Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1#include <linux/init.h>
  2#include <linux/clocksource.h>
  3#include <linux/clockchips.h>
  4#include <linux/interrupt.h>
  5#include <linux/irq.h>
  6
  7#include <linux/clk.h>
  8#include <linux/err.h>
  9#include <linux/ioport.h>
 10#include <linux/io.h>
 11#include <linux/platform_device.h>
 
 12#include <linux/atmel_tc.h>
 13
 14
 15/*
 16 * We're configured to use a specific TC block, one that's not hooked
 17 * up to external hardware, to provide a time solution:
 18 *
 19 *   - Two channels combine to create a free-running 32 bit counter
 20 *     with a base rate of 5+ MHz, packaged as a clocksource (with
 21 *     resolution better than 200 nsec).
 22 *   - Some chips support 32 bit counter. A single channel is used for
 23 *     this 32 bit free-running counter. the second channel is not used.
 24 *
 25 *   - The third channel may be used to provide a 16-bit clockevent
 26 *     source, used in either periodic or oneshot mode.  This runs
 27 *     at 32 KiHZ, and can handle delays of up to two seconds.
 28 *
 29 * A boot clocksource and clockevent source are also currently needed,
 30 * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
 31 * this code can be used when init_timers() is called, well before most
 32 * devices are set up.  (Some low end AT91 parts, which can run uClinux,
 33 * have only the timers in one TC block... they currently don't support
 34 * the tclib code, because of that initialization issue.)
 35 *
 36 * REVISIT behavior during system suspend states... we should disable
 37 * all clocks and save the power.  Easily done for clockevent devices,
 38 * but clocksources won't necessarily get the needed notifications.
 39 * For deeper system sleep states, this will be mandatory...
 40 */
 41
 42static void __iomem *tcaddr;
 
 
 
 
 
 
 
 
 43
 44static cycle_t tc_get_cycles(struct clocksource *cs)
 45{
 46	unsigned long	flags;
 47	u32		lower, upper;
 48
 49	raw_local_irq_save(flags);
 50	do {
 51		upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
 52		lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
 53	} while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
 54
 55	raw_local_irq_restore(flags);
 56	return (upper << 16) | lower;
 57}
 58
 59static cycle_t tc_get_cycles32(struct clocksource *cs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 60{
 61	return __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 62}
 63
 64static struct clocksource clksrc = {
 65	.name           = "tcb_clksrc",
 66	.rating         = 200,
 67	.read           = tc_get_cycles,
 68	.mask           = CLOCKSOURCE_MASK(32),
 69	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 
 
 70};
 71
 72#ifdef CONFIG_GENERIC_CLOCKEVENTS
 73
 74struct tc_clkevt_device {
 75	struct clock_event_device	clkevt;
 76	struct clk			*clk;
 77	void __iomem			*regs;
 78};
 79
 80static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
 81{
 82	return container_of(clkevt, struct tc_clkevt_device, clkevt);
 83}
 84
 85/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
 86 * because using one of the divided clocks would usually mean the
 87 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
 88 *
 89 * A divided clock could be good for high resolution timers, since
 90 * 30.5 usec resolution can seem "low".
 91 */
 92static u32 timer_clock;
 93
 94static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
 95{
 96	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
 97	void __iomem		*regs = tcd->regs;
 98
 99	if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC
100			|| tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) {
101		__raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
102		__raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
103		clk_disable(tcd->clk);
104	}
105
106	switch (m) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
108	/* By not making the gentime core emulate periodic mode on top
109	 * of oneshot, we get lower overhead and improved accuracy.
110	 */
111	case CLOCK_EVT_MODE_PERIODIC:
112		clk_enable(tcd->clk);
113
114		/* slow clock, count up to RC, then irq and restart */
115		__raw_writel(timer_clock
116				| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
117				regs + ATMEL_TC_REG(2, CMR));
118		__raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
119
120		/* Enable clock and interrupts on RC compare */
121		__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
122
123		/* go go gadget! */
124		__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
125				regs + ATMEL_TC_REG(2, CCR));
126		break;
127
128	case CLOCK_EVT_MODE_ONESHOT:
129		clk_enable(tcd->clk);
130
131		/* slow clock, count up to RC, then irq and stop */
132		__raw_writel(timer_clock | ATMEL_TC_CPCSTOP
133				| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
134				regs + ATMEL_TC_REG(2, CMR));
135		__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
136
137		/* set_next_event() configures and starts the timer */
138		break;
139
140	default:
141		break;
142	}
 
143}
144
145static int tc_next_event(unsigned long delta, struct clock_event_device *d)
146{
147	__raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
148
149	/* go go gadget! */
150	__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
151			tcaddr + ATMEL_TC_REG(2, CCR));
152	return 0;
153}
154
155static struct tc_clkevt_device clkevt = {
156	.clkevt	= {
157		.name		= "tc_clkevt",
158		.features	= CLOCK_EVT_FEAT_PERIODIC
159					| CLOCK_EVT_FEAT_ONESHOT,
160		.shift		= 32,
161		/* Should be lower than at91rm9200's system timer */
162		.rating		= 125,
163		.set_next_event	= tc_next_event,
164		.set_mode	= tc_mode,
 
 
165	},
166};
167
168static irqreturn_t ch2_irq(int irq, void *handle)
169{
170	struct tc_clkevt_device	*dev = handle;
171	unsigned int		sr;
172
173	sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
174	if (sr & ATMEL_TC_CPCS) {
175		dev->clkevt.event_handler(&dev->clkevt);
176		return IRQ_HANDLED;
177	}
178
179	return IRQ_NONE;
180}
181
182static struct irqaction tc_irqaction = {
183	.name		= "tc_clkevt",
184	.flags		= IRQF_TIMER | IRQF_DISABLED,
185	.handler	= ch2_irq,
186};
187
188static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
189{
 
190	struct clk *t2_clk = tc->clk[2];
191	int irq = tc->irq[2];
192
 
 
 
 
 
 
 
 
 
 
 
 
 
193	clkevt.regs = tc->regs;
194	clkevt.clk = t2_clk;
195	tc_irqaction.dev_id = &clkevt;
196
197	timer_clock = clk32k_divisor_idx;
198
199	clkevt.clkevt.mult = div_sc(32768, NSEC_PER_SEC, clkevt.clkevt.shift);
200	clkevt.clkevt.max_delta_ns
201		= clockevent_delta2ns(0xffff, &clkevt.clkevt);
202	clkevt.clkevt.min_delta_ns = clockevent_delta2ns(1, &clkevt.clkevt) + 1;
203	clkevt.clkevt.cpumask = cpumask_of(0);
204
205	clockevents_register_device(&clkevt.clkevt);
 
 
 
 
 
 
 
206
207	setup_irq(irq, &tc_irqaction);
208}
209
210#else /* !CONFIG_GENERIC_CLOCKEVENTS */
211
212static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
213{
214	/* NOTHING */
 
215}
216
217#endif
218
219static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
220{
221	/* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
222	__raw_writel(mck_divisor_idx			/* likely divide-by-8 */
223			| ATMEL_TC_WAVE
224			| ATMEL_TC_WAVESEL_UP		/* free-run */
225			| ATMEL_TC_ACPA_SET		/* TIOA0 rises at 0 */
226			| ATMEL_TC_ACPC_CLEAR,		/* (duty cycle 50%) */
227			tcaddr + ATMEL_TC_REG(0, CMR));
228	__raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
229	__raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
230	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
231	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
232
233	/* channel 1:  waveform mode, input TIOA0 */
234	__raw_writel(ATMEL_TC_XC1			/* input: TIOA0 */
235			| ATMEL_TC_WAVE
236			| ATMEL_TC_WAVESEL_UP,		/* free-run */
237			tcaddr + ATMEL_TC_REG(1, CMR));
238	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));	/* no irqs */
239	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
240
241	/* chain channel 0 to channel 1*/
242	__raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
243	/* then reset all the timers */
244	__raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
245}
246
247static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
248{
249	/* channel 0:  waveform mode, input mclk/8 */
250	__raw_writel(mck_divisor_idx			/* likely divide-by-8 */
251			| ATMEL_TC_WAVE
252			| ATMEL_TC_WAVESEL_UP,		/* free-run */
253			tcaddr + ATMEL_TC_REG(0, CMR));
254	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
255	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
256
257	/* then reset all the timers */
258	__raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
259}
260
261static int __init tcb_clksrc_init(void)
262{
263	static char bootinfo[] __initdata
264		= KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
265
266	struct platform_device *pdev;
267	struct atmel_tc *tc;
268	struct clk *t0_clk;
269	u32 rate, divided_rate = 0;
270	int best_divisor_idx = -1;
271	int clk32k_divisor_idx = -1;
272	int i;
 
273
274	tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK, clksrc.name);
275	if (!tc) {
276		pr_debug("can't alloc TC for clocksource\n");
277		return -ENODEV;
278	}
279	tcaddr = tc->regs;
280	pdev = tc->pdev;
281
282	t0_clk = tc->clk[0];
283	clk_enable(t0_clk);
 
 
 
 
284
285	/* How fast will we be counting?  Pick something over 5 MHz.  */
286	rate = (u32) clk_get_rate(t0_clk);
287	for (i = 0; i < 5; i++) {
288		unsigned divisor = atmel_tc_divisors[i];
289		unsigned tmp;
290
291		/* remember 32 KiHz clock for later */
292		if (!divisor) {
293			clk32k_divisor_idx = i;
294			continue;
295		}
296
297		tmp = rate / divisor;
298		pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
299		if (best_divisor_idx > 0) {
300			if (tmp < 5 * 1000 * 1000)
301				continue;
302		}
303		divided_rate = tmp;
304		best_divisor_idx = i;
305	}
306
307
308	printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
309			divided_rate / 1000000,
310			((divided_rate + 500000) % 1000000) / 1000);
311
312	if (tc->tcb_config && tc->tcb_config->counter_width == 32) {
313		/* use apropriate function to read 32 bit counter */
314		clksrc.read = tc_get_cycles32;
315		/* setup ony channel 0 */
316		tcb_setup_single_chan(tc, best_divisor_idx);
317	} else {
318		/* tclib will give us three clocks no matter what the
319		 * underlying platform supports.
320		 */
321		clk_enable(tc->clk[1]);
 
 
 
 
322		/* setup both channel 0 & 1 */
323		tcb_setup_dual_chan(tc, best_divisor_idx);
324	}
325
326	/* and away we go! */
327	clocksource_register_hz(&clksrc, divided_rate);
 
 
328
329	/* channel 2:  periodic and oneshot timer support */
330	setup_clkevents(tc, clk32k_divisor_idx);
 
 
331
332	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333}
334arch_initcall(tcb_clksrc_init);
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/init.h>
  3#include <linux/clocksource.h>
  4#include <linux/clockchips.h>
  5#include <linux/interrupt.h>
  6#include <linux/irq.h>
  7
  8#include <linux/clk.h>
  9#include <linux/err.h>
 10#include <linux/ioport.h>
 11#include <linux/io.h>
 12#include <linux/platform_device.h>
 13#include <linux/syscore_ops.h>
 14#include <linux/atmel_tc.h>
 15
 16
 17/*
 18 * We're configured to use a specific TC block, one that's not hooked
 19 * up to external hardware, to provide a time solution:
 20 *
 21 *   - Two channels combine to create a free-running 32 bit counter
 22 *     with a base rate of 5+ MHz, packaged as a clocksource (with
 23 *     resolution better than 200 nsec).
 24 *   - Some chips support 32 bit counter. A single channel is used for
 25 *     this 32 bit free-running counter. the second channel is not used.
 26 *
 27 *   - The third channel may be used to provide a 16-bit clockevent
 28 *     source, used in either periodic or oneshot mode.  This runs
 29 *     at 32 KiHZ, and can handle delays of up to two seconds.
 30 *
 31 * A boot clocksource and clockevent source are also currently needed,
 32 * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
 33 * this code can be used when init_timers() is called, well before most
 34 * devices are set up.  (Some low end AT91 parts, which can run uClinux,
 35 * have only the timers in one TC block... they currently don't support
 36 * the tclib code, because of that initialization issue.)
 37 *
 38 * REVISIT behavior during system suspend states... we should disable
 39 * all clocks and save the power.  Easily done for clockevent devices,
 40 * but clocksources won't necessarily get the needed notifications.
 41 * For deeper system sleep states, this will be mandatory...
 42 */
 43
 44static void __iomem *tcaddr;
 45static struct
 46{
 47	u32 cmr;
 48	u32 imr;
 49	u32 rc;
 50	bool clken;
 51} tcb_cache[3];
 52static u32 bmr_cache;
 53
 54static u64 tc_get_cycles(struct clocksource *cs)
 55{
 56	unsigned long	flags;
 57	u32		lower, upper;
 58
 59	raw_local_irq_save(flags);
 60	do {
 61		upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
 62		lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
 63	} while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
 64
 65	raw_local_irq_restore(flags);
 66	return (upper << 16) | lower;
 67}
 68
 69static u64 tc_get_cycles32(struct clocksource *cs)
 70{
 71	return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
 72}
 73
 74void tc_clksrc_suspend(struct clocksource *cs)
 75{
 76	int i;
 77
 78	for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
 79		tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
 80		tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
 81		tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
 82		tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
 83					ATMEL_TC_CLKSTA);
 84	}
 85
 86	bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
 87}
 88
 89void tc_clksrc_resume(struct clocksource *cs)
 90{
 91	int i;
 92
 93	for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
 94		/* Restore registers for the channel, RA and RB are not used  */
 95		writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
 96		writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
 97		writel(0, tcaddr + ATMEL_TC_REG(i, RA));
 98		writel(0, tcaddr + ATMEL_TC_REG(i, RB));
 99		/* Disable all the interrupts */
100		writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
101		/* Reenable interrupts that were enabled before suspending */
102		writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
103		/* Start the clock if it was used */
104		if (tcb_cache[i].clken)
105			writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
106	}
107
108	/* Dual channel, chain channels */
109	writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
110	/* Finally, trigger all the channels*/
111	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
112}
113
114static struct clocksource clksrc = {
115	.name           = "tcb_clksrc",
116	.rating         = 200,
117	.read           = tc_get_cycles,
118	.mask           = CLOCKSOURCE_MASK(32),
119	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
120	.suspend	= tc_clksrc_suspend,
121	.resume		= tc_clksrc_resume,
122};
123
124#ifdef CONFIG_GENERIC_CLOCKEVENTS
125
126struct tc_clkevt_device {
127	struct clock_event_device	clkevt;
128	struct clk			*clk;
129	void __iomem			*regs;
130};
131
132static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
133{
134	return container_of(clkevt, struct tc_clkevt_device, clkevt);
135}
136
137/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
138 * because using one of the divided clocks would usually mean the
139 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
140 *
141 * A divided clock could be good for high resolution timers, since
142 * 30.5 usec resolution can seem "low".
143 */
144static u32 timer_clock;
145
146static int tc_shutdown(struct clock_event_device *d)
147{
148	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
149	void __iomem		*regs = tcd->regs;
150
151	writel(0xff, regs + ATMEL_TC_REG(2, IDR));
152	writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
153	if (!clockevent_state_detached(d))
 
154		clk_disable(tcd->clk);
 
155
156	return 0;
157}
158
159static int tc_set_oneshot(struct clock_event_device *d)
160{
161	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
162	void __iomem		*regs = tcd->regs;
163
164	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
165		tc_shutdown(d);
166
167	clk_enable(tcd->clk);
168
169	/* slow clock, count up to RC, then irq and stop */
170	writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
171		     ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
172	writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
173
174	/* set_next_event() configures and starts the timer */
175	return 0;
176}
177
178static int tc_set_periodic(struct clock_event_device *d)
179{
180	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
181	void __iomem		*regs = tcd->regs;
182
183	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
184		tc_shutdown(d);
185
186	/* By not making the gentime core emulate periodic mode on top
187	 * of oneshot, we get lower overhead and improved accuracy.
188	 */
189	clk_enable(tcd->clk);
 
190
191	/* slow clock, count up to RC, then irq and restart */
192	writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
193		     regs + ATMEL_TC_REG(2, CMR));
194	writel((32768 + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
196	/* Enable clock and interrupts on RC compare */
197	writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
198
199	/* go go gadget! */
200	writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
201		     ATMEL_TC_REG(2, CCR));
202	return 0;
203}
204
205static int tc_next_event(unsigned long delta, struct clock_event_device *d)
206{
207	writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
208
209	/* go go gadget! */
210	writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
211			tcaddr + ATMEL_TC_REG(2, CCR));
212	return 0;
213}
214
215static struct tc_clkevt_device clkevt = {
216	.clkevt	= {
217		.name			= "tc_clkevt",
218		.features		= CLOCK_EVT_FEAT_PERIODIC |
219					  CLOCK_EVT_FEAT_ONESHOT,
 
220		/* Should be lower than at91rm9200's system timer */
221		.rating			= 125,
222		.set_next_event		= tc_next_event,
223		.set_state_shutdown	= tc_shutdown,
224		.set_state_periodic	= tc_set_periodic,
225		.set_state_oneshot	= tc_set_oneshot,
226	},
227};
228
229static irqreturn_t ch2_irq(int irq, void *handle)
230{
231	struct tc_clkevt_device	*dev = handle;
232	unsigned int		sr;
233
234	sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
235	if (sr & ATMEL_TC_CPCS) {
236		dev->clkevt.event_handler(&dev->clkevt);
237		return IRQ_HANDLED;
238	}
239
240	return IRQ_NONE;
241}
242
243static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
 
 
 
 
 
 
244{
245	int ret;
246	struct clk *t2_clk = tc->clk[2];
247	int irq = tc->irq[2];
248
249	ret = clk_prepare_enable(tc->slow_clk);
250	if (ret)
251		return ret;
252
253	/* try to enable t2 clk to avoid future errors in mode change */
254	ret = clk_prepare_enable(t2_clk);
255	if (ret) {
256		clk_disable_unprepare(tc->slow_clk);
257		return ret;
258	}
259
260	clk_disable(t2_clk);
261
262	clkevt.regs = tc->regs;
263	clkevt.clk = t2_clk;
 
264
265	timer_clock = clk32k_divisor_idx;
266
 
 
 
 
267	clkevt.clkevt.cpumask = cpumask_of(0);
268
269	ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
270	if (ret) {
271		clk_unprepare(t2_clk);
272		clk_disable_unprepare(tc->slow_clk);
273		return ret;
274	}
275
276	clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
277
278	return ret;
279}
280
281#else /* !CONFIG_GENERIC_CLOCKEVENTS */
282
283static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
284{
285	/* NOTHING */
286	return 0;
287}
288
289#endif
290
291static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
292{
293	/* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
294	writel(mck_divisor_idx			/* likely divide-by-8 */
295			| ATMEL_TC_WAVE
296			| ATMEL_TC_WAVESEL_UP		/* free-run */
297			| ATMEL_TC_ACPA_SET		/* TIOA0 rises at 0 */
298			| ATMEL_TC_ACPC_CLEAR,		/* (duty cycle 50%) */
299			tcaddr + ATMEL_TC_REG(0, CMR));
300	writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
301	writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
302	writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
303	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
304
305	/* channel 1:  waveform mode, input TIOA0 */
306	writel(ATMEL_TC_XC1			/* input: TIOA0 */
307			| ATMEL_TC_WAVE
308			| ATMEL_TC_WAVESEL_UP,		/* free-run */
309			tcaddr + ATMEL_TC_REG(1, CMR));
310	writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));	/* no irqs */
311	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
312
313	/* chain channel 0 to channel 1*/
314	writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
315	/* then reset all the timers */
316	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
317}
318
319static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
320{
321	/* channel 0:  waveform mode, input mclk/8 */
322	writel(mck_divisor_idx			/* likely divide-by-8 */
323			| ATMEL_TC_WAVE
324			| ATMEL_TC_WAVESEL_UP,		/* free-run */
325			tcaddr + ATMEL_TC_REG(0, CMR));
326	writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
327	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
328
329	/* then reset all the timers */
330	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
331}
332
333static int __init tcb_clksrc_init(void)
334{
335	static char bootinfo[] __initdata
336		= KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
337
338	struct platform_device *pdev;
339	struct atmel_tc *tc;
340	struct clk *t0_clk;
341	u32 rate, divided_rate = 0;
342	int best_divisor_idx = -1;
343	int clk32k_divisor_idx = -1;
344	int i;
345	int ret;
346
347	tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK);
348	if (!tc) {
349		pr_debug("can't alloc TC for clocksource\n");
350		return -ENODEV;
351	}
352	tcaddr = tc->regs;
353	pdev = tc->pdev;
354
355	t0_clk = tc->clk[0];
356	ret = clk_prepare_enable(t0_clk);
357	if (ret) {
358		pr_debug("can't enable T0 clk\n");
359		goto err_free_tc;
360	}
361
362	/* How fast will we be counting?  Pick something over 5 MHz.  */
363	rate = (u32) clk_get_rate(t0_clk);
364	for (i = 0; i < 5; i++) {
365		unsigned divisor = atmel_tc_divisors[i];
366		unsigned tmp;
367
368		/* remember 32 KiHz clock for later */
369		if (!divisor) {
370			clk32k_divisor_idx = i;
371			continue;
372		}
373
374		tmp = rate / divisor;
375		pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
376		if (best_divisor_idx > 0) {
377			if (tmp < 5 * 1000 * 1000)
378				continue;
379		}
380		divided_rate = tmp;
381		best_divisor_idx = i;
382	}
383
384
385	printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
386			divided_rate / 1000000,
387			((divided_rate % 1000000) + 500) / 1000);
388
389	if (tc->tcb_config && tc->tcb_config->counter_width == 32) {
390		/* use apropriate function to read 32 bit counter */
391		clksrc.read = tc_get_cycles32;
392		/* setup ony channel 0 */
393		tcb_setup_single_chan(tc, best_divisor_idx);
394	} else {
395		/* tclib will give us three clocks no matter what the
396		 * underlying platform supports.
397		 */
398		ret = clk_prepare_enable(tc->clk[1]);
399		if (ret) {
400			pr_debug("can't enable T1 clk\n");
401			goto err_disable_t0;
402		}
403		/* setup both channel 0 & 1 */
404		tcb_setup_dual_chan(tc, best_divisor_idx);
405	}
406
407	/* and away we go! */
408	ret = clocksource_register_hz(&clksrc, divided_rate);
409	if (ret)
410		goto err_disable_t1;
411
412	/* channel 2:  periodic and oneshot timer support */
413	ret = setup_clkevents(tc, clk32k_divisor_idx);
414	if (ret)
415		goto err_unregister_clksrc;
416
417	return 0;
418
419err_unregister_clksrc:
420	clocksource_unregister(&clksrc);
421
422err_disable_t1:
423	if (!tc->tcb_config || tc->tcb_config->counter_width != 32)
424		clk_disable_unprepare(tc->clk[1]);
425
426err_disable_t0:
427	clk_disable_unprepare(t0_clk);
428
429err_free_tc:
430	atmel_tc_free(tc);
431	return ret;
432}
433arch_initcall(tcb_clksrc_init);