.
1105	 */
1106#ifdef CONFIG_CMDLINE
1107#if defined(CONFIG_CMDLINE_EXTEND)
1108	strlcat(data, " ", COMMAND_LINE_SIZE);
1109	strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1110#elif defined(CONFIG_CMDLINE_FORCE)
1111	strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1112#else
1113	/* No arguments from boot loader, use kernel's  cmdl*/
1114	if (!((char *)data)[0])
 
1115		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1116#endif
1117#endif /* CONFIG_CMDLINE */
1118
1119	pr_debug("Command line is: %s\n", (char*)data);
1120
1121	/* break now */
1122	return 1;
1123}
1124
1125#ifdef CONFIG_HAVE_MEMBLOCK
1126#ifndef MIN_MEMBLOCK_ADDR
1127#define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1128#endif
1129#ifndef MAX_MEMBLOCK_ADDR
1130#define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1131#endif
1132
1133void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1134{
1135	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1136
1137	if (!PAGE_ALIGNED(base)) {
1138		if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1139			pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1140				base, base + size);
1141			return;
1142		}
1143		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1144		base = PAGE_ALIGN(base);
1145	}
1146	size &= PAGE_MASK;
1147
1148	if (base > MAX_MEMBLOCK_ADDR) {
1149		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1150				base, base + size);
1151		return;
1152	}
1153
1154	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1155		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1156				((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1157		size = MAX_MEMBLOCK_ADDR - base + 1;
1158	}
1159
1160	if (base + size < phys_offset) {
1161		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1162			   base, base + size);
1163		return;
1164	}
1165	if (base < phys_offset) {
1166		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1167			   base, phys_offset);
1168		size -= phys_offset - base;
1169		base = phys_offset;
1170	}
1171	memblock_add(base, size);
1172}
1173
1174int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1175{
1176	return memblock_mark_hotplug(base, size);
1177}
1178
1179int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1180					phys_addr_t size, bool nomap)
1181{
1182	if (nomap)
1183		return memblock_remove(base, size);
1184	return memblock_reserve(base, size);
1185}
1186
1187#else
1188void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1189{
1190	WARN_ON(1);
1191}
1192
1193int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1194{
1195	return -ENOSYS;
1196}
1197
1198int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1199					phys_addr_t size, bool nomap)
1200{
1201	pr_err("Reserved memory not supported, ignoring range %pa - %pa%s\n",
1202		  &base, &size, nomap ? " (nomap)" : "");
1203	return -ENOSYS;
1204}
1205#endif
1206
1207static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1208{
1209	return memblock_virt_alloc(size, align);
1210}
1211
1212bool __init early_init_dt_verify(void *params)
1213{
1214	if (!params)
1215		return false;
1216
1217	/* check device tree validity */
1218	if (fdt_check_header(params))
1219		return false;
1220
1221	/* Setup flat device-tree pointer */
1222	initial_boot_params = params;
1223	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1224				fdt_totalsize(initial_boot_params));
1225	return true;
1226}
1227
1228
1229void __init early_init_dt_scan_nodes(void)
1230{
1231	/* Retrieve various information from the /chosen node */
1232	of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1233
1234	/* Initialize {size,address}-cells info */
1235	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1236
1237	/* Setup memory, calling early_init_dt_add_memory_arch */
1238	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1239}
1240
1241bool __init early_init_dt_scan(void *params)
1242{
1243	bool status;
1244
1245	status = early_init_dt_verify(params);
1246	if (!status)
1247		return false;
1248
1249	early_init_dt_scan_nodes();
1250	return true;
1251}
1252
1253/**
1254 * unflatten_device_tree - create tree of device_nodes from flat blob
1255 *
1256 * unflattens the device-tree passed by the firmware, creating the
1257 * tree of struct device_node. It also fills the "name" and "type"
1258 * pointers of the nodes so the normal device-tree walking functions
1259 * can be used.
1260 */
1261void __init unflatten_device_tree(void)
1262{
1263	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1264				early_init_dt_alloc_memory_arch, false);
1265
1266	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1267	of_alias_scan(early_init_dt_alloc_memory_arch);
1268
1269	unittest_unflatten_overlay_base();
1270}
1271
1272/**
1273 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1274 *
1275 * Copies and unflattens the device-tree passed by the firmware, creating the
1276 * tree of struct device_node. It also fills the "name" and "type"
1277 * pointers of the nodes so the normal device-tree walking functions
1278 * can be used. This should only be used when the FDT memory has not been
1279 * reserved such is the case when the FDT is built-in to the kernel init
1280 * section. If the FDT memory is reserved already then unflatten_device_tree
1281 * should be used instead.
1282 */
1283void __init unflatten_and_copy_device_tree(void)
1284{
1285	int size;
1286	void *dt;
1287
1288	if (!initial_boot_params) {
1289		pr_warn("No valid device tree found, continuing without\n");
1290		return;
1291	}
1292
1293	size = fdt_totalsize(initial_boot_params);
1294	dt = early_init_dt_alloc_memory_arch(size,
1295					     roundup_pow_of_two(FDT_V17_SIZE));
1296
1297	if (dt) {
1298		memcpy(dt, initial_boot_params, size);
1299		initial_boot_params = dt;
1300	}
1301	unflatten_device_tree();
1302}
1303
1304#ifdef CONFIG_SYSFS
1305static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1306			       struct bin_attribute *bin_attr,
1307			       char *buf, loff_t off, size_t count)
1308{
1309	memcpy(buf, initial_boot_params + off, count);
1310	return count;
1311}
1312
1313static int __init of_fdt_raw_init(void)
1314{
1315	static struct bin_attribute of_fdt_raw_attr =
1316		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1317
1318	if (!initial_boot_params)
1319		return 0;
1320
1321	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1322				     fdt_totalsize(initial_boot_params))) {
1323		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1324		return 0;
1325	}
1326	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1327	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1328}
1329late_initcall(of_fdt_raw_init);
1330#endif
1331
1332#endif /* CONFIG_OF_EARLY_FLATTREE */