Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Procedures for creating, accessing and interpreting the device tree.
   3 *
   4 * Paul Mackerras	August 1996.
   5 * Copyright (C) 1996-2005 Paul Mackerras.
   6 *
   7 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
   8 *    {engebret|bergner}@us.ibm.com
   9 *
  10 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  11 *
  12 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  13 *  Grant Likely.
  14 *
  15 *      This program is free software; you can redistribute it and/or
  16 *      modify it under the terms of the GNU General Public License
  17 *      as published by the Free Software Foundation; either version
  18 *      2 of the License, or (at your option) any later version.
  19 */
 
 
 
 
  20#include <linux/ctype.h>
 
  21#include <linux/module.h>
  22#include <linux/of.h>
 
 
  23#include <linux/spinlock.h>
  24#include <linux/slab.h>
 
  25#include <linux/proc_fs.h>
  26
  27/**
  28 * struct alias_prop - Alias property in 'aliases' node
  29 * @link:	List node to link the structure in aliases_lookup list
  30 * @alias:	Alias property name
  31 * @np:		Pointer to device_node that the alias stands for
  32 * @id:		Index value from end of alias name
  33 * @stem:	Alias string without the index
  34 *
  35 * The structure represents one alias property of 'aliases' node as
  36 * an entry in aliases_lookup list.
  37 */
  38struct alias_prop {
  39	struct list_head link;
  40	const char *alias;
  41	struct device_node *np;
  42	int id;
  43	char stem[0];
  44};
  45
  46static LIST_HEAD(aliases_lookup);
  47
  48struct device_node *allnodes;
 
  49struct device_node *of_chosen;
  50struct device_node *of_aliases;
 
 
  51
  52static DEFINE_MUTEX(of_aliases_mutex);
  53
  54/* use when traversing tree through the allnext, child, sibling,
 
 
 
 
 
 
 
 
  55 * or parent members of struct device_node.
  56 */
  57DEFINE_RWLOCK(devtree_lock);
  58
  59int of_n_addr_cells(struct device_node *np)
  60{
  61	const __be32 *ip;
  62
  63	do {
  64		if (np->parent)
  65			np = np->parent;
  66		ip = of_get_property(np, "#address-cells", NULL);
  67		if (ip)
  68			return be32_to_cpup(ip);
  69	} while (np->parent);
  70	/* No #address-cells property for the root node */
  71	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  72}
  73EXPORT_SYMBOL(of_n_addr_cells);
  74
  75int of_n_size_cells(struct device_node *np)
  76{
  77	const __be32 *ip;
  78
  79	do {
  80		if (np->parent)
  81			np = np->parent;
  82		ip = of_get_property(np, "#size-cells", NULL);
  83		if (ip)
  84			return be32_to_cpup(ip);
  85	} while (np->parent);
  86	/* No #size-cells property for the root node */
  87	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  88}
  89EXPORT_SYMBOL(of_n_size_cells);
  90
  91#if defined(CONFIG_OF_DYNAMIC)
  92/**
  93 *	of_node_get - Increment refcount of a node
  94 *	@node:	Node to inc refcount, NULL is supported to
  95 *		simplify writing of callers
 
 
 
 
 
 
 
 
  96 *
  97 *	Returns node.
 
 
  98 */
  99struct device_node *of_node_get(struct device_node *node)
 100{
 101	if (node)
 102		kref_get(&node->kref);
 103	return node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104}
 105EXPORT_SYMBOL(of_node_get);
 106
 107static inline struct device_node *kref_to_device_node(struct kref *kref)
 
 108{
 109	return container_of(kref, struct device_node, kref);
 
 
 
 
 
 
 
 
 
 110}
 
 
 111
 112/**
 113 *	of_node_release - release a dynamically allocated node
 114 *	@kref:  kref element of the node to be released
 115 *
 116 *	In of_node_put() this function is passed to kref_put()
 117 *	as the destructor.
 118 */
 119static void of_node_release(struct kref *kref)
 120{
 121	struct device_node *node = kref_to_device_node(kref);
 122	struct property *prop = node->properties;
 123
 124	/* We should never be releasing nodes that haven't been detached. */
 125	if (!of_node_check_flag(node, OF_DETACHED)) {
 126		pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
 127		dump_stack();
 128		kref_init(&node->kref);
 129		return;
 130	}
 131
 132	if (!of_node_check_flag(node, OF_DYNAMIC))
 
 
 
 
 
 133		return;
 134
 135	while (prop) {
 136		struct property *next = prop->next;
 137		kfree(prop->name);
 138		kfree(prop->value);
 139		kfree(prop);
 140		prop = next;
 141
 142		if (!prop) {
 143			prop = node->deadprops;
 144			node->deadprops = NULL;
 145		}
 146	}
 147	kfree(node->full_name);
 148	kfree(node->data);
 149	kfree(node);
 150}
 151
 152/**
 153 *	of_node_put - Decrement refcount of a node
 154 *	@node:	Node to dec refcount, NULL is supported to
 155 *		simplify writing of callers
 156 *
 157 */
 158void of_node_put(struct device_node *node)
 159{
 160	if (node)
 161		kref_put(&node->kref, of_node_release);
 162}
 163EXPORT_SYMBOL(of_node_put);
 164#endif /* CONFIG_OF_DYNAMIC */
 165
 166struct property *of_find_property(const struct device_node *np,
 167				  const char *name,
 168				  int *lenp)
 169{
 170	struct property *pp;
 171
 172	if (!np)
 173		return NULL;
 174
 175	read_lock(&devtree_lock);
 176	for (pp = np->properties; pp != 0; pp = pp->next) {
 177		if (of_prop_cmp(pp->name, name) == 0) {
 178			if (lenp != 0)
 179				*lenp = pp->length;
 180			break;
 181		}
 182	}
 183	read_unlock(&devtree_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 184
 185	return pp;
 186}
 187EXPORT_SYMBOL(of_find_property);
 188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 189/**
 190 * of_find_all_nodes - Get next node in global list
 191 * @prev:	Previous node or NULL to start iteration
 192 *		of_node_put() will be called on it
 193 *
 194 * Returns a node pointer with refcount incremented, use
 195 * of_node_put() on it when done.
 196 */
 197struct device_node *of_find_all_nodes(struct device_node *prev)
 198{
 199	struct device_node *np;
 
 200
 201	read_lock(&devtree_lock);
 202	np = prev ? prev->allnext : allnodes;
 203	for (; np != NULL; np = np->allnext)
 204		if (of_node_get(np))
 205			break;
 206	of_node_put(prev);
 207	read_unlock(&devtree_lock);
 208	return np;
 209}
 210EXPORT_SYMBOL(of_find_all_nodes);
 211
 212/*
 213 * Find a property with a given name for a given node
 214 * and return the value.
 215 */
 
 
 
 
 
 
 
 
 
 
 
 
 216const void *of_get_property(const struct device_node *np, const char *name,
 217			 int *lenp)
 218{
 219	struct property *pp = of_find_property(np, name, lenp);
 220
 221	return pp ? pp->value : NULL;
 222}
 223EXPORT_SYMBOL(of_get_property);
 224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225/** Checks if the given "compat" string matches one of the strings in
 226 * the device's "compatible" property
 227 */
 228int of_device_is_compatible(const struct device_node *device,
 229		const char *compat)
 230{
 231	const char* cp;
 232	int cplen, l;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233
 234	cp = of_get_property(device, "compatible", &cplen);
 235	if (cp == NULL)
 236		return 0;
 237	while (cplen > 0) {
 238		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
 239			return 1;
 240		l = strlen(cp) + 1;
 241		cp += l;
 242		cplen -= l;
 243	}
 244
 245	return 0;
 246}
 247EXPORT_SYMBOL(of_device_is_compatible);
 248
 249/**
 250 * of_machine_is_compatible - Test root of device tree for a given compatible value
 251 * @compat: compatible string to look for in root node's compatible property.
 252 *
 253 * Returns true if the root node has the given value in its
 254 * compatible property.
 255 */
 256int of_machine_is_compatible(const char *compat)
 257{
 258	struct device_node *root;
 259	int rc = 0;
 260
 261	root = of_find_node_by_path("/");
 262	if (root) {
 263		rc = of_device_is_compatible(root, compat);
 264		of_node_put(root);
 265	}
 266	return rc;
 267}
 268EXPORT_SYMBOL(of_machine_is_compatible);
 269
 270/**
 271 *  of_device_is_available - check if a device is available for use
 272 *
 273 *  @device: Node to check for availability
 274 *
 275 *  Returns 1 if the status property is absent or set to "okay" or "ok",
 276 *  0 otherwise
 277 */
 278int of_device_is_available(const struct device_node *device)
 279{
 280	const char *status;
 281	int statlen;
 282
 283	status = of_get_property(device, "status", &statlen);
 
 
 
 284	if (status == NULL)
 285		return 1;
 286
 287	if (statlen > 0) {
 288		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
 289			return 1;
 290	}
 291
 292	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293}
 294EXPORT_SYMBOL(of_device_is_available);
 295
 296/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297 *	of_get_parent - Get a node's parent if any
 298 *	@node:	Node to get parent
 299 *
 300 *	Returns a node pointer with refcount incremented, use
 301 *	of_node_put() on it when done.
 302 */
 303struct device_node *of_get_parent(const struct device_node *node)
 304{
 305	struct device_node *np;
 
 306
 307	if (!node)
 308		return NULL;
 309
 310	read_lock(&devtree_lock);
 311	np = of_node_get(node->parent);
 312	read_unlock(&devtree_lock);
 313	return np;
 314}
 315EXPORT_SYMBOL(of_get_parent);
 316
 317/**
 318 *	of_get_next_parent - Iterate to a node's parent
 319 *	@node:	Node to get parent of
 320 *
 321 * 	This is like of_get_parent() except that it drops the
 322 * 	refcount on the passed node, making it suitable for iterating
 323 * 	through a node's parents.
 324 *
 325 *	Returns a node pointer with refcount incremented, use
 326 *	of_node_put() on it when done.
 327 */
 328struct device_node *of_get_next_parent(struct device_node *node)
 329{
 330	struct device_node *parent;
 
 331
 332	if (!node)
 333		return NULL;
 334
 335	read_lock(&devtree_lock);
 336	parent = of_node_get(node->parent);
 337	of_node_put(node);
 338	read_unlock(&devtree_lock);
 339	return parent;
 340}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 341
 342/**
 343 *	of_get_next_child - Iterate a node childs
 344 *	@node:	parent node
 345 *	@prev:	previous child of the parent node, or NULL to get first
 346 *
 347 *	Returns a node pointer with refcount incremented, use
 348 *	of_node_put() on it when done.
 
 349 */
 350struct device_node *of_get_next_child(const struct device_node *node,
 351	struct device_node *prev)
 352{
 353	struct device_node *next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 354
 355	read_lock(&devtree_lock);
 
 
 
 356	next = prev ? prev->sibling : node->child;
 357	for (; next; next = next->sibling)
 
 
 358		if (of_node_get(next))
 359			break;
 
 360	of_node_put(prev);
 361	read_unlock(&devtree_lock);
 362	return next;
 363}
 364EXPORT_SYMBOL(of_get_next_child);
 365
 366/**
 367 *	of_find_node_by_path - Find a node matching a full OF path
 368 *	@path:	The full path to match
 
 369 *
 370 *	Returns a node pointer with refcount incremented, use
 
 
 371 *	of_node_put() on it when done.
 
 372 */
 373struct device_node *of_find_node_by_path(const char *path)
 
 374{
 375	struct device_node *np = allnodes;
 376
 377	read_lock(&devtree_lock);
 378	for (; np; np = np->allnext) {
 379		if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
 380		    && of_node_get(np))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 381			break;
 382	}
 383	read_unlock(&devtree_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384	return np;
 385}
 386EXPORT_SYMBOL(of_find_node_by_path);
 387
 388/**
 389 *	of_find_node_by_name - Find a node by its "name" property
 390 *	@from:	The node to start searching from or NULL, the node
 391 *		you pass will not be searched, only the next one
 392 *		will; typically, you pass what the previous call
 393 *		returned. of_node_put() will be called on it
 394 *	@name:	The name string to match against
 395 *
 396 *	Returns a node pointer with refcount incremented, use
 397 *	of_node_put() on it when done.
 398 */
 399struct device_node *of_find_node_by_name(struct device_node *from,
 400	const char *name)
 401{
 402	struct device_node *np;
 
 403
 404	read_lock(&devtree_lock);
 405	np = from ? from->allnext : allnodes;
 406	for (; np; np = np->allnext)
 407		if (np->name && (of_node_cmp(np->name, name) == 0)
 408		    && of_node_get(np))
 409			break;
 410	of_node_put(from);
 411	read_unlock(&devtree_lock);
 412	return np;
 413}
 414EXPORT_SYMBOL(of_find_node_by_name);
 415
 416/**
 417 *	of_find_node_by_type - Find a node by its "device_type" property
 418 *	@from:	The node to start searching from, or NULL to start searching
 419 *		the entire device tree. The node you pass will not be
 420 *		searched, only the next one will; typically, you pass
 421 *		what the previous call returned. of_node_put() will be
 422 *		called on from for you.
 423 *	@type:	The type string to match against
 424 *
 425 *	Returns a node pointer with refcount incremented, use
 426 *	of_node_put() on it when done.
 427 */
 428struct device_node *of_find_node_by_type(struct device_node *from,
 429	const char *type)
 430{
 431	struct device_node *np;
 
 432
 433	read_lock(&devtree_lock);
 434	np = from ? from->allnext : allnodes;
 435	for (; np; np = np->allnext)
 436		if (np->type && (of_node_cmp(np->type, type) == 0)
 437		    && of_node_get(np))
 438			break;
 439	of_node_put(from);
 440	read_unlock(&devtree_lock);
 441	return np;
 442}
 443EXPORT_SYMBOL(of_find_node_by_type);
 444
 445/**
 446 *	of_find_compatible_node - Find a node based on type and one of the
 447 *                                tokens in its "compatible" property
 448 *	@from:		The node to start searching from or NULL, the node
 449 *			you pass will not be searched, only the next one
 450 *			will; typically, you pass what the previous call
 451 *			returned. of_node_put() will be called on it
 452 *	@type:		The type string to match "device_type" or NULL to ignore
 453 *	@compatible:	The string to match to one of the tokens in the device
 454 *			"compatible" list.
 455 *
 456 *	Returns a node pointer with refcount incremented, use
 457 *	of_node_put() on it when done.
 458 */
 459struct device_node *of_find_compatible_node(struct device_node *from,
 460	const char *type, const char *compatible)
 461{
 462	struct device_node *np;
 
 463
 464	read_lock(&devtree_lock);
 465	np = from ? from->allnext : allnodes;
 466	for (; np; np = np->allnext) {
 467		if (type
 468		    && !(np->type && (of_node_cmp(np->type, type) == 0)))
 469			continue;
 470		if (of_device_is_compatible(np, compatible) && of_node_get(np))
 471			break;
 472	}
 473	of_node_put(from);
 474	read_unlock(&devtree_lock);
 475	return np;
 476}
 477EXPORT_SYMBOL(of_find_compatible_node);
 478
 479/**
 480 *	of_find_node_with_property - Find a node which has a property with
 481 *                                   the given name.
 482 *	@from:		The node to start searching from or NULL, the node
 483 *			you pass will not be searched, only the next one
 484 *			will; typically, you pass what the previous call
 485 *			returned. of_node_put() will be called on it
 486 *	@prop_name:	The name of the property to look for.
 487 *
 488 *	Returns a node pointer with refcount incremented, use
 489 *	of_node_put() on it when done.
 490 */
 491struct device_node *of_find_node_with_property(struct device_node *from,
 492	const char *prop_name)
 493{
 494	struct device_node *np;
 495	struct property *pp;
 
 496
 497	read_lock(&devtree_lock);
 498	np = from ? from->allnext : allnodes;
 499	for (; np; np = np->allnext) {
 500		for (pp = np->properties; pp != 0; pp = pp->next) {
 501			if (of_prop_cmp(pp->name, prop_name) == 0) {
 502				of_node_get(np);
 503				goto out;
 504			}
 505		}
 506	}
 507out:
 508	of_node_put(from);
 509	read_unlock(&devtree_lock);
 510	return np;
 511}
 512EXPORT_SYMBOL(of_find_node_with_property);
 513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514/**
 515 * of_match_node - Tell if an device_node has a matching of_match structure
 516 *	@matches:	array of of device match structures to search in
 517 *	@node:		the of device structure to match against
 518 *
 519 *	Low level utility function used by device matching.
 520 */
 521const struct of_device_id *of_match_node(const struct of_device_id *matches,
 522					 const struct device_node *node)
 523{
 524	if (!matches)
 525		return NULL;
 526
 527	while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
 528		int match = 1;
 529		if (matches->name[0])
 530			match &= node->name
 531				&& !strcmp(matches->name, node->name);
 532		if (matches->type[0])
 533			match &= node->type
 534				&& !strcmp(matches->type, node->type);
 535		if (matches->compatible[0])
 536			match &= of_device_is_compatible(node,
 537						matches->compatible);
 538		if (match)
 539			return matches;
 540		matches++;
 541	}
 542	return NULL;
 543}
 544EXPORT_SYMBOL(of_match_node);
 545
 546/**
 547 *	of_find_matching_node - Find a node based on an of_device_id match
 548 *				table.
 549 *	@from:		The node to start searching from or NULL, the node
 550 *			you pass will not be searched, only the next one
 551 *			will; typically, you pass what the previous call
 552 *			returned. of_node_put() will be called on it
 553 *	@matches:	array of of device match structures to search in
 
 554 *
 555 *	Returns a node pointer with refcount incremented, use
 556 *	of_node_put() on it when done.
 557 */
 558struct device_node *of_find_matching_node(struct device_node *from,
 559					  const struct of_device_id *matches)
 
 560{
 561	struct device_node *np;
 
 
 
 
 
 562
 563	read_lock(&devtree_lock);
 564	np = from ? from->allnext : allnodes;
 565	for (; np; np = np->allnext) {
 566		if (of_match_node(matches, np) && of_node_get(np))
 
 
 567			break;
 
 568	}
 569	of_node_put(from);
 570	read_unlock(&devtree_lock);
 571	return np;
 572}
 573EXPORT_SYMBOL(of_find_matching_node);
 574
 575/**
 576 * of_modalias_node - Lookup appropriate modalias for a device node
 577 * @node:	pointer to a device tree node
 578 * @modalias:	Pointer to buffer that modalias value will be copied into
 579 * @len:	Length of modalias value
 580 *
 581 * Based on the value of the compatible property, this routine will attempt
 582 * to choose an appropriate modalias value for a particular device tree node.
 583 * It does this by stripping the manufacturer prefix (as delimited by a ',')
 584 * from the first entry in the compatible list property.
 585 *
 586 * This routine returns 0 on success, <0 on failure.
 587 */
 588int of_modalias_node(struct device_node *node, char *modalias, int len)
 589{
 590	const char *compatible, *p;
 591	int cplen;
 592
 593	compatible = of_get_property(node, "compatible", &cplen);
 594	if (!compatible || strlen(compatible) > cplen)
 595		return -ENODEV;
 596	p = strchr(compatible, ',');
 597	strlcpy(modalias, p ? p + 1 : compatible, len);
 598	return 0;
 599}
 600EXPORT_SYMBOL_GPL(of_modalias_node);
 601
 602/**
 603 * of_find_node_by_phandle - Find a node given a phandle
 604 * @handle:	phandle of the node to find
 605 *
 606 * Returns a node pointer with refcount incremented, use
 607 * of_node_put() on it when done.
 608 */
 609struct device_node *of_find_node_by_phandle(phandle handle)
 610{
 611	struct device_node *np;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612
 613	read_lock(&devtree_lock);
 614	for (np = allnodes; np; np = np->allnext)
 615		if (np->phandle == handle)
 616			break;
 617	of_node_get(np);
 618	read_unlock(&devtree_lock);
 619	return np;
 620}
 621EXPORT_SYMBOL(of_find_node_by_phandle);
 622
 623/**
 624 * of_property_read_u32_array - Find and read an array of 32 bit integers
 625 * from a property.
 626 *
 627 * @np:		device node from which the property value is to be read.
 628 * @propname:	name of the property to be searched.
 629 * @out_value:	pointer to return value, modified only if return value is 0.
 630 *
 631 * Search for a property in a device node and read 32-bit value(s) from
 632 * it. Returns 0 on success, -EINVAL if the property does not exist,
 633 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 634 * property data isn't large enough.
 635 *
 636 * The out_value is modified only if a valid u32 value can be decoded.
 637 */
 638int of_property_read_u32_array(const struct device_node *np,
 639			       const char *propname, u32 *out_values,
 640			       size_t sz)
 641{
 642	struct property *prop = of_find_property(np, propname, NULL);
 643	const __be32 *val;
 
 
 644
 645	if (!prop)
 646		return -EINVAL;
 647	if (!prop->value)
 648		return -ENODATA;
 649	if ((sz * sizeof(*out_values)) > prop->length)
 650		return -EOVERFLOW;
 651
 652	val = prop->value;
 653	while (sz--)
 654		*out_values++ = be32_to_cpup(val++);
 655	return 0;
 656}
 657EXPORT_SYMBOL_GPL(of_property_read_u32_array);
 658
 659/**
 660 * of_property_read_u64 - Find and read a 64 bit integer from a property
 661 * @np:		device node from which the property value is to be read.
 662 * @propname:	name of the property to be searched.
 663 * @out_value:	pointer to return value, modified only if return value is 0.
 664 *
 665 * Search for a property in a device node and read a 64-bit value from
 666 * it. Returns 0 on success, -EINVAL if the property does not exist,
 667 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 668 * property data isn't large enough.
 669 *
 670 * The out_value is modified only if a valid u64 value can be decoded.
 671 */
 672int of_property_read_u64(const struct device_node *np, const char *propname,
 673			 u64 *out_value)
 674{
 675	struct property *prop = of_find_property(np, propname, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 676
 677	if (!prop)
 678		return -EINVAL;
 679	if (!prop->value)
 680		return -ENODATA;
 681	if (sizeof(*out_value) > prop->length)
 682		return -EOVERFLOW;
 683	*out_value = of_read_number(prop->value, 2);
 684	return 0;
 685}
 686EXPORT_SYMBOL_GPL(of_property_read_u64);
 687
 688/**
 689 * of_property_read_string - Find and read a string from a property
 690 * @np:		device node from which the property value is to be read.
 691 * @propname:	name of the property to be searched.
 692 * @out_string:	pointer to null terminated return string, modified only if
 693 *		return value is 0.
 694 *
 695 * Search for a property in a device tree node and retrieve a null
 696 * terminated string value (pointer to data, not a copy). Returns 0 on
 697 * success, -EINVAL if the property does not exist, -ENODATA if property
 698 * does not have a value, and -EILSEQ if the string is not null-terminated
 699 * within the length of the property data.
 700 *
 701 * The out_string pointer is modified only if a valid string can be decoded.
 702 */
 703int of_property_read_string(struct device_node *np, const char *propname,
 704				const char **out_string)
 705{
 706	struct property *prop = of_find_property(np, propname, NULL);
 707	if (!prop)
 708		return -EINVAL;
 709	if (!prop->value)
 710		return -ENODATA;
 711	if (strnlen(prop->value, prop->length) >= prop->length)
 712		return -EILSEQ;
 713	*out_string = prop->value;
 714	return 0;
 715}
 716EXPORT_SYMBOL_GPL(of_property_read_string);
 717
 718/**
 719 * of_property_read_string_index - Find and read a string from a multiple
 720 * strings property.
 721 * @np:		device node from which the property value is to be read.
 722 * @propname:	name of the property to be searched.
 723 * @index:	index of the string in the list of strings
 724 * @out_string:	pointer to null terminated return string, modified only if
 725 *		return value is 0.
 726 *
 727 * Search for a property in a device tree node and retrieve a null
 728 * terminated string value (pointer to data, not a copy) in the list of strings
 729 * contained in that property.
 730 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
 731 * property does not have a value, and -EILSEQ if the string is not
 732 * null-terminated within the length of the property data.
 733 *
 734 * The out_string pointer is modified only if a valid string can be decoded.
 735 */
 736int of_property_read_string_index(struct device_node *np, const char *propname,
 737				  int index, const char **output)
 738{
 739	struct property *prop = of_find_property(np, propname, NULL);
 740	int i = 0;
 741	size_t l = 0, total = 0;
 742	const char *p;
 743
 744	if (!prop)
 745		return -EINVAL;
 746	if (!prop->value)
 747		return -ENODATA;
 748	if (strnlen(prop->value, prop->length) >= prop->length)
 749		return -EILSEQ;
 750
 751	p = prop->value;
 752
 753	for (i = 0; total < prop->length; total += l, p += l) {
 754		l = strlen(p) + 1;
 755		if (i++ == index) {
 756			*output = p;
 757			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 758		}
 759	}
 760	return -ENODATA;
 
 
 
 
 
 
 
 
 
 
 
 
 761}
 762EXPORT_SYMBOL_GPL(of_property_read_string_index);
 763
 764/**
 765 * of_property_match_string() - Find string in a list and return index
 766 * @np: pointer to node containing string list property
 767 * @propname: string list property name
 768 * @string: pointer to string to search for in string list
 769 *
 770 * This function searches a string list property and returns the index
 771 * of a specific string value.
 772 */
 773int of_property_match_string(struct device_node *np, const char *propname,
 774			     const char *string)
 775{
 776	struct property *prop = of_find_property(np, propname, NULL);
 777	size_t l;
 778	int i;
 779	const char *p, *end;
 780
 781	if (!prop)
 782		return -EINVAL;
 783	if (!prop->value)
 784		return -ENODATA;
 785
 786	p = prop->value;
 787	end = p + prop->length;
 788
 789	for (i = 0; p < end; i++, p += l) {
 790		l = strlen(p) + 1;
 791		if (p + l > end)
 792			return -EILSEQ;
 793		pr_debug("comparing %s with %s\n", string, p);
 794		if (strcmp(string, p) == 0)
 795			return i; /* Found it; return index */
 796	}
 797	return -ENODATA;
 798}
 799EXPORT_SYMBOL_GPL(of_property_match_string);
 800
 801/**
 802 * of_property_count_strings - Find and return the number of strings from a
 803 * multiple strings property.
 804 * @np:		device node from which the property value is to be read.
 805 * @propname:	name of the property to be searched.
 806 *
 807 * Search for a property in a device tree node and retrieve the number of null
 808 * terminated string contain in it. Returns the number of strings on
 809 * success, -EINVAL if the property does not exist, -ENODATA if property
 810 * does not have a value, and -EILSEQ if the string is not null-terminated
 811 * within the length of the property data.
 812 */
 813int of_property_count_strings(struct device_node *np, const char *propname)
 814{
 815	struct property *prop = of_find_property(np, propname, NULL);
 816	int i = 0;
 817	size_t l = 0, total = 0;
 818	const char *p;
 819
 820	if (!prop)
 821		return -EINVAL;
 822	if (!prop->value)
 823		return -ENODATA;
 824	if (strnlen(prop->value, prop->length) >= prop->length)
 825		return -EILSEQ;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826
 827	p = prop->value;
 
 828
 829	for (i = 0; total < prop->length; total += l, p += l, i++)
 830		l = strlen(p) + 1;
 
 
 
 831
 832	return i;
 
 
 833}
 834EXPORT_SYMBOL_GPL(of_property_count_strings);
 835
 836/**
 837 * of_parse_phandle - Resolve a phandle property to a device_node pointer
 838 * @np: Pointer to device node holding phandle property
 839 * @phandle_name: Name of property holding a phandle value
 840 * @index: For properties holding a table of phandles, this is the index into
 841 *         the table
 842 *
 843 * Returns the device_node pointer with refcount incremented.  Use
 844 * of_node_put() on it when done.
 845 */
 846struct device_node *
 847of_parse_phandle(struct device_node *np, const char *phandle_name, int index)
 848{
 849	const __be32 *phandle;
 850	int size;
 
 
 851
 852	phandle = of_get_property(np, phandle_name, &size);
 853	if ((!phandle) || (size < sizeof(*phandle) * (index + 1)))
 854		return NULL;
 855
 856	return of_find_node_by_phandle(be32_to_cpup(phandle + index));
 857}
 858EXPORT_SYMBOL(of_parse_phandle);
 859
 860/**
 861 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
 862 * @np:		pointer to a device tree node containing a list
 863 * @list_name:	property name that contains a list
 864 * @cells_name:	property name that specifies phandles' arguments count
 865 * @index:	index of a phandle to parse out
 866 * @out_args:	optional pointer to output arguments structure (will be filled)
 867 *
 868 * This function is useful to parse lists of phandles and their arguments.
 869 * Returns 0 on success and fills out_args, on error returns appropriate
 870 * errno value.
 871 *
 872 * Caller is responsible to call of_node_put() on the returned out_args->node
 873 * pointer.
 874 *
 875 * Example:
 876 *
 877 * phandle1: node1 {
 878 * 	#list-cells = <2>;
 879 * }
 880 *
 881 * phandle2: node2 {
 882 * 	#list-cells = <1>;
 883 * }
 884 *
 885 * node3 {
 886 * 	list = <&phandle1 1 2 &phandle2 3>;
 887 * }
 888 *
 889 * To get a device_node of the `node2' node you may call this:
 890 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
 891 */
 892int of_parse_phandle_with_args(struct device_node *np, const char *list_name,
 893				const char *cells_name, int index,
 894				struct of_phandle_args *out_args)
 895{
 896	const __be32 *list, *list_end;
 897	int size, cur_index = 0;
 898	uint32_t count = 0;
 899	struct device_node *node = NULL;
 900	phandle phandle;
 
 901
 902	/* Retrieve the phandle list property */
 903	list = of_get_property(np, list_name, &size);
 904	if (!list)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905		return -EINVAL;
 906	list_end = list + size / sizeof(*list);
 907
 908	/* Loop over the phandles until all the requested entry is found */
 909	while (list < list_end) {
 910		count = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 911
 912		/*
 913		 * If phandle is 0, then it is an empty entry with no
 914		 * arguments.  Skip forward to the next entry.
 
 915		 */
 916		phandle = be32_to_cpup(list++);
 917		if (phandle) {
 918			/*
 919			 * Find the provider node and parse the #*-cells
 920			 * property to determine the argument length
 921			 */
 922			node = of_find_node_by_phandle(phandle);
 923			if (!node) {
 924				pr_err("%s: could not find phandle\n",
 925					 np->full_name);
 926				break;
 927			}
 928			if (of_property_read_u32(node, cells_name, &count)) {
 929				pr_err("%s: could not get %s for %s\n",
 930					 np->full_name, cells_name,
 931					 node->full_name);
 932				break;
 933			}
 934
 935			/*
 936			 * Make sure that the arguments actually fit in the
 937			 * remaining property data length
 938			 */
 939			if (list + count > list_end) {
 940				pr_err("%s: arguments longer than property\n",
 941					 np->full_name);
 942				break;
 943			}
 944		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945
 946		/*
 947		 * All of the error cases above bail out of the loop, so at
 948		 * this point, the parsing is successful. If the requested
 949		 * index matches, then fill the out_args structure and return,
 950		 * or return -ENOENT for an empty entry.
 951		 */
 952		if (cur_index == index) {
 953			if (!phandle)
 954				return -ENOENT;
 955
 956			if (out_args) {
 957				int i;
 958				if (WARN_ON(count > MAX_PHANDLE_ARGS))
 959					count = MAX_PHANDLE_ARGS;
 960				out_args->np = node;
 961				out_args->args_count = count;
 962				for (i = 0; i < count; i++)
 963					out_args->args[i] = be32_to_cpup(list++);
 964			}
 965			return 0;
 966		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967
 968		of_node_put(node);
 969		node = NULL;
 970		list += count;
 971		cur_index++;
 972	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 973
 974	/* Loop exited without finding a valid entry; return an error */
 975	if (node)
 976		of_node_put(node);
 977	return -EINVAL;
 
 
 
 
 
 
 
 978}
 979EXPORT_SYMBOL(of_parse_phandle_with_args);
 980
 981/**
 982 * prom_add_property - Add a property to a node
 983 */
 984int prom_add_property(struct device_node *np, struct property *prop)
 985{
 986	struct property **next;
 987	unsigned long flags;
 988
 989	prop->next = NULL;
 990	write_lock_irqsave(&devtree_lock, flags);
 991	next = &np->properties;
 992	while (*next) {
 993		if (strcmp(prop->name, (*next)->name) == 0) {
 994			/* duplicate ! don't insert it */
 995			write_unlock_irqrestore(&devtree_lock, flags);
 996			return -1;
 997		}
 998		next = &(*next)->next;
 999	}
1000	*next = prop;
1001	write_unlock_irqrestore(&devtree_lock, flags);
1002
1003#ifdef CONFIG_PROC_DEVICETREE
1004	/* try to add to proc as well if it was initialized */
1005	if (np->pde)
1006		proc_device_tree_add_prop(np->pde, prop);
1007#endif /* CONFIG_PROC_DEVICETREE */
1008
1009	return 0;
1010}
1011
1012/**
1013 * prom_remove_property - Remove a property from a node.
1014 *
1015 * Note that we don't actually remove it, since we have given out
1016 * who-knows-how-many pointers to the data using get-property.
1017 * Instead we just move the property to the "dead properties"
1018 * list, so it won't be found any more.
1019 */
1020int prom_remove_property(struct device_node *np, struct property *prop)
1021{
1022	struct property **next;
1023	unsigned long flags;
1024	int found = 0;
1025
1026	write_lock_irqsave(&devtree_lock, flags);
1027	next = &np->properties;
1028	while (*next) {
1029		if (*next == prop) {
1030			/* found the node */
1031			*next = prop->next;
1032			prop->next = np->deadprops;
1033			np->deadprops = prop;
1034			found = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035			break;
1036		}
1037		next = &(*next)->next;
1038	}
1039	write_unlock_irqrestore(&devtree_lock, flags);
1040
1041	if (!found)
1042		return -ENODEV;
1043
1044#ifdef CONFIG_PROC_DEVICETREE
1045	/* try to remove the proc node as well */
1046	if (np->pde)
1047		proc_device_tree_remove_prop(np->pde, prop);
1048#endif /* CONFIG_PROC_DEVICETREE */
1049
1050	return 0;
1051}
1052
1053/*
1054 * prom_update_property - Update a property in a node.
1055 *
1056 * Note that we don't actually remove it, since we have given out
1057 * who-knows-how-many pointers to the data using get-property.
1058 * Instead we just move the property to the "dead properties" list,
1059 * and add the new property to the property list
1060 */
1061int prom_update_property(struct device_node *np,
1062			 struct property *newprop,
1063			 struct property *oldprop)
1064{
1065	struct property **next;
1066	unsigned long flags;
1067	int found = 0;
1068
1069	write_lock_irqsave(&devtree_lock, flags);
1070	next = &np->properties;
1071	while (*next) {
1072		if (*next == oldprop) {
1073			/* found the node */
1074			newprop->next = oldprop->next;
1075			*next = newprop;
1076			oldprop->next = np->deadprops;
1077			np->deadprops = oldprop;
1078			found = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1079			break;
1080		}
1081		next = &(*next)->next;
1082	}
1083	write_unlock_irqrestore(&devtree_lock, flags);
1084
1085	if (!found)
1086		return -ENODEV;
1087
1088#ifdef CONFIG_PROC_DEVICETREE
1089	/* try to add to proc as well if it was initialized */
1090	if (np->pde)
1091		proc_device_tree_update_prop(np->pde, newprop, oldprop);
1092#endif /* CONFIG_PROC_DEVICETREE */
 
 
 
1093
1094	return 0;
1095}
1096
1097#if defined(CONFIG_OF_DYNAMIC)
1098/*
1099 * Support for dynamic device trees.
 
1100 *
1101 * On some platforms, the device tree can be manipulated at runtime.
1102 * The routines in this section support adding, removing and changing
1103 * device tree nodes.
1104 */
1105
1106/**
1107 * of_attach_node - Plug a device node into the tree and global list.
1108 */
1109void of_attach_node(struct device_node *np)
1110{
 
1111	unsigned long flags;
 
1112
1113	write_lock_irqsave(&devtree_lock, flags);
1114	np->sibling = np->parent->child;
1115	np->allnext = allnodes;
1116	np->parent->child = np;
1117	allnodes = np;
1118	write_unlock_irqrestore(&devtree_lock, flags);
1119}
1120
1121/**
1122 * of_detach_node - "Unplug" a node from the device tree.
1123 *
1124 * The caller must hold a reference to the node.  The memory associated with
1125 * the node is not freed until its refcount goes to zero.
1126 */
1127void of_detach_node(struct device_node *np)
1128{
1129	struct device_node *parent;
1130	unsigned long flags;
1131
1132	write_lock_irqsave(&devtree_lock, flags);
 
 
1133
1134	parent = np->parent;
1135	if (!parent)
1136		goto out_unlock;
1137
1138	if (allnodes == np)
1139		allnodes = np->allnext;
1140	else {
1141		struct device_node *prev;
1142		for (prev = allnodes;
1143		     prev->allnext != np;
1144		     prev = prev->allnext)
1145			;
1146		prev->allnext = np->allnext;
1147	}
1148
1149	if (parent->child == np)
1150		parent->child = np->sibling;
1151	else {
1152		struct device_node *prevsib;
1153		for (prevsib = np->parent->child;
1154		     prevsib->sibling != np;
1155		     prevsib = prevsib->sibling)
1156			;
1157		prevsib->sibling = np->sibling;
1158	}
1159
1160	of_node_set_flag(np, OF_DETACHED);
 
1161
1162out_unlock:
1163	write_unlock_irqrestore(&devtree_lock, flags);
1164}
1165#endif /* defined(CONFIG_OF_DYNAMIC) */
1166
1167static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1168			 int id, const char *stem, int stem_len)
1169{
1170	ap->np = np;
1171	ap->id = id;
1172	strncpy(ap->stem, stem, stem_len);
1173	ap->stem[stem_len] = 0;
1174	list_add_tail(&ap->link, &aliases_lookup);
1175	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1176		 ap->alias, ap->stem, ap->id, np ? np->full_name : NULL);
1177}
1178
1179/**
1180 * of_alias_scan - Scan all properties of 'aliases' node
1181 *
1182 * The function scans all the properties of 'aliases' node and populate
1183 * the the global lookup table with the properties.  It returns the
1184 * number of alias_prop found, or error code in error case.
1185 *
1186 * @dt_alloc:	An allocator that provides a virtual address to memory
1187 *		for the resulting tree
1188 */
1189void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1190{
1191	struct property *pp;
1192
 
1193	of_chosen = of_find_node_by_path("/chosen");
1194	if (of_chosen == NULL)
1195		of_chosen = of_find_node_by_path("/chosen@0");
1196	of_aliases = of_find_node_by_path("/aliases");
 
 
 
 
 
 
 
 
 
 
 
 
 
1197	if (!of_aliases)
1198		return;
1199
1200	for_each_property_of_node(of_aliases, pp) {
1201		const char *start = pp->name;
1202		const char *end = start + strlen(start);
1203		struct device_node *np;
1204		struct alias_prop *ap;
1205		int id, len;
1206
1207		/* Skip those we do not want to proceed */
1208		if (!strcmp(pp->name, "name") ||
1209		    !strcmp(pp->name, "phandle") ||
1210		    !strcmp(pp->name, "linux,phandle"))
1211			continue;
1212
1213		np = of_find_node_by_path(pp->value);
1214		if (!np)
1215			continue;
1216
1217		/* walk the alias backwards to extract the id and work out
1218		 * the 'stem' string */
1219		while (isdigit(*(end-1)) && end > start)
1220			end--;
1221		len = end - start;
1222
1223		if (kstrtoint(end, 10, &id) < 0)
1224			continue;
1225
1226		/* Allocate an alias_prop with enough space for the stem */
1227		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1228		if (!ap)
1229			continue;
 
1230		ap->alias = start;
1231		of_alias_add(ap, np, id, start, len);
1232	}
1233}
1234
1235/**
1236 * of_alias_get_id - Get alias id for the given device_node
1237 * @np:		Pointer to the given device_node
1238 * @stem:	Alias stem of the given device_node
1239 *
1240 * The function travels the lookup table to get alias id for the given
1241 * device_node and alias stem.  It returns the alias id if find it.
1242 */
1243int of_alias_get_id(struct device_node *np, const char *stem)
1244{
1245	struct alias_prop *app;
1246	int id = -ENODEV;
1247
1248	mutex_lock(&of_aliases_mutex);
1249	list_for_each_entry(app, &aliases_lookup, link) {
1250		if (strcmp(app->stem, stem) != 0)
1251			continue;
1252
1253		if (np == app->np) {
1254			id = app->id;
1255			break;
1256		}
1257	}
1258	mutex_unlock(&of_aliases_mutex);
1259
1260	return id;
1261}
1262EXPORT_SYMBOL_GPL(of_alias_get_id);
1263
1264const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1265			       u32 *pu)
 
 
 
 
 
 
1266{
1267	const void *curv = cur;
 
1268
1269	if (!prop)
1270		return NULL;
 
 
1271
1272	if (!cur) {
1273		curv = prop->value;
1274		goto out_val;
1275	}
 
1276
1277	curv += sizeof(*cur);
1278	if (curv >= prop->value + prop->length)
1279		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280
1281out_val:
1282	*pu = be32_to_cpup(curv);
1283	return curv;
 
 
1284}
1285EXPORT_SYMBOL_GPL(of_prop_next_u32);
1286
1287const char *of_prop_next_string(struct property *prop, const char *cur)
 
 
 
 
 
 
 
 
1288{
1289	const void *curv = cur;
1290
1291	if (!prop)
1292		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
1293
1294	if (!cur)
1295		return prop->value;
1296
1297	curv += strlen(cur) + 1;
1298	if (curv >= prop->value + prop->length)
1299		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1300
1301	return curv;
1302}
1303EXPORT_SYMBOL_GPL(of_prop_next_string);
v4.17
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Procedures for creating, accessing and interpreting the device tree.
   4 *
   5 * Paul Mackerras	August 1996.
   6 * Copyright (C) 1996-2005 Paul Mackerras.
   7 *
   8 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
   9 *    {engebret|bergner}@us.ibm.com
  10 *
  11 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  12 *
  13 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  14 *  Grant Likely.
 
 
 
 
 
  15 */
  16
  17#define pr_fmt(fmt)	"OF: " fmt
  18
  19#include <linux/console.h>
  20#include <linux/ctype.h>
  21#include <linux/cpu.h>
  22#include <linux/module.h>
  23#include <linux/of.h>
  24#include <linux/of_device.h>
  25#include <linux/of_graph.h>
  26#include <linux/spinlock.h>
  27#include <linux/slab.h>
  28#include <linux/string.h>
  29#include <linux/proc_fs.h>
  30
  31#include "of_private.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32
  33LIST_HEAD(aliases_lookup);
  34
  35struct device_node *of_root;
  36EXPORT_SYMBOL(of_root);
  37struct device_node *of_chosen;
  38struct device_node *of_aliases;
  39struct device_node *of_stdout;
  40static const char *of_stdout_options;
  41
  42struct kset *of_kset;
  43
  44/*
  45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
  46 * This mutex must be held whenever modifications are being made to the
  47 * device tree. The of_{attach,detach}_node() and
  48 * of_{add,remove,update}_property() helpers make sure this happens.
  49 */
  50DEFINE_MUTEX(of_mutex);
  51
  52/* use when traversing tree through the child, sibling,
  53 * or parent members of struct device_node.
  54 */
  55DEFINE_RAW_SPINLOCK(devtree_lock);
  56
  57int of_n_addr_cells(struct device_node *np)
  58{
  59	u32 cells;
  60
  61	do {
  62		if (np->parent)
  63			np = np->parent;
  64		if (!of_property_read_u32(np, "#address-cells", &cells))
  65			return cells;
 
  66	} while (np->parent);
  67	/* No #address-cells property for the root node */
  68	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  69}
  70EXPORT_SYMBOL(of_n_addr_cells);
  71
  72int of_n_size_cells(struct device_node *np)
  73{
  74	u32 cells;
  75
  76	do {
  77		if (np->parent)
  78			np = np->parent;
  79		if (!of_property_read_u32(np, "#size-cells", &cells))
  80			return cells;
 
  81	} while (np->parent);
  82	/* No #size-cells property for the root node */
  83	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  84}
  85EXPORT_SYMBOL(of_n_size_cells);
  86
  87#ifdef CONFIG_NUMA
  88int __weak of_node_to_nid(struct device_node *np)
  89{
  90	return NUMA_NO_NODE;
  91}
  92#endif
  93
  94static struct device_node **phandle_cache;
  95static u32 phandle_cache_mask;
  96
  97/*
  98 * Assumptions behind phandle_cache implementation:
  99 *   - phandle property values are in a contiguous range of 1..n
 100 *
 101 * If the assumptions do not hold, then
 102 *   - the phandle lookup overhead reduction provided by the cache
 103 *     will likely be less
 104 */
 105static void of_populate_phandle_cache(void)
 106{
 107	unsigned long flags;
 108	u32 cache_entries;
 109	struct device_node *np;
 110	u32 phandles = 0;
 111
 112	raw_spin_lock_irqsave(&devtree_lock, flags);
 113
 114	kfree(phandle_cache);
 115	phandle_cache = NULL;
 116
 117	for_each_of_allnodes(np)
 118		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
 119			phandles++;
 120
 121	cache_entries = roundup_pow_of_two(phandles);
 122	phandle_cache_mask = cache_entries - 1;
 123
 124	phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
 125				GFP_ATOMIC);
 126	if (!phandle_cache)
 127		goto out;
 128
 129	for_each_of_allnodes(np)
 130		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
 131			phandle_cache[np->phandle & phandle_cache_mask] = np;
 132
 133out:
 134	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 135}
 
 136
 137#ifndef CONFIG_MODULES
 138static int __init of_free_phandle_cache(void)
 139{
 140	unsigned long flags;
 141
 142	raw_spin_lock_irqsave(&devtree_lock, flags);
 143
 144	kfree(phandle_cache);
 145	phandle_cache = NULL;
 146
 147	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 148
 149	return 0;
 150}
 151late_initcall_sync(of_free_phandle_cache);
 152#endif
 153
 154void __init of_core_init(void)
 
 
 
 
 
 
 
 155{
 156	struct device_node *np;
 
 157
 158	of_populate_phandle_cache();
 
 
 
 
 
 
 159
 160	/* Create the kset, and register existing nodes */
 161	mutex_lock(&of_mutex);
 162	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
 163	if (!of_kset) {
 164		mutex_unlock(&of_mutex);
 165		pr_err("failed to register existing nodes\n");
 166		return;
 
 
 
 
 
 
 
 
 
 
 
 
 167	}
 168	for_each_of_allnodes(np)
 169		__of_attach_node_sysfs(np);
 170	mutex_unlock(&of_mutex);
 
 171
 172	/* Symlink in /proc as required by userspace ABI */
 173	if (of_root)
 174		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
 
 
 
 
 
 
 
 175}
 
 
 176
 177static struct property *__of_find_property(const struct device_node *np,
 178					   const char *name, int *lenp)
 
 179{
 180	struct property *pp;
 181
 182	if (!np)
 183		return NULL;
 184
 185	for (pp = np->properties; pp; pp = pp->next) {
 
 186		if (of_prop_cmp(pp->name, name) == 0) {
 187			if (lenp)
 188				*lenp = pp->length;
 189			break;
 190		}
 191	}
 192
 193	return pp;
 194}
 195
 196struct property *of_find_property(const struct device_node *np,
 197				  const char *name,
 198				  int *lenp)
 199{
 200	struct property *pp;
 201	unsigned long flags;
 202
 203	raw_spin_lock_irqsave(&devtree_lock, flags);
 204	pp = __of_find_property(np, name, lenp);
 205	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 206
 207	return pp;
 208}
 209EXPORT_SYMBOL(of_find_property);
 210
 211struct device_node *__of_find_all_nodes(struct device_node *prev)
 212{
 213	struct device_node *np;
 214	if (!prev) {
 215		np = of_root;
 216	} else if (prev->child) {
 217		np = prev->child;
 218	} else {
 219		/* Walk back up looking for a sibling, or the end of the structure */
 220		np = prev;
 221		while (np->parent && !np->sibling)
 222			np = np->parent;
 223		np = np->sibling; /* Might be null at the end of the tree */
 224	}
 225	return np;
 226}
 227
 228/**
 229 * of_find_all_nodes - Get next node in global list
 230 * @prev:	Previous node or NULL to start iteration
 231 *		of_node_put() will be called on it
 232 *
 233 * Returns a node pointer with refcount incremented, use
 234 * of_node_put() on it when done.
 235 */
 236struct device_node *of_find_all_nodes(struct device_node *prev)
 237{
 238	struct device_node *np;
 239	unsigned long flags;
 240
 241	raw_spin_lock_irqsave(&devtree_lock, flags);
 242	np = __of_find_all_nodes(prev);
 243	of_node_get(np);
 
 
 244	of_node_put(prev);
 245	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 246	return np;
 247}
 248EXPORT_SYMBOL(of_find_all_nodes);
 249
 250/*
 251 * Find a property with a given name for a given node
 252 * and return the value.
 253 */
 254const void *__of_get_property(const struct device_node *np,
 255			      const char *name, int *lenp)
 256{
 257	struct property *pp = __of_find_property(np, name, lenp);
 258
 259	return pp ? pp->value : NULL;
 260}
 261
 262/*
 263 * Find a property with a given name for a given node
 264 * and return the value.
 265 */
 266const void *of_get_property(const struct device_node *np, const char *name,
 267			    int *lenp)
 268{
 269	struct property *pp = of_find_property(np, name, lenp);
 270
 271	return pp ? pp->value : NULL;
 272}
 273EXPORT_SYMBOL(of_get_property);
 274
 275/*
 276 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 277 *
 278 * @cpu: logical cpu index of a core/thread
 279 * @phys_id: physical identifier of a core/thread
 280 *
 281 * CPU logical to physical index mapping is architecture specific.
 282 * However this __weak function provides a default match of physical
 283 * id to logical cpu index. phys_id provided here is usually values read
 284 * from the device tree which must match the hardware internal registers.
 285 *
 286 * Returns true if the physical identifier and the logical cpu index
 287 * correspond to the same core/thread, false otherwise.
 288 */
 289bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
 290{
 291	return (u32)phys_id == cpu;
 292}
 293
 294/**
 295 * Checks if the given "prop_name" property holds the physical id of the
 296 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 297 * NULL, local thread number within the core is returned in it.
 298 */
 299static bool __of_find_n_match_cpu_property(struct device_node *cpun,
 300			const char *prop_name, int cpu, unsigned int *thread)
 301{
 302	const __be32 *cell;
 303	int ac, prop_len, tid;
 304	u64 hwid;
 305
 306	ac = of_n_addr_cells(cpun);
 307	cell = of_get_property(cpun, prop_name, &prop_len);
 308	if (!cell || !ac)
 309		return false;
 310	prop_len /= sizeof(*cell) * ac;
 311	for (tid = 0; tid < prop_len; tid++) {
 312		hwid = of_read_number(cell, ac);
 313		if (arch_match_cpu_phys_id(cpu, hwid)) {
 314			if (thread)
 315				*thread = tid;
 316			return true;
 317		}
 318		cell += ac;
 319	}
 320	return false;
 321}
 322
 323/*
 324 * arch_find_n_match_cpu_physical_id - See if the given device node is
 325 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 326 * else false.  If 'thread' is non-NULL, the local thread number within the
 327 * core is returned in it.
 328 */
 329bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
 330					      int cpu, unsigned int *thread)
 331{
 332	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
 333	 * for thread ids on PowerPC. If it doesn't exist fallback to
 334	 * standard "reg" property.
 335	 */
 336	if (IS_ENABLED(CONFIG_PPC) &&
 337	    __of_find_n_match_cpu_property(cpun,
 338					   "ibm,ppc-interrupt-server#s",
 339					   cpu, thread))
 340		return true;
 341
 342	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
 343}
 344
 345/**
 346 * of_get_cpu_node - Get device node associated with the given logical CPU
 347 *
 348 * @cpu: CPU number(logical index) for which device node is required
 349 * @thread: if not NULL, local thread number within the physical core is
 350 *          returned
 351 *
 352 * The main purpose of this function is to retrieve the device node for the
 353 * given logical CPU index. It should be used to initialize the of_node in
 354 * cpu device. Once of_node in cpu device is populated, all the further
 355 * references can use that instead.
 356 *
 357 * CPU logical to physical index mapping is architecture specific and is built
 358 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 359 * which can be overridden by architecture specific implementation.
 360 *
 361 * Returns a node pointer for the logical cpu with refcount incremented, use
 362 * of_node_put() on it when done. Returns NULL if not found.
 363 */
 364struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
 365{
 366	struct device_node *cpun;
 367
 368	for_each_node_by_type(cpun, "cpu") {
 369		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
 370			return cpun;
 371	}
 372	return NULL;
 373}
 374EXPORT_SYMBOL(of_get_cpu_node);
 375
 376/**
 377 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
 378 *
 379 * @cpu_node: Pointer to the device_node for CPU.
 380 *
 381 * Returns the logical CPU number of the given CPU device_node.
 382 * Returns -ENODEV if the CPU is not found.
 383 */
 384int of_cpu_node_to_id(struct device_node *cpu_node)
 385{
 386	int cpu;
 387	bool found = false;
 388	struct device_node *np;
 389
 390	for_each_possible_cpu(cpu) {
 391		np = of_cpu_device_node_get(cpu);
 392		found = (cpu_node == np);
 393		of_node_put(np);
 394		if (found)
 395			return cpu;
 396	}
 397
 398	return -ENODEV;
 399}
 400EXPORT_SYMBOL(of_cpu_node_to_id);
 401
 402/**
 403 * __of_device_is_compatible() - Check if the node matches given constraints
 404 * @device: pointer to node
 405 * @compat: required compatible string, NULL or "" for any match
 406 * @type: required device_type value, NULL or "" for any match
 407 * @name: required node name, NULL or "" for any match
 408 *
 409 * Checks if the given @compat, @type and @name strings match the
 410 * properties of the given @device. A constraints can be skipped by
 411 * passing NULL or an empty string as the constraint.
 412 *
 413 * Returns 0 for no match, and a positive integer on match. The return
 414 * value is a relative score with larger values indicating better
 415 * matches. The score is weighted for the most specific compatible value
 416 * to get the highest score. Matching type is next, followed by matching
 417 * name. Practically speaking, this results in the following priority
 418 * order for matches:
 419 *
 420 * 1. specific compatible && type && name
 421 * 2. specific compatible && type
 422 * 3. specific compatible && name
 423 * 4. specific compatible
 424 * 5. general compatible && type && name
 425 * 6. general compatible && type
 426 * 7. general compatible && name
 427 * 8. general compatible
 428 * 9. type && name
 429 * 10. type
 430 * 11. name
 431 */
 432static int __of_device_is_compatible(const struct device_node *device,
 433				     const char *compat, const char *type, const char *name)
 434{
 435	struct property *prop;
 436	const char *cp;
 437	int index = 0, score = 0;
 438
 439	/* Compatible match has highest priority */
 440	if (compat && compat[0]) {
 441		prop = __of_find_property(device, "compatible", NULL);
 442		for (cp = of_prop_next_string(prop, NULL); cp;
 443		     cp = of_prop_next_string(prop, cp), index++) {
 444			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
 445				score = INT_MAX/2 - (index << 2);
 446				break;
 447			}
 448		}
 449		if (!score)
 450			return 0;
 451	}
 452
 453	/* Matching type is better than matching name */
 454	if (type && type[0]) {
 455		if (!device->type || of_node_cmp(type, device->type))
 456			return 0;
 457		score += 2;
 458	}
 459
 460	/* Matching name is a bit better than not */
 461	if (name && name[0]) {
 462		if (!device->name || of_node_cmp(name, device->name))
 463			return 0;
 464		score++;
 465	}
 466
 467	return score;
 468}
 469
 470/** Checks if the given "compat" string matches one of the strings in
 471 * the device's "compatible" property
 472 */
 473int of_device_is_compatible(const struct device_node *device,
 474		const char *compat)
 475{
 476	unsigned long flags;
 477	int res;
 478
 479	raw_spin_lock_irqsave(&devtree_lock, flags);
 480	res = __of_device_is_compatible(device, compat, NULL, NULL);
 481	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 482	return res;
 483}
 484EXPORT_SYMBOL(of_device_is_compatible);
 485
 486/** Checks if the device is compatible with any of the entries in
 487 *  a NULL terminated array of strings. Returns the best match
 488 *  score or 0.
 489 */
 490int of_device_compatible_match(struct device_node *device,
 491			       const char *const *compat)
 492{
 493	unsigned int tmp, score = 0;
 494
 495	if (!compat)
 
 496		return 0;
 497
 498	while (*compat) {
 499		tmp = of_device_is_compatible(device, *compat);
 500		if (tmp > score)
 501			score = tmp;
 502		compat++;
 503	}
 504
 505	return score;
 506}
 
 507
 508/**
 509 * of_machine_is_compatible - Test root of device tree for a given compatible value
 510 * @compat: compatible string to look for in root node's compatible property.
 511 *
 512 * Returns a positive integer if the root node has the given value in its
 513 * compatible property.
 514 */
 515int of_machine_is_compatible(const char *compat)
 516{
 517	struct device_node *root;
 518	int rc = 0;
 519
 520	root = of_find_node_by_path("/");
 521	if (root) {
 522		rc = of_device_is_compatible(root, compat);
 523		of_node_put(root);
 524	}
 525	return rc;
 526}
 527EXPORT_SYMBOL(of_machine_is_compatible);
 528
 529/**
 530 *  __of_device_is_available - check if a device is available for use
 531 *
 532 *  @device: Node to check for availability, with locks already held
 533 *
 534 *  Returns true if the status property is absent or set to "okay" or "ok",
 535 *  false otherwise
 536 */
 537static bool __of_device_is_available(const struct device_node *device)
 538{
 539	const char *status;
 540	int statlen;
 541
 542	if (!device)
 543		return false;
 544
 545	status = __of_get_property(device, "status", &statlen);
 546	if (status == NULL)
 547		return true;
 548
 549	if (statlen > 0) {
 550		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
 551			return true;
 552	}
 553
 554	return false;
 555}
 556
 557/**
 558 *  of_device_is_available - check if a device is available for use
 559 *
 560 *  @device: Node to check for availability
 561 *
 562 *  Returns true if the status property is absent or set to "okay" or "ok",
 563 *  false otherwise
 564 */
 565bool of_device_is_available(const struct device_node *device)
 566{
 567	unsigned long flags;
 568	bool res;
 569
 570	raw_spin_lock_irqsave(&devtree_lock, flags);
 571	res = __of_device_is_available(device);
 572	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 573	return res;
 574
 575}
 576EXPORT_SYMBOL(of_device_is_available);
 577
 578/**
 579 *  of_device_is_big_endian - check if a device has BE registers
 580 *
 581 *  @device: Node to check for endianness
 582 *
 583 *  Returns true if the device has a "big-endian" property, or if the kernel
 584 *  was compiled for BE *and* the device has a "native-endian" property.
 585 *  Returns false otherwise.
 586 *
 587 *  Callers would nominally use ioread32be/iowrite32be if
 588 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 589 */
 590bool of_device_is_big_endian(const struct device_node *device)
 591{
 592	if (of_property_read_bool(device, "big-endian"))
 593		return true;
 594	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 595	    of_property_read_bool(device, "native-endian"))
 596		return true;
 597	return false;
 598}
 599EXPORT_SYMBOL(of_device_is_big_endian);
 600
 601/**
 602 *	of_get_parent - Get a node's parent if any
 603 *	@node:	Node to get parent
 604 *
 605 *	Returns a node pointer with refcount incremented, use
 606 *	of_node_put() on it when done.
 607 */
 608struct device_node *of_get_parent(const struct device_node *node)
 609{
 610	struct device_node *np;
 611	unsigned long flags;
 612
 613	if (!node)
 614		return NULL;
 615
 616	raw_spin_lock_irqsave(&devtree_lock, flags);
 617	np = of_node_get(node->parent);
 618	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 619	return np;
 620}
 621EXPORT_SYMBOL(of_get_parent);
 622
 623/**
 624 *	of_get_next_parent - Iterate to a node's parent
 625 *	@node:	Node to get parent of
 626 *
 627 *	This is like of_get_parent() except that it drops the
 628 *	refcount on the passed node, making it suitable for iterating
 629 *	through a node's parents.
 630 *
 631 *	Returns a node pointer with refcount incremented, use
 632 *	of_node_put() on it when done.
 633 */
 634struct device_node *of_get_next_parent(struct device_node *node)
 635{
 636	struct device_node *parent;
 637	unsigned long flags;
 638
 639	if (!node)
 640		return NULL;
 641
 642	raw_spin_lock_irqsave(&devtree_lock, flags);
 643	parent = of_node_get(node->parent);
 644	of_node_put(node);
 645	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 646	return parent;
 647}
 648EXPORT_SYMBOL(of_get_next_parent);
 649
 650static struct device_node *__of_get_next_child(const struct device_node *node,
 651						struct device_node *prev)
 652{
 653	struct device_node *next;
 654
 655	if (!node)
 656		return NULL;
 657
 658	next = prev ? prev->sibling : node->child;
 659	for (; next; next = next->sibling)
 660		if (of_node_get(next))
 661			break;
 662	of_node_put(prev);
 663	return next;
 664}
 665#define __for_each_child_of_node(parent, child) \
 666	for (child = __of_get_next_child(parent, NULL); child != NULL; \
 667	     child = __of_get_next_child(parent, child))
 668
 669/**
 670 *	of_get_next_child - Iterate a node childs
 671 *	@node:	parent node
 672 *	@prev:	previous child of the parent node, or NULL to get first
 673 *
 674 *	Returns a node pointer with refcount incremented, use of_node_put() on
 675 *	it when done. Returns NULL when prev is the last child. Decrements the
 676 *	refcount of prev.
 677 */
 678struct device_node *of_get_next_child(const struct device_node *node,
 679	struct device_node *prev)
 680{
 681	struct device_node *next;
 682	unsigned long flags;
 683
 684	raw_spin_lock_irqsave(&devtree_lock, flags);
 685	next = __of_get_next_child(node, prev);
 686	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 687	return next;
 688}
 689EXPORT_SYMBOL(of_get_next_child);
 690
 691/**
 692 *	of_get_next_available_child - Find the next available child node
 693 *	@node:	parent node
 694 *	@prev:	previous child of the parent node, or NULL to get first
 695 *
 696 *      This function is like of_get_next_child(), except that it
 697 *      automatically skips any disabled nodes (i.e. status = "disabled").
 698 */
 699struct device_node *of_get_next_available_child(const struct device_node *node,
 700	struct device_node *prev)
 701{
 702	struct device_node *next;
 703	unsigned long flags;
 704
 705	if (!node)
 706		return NULL;
 707
 708	raw_spin_lock_irqsave(&devtree_lock, flags);
 709	next = prev ? prev->sibling : node->child;
 710	for (; next; next = next->sibling) {
 711		if (!__of_device_is_available(next))
 712			continue;
 713		if (of_node_get(next))
 714			break;
 715	}
 716	of_node_put(prev);
 717	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 718	return next;
 719}
 720EXPORT_SYMBOL(of_get_next_available_child);
 721
 722/**
 723 *	of_get_child_by_name - Find the child node by name for a given parent
 724 *	@node:	parent node
 725 *	@name:	child name to look for.
 726 *
 727 *      This function looks for child node for given matching name
 728 *
 729 *	Returns a node pointer if found, with refcount incremented, use
 730 *	of_node_put() on it when done.
 731 *	Returns NULL if node is not found.
 732 */
 733struct device_node *of_get_child_by_name(const struct device_node *node,
 734				const char *name)
 735{
 736	struct device_node *child;
 737
 738	for_each_child_of_node(node, child)
 739		if (child->name && (of_node_cmp(child->name, name) == 0))
 740			break;
 741	return child;
 742}
 743EXPORT_SYMBOL(of_get_child_by_name);
 744
 745struct device_node *__of_find_node_by_path(struct device_node *parent,
 746						const char *path)
 747{
 748	struct device_node *child;
 749	int len;
 750
 751	len = strcspn(path, "/:");
 752	if (!len)
 753		return NULL;
 754
 755	__for_each_child_of_node(parent, child) {
 756		const char *name = kbasename(child->full_name);
 757		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
 758			return child;
 759	}
 760	return NULL;
 761}
 762
 763struct device_node *__of_find_node_by_full_path(struct device_node *node,
 764						const char *path)
 765{
 766	const char *separator = strchr(path, ':');
 767
 768	while (node && *path == '/') {
 769		struct device_node *tmp = node;
 770
 771		path++; /* Increment past '/' delimiter */
 772		node = __of_find_node_by_path(node, path);
 773		of_node_put(tmp);
 774		path = strchrnul(path, '/');
 775		if (separator && separator < path)
 776			break;
 777	}
 778	return node;
 779}
 780
 781/**
 782 *	of_find_node_opts_by_path - Find a node matching a full OF path
 783 *	@path: Either the full path to match, or if the path does not
 784 *	       start with '/', the name of a property of the /aliases
 785 *	       node (an alias).  In the case of an alias, the node
 786 *	       matching the alias' value will be returned.
 787 *	@opts: Address of a pointer into which to store the start of
 788 *	       an options string appended to the end of the path with
 789 *	       a ':' separator.
 790 *
 791 *	Valid paths:
 792 *		/foo/bar	Full path
 793 *		foo		Valid alias
 794 *		foo/bar		Valid alias + relative path
 795 *
 796 *	Returns a node pointer with refcount incremented, use
 797 *	of_node_put() on it when done.
 798 */
 799struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
 800{
 801	struct device_node *np = NULL;
 802	struct property *pp;
 803	unsigned long flags;
 804	const char *separator = strchr(path, ':');
 805
 806	if (opts)
 807		*opts = separator ? separator + 1 : NULL;
 808
 809	if (strcmp(path, "/") == 0)
 810		return of_node_get(of_root);
 811
 812	/* The path could begin with an alias */
 813	if (*path != '/') {
 814		int len;
 815		const char *p = separator;
 816
 817		if (!p)
 818			p = strchrnul(path, '/');
 819		len = p - path;
 820
 821		/* of_aliases must not be NULL */
 822		if (!of_aliases)
 823			return NULL;
 824
 825		for_each_property_of_node(of_aliases, pp) {
 826			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
 827				np = of_find_node_by_path(pp->value);
 828				break;
 829			}
 830		}
 831		if (!np)
 832			return NULL;
 833		path = p;
 834	}
 835
 836	/* Step down the tree matching path components */
 837	raw_spin_lock_irqsave(&devtree_lock, flags);
 838	if (!np)
 839		np = of_node_get(of_root);
 840	np = __of_find_node_by_full_path(np, path);
 841	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 842	return np;
 843}
 844EXPORT_SYMBOL(of_find_node_opts_by_path);
 845
 846/**
 847 *	of_find_node_by_name - Find a node by its "name" property
 848 *	@from:	The node to start searching from or NULL; the node
 849 *		you pass will not be searched, only the next one
 850 *		will. Typically, you pass what the previous call
 851 *		returned. of_node_put() will be called on @from.
 852 *	@name:	The name string to match against
 853 *
 854 *	Returns a node pointer with refcount incremented, use
 855 *	of_node_put() on it when done.
 856 */
 857struct device_node *of_find_node_by_name(struct device_node *from,
 858	const char *name)
 859{
 860	struct device_node *np;
 861	unsigned long flags;
 862
 863	raw_spin_lock_irqsave(&devtree_lock, flags);
 864	for_each_of_allnodes_from(from, np)
 
 865		if (np->name && (of_node_cmp(np->name, name) == 0)
 866		    && of_node_get(np))
 867			break;
 868	of_node_put(from);
 869	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 870	return np;
 871}
 872EXPORT_SYMBOL(of_find_node_by_name);
 873
 874/**
 875 *	of_find_node_by_type - Find a node by its "device_type" property
 876 *	@from:	The node to start searching from, or NULL to start searching
 877 *		the entire device tree. The node you pass will not be
 878 *		searched, only the next one will; typically, you pass
 879 *		what the previous call returned. of_node_put() will be
 880 *		called on from for you.
 881 *	@type:	The type string to match against
 882 *
 883 *	Returns a node pointer with refcount incremented, use
 884 *	of_node_put() on it when done.
 885 */
 886struct device_node *of_find_node_by_type(struct device_node *from,
 887	const char *type)
 888{
 889	struct device_node *np;
 890	unsigned long flags;
 891
 892	raw_spin_lock_irqsave(&devtree_lock, flags);
 893	for_each_of_allnodes_from(from, np)
 
 894		if (np->type && (of_node_cmp(np->type, type) == 0)
 895		    && of_node_get(np))
 896			break;
 897	of_node_put(from);
 898	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 899	return np;
 900}
 901EXPORT_SYMBOL(of_find_node_by_type);
 902
 903/**
 904 *	of_find_compatible_node - Find a node based on type and one of the
 905 *                                tokens in its "compatible" property
 906 *	@from:		The node to start searching from or NULL, the node
 907 *			you pass will not be searched, only the next one
 908 *			will; typically, you pass what the previous call
 909 *			returned. of_node_put() will be called on it
 910 *	@type:		The type string to match "device_type" or NULL to ignore
 911 *	@compatible:	The string to match to one of the tokens in the device
 912 *			"compatible" list.
 913 *
 914 *	Returns a node pointer with refcount incremented, use
 915 *	of_node_put() on it when done.
 916 */
 917struct device_node *of_find_compatible_node(struct device_node *from,
 918	const char *type, const char *compatible)
 919{
 920	struct device_node *np;
 921	unsigned long flags;
 922
 923	raw_spin_lock_irqsave(&devtree_lock, flags);
 924	for_each_of_allnodes_from(from, np)
 925		if (__of_device_is_compatible(np, compatible, type, NULL) &&
 926		    of_node_get(np))
 
 
 
 927			break;
 
 928	of_node_put(from);
 929	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 930	return np;
 931}
 932EXPORT_SYMBOL(of_find_compatible_node);
 933
 934/**
 935 *	of_find_node_with_property - Find a node which has a property with
 936 *                                   the given name.
 937 *	@from:		The node to start searching from or NULL, the node
 938 *			you pass will not be searched, only the next one
 939 *			will; typically, you pass what the previous call
 940 *			returned. of_node_put() will be called on it
 941 *	@prop_name:	The name of the property to look for.
 942 *
 943 *	Returns a node pointer with refcount incremented, use
 944 *	of_node_put() on it when done.
 945 */
 946struct device_node *of_find_node_with_property(struct device_node *from,
 947	const char *prop_name)
 948{
 949	struct device_node *np;
 950	struct property *pp;
 951	unsigned long flags;
 952
 953	raw_spin_lock_irqsave(&devtree_lock, flags);
 954	for_each_of_allnodes_from(from, np) {
 955		for (pp = np->properties; pp; pp = pp->next) {
 
 956			if (of_prop_cmp(pp->name, prop_name) == 0) {
 957				of_node_get(np);
 958				goto out;
 959			}
 960		}
 961	}
 962out:
 963	of_node_put(from);
 964	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 965	return np;
 966}
 967EXPORT_SYMBOL(of_find_node_with_property);
 968
 969static
 970const struct of_device_id *__of_match_node(const struct of_device_id *matches,
 971					   const struct device_node *node)
 972{
 973	const struct of_device_id *best_match = NULL;
 974	int score, best_score = 0;
 975
 976	if (!matches)
 977		return NULL;
 978
 979	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
 980		score = __of_device_is_compatible(node, matches->compatible,
 981						  matches->type, matches->name);
 982		if (score > best_score) {
 983			best_match = matches;
 984			best_score = score;
 985		}
 986	}
 987
 988	return best_match;
 989}
 990
 991/**
 992 * of_match_node - Tell if a device_node has a matching of_match structure
 993 *	@matches:	array of of device match structures to search in
 994 *	@node:		the of device structure to match against
 995 *
 996 *	Low level utility function used by device matching.
 997 */
 998const struct of_device_id *of_match_node(const struct of_device_id *matches,
 999					 const struct device_node *node)
1000{
1001	const struct of_device_id *match;
1002	unsigned long flags;
1003
1004	raw_spin_lock_irqsave(&devtree_lock, flags);
1005	match = __of_match_node(matches, node);
1006	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1007	return match;
 
 
 
 
 
 
 
 
 
 
 
 
1008}
1009EXPORT_SYMBOL(of_match_node);
1010
1011/**
1012 *	of_find_matching_node_and_match - Find a node based on an of_device_id
1013 *					  match table.
1014 *	@from:		The node to start searching from or NULL, the node
1015 *			you pass will not be searched, only the next one
1016 *			will; typically, you pass what the previous call
1017 *			returned. of_node_put() will be called on it
1018 *	@matches:	array of of device match structures to search in
1019 *	@match		Updated to point at the matches entry which matched
1020 *
1021 *	Returns a node pointer with refcount incremented, use
1022 *	of_node_put() on it when done.
1023 */
1024struct device_node *of_find_matching_node_and_match(struct device_node *from,
1025					const struct of_device_id *matches,
1026					const struct of_device_id **match)
1027{
1028	struct device_node *np;
1029	const struct of_device_id *m;
1030	unsigned long flags;
1031
1032	if (match)
1033		*match = NULL;
1034
1035	raw_spin_lock_irqsave(&devtree_lock, flags);
1036	for_each_of_allnodes_from(from, np) {
1037		m = __of_match_node(matches, np);
1038		if (m && of_node_get(np)) {
1039			if (match)
1040				*match = m;
1041			break;
1042		}
1043	}
1044	of_node_put(from);
1045	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1046	return np;
1047}
1048EXPORT_SYMBOL(of_find_matching_node_and_match);
1049
1050/**
1051 * of_modalias_node - Lookup appropriate modalias for a device node
1052 * @node:	pointer to a device tree node
1053 * @modalias:	Pointer to buffer that modalias value will be copied into
1054 * @len:	Length of modalias value
1055 *
1056 * Based on the value of the compatible property, this routine will attempt
1057 * to choose an appropriate modalias value for a particular device tree node.
1058 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1059 * from the first entry in the compatible list property.
1060 *
1061 * This routine returns 0 on success, <0 on failure.
1062 */
1063int of_modalias_node(struct device_node *node, char *modalias, int len)
1064{
1065	const char *compatible, *p;
1066	int cplen;
1067
1068	compatible = of_get_property(node, "compatible", &cplen);
1069	if (!compatible || strlen(compatible) > cplen)
1070		return -ENODEV;
1071	p = strchr(compatible, ',');
1072	strlcpy(modalias, p ? p + 1 : compatible, len);
1073	return 0;
1074}
1075EXPORT_SYMBOL_GPL(of_modalias_node);
1076
1077/**
1078 * of_find_node_by_phandle - Find a node given a phandle
1079 * @handle:	phandle of the node to find
1080 *
1081 * Returns a node pointer with refcount incremented, use
1082 * of_node_put() on it when done.
1083 */
1084struct device_node *of_find_node_by_phandle(phandle handle)
1085{
1086	struct device_node *np = NULL;
1087	unsigned long flags;
1088	phandle masked_handle;
1089
1090	if (!handle)
1091		return NULL;
1092
1093	raw_spin_lock_irqsave(&devtree_lock, flags);
1094
1095	masked_handle = handle & phandle_cache_mask;
1096
1097	if (phandle_cache) {
1098		if (phandle_cache[masked_handle] &&
1099		    handle == phandle_cache[masked_handle]->phandle)
1100			np = phandle_cache[masked_handle];
1101	}
1102
1103	if (!np) {
1104		for_each_of_allnodes(np)
1105			if (np->phandle == handle) {
1106				if (phandle_cache)
1107					phandle_cache[masked_handle] = np;
1108				break;
1109			}
1110	}
1111
 
 
 
 
1112	of_node_get(np);
1113	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1114	return np;
1115}
1116EXPORT_SYMBOL(of_find_node_by_phandle);
1117
1118void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1119{
1120	int i;
1121	printk("%s %pOF", msg, args->np);
1122	for (i = 0; i < args->args_count; i++) {
1123		const char delim = i ? ',' : ':';
1124
1125		pr_cont("%c%08x", delim, args->args[i]);
1126	}
1127	pr_cont("\n");
 
 
 
 
 
 
 
 
1128}
 
1129
1130int of_phandle_iterator_init(struct of_phandle_iterator *it,
1131		const struct device_node *np,
1132		const char *list_name,
1133		const char *cells_name,
1134		int cell_count)
 
 
 
 
 
 
 
 
 
 
1135{
1136	const __be32 *list;
1137	int size;
1138
1139	memset(it, 0, sizeof(*it));
1140
1141	list = of_get_property(np, list_name, &size);
1142	if (!list)
1143		return -ENOENT;
1144
1145	it->cells_name = cells_name;
1146	it->cell_count = cell_count;
1147	it->parent = np;
1148	it->list_end = list + size / sizeof(*list);
1149	it->phandle_end = list;
1150	it->cur = list;
1151
 
 
 
 
 
 
 
1152	return 0;
1153}
1154EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1155
1156int of_phandle_iterator_next(struct of_phandle_iterator *it)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1157{
1158	uint32_t count = 0;
 
 
 
 
 
 
 
 
 
 
1159
1160	if (it->node) {
1161		of_node_put(it->node);
1162		it->node = NULL;
1163	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164
1165	if (!it->cur || it->phandle_end >= it->list_end)
1166		return -ENOENT;
1167
1168	it->cur = it->phandle_end;
1169
1170	/* If phandle is 0, then it is an empty entry with no arguments. */
1171	it->phandle = be32_to_cpup(it->cur++);
1172
1173	if (it->phandle) {
1174
1175		/*
1176		 * Find the provider node and parse the #*-cells property to
1177		 * determine the argument length.
1178		 */
1179		it->node = of_find_node_by_phandle(it->phandle);
1180
1181		if (it->cells_name) {
1182			if (!it->node) {
1183				pr_err("%pOF: could not find phandle\n",
1184				       it->parent);
1185				goto err;
1186			}
1187
1188			if (of_property_read_u32(it->node, it->cells_name,
1189						 &count)) {
1190				pr_err("%pOF: could not get %s for %pOF\n",
1191				       it->parent,
1192				       it->cells_name,
1193				       it->node);
1194				goto err;
1195			}
1196		} else {
1197			count = it->cell_count;
1198		}
1199
1200		/*
1201		 * Make sure that the arguments actually fit in the remaining
1202		 * property data length
1203		 */
1204		if (it->cur + count > it->list_end) {
1205			pr_err("%pOF: arguments longer than property\n",
1206			       it->parent);
1207			goto err;
1208		}
1209	}
1210
1211	it->phandle_end = it->cur + count;
1212	it->cur_count = count;
1213
1214	return 0;
1215
1216err:
1217	if (it->node) {
1218		of_node_put(it->node);
1219		it->node = NULL;
1220	}
1221
1222	return -EINVAL;
1223}
1224EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1225
1226int of_phandle_iterator_args(struct of_phandle_iterator *it,
1227			     uint32_t *args,
1228			     int size)
 
 
 
 
 
 
 
 
1229{
1230	int i, count;
 
 
 
1231
1232	count = it->cur_count;
 
 
 
1233
1234	if (WARN_ON(size < count))
1235		count = size;
1236
1237	for (i = 0; i < count; i++)
1238		args[i] = be32_to_cpup(it->cur++);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1239
1240	return count;
1241}
1242
1243static int __of_parse_phandle_with_args(const struct device_node *np,
1244					const char *list_name,
1245					const char *cells_name,
1246					int cell_count, int index,
1247					struct of_phandle_args *out_args)
1248{
1249	struct of_phandle_iterator it;
1250	int rc, cur_index = 0;
1251
1252	/* Loop over the phandles until all the requested entry is found */
1253	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1254		/*
1255		 * All of the error cases bail out of the loop, so at
1256		 * this point, the parsing is successful. If the requested
1257		 * index matches, then fill the out_args structure and return,
1258		 * or return -ENOENT for an empty entry.
1259		 */
1260		rc = -ENOENT;
1261		if (cur_index == index) {
1262			if (!it.phandle)
1263				goto err;
1264
1265			if (out_args) {
1266				int c;
1267
1268				c = of_phandle_iterator_args(&it,
1269							     out_args->args,
1270							     MAX_PHANDLE_ARGS);
1271				out_args->np = it.node;
1272				out_args->args_count = c;
1273			} else {
1274				of_node_put(it.node);
1275			}
1276
1277			/* Found it! return success */
1278			return 0;
1279		}
1280
1281		cur_index++;
1282	}
1283
1284	/*
1285	 * Unlock node before returning result; will be one of:
1286	 * -ENOENT : index is for empty phandle
1287	 * -EINVAL : parsing error on data
1288	 */
1289
1290 err:
1291	of_node_put(it.node);
1292	return rc;
1293}
 
1294
1295/**
1296 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1297 * @np: Pointer to device node holding phandle property
1298 * @phandle_name: Name of property holding a phandle value
1299 * @index: For properties holding a table of phandles, this is the index into
1300 *         the table
1301 *
1302 * Returns the device_node pointer with refcount incremented.  Use
1303 * of_node_put() on it when done.
1304 */
1305struct device_node *of_parse_phandle(const struct device_node *np,
1306				     const char *phandle_name, int index)
1307{
1308	struct of_phandle_args args;
1309
1310	if (index < 0)
1311		return NULL;
1312
1313	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1314					 index, &args))
1315		return NULL;
1316
1317	return args.np;
1318}
1319EXPORT_SYMBOL(of_parse_phandle);
1320
1321/**
1322 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1323 * @np:		pointer to a device tree node containing a list
1324 * @list_name:	property name that contains a list
1325 * @cells_name:	property name that specifies phandles' arguments count
1326 * @index:	index of a phandle to parse out
1327 * @out_args:	optional pointer to output arguments structure (will be filled)
1328 *
1329 * This function is useful to parse lists of phandles and their arguments.
1330 * Returns 0 on success and fills out_args, on error returns appropriate
1331 * errno value.
1332 *
1333 * Caller is responsible to call of_node_put() on the returned out_args->np
1334 * pointer.
1335 *
1336 * Example:
1337 *
1338 * phandle1: node1 {
1339 *	#list-cells = <2>;
1340 * }
1341 *
1342 * phandle2: node2 {
1343 *	#list-cells = <1>;
1344 * }
1345 *
1346 * node3 {
1347 *	list = <&phandle1 1 2 &phandle2 3>;
1348 * }
1349 *
1350 * To get a device_node of the `node2' node you may call this:
1351 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1352 */
1353int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1354				const char *cells_name, int index,
1355				struct of_phandle_args *out_args)
1356{
1357	if (index < 0)
1358		return -EINVAL;
1359	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1360					    index, out_args);
1361}
1362EXPORT_SYMBOL(of_parse_phandle_with_args);
1363
1364/**
1365 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1366 * @np:		pointer to a device tree node containing a list
1367 * @list_name:	property name that contains a list
1368 * @stem_name:	stem of property names that specify phandles' arguments count
1369 * @index:	index of a phandle to parse out
1370 * @out_args:	optional pointer to output arguments structure (will be filled)
1371 *
1372 * This function is useful to parse lists of phandles and their arguments.
1373 * Returns 0 on success and fills out_args, on error returns appropriate errno
1374 * value. The difference between this function and of_parse_phandle_with_args()
1375 * is that this API remaps a phandle if the node the phandle points to has
1376 * a <@stem_name>-map property.
1377 *
1378 * Caller is responsible to call of_node_put() on the returned out_args->np
1379 * pointer.
1380 *
1381 * Example:
1382 *
1383 * phandle1: node1 {
1384 *	#list-cells = <2>;
1385 * }
1386 *
1387 * phandle2: node2 {
1388 *	#list-cells = <1>;
1389 * }
1390 *
1391 * phandle3: node3 {
1392 * 	#list-cells = <1>;
1393 * 	list-map = <0 &phandle2 3>,
1394 * 		   <1 &phandle2 2>,
1395 * 		   <2 &phandle1 5 1>;
1396 *	list-map-mask = <0x3>;
1397 * };
1398 *
1399 * node4 {
1400 *	list = <&phandle1 1 2 &phandle3 0>;
1401 * }
1402 *
1403 * To get a device_node of the `node2' node you may call this:
1404 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1405 */
1406int of_parse_phandle_with_args_map(const struct device_node *np,
1407				   const char *list_name,
1408				   const char *stem_name,
1409				   int index, struct of_phandle_args *out_args)
1410{
1411	char *cells_name, *map_name = NULL, *mask_name = NULL;
1412	char *pass_name = NULL;
1413	struct device_node *cur, *new = NULL;
1414	const __be32 *map, *mask, *pass;
1415	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1416	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1417	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1418	const __be32 *match_array = initial_match_array;
1419	int i, ret, map_len, match;
1420	u32 list_size, new_size;
1421
1422	if (index < 0)
1423		return -EINVAL;
 
1424
1425	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1426	if (!cells_name)
1427		return -ENOMEM;
1428
1429	ret = -ENOMEM;
1430	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1431	if (!map_name)
1432		goto free;
1433
1434	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1435	if (!mask_name)
1436		goto free;
1437
1438	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1439	if (!pass_name)
1440		goto free;
1441
1442	ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1443					   out_args);
1444	if (ret)
1445		goto free;
1446
1447	/* Get the #<list>-cells property */
1448	cur = out_args->np;
1449	ret = of_property_read_u32(cur, cells_name, &list_size);
1450	if (ret < 0)
1451		goto put;
1452
1453	/* Precalculate the match array - this simplifies match loop */
1454	for (i = 0; i < list_size; i++)
1455		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1456
1457	ret = -EINVAL;
1458	while (cur) {
1459		/* Get the <list>-map property */
1460		map = of_get_property(cur, map_name, &map_len);
1461		if (!map) {
1462			ret = 0;
1463			goto free;
1464		}
1465		map_len /= sizeof(u32);
1466
1467		/* Get the <list>-map-mask property (optional) */
1468		mask = of_get_property(cur, mask_name, NULL);
1469		if (!mask)
1470			mask = dummy_mask;
1471		/* Iterate through <list>-map property */
1472		match = 0;
1473		while (map_len > (list_size + 1) && !match) {
1474			/* Compare specifiers */
1475			match = 1;
1476			for (i = 0; i < list_size; i++, map_len--)
1477				match &= !((match_array[i] ^ *map++) & mask[i]);
1478
1479			of_node_put(new);
1480			new = of_find_node_by_phandle(be32_to_cpup(map));
1481			map++;
1482			map_len--;
1483
1484			/* Check if not found */
1485			if (!new)
1486				goto put;
1487
1488			if (!of_device_is_available(new))
1489				match = 0;
1490
1491			ret = of_property_read_u32(new, cells_name, &new_size);
1492			if (ret)
1493				goto put;
1494
1495			/* Check for malformed properties */
1496			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1497				goto put;
1498			if (map_len < new_size)
1499				goto put;
1500
1501			/* Move forward by new node's #<list>-cells amount */
1502			map += new_size;
1503			map_len -= new_size;
1504		}
1505		if (!match)
1506			goto put;
1507
1508		/* Get the <list>-map-pass-thru property (optional) */
1509		pass = of_get_property(cur, pass_name, NULL);
1510		if (!pass)
1511			pass = dummy_pass;
1512
1513		/*
1514		 * Successfully parsed a <list>-map translation; copy new
1515		 * specifier into the out_args structure, keeping the
1516		 * bits specified in <list>-map-pass-thru.
1517		 */
1518		match_array = map - new_size;
1519		for (i = 0; i < new_size; i++) {
1520			__be32 val = *(map - new_size + i);
1521
1522			if (i < list_size) {
1523				val &= ~pass[i];
1524				val |= cpu_to_be32(out_args->args[i]) & pass[i];
 
 
 
 
 
 
 
 
 
 
1525			}
1526
1527			out_args->args[i] = be32_to_cpu(val);
 
 
 
 
 
 
 
 
1528		}
1529		out_args->args_count = list_size = new_size;
1530		/* Iterate again with new provider */
1531		out_args->np = new;
1532		of_node_put(cur);
1533		cur = new;
1534	}
1535put:
1536	of_node_put(cur);
1537	of_node_put(new);
1538free:
1539	kfree(mask_name);
1540	kfree(map_name);
1541	kfree(cells_name);
1542	kfree(pass_name);
1543
1544	return ret;
1545}
1546EXPORT_SYMBOL(of_parse_phandle_with_args_map);
 
 
 
 
 
 
1547
1548/**
1549 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1550 * @np:		pointer to a device tree node containing a list
1551 * @list_name:	property name that contains a list
1552 * @cell_count: number of argument cells following the phandle
1553 * @index:	index of a phandle to parse out
1554 * @out_args:	optional pointer to output arguments structure (will be filled)
1555 *
1556 * This function is useful to parse lists of phandles and their arguments.
1557 * Returns 0 on success and fills out_args, on error returns appropriate
1558 * errno value.
1559 *
1560 * Caller is responsible to call of_node_put() on the returned out_args->np
1561 * pointer.
1562 *
1563 * Example:
1564 *
1565 * phandle1: node1 {
1566 * }
1567 *
1568 * phandle2: node2 {
1569 * }
1570 *
1571 * node3 {
1572 *	list = <&phandle1 0 2 &phandle2 2 3>;
1573 * }
1574 *
1575 * To get a device_node of the `node2' node you may call this:
1576 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1577 */
1578int of_parse_phandle_with_fixed_args(const struct device_node *np,
1579				const char *list_name, int cell_count,
1580				int index, struct of_phandle_args *out_args)
1581{
1582	if (index < 0)
1583		return -EINVAL;
1584	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1585					   index, out_args);
1586}
1587EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1588
1589/**
1590 * of_count_phandle_with_args() - Find the number of phandles references in a property
1591 * @np:		pointer to a device tree node containing a list
1592 * @list_name:	property name that contains a list
1593 * @cells_name:	property name that specifies phandles' arguments count
1594 *
1595 * Returns the number of phandle + argument tuples within a property. It
1596 * is a typical pattern to encode a list of phandle and variable
1597 * arguments into a single property. The number of arguments is encoded
1598 * by a property in the phandle-target node. For example, a gpios
1599 * property would contain a list of GPIO specifies consisting of a
1600 * phandle and 1 or more arguments. The number of arguments are
1601 * determined by the #gpio-cells property in the node pointed to by the
1602 * phandle.
1603 */
1604int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1605				const char *cells_name)
1606{
1607	struct of_phandle_iterator it;
1608	int rc, cur_index = 0;
1609
1610	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1611	if (rc)
1612		return rc;
1613
1614	while ((rc = of_phandle_iterator_next(&it)) == 0)
1615		cur_index += 1;
1616
1617	if (rc != -ENOENT)
1618		return rc;
1619
1620	return cur_index;
1621}
1622EXPORT_SYMBOL(of_count_phandle_with_args);
1623
1624/**
1625 * __of_add_property - Add a property to a node without lock operations
1626 */
1627int __of_add_property(struct device_node *np, struct property *prop)
1628{
1629	struct property **next;
 
1630
1631	prop->next = NULL;
 
1632	next = &np->properties;
1633	while (*next) {
1634		if (strcmp(prop->name, (*next)->name) == 0)
1635			/* duplicate ! don't insert it */
1636			return -EEXIST;
1637
 
1638		next = &(*next)->next;
1639	}
1640	*next = prop;
 
 
 
 
 
 
 
1641
1642	return 0;
1643}
1644
1645/**
1646 * of_add_property - Add a property to a node
 
 
 
 
 
1647 */
1648int of_add_property(struct device_node *np, struct property *prop)
1649{
 
1650	unsigned long flags;
1651	int rc;
1652
1653	mutex_lock(&of_mutex);
1654
1655	raw_spin_lock_irqsave(&devtree_lock, flags);
1656	rc = __of_add_property(np, prop);
1657	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1658
1659	if (!rc)
1660		__of_add_property_sysfs(np, prop);
1661
1662	mutex_unlock(&of_mutex);
1663
1664	if (!rc)
1665		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1666
1667	return rc;
1668}
1669
1670int __of_remove_property(struct device_node *np, struct property *prop)
1671{
1672	struct property **next;
1673
1674	for (next = &np->properties; *next; next = &(*next)->next) {
1675		if (*next == prop)
1676			break;
 
 
1677	}
1678	if (*next == NULL)
 
 
1679		return -ENODEV;
1680
1681	/* found the node */
1682	*next = prop->next;
1683	prop->next = np->deadprops;
1684	np->deadprops = prop;
 
1685
1686	return 0;
1687}
1688
1689/**
1690 * of_remove_property - Remove a property from a node.
1691 *
1692 * Note that we don't actually remove it, since we have given out
1693 * who-knows-how-many pointers to the data using get-property.
1694 * Instead we just move the property to the "dead properties"
1695 * list, so it won't be found any more.
1696 */
1697int of_remove_property(struct device_node *np, struct property *prop)
 
 
1698{
 
1699	unsigned long flags;
1700	int rc;
1701
1702	if (!prop)
1703		return -ENODEV;
1704
1705	mutex_lock(&of_mutex);
1706
1707	raw_spin_lock_irqsave(&devtree_lock, flags);
1708	rc = __of_remove_property(np, prop);
1709	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1710
1711	if (!rc)
1712		__of_remove_property_sysfs(np, prop);
1713
1714	mutex_unlock(&of_mutex);
1715
1716	if (!rc)
1717		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1718
1719	return rc;
1720}
1721
1722int __of_update_property(struct device_node *np, struct property *newprop,
1723		struct property **oldpropp)
1724{
1725	struct property **next, *oldprop;
1726
1727	for (next = &np->properties; *next; next = &(*next)->next) {
1728		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1729			break;
 
 
1730	}
1731	*oldpropp = oldprop = *next;
1732
1733	if (oldprop) {
1734		/* replace the node */
1735		newprop->next = oldprop->next;
1736		*next = newprop;
1737		oldprop->next = np->deadprops;
1738		np->deadprops = oldprop;
1739	} else {
1740		/* new node */
1741		newprop->next = NULL;
1742		*next = newprop;
1743	}
1744
1745	return 0;
1746}
1747
 
1748/*
1749 * of_update_property - Update a property in a node, if the property does
1750 * not exist, add it.
1751 *
1752 * Note that we don't actually remove it, since we have given out
1753 * who-knows-how-many pointers to the data using get-property.
1754 * Instead we just move the property to the "dead properties" list,
1755 * and add the new property to the property list
 
 
 
1756 */
1757int of_update_property(struct device_node *np, struct property *newprop)
1758{
1759	struct property *oldprop;
1760	unsigned long flags;
1761	int rc;
1762
1763	if (!newprop->name)
1764		return -EINVAL;
 
 
 
 
 
1765
1766	mutex_lock(&of_mutex);
 
 
 
 
 
 
 
 
 
1767
1768	raw_spin_lock_irqsave(&devtree_lock, flags);
1769	rc = __of_update_property(np, newprop, &oldprop);
1770	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1771
1772	if (!rc)
1773		__of_update_property_sysfs(np, newprop, oldprop);
1774
1775	mutex_unlock(&of_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1776
1777	if (!rc)
1778		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1779
1780	return rc;
 
1781}
 
1782
1783static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1784			 int id, const char *stem, int stem_len)
1785{
1786	ap->np = np;
1787	ap->id = id;
1788	strncpy(ap->stem, stem, stem_len);
1789	ap->stem[stem_len] = 0;
1790	list_add_tail(&ap->link, &aliases_lookup);
1791	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1792		 ap->alias, ap->stem, ap->id, np);
1793}
1794
1795/**
1796 * of_alias_scan - Scan all properties of the 'aliases' node
1797 *
1798 * The function scans all the properties of the 'aliases' node and populates
1799 * the global lookup table with the properties.  It returns the
1800 * number of alias properties found, or an error code in case of failure.
1801 *
1802 * @dt_alloc:	An allocator that provides a virtual address to memory
1803 *		for storing the resulting tree
1804 */
1805void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1806{
1807	struct property *pp;
1808
1809	of_aliases = of_find_node_by_path("/aliases");
1810	of_chosen = of_find_node_by_path("/chosen");
1811	if (of_chosen == NULL)
1812		of_chosen = of_find_node_by_path("/chosen@0");
1813
1814	if (of_chosen) {
1815		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1816		const char *name = NULL;
1817
1818		if (of_property_read_string(of_chosen, "stdout-path", &name))
1819			of_property_read_string(of_chosen, "linux,stdout-path",
1820						&name);
1821		if (IS_ENABLED(CONFIG_PPC) && !name)
1822			of_property_read_string(of_aliases, "stdout", &name);
1823		if (name)
1824			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1825	}
1826
1827	if (!of_aliases)
1828		return;
1829
1830	for_each_property_of_node(of_aliases, pp) {
1831		const char *start = pp->name;
1832		const char *end = start + strlen(start);
1833		struct device_node *np;
1834		struct alias_prop *ap;
1835		int id, len;
1836
1837		/* Skip those we do not want to proceed */
1838		if (!strcmp(pp->name, "name") ||
1839		    !strcmp(pp->name, "phandle") ||
1840		    !strcmp(pp->name, "linux,phandle"))
1841			continue;
1842
1843		np = of_find_node_by_path(pp->value);
1844		if (!np)
1845			continue;
1846
1847		/* walk the alias backwards to extract the id and work out
1848		 * the 'stem' string */
1849		while (isdigit(*(end-1)) && end > start)
1850			end--;
1851		len = end - start;
1852
1853		if (kstrtoint(end, 10, &id) < 0)
1854			continue;
1855
1856		/* Allocate an alias_prop with enough space for the stem */
1857		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1858		if (!ap)
1859			continue;
1860		memset(ap, 0, sizeof(*ap) + len + 1);
1861		ap->alias = start;
1862		of_alias_add(ap, np, id, start, len);
1863	}
1864}
1865
1866/**
1867 * of_alias_get_id - Get alias id for the given device_node
1868 * @np:		Pointer to the given device_node
1869 * @stem:	Alias stem of the given device_node
1870 *
1871 * The function travels the lookup table to get the alias id for the given
1872 * device_node and alias stem.  It returns the alias id if found.
1873 */
1874int of_alias_get_id(struct device_node *np, const char *stem)
1875{
1876	struct alias_prop *app;
1877	int id = -ENODEV;
1878
1879	mutex_lock(&of_mutex);
1880	list_for_each_entry(app, &aliases_lookup, link) {
1881		if (strcmp(app->stem, stem) != 0)
1882			continue;
1883
1884		if (np == app->np) {
1885			id = app->id;
1886			break;
1887		}
1888	}
1889	mutex_unlock(&of_mutex);
1890
1891	return id;
1892}
1893EXPORT_SYMBOL_GPL(of_alias_get_id);
1894
1895/**
1896 * of_alias_get_highest_id - Get highest alias id for the given stem
1897 * @stem:	Alias stem to be examined
1898 *
1899 * The function travels the lookup table to get the highest alias id for the
1900 * given alias stem.  It returns the alias id if found.
1901 */
1902int of_alias_get_highest_id(const char *stem)
1903{
1904	struct alias_prop *app;
1905	int id = -ENODEV;
1906
1907	mutex_lock(&of_mutex);
1908	list_for_each_entry(app, &aliases_lookup, link) {
1909		if (strcmp(app->stem, stem) != 0)
1910			continue;
1911
1912		if (app->id > id)
1913			id = app->id;
 
1914	}
1915	mutex_unlock(&of_mutex);
1916
1917	return id;
1918}
1919EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1920
1921/**
1922 * of_console_check() - Test and setup console for DT setup
1923 * @dn - Pointer to device node
1924 * @name - Name to use for preferred console without index. ex. "ttyS"
1925 * @index - Index to use for preferred console.
1926 *
1927 * Check if the given device node matches the stdout-path property in the
1928 * /chosen node. If it does then register it as the preferred console and return
1929 * TRUE. Otherwise return FALSE.
1930 */
1931bool of_console_check(struct device_node *dn, char *name, int index)
1932{
1933	if (!dn || dn != of_stdout || console_set_on_cmdline)
1934		return false;
1935
1936	/*
1937	 * XXX: cast `options' to char pointer to suppress complication
1938	 * warnings: printk, UART and console drivers expect char pointer.
1939	 */
1940	return !add_preferred_console(name, index, (char *)of_stdout_options);
1941}
1942EXPORT_SYMBOL_GPL(of_console_check);
1943
1944/**
1945 *	of_find_next_cache_node - Find a node's subsidiary cache
1946 *	@np:	node of type "cpu" or "cache"
1947 *
1948 *	Returns a node pointer with refcount incremented, use
1949 *	of_node_put() on it when done.  Caller should hold a reference
1950 *	to np.
1951 */
1952struct device_node *of_find_next_cache_node(const struct device_node *np)
1953{
1954	struct device_node *child, *cache_node;
1955
1956	cache_node = of_parse_phandle(np, "l2-cache", 0);
1957	if (!cache_node)
1958		cache_node = of_parse_phandle(np, "next-level-cache", 0);
1959
1960	if (cache_node)
1961		return cache_node;
1962
1963	/* OF on pmac has nodes instead of properties named "l2-cache"
1964	 * beneath CPU nodes.
1965	 */
1966	if (!strcmp(np->type, "cpu"))
1967		for_each_child_of_node(np, child)
1968			if (!strcmp(child->type, "cache"))
1969				return child;
1970
1971	return NULL;
1972}
1973
1974/**
1975 * of_find_last_cache_level - Find the level at which the last cache is
1976 * 		present for the given logical cpu
1977 *
1978 * @cpu: cpu number(logical index) for which the last cache level is needed
1979 *
1980 * Returns the the level at which the last cache is present. It is exactly
1981 * same as  the total number of cache levels for the given logical cpu.
1982 */
1983int of_find_last_cache_level(unsigned int cpu)
1984{
1985	u32 cache_level = 0;
1986	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1987
1988	while (np) {
1989		prev = np;
1990		of_node_put(np);
1991		np = of_find_next_cache_node(np);
1992	}
1993
1994	of_property_read_u32(prev, "cache-level", &cache_level);
1995
1996	return cache_level;
1997}