Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * (C) Copyright 2009 Intel Corporation
  3 * Author: Jacob Pan (jacob.jun.pan@intel.com)
  4 *
  5 * Shared with ARM platforms, Jamie Iles, Picochip 2011
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 *
 11 * Support for the Synopsys DesignWare APB Timers.
 12 */
 13#include <linux/dw_apb_timer.h>
 14#include <linux/delay.h>
 15#include <linux/kernel.h>
 16#include <linux/interrupt.h>
 17#include <linux/irq.h>
 18#include <linux/io.h>
 19#include <linux/slab.h>
 20
 21#define APBT_MIN_PERIOD			4
 22#define APBT_MIN_DELTA_USEC		200
 23
 24#define APBTMR_N_LOAD_COUNT		0x00
 25#define APBTMR_N_CURRENT_VALUE		0x04
 26#define APBTMR_N_CONTROL		0x08
 27#define APBTMR_N_EOI			0x0c
 28#define APBTMR_N_INT_STATUS		0x10
 29
 30#define APBTMRS_INT_STATUS		0xa0
 31#define APBTMRS_EOI			0xa4
 32#define APBTMRS_RAW_INT_STATUS		0xa8
 33#define APBTMRS_COMP_VERSION		0xac
 34
 35#define APBTMR_CONTROL_ENABLE		(1 << 0)
 36/* 1: periodic, 0:free running. */
 37#define APBTMR_CONTROL_MODE_PERIODIC	(1 << 1)
 38#define APBTMR_CONTROL_INT		(1 << 2)
 39
 40static inline struct dw_apb_clock_event_device *
 41ced_to_dw_apb_ced(struct clock_event_device *evt)
 42{
 43	return container_of(evt, struct dw_apb_clock_event_device, ced);
 44}
 45
 46static inline struct dw_apb_clocksource *
 47clocksource_to_dw_apb_clocksource(struct clocksource *cs)
 48{
 49	return container_of(cs, struct dw_apb_clocksource, cs);
 50}
 51
 52static unsigned long apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
 53{
 54	return readl(timer->base + offs);
 55}
 56
 57static void apbt_writel(struct dw_apb_timer *timer, unsigned long val,
 58		 unsigned long offs)
 59{
 60	writel(val, timer->base + offs);
 61}
 62
 
 
 
 
 
 
 
 
 
 
 
 63static void apbt_disable_int(struct dw_apb_timer *timer)
 64{
 65	unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
 66
 67	ctrl |= APBTMR_CONTROL_INT;
 68	apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
 69}
 70
 71/**
 72 * dw_apb_clockevent_pause() - stop the clock_event_device from running
 73 *
 74 * @dw_ced:	The APB clock to stop generating events.
 75 */
 76void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
 77{
 78	disable_irq(dw_ced->timer.irq);
 79	apbt_disable_int(&dw_ced->timer);
 80}
 81
 82static void apbt_eoi(struct dw_apb_timer *timer)
 83{
 84	apbt_readl(timer, APBTMR_N_EOI);
 85}
 86
 87static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
 88{
 89	struct clock_event_device *evt = data;
 90	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
 91
 92	if (!evt->event_handler) {
 93		pr_info("Spurious APBT timer interrupt %d", irq);
 94		return IRQ_NONE;
 95	}
 96
 97	if (dw_ced->eoi)
 98		dw_ced->eoi(&dw_ced->timer);
 99
100	evt->event_handler(evt);
101	return IRQ_HANDLED;
102}
103
104static void apbt_enable_int(struct dw_apb_timer *timer)
105{
106	unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
107	/* clear pending intr */
108	apbt_readl(timer, APBTMR_N_EOI);
109	ctrl &= ~APBTMR_CONTROL_INT;
110	apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
111}
112
113static void apbt_set_mode(enum clock_event_mode mode,
114			  struct clock_event_device *evt)
115{
116	unsigned long ctrl;
117	unsigned long period;
118	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
 
119
120	pr_debug("%s CPU %d mode=%d\n", __func__, first_cpu(*evt->cpumask),
121		 mode);
122
123	switch (mode) {
124	case CLOCK_EVT_MODE_PERIODIC:
125		period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
126		ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
127		ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
128		apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
129		/*
130		 * DW APB p. 46, have to disable timer before load counter,
131		 * may cause sync problem.
132		 */
133		ctrl &= ~APBTMR_CONTROL_ENABLE;
134		apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
135		udelay(1);
136		pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
137		apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
138		ctrl |= APBTMR_CONTROL_ENABLE;
139		apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
140		break;
141
142	case CLOCK_EVT_MODE_ONESHOT:
143		ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
144		/*
145		 * set free running mode, this mode will let timer reload max
146		 * timeout which will give time (3min on 25MHz clock) to rearm
147		 * the next event, therefore emulate the one-shot mode.
148		 */
149		ctrl &= ~APBTMR_CONTROL_ENABLE;
150		ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
151
152		apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
153		/* write again to set free running mode */
154		apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
155
156		/*
157		 * DW APB p. 46, load counter with all 1s before starting free
158		 * running mode.
159		 */
160		apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
161		ctrl &= ~APBTMR_CONTROL_INT;
162		ctrl |= APBTMR_CONTROL_ENABLE;
163		apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
164		break;
165
166	case CLOCK_EVT_MODE_UNUSED:
167	case CLOCK_EVT_MODE_SHUTDOWN:
168		ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
169		ctrl &= ~APBTMR_CONTROL_ENABLE;
170		apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
171		break;
172
173	case CLOCK_EVT_MODE_RESUME:
174		apbt_enable_int(&dw_ced->timer);
175		break;
176	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177}
178
179static int apbt_next_event(unsigned long delta,
180			   struct clock_event_device *evt)
181{
182	unsigned long ctrl;
183	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
184
185	/* Disable timer */
186	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
187	ctrl &= ~APBTMR_CONTROL_ENABLE;
188	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
189	/* write new count */
190	apbt_writel(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
191	ctrl |= APBTMR_CONTROL_ENABLE;
192	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
193
194	return 0;
195}
196
197/**
198 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
199 *
200 * @cpu:	The CPU the events will be targeted at.
201 * @name:	The name used for the timer and the IRQ for it.
202 * @rating:	The rating to give the timer.
203 * @base:	I/O base for the timer registers.
204 * @irq:	The interrupt number to use for the timer.
205 * @freq:	The frequency that the timer counts at.
206 *
207 * This creates a clock_event_device for using with the generic clock layer
208 * but does not start and register it.  This should be done with
209 * dw_apb_clockevent_register() as the next step.  If this is the first time
210 * it has been called for a timer then the IRQ will be requested, if not it
211 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
212 * releasing the IRQ.
213 */
214struct dw_apb_clock_event_device *
215dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
216		       void __iomem *base, int irq, unsigned long freq)
217{
218	struct dw_apb_clock_event_device *dw_ced =
219		kzalloc(sizeof(*dw_ced), GFP_KERNEL);
220	int err;
221
222	if (!dw_ced)
223		return NULL;
224
225	dw_ced->timer.base = base;
226	dw_ced->timer.irq = irq;
227	dw_ced->timer.freq = freq;
228
229	clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
230	dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
231						       &dw_ced->ced);
 
232	dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
 
233	dw_ced->ced.cpumask = cpumask_of(cpu);
234	dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
235	dw_ced->ced.set_mode = apbt_set_mode;
 
 
 
 
 
236	dw_ced->ced.set_next_event = apbt_next_event;
237	dw_ced->ced.irq = dw_ced->timer.irq;
238	dw_ced->ced.rating = rating;
239	dw_ced->ced.name = name;
240
241	dw_ced->irqaction.name		= dw_ced->ced.name;
242	dw_ced->irqaction.handler	= dw_apb_clockevent_irq;
243	dw_ced->irqaction.dev_id	= &dw_ced->ced;
244	dw_ced->irqaction.irq		= irq;
245	dw_ced->irqaction.flags		= IRQF_TIMER | IRQF_IRQPOLL |
246					  IRQF_NOBALANCING |
247					  IRQF_DISABLED;
248
249	dw_ced->eoi = apbt_eoi;
250	err = setup_irq(irq, &dw_ced->irqaction);
251	if (err) {
252		pr_err("failed to request timer irq\n");
253		kfree(dw_ced);
254		dw_ced = NULL;
255	}
256
257	return dw_ced;
258}
259
260/**
261 * dw_apb_clockevent_resume() - resume a clock that has been paused.
262 *
263 * @dw_ced:	The APB clock to resume.
264 */
265void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
266{
267	enable_irq(dw_ced->timer.irq);
268}
269
270/**
271 * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
272 *
273 * @dw_ced:	The APB clock to stop generating the events.
274 */
275void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
276{
277	free_irq(dw_ced->timer.irq, &dw_ced->ced);
278}
279
280/**
281 * dw_apb_clockevent_register() - register the clock with the generic layer
282 *
283 * @dw_ced:	The APB clock to register as a clock_event_device.
284 */
285void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
286{
287	apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
288	clockevents_register_device(&dw_ced->ced);
289	apbt_enable_int(&dw_ced->timer);
290}
291
292/**
293 * dw_apb_clocksource_start() - start the clocksource counting.
294 *
295 * @dw_cs:	The clocksource to start.
296 *
297 * This is used to start the clocksource before registration and can be used
298 * to enable calibration of timers.
299 */
300void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
301{
302	/*
303	 * start count down from 0xffff_ffff. this is done by toggling the
304	 * enable bit then load initial load count to ~0.
305	 */
306	unsigned long ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
307
308	ctrl &= ~APBTMR_CONTROL_ENABLE;
309	apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
310	apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
311	/* enable, mask interrupt */
312	ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
313	ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
314	apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
315	/* read it once to get cached counter value initialized */
316	dw_apb_clocksource_read(dw_cs);
317}
318
319static cycle_t __apbt_read_clocksource(struct clocksource *cs)
320{
321	unsigned long current_count;
322	struct dw_apb_clocksource *dw_cs =
323		clocksource_to_dw_apb_clocksource(cs);
324
325	current_count = apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
 
326
327	return (cycle_t)~current_count;
328}
329
330static void apbt_restart_clocksource(struct clocksource *cs)
331{
332	struct dw_apb_clocksource *dw_cs =
333		clocksource_to_dw_apb_clocksource(cs);
334
335	dw_apb_clocksource_start(dw_cs);
336}
337
338/**
339 * dw_apb_clocksource_init() - use an APB timer as a clocksource.
340 *
341 * @rating:	The rating to give the clocksource.
342 * @name:	The name for the clocksource.
343 * @base:	The I/O base for the timer registers.
344 * @freq:	The frequency that the timer counts at.
345 *
346 * This creates a clocksource using an APB timer but does not yet register it
347 * with the clocksource system.  This should be done with
348 * dw_apb_clocksource_register() as the next step.
349 */
350struct dw_apb_clocksource *
351dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
352			unsigned long freq)
353{
354	struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
355
356	if (!dw_cs)
357		return NULL;
358
359	dw_cs->timer.base = base;
360	dw_cs->timer.freq = freq;
361	dw_cs->cs.name = name;
362	dw_cs->cs.rating = rating;
363	dw_cs->cs.read = __apbt_read_clocksource;
364	dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
365	dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
366	dw_cs->cs.resume = apbt_restart_clocksource;
367
368	return dw_cs;
369}
370
371/**
372 * dw_apb_clocksource_register() - register the APB clocksource.
373 *
374 * @dw_cs:	The clocksource to register.
375 */
376void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
377{
378	clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
379}
380
381/**
382 * dw_apb_clocksource_read() - read the current value of a clocksource.
383 *
384 * @dw_cs:	The clocksource to read.
385 */
386cycle_t dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
387{
388	return (cycle_t)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
389}
390
391/**
392 * dw_apb_clocksource_unregister() - unregister and free a clocksource.
393 *
394 * @dw_cs:	The clocksource to unregister/free.
395 */
396void dw_apb_clocksource_unregister(struct dw_apb_clocksource *dw_cs)
397{
398	clocksource_unregister(&dw_cs->cs);
399
400	kfree(dw_cs);
401}
v4.17
  1/*
  2 * (C) Copyright 2009 Intel Corporation
  3 * Author: Jacob Pan (jacob.jun.pan@intel.com)
  4 *
  5 * Shared with ARM platforms, Jamie Iles, Picochip 2011
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 *
 11 * Support for the Synopsys DesignWare APB Timers.
 12 */
 13#include <linux/dw_apb_timer.h>
 14#include <linux/delay.h>
 15#include <linux/kernel.h>
 16#include <linux/interrupt.h>
 17#include <linux/irq.h>
 18#include <linux/io.h>
 19#include <linux/slab.h>
 20
 21#define APBT_MIN_PERIOD			4
 22#define APBT_MIN_DELTA_USEC		200
 23
 24#define APBTMR_N_LOAD_COUNT		0x00
 25#define APBTMR_N_CURRENT_VALUE		0x04
 26#define APBTMR_N_CONTROL		0x08
 27#define APBTMR_N_EOI			0x0c
 28#define APBTMR_N_INT_STATUS		0x10
 29
 30#define APBTMRS_INT_STATUS		0xa0
 31#define APBTMRS_EOI			0xa4
 32#define APBTMRS_RAW_INT_STATUS		0xa8
 33#define APBTMRS_COMP_VERSION		0xac
 34
 35#define APBTMR_CONTROL_ENABLE		(1 << 0)
 36/* 1: periodic, 0:free running. */
 37#define APBTMR_CONTROL_MODE_PERIODIC	(1 << 1)
 38#define APBTMR_CONTROL_INT		(1 << 2)
 39
 40static inline struct dw_apb_clock_event_device *
 41ced_to_dw_apb_ced(struct clock_event_device *evt)
 42{
 43	return container_of(evt, struct dw_apb_clock_event_device, ced);
 44}
 45
 46static inline struct dw_apb_clocksource *
 47clocksource_to_dw_apb_clocksource(struct clocksource *cs)
 48{
 49	return container_of(cs, struct dw_apb_clocksource, cs);
 50}
 51
 52static inline u32 apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
 53{
 54	return readl(timer->base + offs);
 55}
 56
 57static inline void apbt_writel(struct dw_apb_timer *timer, u32 val,
 58			unsigned long offs)
 59{
 60	writel(val, timer->base + offs);
 61}
 62
 63static inline u32 apbt_readl_relaxed(struct dw_apb_timer *timer, unsigned long offs)
 64{
 65	return readl_relaxed(timer->base + offs);
 66}
 67
 68static inline void apbt_writel_relaxed(struct dw_apb_timer *timer, u32 val,
 69			unsigned long offs)
 70{
 71	writel_relaxed(val, timer->base + offs);
 72}
 73
 74static void apbt_disable_int(struct dw_apb_timer *timer)
 75{
 76	u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
 77
 78	ctrl |= APBTMR_CONTROL_INT;
 79	apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
 80}
 81
 82/**
 83 * dw_apb_clockevent_pause() - stop the clock_event_device from running
 84 *
 85 * @dw_ced:	The APB clock to stop generating events.
 86 */
 87void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
 88{
 89	disable_irq(dw_ced->timer.irq);
 90	apbt_disable_int(&dw_ced->timer);
 91}
 92
 93static void apbt_eoi(struct dw_apb_timer *timer)
 94{
 95	apbt_readl_relaxed(timer, APBTMR_N_EOI);
 96}
 97
 98static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
 99{
100	struct clock_event_device *evt = data;
101	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
102
103	if (!evt->event_handler) {
104		pr_info("Spurious APBT timer interrupt %d\n", irq);
105		return IRQ_NONE;
106	}
107
108	if (dw_ced->eoi)
109		dw_ced->eoi(&dw_ced->timer);
110
111	evt->event_handler(evt);
112	return IRQ_HANDLED;
113}
114
115static void apbt_enable_int(struct dw_apb_timer *timer)
116{
117	u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
118	/* clear pending intr */
119	apbt_readl(timer, APBTMR_N_EOI);
120	ctrl &= ~APBTMR_CONTROL_INT;
121	apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
122}
123
124static int apbt_shutdown(struct clock_event_device *evt)
 
125{
 
 
126	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
127	u32 ctrl;
128
129	pr_debug("%s CPU %d state=shutdown\n", __func__,
130		 cpumask_first(evt->cpumask));
131
132	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
133	ctrl &= ~APBTMR_CONTROL_ENABLE;
134	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
135	return 0;
136}
137
138static int apbt_set_oneshot(struct clock_event_device *evt)
139{
140	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
141	u32 ctrl;
142
143	pr_debug("%s CPU %d state=oneshot\n", __func__,
144		 cpumask_first(evt->cpumask));
145
146	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
147	/*
148	 * set free running mode, this mode will let timer reload max
149	 * timeout which will give time (3min on 25MHz clock) to rearm
150	 * the next event, therefore emulate the one-shot mode.
151	 */
152	ctrl &= ~APBTMR_CONTROL_ENABLE;
153	ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
154
155	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
156	/* write again to set free running mode */
157	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
158
159	/*
160	 * DW APB p. 46, load counter with all 1s before starting free
161	 * running mode.
162	 */
163	apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
164	ctrl &= ~APBTMR_CONTROL_INT;
165	ctrl |= APBTMR_CONTROL_ENABLE;
166	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
167	return 0;
168}
169
170static int apbt_set_periodic(struct clock_event_device *evt)
171{
172	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
173	unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
174	u32 ctrl;
175
176	pr_debug("%s CPU %d state=periodic\n", __func__,
177		 cpumask_first(evt->cpumask));
178
179	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
180	ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
181	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
182	/*
183	 * DW APB p. 46, have to disable timer before load counter,
184	 * may cause sync problem.
185	 */
186	ctrl &= ~APBTMR_CONTROL_ENABLE;
187	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
188	udelay(1);
189	pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
190	apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
191	ctrl |= APBTMR_CONTROL_ENABLE;
192	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
193	return 0;
194}
195
196static int apbt_resume(struct clock_event_device *evt)
197{
198	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
199
200	pr_debug("%s CPU %d state=resume\n", __func__,
201		 cpumask_first(evt->cpumask));
202
203	apbt_enable_int(&dw_ced->timer);
204	return 0;
205}
206
207static int apbt_next_event(unsigned long delta,
208			   struct clock_event_device *evt)
209{
210	u32 ctrl;
211	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
212
213	/* Disable timer */
214	ctrl = apbt_readl_relaxed(&dw_ced->timer, APBTMR_N_CONTROL);
215	ctrl &= ~APBTMR_CONTROL_ENABLE;
216	apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
217	/* write new count */
218	apbt_writel_relaxed(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
219	ctrl |= APBTMR_CONTROL_ENABLE;
220	apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
221
222	return 0;
223}
224
225/**
226 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
227 *
228 * @cpu:	The CPU the events will be targeted at.
229 * @name:	The name used for the timer and the IRQ for it.
230 * @rating:	The rating to give the timer.
231 * @base:	I/O base for the timer registers.
232 * @irq:	The interrupt number to use for the timer.
233 * @freq:	The frequency that the timer counts at.
234 *
235 * This creates a clock_event_device for using with the generic clock layer
236 * but does not start and register it.  This should be done with
237 * dw_apb_clockevent_register() as the next step.  If this is the first time
238 * it has been called for a timer then the IRQ will be requested, if not it
239 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
240 * releasing the IRQ.
241 */
242struct dw_apb_clock_event_device *
243dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
244		       void __iomem *base, int irq, unsigned long freq)
245{
246	struct dw_apb_clock_event_device *dw_ced =
247		kzalloc(sizeof(*dw_ced), GFP_KERNEL);
248	int err;
249
250	if (!dw_ced)
251		return NULL;
252
253	dw_ced->timer.base = base;
254	dw_ced->timer.irq = irq;
255	dw_ced->timer.freq = freq;
256
257	clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
258	dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
259						       &dw_ced->ced);
260	dw_ced->ced.max_delta_ticks = 0x7fffffff;
261	dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
262	dw_ced->ced.min_delta_ticks = 5000;
263	dw_ced->ced.cpumask = cpumask_of(cpu);
264	dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC |
265				CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ;
266	dw_ced->ced.set_state_shutdown = apbt_shutdown;
267	dw_ced->ced.set_state_periodic = apbt_set_periodic;
268	dw_ced->ced.set_state_oneshot = apbt_set_oneshot;
269	dw_ced->ced.set_state_oneshot_stopped = apbt_shutdown;
270	dw_ced->ced.tick_resume = apbt_resume;
271	dw_ced->ced.set_next_event = apbt_next_event;
272	dw_ced->ced.irq = dw_ced->timer.irq;
273	dw_ced->ced.rating = rating;
274	dw_ced->ced.name = name;
275
276	dw_ced->irqaction.name		= dw_ced->ced.name;
277	dw_ced->irqaction.handler	= dw_apb_clockevent_irq;
278	dw_ced->irqaction.dev_id	= &dw_ced->ced;
279	dw_ced->irqaction.irq		= irq;
280	dw_ced->irqaction.flags		= IRQF_TIMER | IRQF_IRQPOLL |
281					  IRQF_NOBALANCING;
 
282
283	dw_ced->eoi = apbt_eoi;
284	err = setup_irq(irq, &dw_ced->irqaction);
285	if (err) {
286		pr_err("failed to request timer irq\n");
287		kfree(dw_ced);
288		dw_ced = NULL;
289	}
290
291	return dw_ced;
292}
293
294/**
295 * dw_apb_clockevent_resume() - resume a clock that has been paused.
296 *
297 * @dw_ced:	The APB clock to resume.
298 */
299void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
300{
301	enable_irq(dw_ced->timer.irq);
302}
303
304/**
305 * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
306 *
307 * @dw_ced:	The APB clock to stop generating the events.
308 */
309void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
310{
311	free_irq(dw_ced->timer.irq, &dw_ced->ced);
312}
313
314/**
315 * dw_apb_clockevent_register() - register the clock with the generic layer
316 *
317 * @dw_ced:	The APB clock to register as a clock_event_device.
318 */
319void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
320{
321	apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
322	clockevents_register_device(&dw_ced->ced);
323	apbt_enable_int(&dw_ced->timer);
324}
325
326/**
327 * dw_apb_clocksource_start() - start the clocksource counting.
328 *
329 * @dw_cs:	The clocksource to start.
330 *
331 * This is used to start the clocksource before registration and can be used
332 * to enable calibration of timers.
333 */
334void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
335{
336	/*
337	 * start count down from 0xffff_ffff. this is done by toggling the
338	 * enable bit then load initial load count to ~0.
339	 */
340	u32 ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
341
342	ctrl &= ~APBTMR_CONTROL_ENABLE;
343	apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
344	apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
345	/* enable, mask interrupt */
346	ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
347	ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
348	apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
349	/* read it once to get cached counter value initialized */
350	dw_apb_clocksource_read(dw_cs);
351}
352
353static u64 __apbt_read_clocksource(struct clocksource *cs)
354{
355	u32 current_count;
356	struct dw_apb_clocksource *dw_cs =
357		clocksource_to_dw_apb_clocksource(cs);
358
359	current_count = apbt_readl_relaxed(&dw_cs->timer,
360					APBTMR_N_CURRENT_VALUE);
361
362	return (u64)~current_count;
363}
364
365static void apbt_restart_clocksource(struct clocksource *cs)
366{
367	struct dw_apb_clocksource *dw_cs =
368		clocksource_to_dw_apb_clocksource(cs);
369
370	dw_apb_clocksource_start(dw_cs);
371}
372
373/**
374 * dw_apb_clocksource_init() - use an APB timer as a clocksource.
375 *
376 * @rating:	The rating to give the clocksource.
377 * @name:	The name for the clocksource.
378 * @base:	The I/O base for the timer registers.
379 * @freq:	The frequency that the timer counts at.
380 *
381 * This creates a clocksource using an APB timer but does not yet register it
382 * with the clocksource system.  This should be done with
383 * dw_apb_clocksource_register() as the next step.
384 */
385struct dw_apb_clocksource *
386dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
387			unsigned long freq)
388{
389	struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
390
391	if (!dw_cs)
392		return NULL;
393
394	dw_cs->timer.base = base;
395	dw_cs->timer.freq = freq;
396	dw_cs->cs.name = name;
397	dw_cs->cs.rating = rating;
398	dw_cs->cs.read = __apbt_read_clocksource;
399	dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
400	dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
401	dw_cs->cs.resume = apbt_restart_clocksource;
402
403	return dw_cs;
404}
405
406/**
407 * dw_apb_clocksource_register() - register the APB clocksource.
408 *
409 * @dw_cs:	The clocksource to register.
410 */
411void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
412{
413	clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
414}
415
416/**
417 * dw_apb_clocksource_read() - read the current value of a clocksource.
418 *
419 * @dw_cs:	The clocksource to read.
420 */
421u64 dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
 
 
 
 
 
 
 
 
 
 
422{
423	return (u64)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
 
 
424}