Loading...
1/*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 *
26 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27 *
28 */
29
30#include <linux/module.h>
31#include <linux/kernel.h>
32#include <linux/slab.h>
33#include <linux/mm.h>
34#include <linux/highmem.h>
35#include <linux/pci.h>
36#include <linux/interrupt.h>
37#include <linux/kmod.h>
38#include <linux/delay.h>
39#include <linux/workqueue.h>
40#include <linux/nmi.h>
41#include <linux/acpi.h>
42#include <linux/acpi_io.h>
43#include <linux/efi.h>
44#include <linux/ioport.h>
45#include <linux/list.h>
46#include <linux/jiffies.h>
47#include <linux/semaphore.h>
48
49#include <asm/io.h>
50#include <asm/uaccess.h>
51
52#include <acpi/acpi.h>
53#include <acpi/acpi_bus.h>
54#include <acpi/processor.h>
55
56#define _COMPONENT ACPI_OS_SERVICES
57ACPI_MODULE_NAME("osl");
58#define PREFIX "ACPI: "
59struct acpi_os_dpc {
60 acpi_osd_exec_callback function;
61 void *context;
62 struct work_struct work;
63 int wait;
64};
65
66#ifdef CONFIG_ACPI_CUSTOM_DSDT
67#include CONFIG_ACPI_CUSTOM_DSDT_FILE
68#endif
69
70#ifdef ENABLE_DEBUGGER
71#include <linux/kdb.h>
72
73/* stuff for debugger support */
74int acpi_in_debugger;
75EXPORT_SYMBOL(acpi_in_debugger);
76
77extern char line_buf[80];
78#endif /*ENABLE_DEBUGGER */
79
80static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
81 u32 pm1b_ctrl);
82
83static acpi_osd_handler acpi_irq_handler;
84static void *acpi_irq_context;
85static struct workqueue_struct *kacpid_wq;
86static struct workqueue_struct *kacpi_notify_wq;
87struct workqueue_struct *kacpi_hotplug_wq;
88EXPORT_SYMBOL(kacpi_hotplug_wq);
89
90/*
91 * This list of permanent mappings is for memory that may be accessed from
92 * interrupt context, where we can't do the ioremap().
93 */
94struct acpi_ioremap {
95 struct list_head list;
96 void __iomem *virt;
97 acpi_physical_address phys;
98 acpi_size size;
99 unsigned long refcount;
100};
101
102static LIST_HEAD(acpi_ioremaps);
103static DEFINE_MUTEX(acpi_ioremap_lock);
104
105static void __init acpi_osi_setup_late(void);
106
107/*
108 * The story of _OSI(Linux)
109 *
110 * From pre-history through Linux-2.6.22,
111 * Linux responded TRUE upon a BIOS OSI(Linux) query.
112 *
113 * Unfortunately, reference BIOS writers got wind of this
114 * and put OSI(Linux) in their example code, quickly exposing
115 * this string as ill-conceived and opening the door to
116 * an un-bounded number of BIOS incompatibilities.
117 *
118 * For example, OSI(Linux) was used on resume to re-POST a
119 * video card on one system, because Linux at that time
120 * could not do a speedy restore in its native driver.
121 * But then upon gaining quick native restore capability,
122 * Linux has no way to tell the BIOS to skip the time-consuming
123 * POST -- putting Linux at a permanent performance disadvantage.
124 * On another system, the BIOS writer used OSI(Linux)
125 * to infer native OS support for IPMI! On other systems,
126 * OSI(Linux) simply got in the way of Linux claiming to
127 * be compatible with other operating systems, exposing
128 * BIOS issues such as skipped device initialization.
129 *
130 * So "Linux" turned out to be a really poor chose of
131 * OSI string, and from Linux-2.6.23 onward we respond FALSE.
132 *
133 * BIOS writers should NOT query _OSI(Linux) on future systems.
134 * Linux will complain on the console when it sees it, and return FALSE.
135 * To get Linux to return TRUE for your system will require
136 * a kernel source update to add a DMI entry,
137 * or boot with "acpi_osi=Linux"
138 */
139
140static struct osi_linux {
141 unsigned int enable:1;
142 unsigned int dmi:1;
143 unsigned int cmdline:1;
144} osi_linux = {0, 0, 0};
145
146static u32 acpi_osi_handler(acpi_string interface, u32 supported)
147{
148 if (!strcmp("Linux", interface)) {
149
150 printk_once(KERN_NOTICE FW_BUG PREFIX
151 "BIOS _OSI(Linux) query %s%s\n",
152 osi_linux.enable ? "honored" : "ignored",
153 osi_linux.cmdline ? " via cmdline" :
154 osi_linux.dmi ? " via DMI" : "");
155 }
156
157 return supported;
158}
159
160static void __init acpi_request_region (struct acpi_generic_address *gas,
161 unsigned int length, char *desc)
162{
163 u64 addr;
164
165 /* Handle possible alignment issues */
166 memcpy(&addr, &gas->address, sizeof(addr));
167 if (!addr || !length)
168 return;
169
170 /* Resources are never freed */
171 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
172 request_region(addr, length, desc);
173 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
174 request_mem_region(addr, length, desc);
175}
176
177static int __init acpi_reserve_resources(void)
178{
179 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
180 "ACPI PM1a_EVT_BLK");
181
182 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
183 "ACPI PM1b_EVT_BLK");
184
185 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
186 "ACPI PM1a_CNT_BLK");
187
188 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
189 "ACPI PM1b_CNT_BLK");
190
191 if (acpi_gbl_FADT.pm_timer_length == 4)
192 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
193
194 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
195 "ACPI PM2_CNT_BLK");
196
197 /* Length of GPE blocks must be a non-negative multiple of 2 */
198
199 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
200 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
201 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
202
203 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
204 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
205 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
206
207 return 0;
208}
209device_initcall(acpi_reserve_resources);
210
211void acpi_os_printf(const char *fmt, ...)
212{
213 va_list args;
214 va_start(args, fmt);
215 acpi_os_vprintf(fmt, args);
216 va_end(args);
217}
218
219void acpi_os_vprintf(const char *fmt, va_list args)
220{
221 static char buffer[512];
222
223 vsprintf(buffer, fmt, args);
224
225#ifdef ENABLE_DEBUGGER
226 if (acpi_in_debugger) {
227 kdb_printf("%s", buffer);
228 } else {
229 printk(KERN_CONT "%s", buffer);
230 }
231#else
232 printk(KERN_CONT "%s", buffer);
233#endif
234}
235
236#ifdef CONFIG_KEXEC
237static unsigned long acpi_rsdp;
238static int __init setup_acpi_rsdp(char *arg)
239{
240 acpi_rsdp = simple_strtoul(arg, NULL, 16);
241 return 0;
242}
243early_param("acpi_rsdp", setup_acpi_rsdp);
244#endif
245
246acpi_physical_address __init acpi_os_get_root_pointer(void)
247{
248#ifdef CONFIG_KEXEC
249 if (acpi_rsdp)
250 return acpi_rsdp;
251#endif
252
253 if (efi_enabled) {
254 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
255 return efi.acpi20;
256 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
257 return efi.acpi;
258 else {
259 printk(KERN_ERR PREFIX
260 "System description tables not found\n");
261 return 0;
262 }
263 } else {
264 acpi_physical_address pa = 0;
265
266 acpi_find_root_pointer(&pa);
267 return pa;
268 }
269}
270
271/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
272static struct acpi_ioremap *
273acpi_map_lookup(acpi_physical_address phys, acpi_size size)
274{
275 struct acpi_ioremap *map;
276
277 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
278 if (map->phys <= phys &&
279 phys + size <= map->phys + map->size)
280 return map;
281
282 return NULL;
283}
284
285/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
286static void __iomem *
287acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
288{
289 struct acpi_ioremap *map;
290
291 map = acpi_map_lookup(phys, size);
292 if (map)
293 return map->virt + (phys - map->phys);
294
295 return NULL;
296}
297
298void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
299{
300 struct acpi_ioremap *map;
301 void __iomem *virt = NULL;
302
303 mutex_lock(&acpi_ioremap_lock);
304 map = acpi_map_lookup(phys, size);
305 if (map) {
306 virt = map->virt + (phys - map->phys);
307 map->refcount++;
308 }
309 mutex_unlock(&acpi_ioremap_lock);
310 return virt;
311}
312EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
313
314/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
315static struct acpi_ioremap *
316acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
317{
318 struct acpi_ioremap *map;
319
320 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
321 if (map->virt <= virt &&
322 virt + size <= map->virt + map->size)
323 return map;
324
325 return NULL;
326}
327
328#ifndef CONFIG_IA64
329#define should_use_kmap(pfn) page_is_ram(pfn)
330#else
331/* ioremap will take care of cache attributes */
332#define should_use_kmap(pfn) 0
333#endif
334
335static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
336{
337 unsigned long pfn;
338
339 pfn = pg_off >> PAGE_SHIFT;
340 if (should_use_kmap(pfn)) {
341 if (pg_sz > PAGE_SIZE)
342 return NULL;
343 return (void __iomem __force *)kmap(pfn_to_page(pfn));
344 } else
345 return acpi_os_ioremap(pg_off, pg_sz);
346}
347
348static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
349{
350 unsigned long pfn;
351
352 pfn = pg_off >> PAGE_SHIFT;
353 if (should_use_kmap(pfn))
354 kunmap(pfn_to_page(pfn));
355 else
356 iounmap(vaddr);
357}
358
359void __iomem *__init_refok
360acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
361{
362 struct acpi_ioremap *map;
363 void __iomem *virt;
364 acpi_physical_address pg_off;
365 acpi_size pg_sz;
366
367 if (phys > ULONG_MAX) {
368 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
369 return NULL;
370 }
371
372 if (!acpi_gbl_permanent_mmap)
373 return __acpi_map_table((unsigned long)phys, size);
374
375 mutex_lock(&acpi_ioremap_lock);
376 /* Check if there's a suitable mapping already. */
377 map = acpi_map_lookup(phys, size);
378 if (map) {
379 map->refcount++;
380 goto out;
381 }
382
383 map = kzalloc(sizeof(*map), GFP_KERNEL);
384 if (!map) {
385 mutex_unlock(&acpi_ioremap_lock);
386 return NULL;
387 }
388
389 pg_off = round_down(phys, PAGE_SIZE);
390 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
391 virt = acpi_map(pg_off, pg_sz);
392 if (!virt) {
393 mutex_unlock(&acpi_ioremap_lock);
394 kfree(map);
395 return NULL;
396 }
397
398 INIT_LIST_HEAD(&map->list);
399 map->virt = virt;
400 map->phys = pg_off;
401 map->size = pg_sz;
402 map->refcount = 1;
403
404 list_add_tail_rcu(&map->list, &acpi_ioremaps);
405
406 out:
407 mutex_unlock(&acpi_ioremap_lock);
408 return map->virt + (phys - map->phys);
409}
410EXPORT_SYMBOL_GPL(acpi_os_map_memory);
411
412static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
413{
414 if (!--map->refcount)
415 list_del_rcu(&map->list);
416}
417
418static void acpi_os_map_cleanup(struct acpi_ioremap *map)
419{
420 if (!map->refcount) {
421 synchronize_rcu();
422 acpi_unmap(map->phys, map->virt);
423 kfree(map);
424 }
425}
426
427void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
428{
429 struct acpi_ioremap *map;
430
431 if (!acpi_gbl_permanent_mmap) {
432 __acpi_unmap_table(virt, size);
433 return;
434 }
435
436 mutex_lock(&acpi_ioremap_lock);
437 map = acpi_map_lookup_virt(virt, size);
438 if (!map) {
439 mutex_unlock(&acpi_ioremap_lock);
440 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
441 return;
442 }
443 acpi_os_drop_map_ref(map);
444 mutex_unlock(&acpi_ioremap_lock);
445
446 acpi_os_map_cleanup(map);
447}
448EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
449
450void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
451{
452 if (!acpi_gbl_permanent_mmap)
453 __acpi_unmap_table(virt, size);
454}
455
456int acpi_os_map_generic_address(struct acpi_generic_address *gas)
457{
458 u64 addr;
459 void __iomem *virt;
460
461 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
462 return 0;
463
464 /* Handle possible alignment issues */
465 memcpy(&addr, &gas->address, sizeof(addr));
466 if (!addr || !gas->bit_width)
467 return -EINVAL;
468
469 virt = acpi_os_map_memory(addr, gas->bit_width / 8);
470 if (!virt)
471 return -EIO;
472
473 return 0;
474}
475EXPORT_SYMBOL(acpi_os_map_generic_address);
476
477void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
478{
479 u64 addr;
480 struct acpi_ioremap *map;
481
482 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
483 return;
484
485 /* Handle possible alignment issues */
486 memcpy(&addr, &gas->address, sizeof(addr));
487 if (!addr || !gas->bit_width)
488 return;
489
490 mutex_lock(&acpi_ioremap_lock);
491 map = acpi_map_lookup(addr, gas->bit_width / 8);
492 if (!map) {
493 mutex_unlock(&acpi_ioremap_lock);
494 return;
495 }
496 acpi_os_drop_map_ref(map);
497 mutex_unlock(&acpi_ioremap_lock);
498
499 acpi_os_map_cleanup(map);
500}
501EXPORT_SYMBOL(acpi_os_unmap_generic_address);
502
503#ifdef ACPI_FUTURE_USAGE
504acpi_status
505acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
506{
507 if (!phys || !virt)
508 return AE_BAD_PARAMETER;
509
510 *phys = virt_to_phys(virt);
511
512 return AE_OK;
513}
514#endif
515
516#define ACPI_MAX_OVERRIDE_LEN 100
517
518static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
519
520acpi_status
521acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
522 acpi_string * new_val)
523{
524 if (!init_val || !new_val)
525 return AE_BAD_PARAMETER;
526
527 *new_val = NULL;
528 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
529 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
530 acpi_os_name);
531 *new_val = acpi_os_name;
532 }
533
534 return AE_OK;
535}
536
537acpi_status
538acpi_os_table_override(struct acpi_table_header * existing_table,
539 struct acpi_table_header ** new_table)
540{
541 if (!existing_table || !new_table)
542 return AE_BAD_PARAMETER;
543
544 *new_table = NULL;
545
546#ifdef CONFIG_ACPI_CUSTOM_DSDT
547 if (strncmp(existing_table->signature, "DSDT", 4) == 0)
548 *new_table = (struct acpi_table_header *)AmlCode;
549#endif
550 if (*new_table != NULL) {
551 printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
552 "this is unsafe: tainting kernel\n",
553 existing_table->signature,
554 existing_table->oem_table_id);
555 add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
556 }
557 return AE_OK;
558}
559
560acpi_status
561acpi_os_physical_table_override(struct acpi_table_header *existing_table,
562 acpi_physical_address * new_address,
563 u32 *new_table_length)
564{
565 return AE_SUPPORT;
566}
567
568
569static irqreturn_t acpi_irq(int irq, void *dev_id)
570{
571 u32 handled;
572
573 handled = (*acpi_irq_handler) (acpi_irq_context);
574
575 if (handled) {
576 acpi_irq_handled++;
577 return IRQ_HANDLED;
578 } else {
579 acpi_irq_not_handled++;
580 return IRQ_NONE;
581 }
582}
583
584acpi_status
585acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
586 void *context)
587{
588 unsigned int irq;
589
590 acpi_irq_stats_init();
591
592 /*
593 * ACPI interrupts different from the SCI in our copy of the FADT are
594 * not supported.
595 */
596 if (gsi != acpi_gbl_FADT.sci_interrupt)
597 return AE_BAD_PARAMETER;
598
599 if (acpi_irq_handler)
600 return AE_ALREADY_ACQUIRED;
601
602 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
603 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
604 gsi);
605 return AE_OK;
606 }
607
608 acpi_irq_handler = handler;
609 acpi_irq_context = context;
610 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
611 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
612 acpi_irq_handler = NULL;
613 return AE_NOT_ACQUIRED;
614 }
615
616 return AE_OK;
617}
618
619acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
620{
621 if (irq != acpi_gbl_FADT.sci_interrupt)
622 return AE_BAD_PARAMETER;
623
624 free_irq(irq, acpi_irq);
625 acpi_irq_handler = NULL;
626
627 return AE_OK;
628}
629
630/*
631 * Running in interpreter thread context, safe to sleep
632 */
633
634void acpi_os_sleep(u64 ms)
635{
636 schedule_timeout_interruptible(msecs_to_jiffies(ms));
637}
638
639void acpi_os_stall(u32 us)
640{
641 while (us) {
642 u32 delay = 1000;
643
644 if (delay > us)
645 delay = us;
646 udelay(delay);
647 touch_nmi_watchdog();
648 us -= delay;
649 }
650}
651
652/*
653 * Support ACPI 3.0 AML Timer operand
654 * Returns 64-bit free-running, monotonically increasing timer
655 * with 100ns granularity
656 */
657u64 acpi_os_get_timer(void)
658{
659 static u64 t;
660
661#ifdef CONFIG_HPET
662 /* TBD: use HPET if available */
663#endif
664
665#ifdef CONFIG_X86_PM_TIMER
666 /* TBD: default to PM timer if HPET was not available */
667#endif
668 if (!t)
669 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
670
671 return ++t;
672}
673
674acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
675{
676 u32 dummy;
677
678 if (!value)
679 value = &dummy;
680
681 *value = 0;
682 if (width <= 8) {
683 *(u8 *) value = inb(port);
684 } else if (width <= 16) {
685 *(u16 *) value = inw(port);
686 } else if (width <= 32) {
687 *(u32 *) value = inl(port);
688 } else {
689 BUG();
690 }
691
692 return AE_OK;
693}
694
695EXPORT_SYMBOL(acpi_os_read_port);
696
697acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
698{
699 if (width <= 8) {
700 outb(value, port);
701 } else if (width <= 16) {
702 outw(value, port);
703 } else if (width <= 32) {
704 outl(value, port);
705 } else {
706 BUG();
707 }
708
709 return AE_OK;
710}
711
712EXPORT_SYMBOL(acpi_os_write_port);
713
714#ifdef readq
715static inline u64 read64(const volatile void __iomem *addr)
716{
717 return readq(addr);
718}
719#else
720static inline u64 read64(const volatile void __iomem *addr)
721{
722 u64 l, h;
723 l = readl(addr);
724 h = readl(addr+4);
725 return l | (h << 32);
726}
727#endif
728
729acpi_status
730acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
731{
732 void __iomem *virt_addr;
733 unsigned int size = width / 8;
734 bool unmap = false;
735 u64 dummy;
736
737 rcu_read_lock();
738 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
739 if (!virt_addr) {
740 rcu_read_unlock();
741 virt_addr = acpi_os_ioremap(phys_addr, size);
742 if (!virt_addr)
743 return AE_BAD_ADDRESS;
744 unmap = true;
745 }
746
747 if (!value)
748 value = &dummy;
749
750 switch (width) {
751 case 8:
752 *(u8 *) value = readb(virt_addr);
753 break;
754 case 16:
755 *(u16 *) value = readw(virt_addr);
756 break;
757 case 32:
758 *(u32 *) value = readl(virt_addr);
759 break;
760 case 64:
761 *(u64 *) value = read64(virt_addr);
762 break;
763 default:
764 BUG();
765 }
766
767 if (unmap)
768 iounmap(virt_addr);
769 else
770 rcu_read_unlock();
771
772 return AE_OK;
773}
774
775#ifdef writeq
776static inline void write64(u64 val, volatile void __iomem *addr)
777{
778 writeq(val, addr);
779}
780#else
781static inline void write64(u64 val, volatile void __iomem *addr)
782{
783 writel(val, addr);
784 writel(val>>32, addr+4);
785}
786#endif
787
788acpi_status
789acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
790{
791 void __iomem *virt_addr;
792 unsigned int size = width / 8;
793 bool unmap = false;
794
795 rcu_read_lock();
796 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
797 if (!virt_addr) {
798 rcu_read_unlock();
799 virt_addr = acpi_os_ioremap(phys_addr, size);
800 if (!virt_addr)
801 return AE_BAD_ADDRESS;
802 unmap = true;
803 }
804
805 switch (width) {
806 case 8:
807 writeb(value, virt_addr);
808 break;
809 case 16:
810 writew(value, virt_addr);
811 break;
812 case 32:
813 writel(value, virt_addr);
814 break;
815 case 64:
816 write64(value, virt_addr);
817 break;
818 default:
819 BUG();
820 }
821
822 if (unmap)
823 iounmap(virt_addr);
824 else
825 rcu_read_unlock();
826
827 return AE_OK;
828}
829
830acpi_status
831acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
832 u64 *value, u32 width)
833{
834 int result, size;
835 u32 value32;
836
837 if (!value)
838 return AE_BAD_PARAMETER;
839
840 switch (width) {
841 case 8:
842 size = 1;
843 break;
844 case 16:
845 size = 2;
846 break;
847 case 32:
848 size = 4;
849 break;
850 default:
851 return AE_ERROR;
852 }
853
854 result = raw_pci_read(pci_id->segment, pci_id->bus,
855 PCI_DEVFN(pci_id->device, pci_id->function),
856 reg, size, &value32);
857 *value = value32;
858
859 return (result ? AE_ERROR : AE_OK);
860}
861
862acpi_status
863acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
864 u64 value, u32 width)
865{
866 int result, size;
867
868 switch (width) {
869 case 8:
870 size = 1;
871 break;
872 case 16:
873 size = 2;
874 break;
875 case 32:
876 size = 4;
877 break;
878 default:
879 return AE_ERROR;
880 }
881
882 result = raw_pci_write(pci_id->segment, pci_id->bus,
883 PCI_DEVFN(pci_id->device, pci_id->function),
884 reg, size, value);
885
886 return (result ? AE_ERROR : AE_OK);
887}
888
889static void acpi_os_execute_deferred(struct work_struct *work)
890{
891 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
892
893 if (dpc->wait)
894 acpi_os_wait_events_complete(NULL);
895
896 dpc->function(dpc->context);
897 kfree(dpc);
898}
899
900/*******************************************************************************
901 *
902 * FUNCTION: acpi_os_execute
903 *
904 * PARAMETERS: Type - Type of the callback
905 * Function - Function to be executed
906 * Context - Function parameters
907 *
908 * RETURN: Status
909 *
910 * DESCRIPTION: Depending on type, either queues function for deferred execution or
911 * immediately executes function on a separate thread.
912 *
913 ******************************************************************************/
914
915static acpi_status __acpi_os_execute(acpi_execute_type type,
916 acpi_osd_exec_callback function, void *context, int hp)
917{
918 acpi_status status = AE_OK;
919 struct acpi_os_dpc *dpc;
920 struct workqueue_struct *queue;
921 int ret;
922 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
923 "Scheduling function [%p(%p)] for deferred execution.\n",
924 function, context));
925
926 /*
927 * Allocate/initialize DPC structure. Note that this memory will be
928 * freed by the callee. The kernel handles the work_struct list in a
929 * way that allows us to also free its memory inside the callee.
930 * Because we may want to schedule several tasks with different
931 * parameters we can't use the approach some kernel code uses of
932 * having a static work_struct.
933 */
934
935 dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
936 if (!dpc)
937 return AE_NO_MEMORY;
938
939 dpc->function = function;
940 dpc->context = context;
941
942 /*
943 * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
944 * because the hotplug code may call driver .remove() functions,
945 * which invoke flush_scheduled_work/acpi_os_wait_events_complete
946 * to flush these workqueues.
947 */
948 queue = hp ? kacpi_hotplug_wq :
949 (type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
950 dpc->wait = hp ? 1 : 0;
951
952 if (queue == kacpi_hotplug_wq)
953 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
954 else if (queue == kacpi_notify_wq)
955 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
956 else
957 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
958
959 /*
960 * On some machines, a software-initiated SMI causes corruption unless
961 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
962 * typically it's done in GPE-related methods that are run via
963 * workqueues, so we can avoid the known corruption cases by always
964 * queueing on CPU 0.
965 */
966 ret = queue_work_on(0, queue, &dpc->work);
967
968 if (!ret) {
969 printk(KERN_ERR PREFIX
970 "Call to queue_work() failed.\n");
971 status = AE_ERROR;
972 kfree(dpc);
973 }
974 return status;
975}
976
977acpi_status acpi_os_execute(acpi_execute_type type,
978 acpi_osd_exec_callback function, void *context)
979{
980 return __acpi_os_execute(type, function, context, 0);
981}
982EXPORT_SYMBOL(acpi_os_execute);
983
984acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
985 void *context)
986{
987 return __acpi_os_execute(0, function, context, 1);
988}
989
990void acpi_os_wait_events_complete(void *context)
991{
992 flush_workqueue(kacpid_wq);
993 flush_workqueue(kacpi_notify_wq);
994}
995
996EXPORT_SYMBOL(acpi_os_wait_events_complete);
997
998acpi_status
999acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1000{
1001 struct semaphore *sem = NULL;
1002
1003 sem = acpi_os_allocate(sizeof(struct semaphore));
1004 if (!sem)
1005 return AE_NO_MEMORY;
1006 memset(sem, 0, sizeof(struct semaphore));
1007
1008 sema_init(sem, initial_units);
1009
1010 *handle = (acpi_handle *) sem;
1011
1012 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1013 *handle, initial_units));
1014
1015 return AE_OK;
1016}
1017
1018/*
1019 * TODO: A better way to delete semaphores? Linux doesn't have a
1020 * 'delete_semaphore()' function -- may result in an invalid
1021 * pointer dereference for non-synchronized consumers. Should
1022 * we at least check for blocked threads and signal/cancel them?
1023 */
1024
1025acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1026{
1027 struct semaphore *sem = (struct semaphore *)handle;
1028
1029 if (!sem)
1030 return AE_BAD_PARAMETER;
1031
1032 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1033
1034 BUG_ON(!list_empty(&sem->wait_list));
1035 kfree(sem);
1036 sem = NULL;
1037
1038 return AE_OK;
1039}
1040
1041/*
1042 * TODO: Support for units > 1?
1043 */
1044acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1045{
1046 acpi_status status = AE_OK;
1047 struct semaphore *sem = (struct semaphore *)handle;
1048 long jiffies;
1049 int ret = 0;
1050
1051 if (!sem || (units < 1))
1052 return AE_BAD_PARAMETER;
1053
1054 if (units > 1)
1055 return AE_SUPPORT;
1056
1057 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1058 handle, units, timeout));
1059
1060 if (timeout == ACPI_WAIT_FOREVER)
1061 jiffies = MAX_SCHEDULE_TIMEOUT;
1062 else
1063 jiffies = msecs_to_jiffies(timeout);
1064
1065 ret = down_timeout(sem, jiffies);
1066 if (ret)
1067 status = AE_TIME;
1068
1069 if (ACPI_FAILURE(status)) {
1070 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1071 "Failed to acquire semaphore[%p|%d|%d], %s",
1072 handle, units, timeout,
1073 acpi_format_exception(status)));
1074 } else {
1075 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1076 "Acquired semaphore[%p|%d|%d]", handle,
1077 units, timeout));
1078 }
1079
1080 return status;
1081}
1082
1083/*
1084 * TODO: Support for units > 1?
1085 */
1086acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1087{
1088 struct semaphore *sem = (struct semaphore *)handle;
1089
1090 if (!sem || (units < 1))
1091 return AE_BAD_PARAMETER;
1092
1093 if (units > 1)
1094 return AE_SUPPORT;
1095
1096 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1097 units));
1098
1099 up(sem);
1100
1101 return AE_OK;
1102}
1103
1104#ifdef ACPI_FUTURE_USAGE
1105u32 acpi_os_get_line(char *buffer)
1106{
1107
1108#ifdef ENABLE_DEBUGGER
1109 if (acpi_in_debugger) {
1110 u32 chars;
1111
1112 kdb_read(buffer, sizeof(line_buf));
1113
1114 /* remove the CR kdb includes */
1115 chars = strlen(buffer) - 1;
1116 buffer[chars] = '\0';
1117 }
1118#endif
1119
1120 return 0;
1121}
1122#endif /* ACPI_FUTURE_USAGE */
1123
1124acpi_status acpi_os_signal(u32 function, void *info)
1125{
1126 switch (function) {
1127 case ACPI_SIGNAL_FATAL:
1128 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1129 break;
1130 case ACPI_SIGNAL_BREAKPOINT:
1131 /*
1132 * AML Breakpoint
1133 * ACPI spec. says to treat it as a NOP unless
1134 * you are debugging. So if/when we integrate
1135 * AML debugger into the kernel debugger its
1136 * hook will go here. But until then it is
1137 * not useful to print anything on breakpoints.
1138 */
1139 break;
1140 default:
1141 break;
1142 }
1143
1144 return AE_OK;
1145}
1146
1147static int __init acpi_os_name_setup(char *str)
1148{
1149 char *p = acpi_os_name;
1150 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1151
1152 if (!str || !*str)
1153 return 0;
1154
1155 for (; count-- && str && *str; str++) {
1156 if (isalnum(*str) || *str == ' ' || *str == ':')
1157 *p++ = *str;
1158 else if (*str == '\'' || *str == '"')
1159 continue;
1160 else
1161 break;
1162 }
1163 *p = 0;
1164
1165 return 1;
1166
1167}
1168
1169__setup("acpi_os_name=", acpi_os_name_setup);
1170
1171#define OSI_STRING_LENGTH_MAX 64 /* arbitrary */
1172#define OSI_STRING_ENTRIES_MAX 16 /* arbitrary */
1173
1174struct osi_setup_entry {
1175 char string[OSI_STRING_LENGTH_MAX];
1176 bool enable;
1177};
1178
1179static struct osi_setup_entry __initdata
1180 osi_setup_entries[OSI_STRING_ENTRIES_MAX] = {
1181 {"Module Device", true},
1182 {"Processor Device", true},
1183 {"3.0 _SCP Extensions", true},
1184 {"Processor Aggregator Device", true},
1185};
1186
1187void __init acpi_osi_setup(char *str)
1188{
1189 struct osi_setup_entry *osi;
1190 bool enable = true;
1191 int i;
1192
1193 if (!acpi_gbl_create_osi_method)
1194 return;
1195
1196 if (str == NULL || *str == '\0') {
1197 printk(KERN_INFO PREFIX "_OSI method disabled\n");
1198 acpi_gbl_create_osi_method = FALSE;
1199 return;
1200 }
1201
1202 if (*str == '!') {
1203 str++;
1204 enable = false;
1205 }
1206
1207 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1208 osi = &osi_setup_entries[i];
1209 if (!strcmp(osi->string, str)) {
1210 osi->enable = enable;
1211 break;
1212 } else if (osi->string[0] == '\0') {
1213 osi->enable = enable;
1214 strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1215 break;
1216 }
1217 }
1218}
1219
1220static void __init set_osi_linux(unsigned int enable)
1221{
1222 if (osi_linux.enable != enable)
1223 osi_linux.enable = enable;
1224
1225 if (osi_linux.enable)
1226 acpi_osi_setup("Linux");
1227 else
1228 acpi_osi_setup("!Linux");
1229
1230 return;
1231}
1232
1233static void __init acpi_cmdline_osi_linux(unsigned int enable)
1234{
1235 osi_linux.cmdline = 1; /* cmdline set the default and override DMI */
1236 osi_linux.dmi = 0;
1237 set_osi_linux(enable);
1238
1239 return;
1240}
1241
1242void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1243{
1244 printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1245
1246 if (enable == -1)
1247 return;
1248
1249 osi_linux.dmi = 1; /* DMI knows that this box asks OSI(Linux) */
1250 set_osi_linux(enable);
1251
1252 return;
1253}
1254
1255/*
1256 * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1257 *
1258 * empty string disables _OSI
1259 * string starting with '!' disables that string
1260 * otherwise string is added to list, augmenting built-in strings
1261 */
1262static void __init acpi_osi_setup_late(void)
1263{
1264 struct osi_setup_entry *osi;
1265 char *str;
1266 int i;
1267 acpi_status status;
1268
1269 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1270 osi = &osi_setup_entries[i];
1271 str = osi->string;
1272
1273 if (*str == '\0')
1274 break;
1275 if (osi->enable) {
1276 status = acpi_install_interface(str);
1277
1278 if (ACPI_SUCCESS(status))
1279 printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1280 } else {
1281 status = acpi_remove_interface(str);
1282
1283 if (ACPI_SUCCESS(status))
1284 printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1285 }
1286 }
1287}
1288
1289static int __init osi_setup(char *str)
1290{
1291 if (str && !strcmp("Linux", str))
1292 acpi_cmdline_osi_linux(1);
1293 else if (str && !strcmp("!Linux", str))
1294 acpi_cmdline_osi_linux(0);
1295 else
1296 acpi_osi_setup(str);
1297
1298 return 1;
1299}
1300
1301__setup("acpi_osi=", osi_setup);
1302
1303/* enable serialization to combat AE_ALREADY_EXISTS errors */
1304static int __init acpi_serialize_setup(char *str)
1305{
1306 printk(KERN_INFO PREFIX "serialize enabled\n");
1307
1308 acpi_gbl_all_methods_serialized = TRUE;
1309
1310 return 1;
1311}
1312
1313__setup("acpi_serialize", acpi_serialize_setup);
1314
1315/* Check of resource interference between native drivers and ACPI
1316 * OperationRegions (SystemIO and System Memory only).
1317 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1318 * in arbitrary AML code and can interfere with legacy drivers.
1319 * acpi_enforce_resources= can be set to:
1320 *
1321 * - strict (default) (2)
1322 * -> further driver trying to access the resources will not load
1323 * - lax (1)
1324 * -> further driver trying to access the resources will load, but you
1325 * get a system message that something might go wrong...
1326 *
1327 * - no (0)
1328 * -> ACPI Operation Region resources will not be registered
1329 *
1330 */
1331#define ENFORCE_RESOURCES_STRICT 2
1332#define ENFORCE_RESOURCES_LAX 1
1333#define ENFORCE_RESOURCES_NO 0
1334
1335static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1336
1337static int __init acpi_enforce_resources_setup(char *str)
1338{
1339 if (str == NULL || *str == '\0')
1340 return 0;
1341
1342 if (!strcmp("strict", str))
1343 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1344 else if (!strcmp("lax", str))
1345 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1346 else if (!strcmp("no", str))
1347 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1348
1349 return 1;
1350}
1351
1352__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1353
1354/* Check for resource conflicts between ACPI OperationRegions and native
1355 * drivers */
1356int acpi_check_resource_conflict(const struct resource *res)
1357{
1358 acpi_adr_space_type space_id;
1359 acpi_size length;
1360 u8 warn = 0;
1361 int clash = 0;
1362
1363 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1364 return 0;
1365 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1366 return 0;
1367
1368 if (res->flags & IORESOURCE_IO)
1369 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1370 else
1371 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1372
1373 length = res->end - res->start + 1;
1374 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1375 warn = 1;
1376 clash = acpi_check_address_range(space_id, res->start, length, warn);
1377
1378 if (clash) {
1379 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1380 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1381 printk(KERN_NOTICE "ACPI: This conflict may"
1382 " cause random problems and system"
1383 " instability\n");
1384 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1385 " for this device, you should use it instead of"
1386 " the native driver\n");
1387 }
1388 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1389 return -EBUSY;
1390 }
1391 return 0;
1392}
1393EXPORT_SYMBOL(acpi_check_resource_conflict);
1394
1395int acpi_check_region(resource_size_t start, resource_size_t n,
1396 const char *name)
1397{
1398 struct resource res = {
1399 .start = start,
1400 .end = start + n - 1,
1401 .name = name,
1402 .flags = IORESOURCE_IO,
1403 };
1404
1405 return acpi_check_resource_conflict(&res);
1406}
1407EXPORT_SYMBOL(acpi_check_region);
1408
1409/*
1410 * Let drivers know whether the resource checks are effective
1411 */
1412int acpi_resources_are_enforced(void)
1413{
1414 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1415}
1416EXPORT_SYMBOL(acpi_resources_are_enforced);
1417
1418/*
1419 * Deallocate the memory for a spinlock.
1420 */
1421void acpi_os_delete_lock(acpi_spinlock handle)
1422{
1423 ACPI_FREE(handle);
1424}
1425
1426/*
1427 * Acquire a spinlock.
1428 *
1429 * handle is a pointer to the spinlock_t.
1430 */
1431
1432acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1433{
1434 acpi_cpu_flags flags;
1435 spin_lock_irqsave(lockp, flags);
1436 return flags;
1437}
1438
1439/*
1440 * Release a spinlock. See above.
1441 */
1442
1443void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1444{
1445 spin_unlock_irqrestore(lockp, flags);
1446}
1447
1448#ifndef ACPI_USE_LOCAL_CACHE
1449
1450/*******************************************************************************
1451 *
1452 * FUNCTION: acpi_os_create_cache
1453 *
1454 * PARAMETERS: name - Ascii name for the cache
1455 * size - Size of each cached object
1456 * depth - Maximum depth of the cache (in objects) <ignored>
1457 * cache - Where the new cache object is returned
1458 *
1459 * RETURN: status
1460 *
1461 * DESCRIPTION: Create a cache object
1462 *
1463 ******************************************************************************/
1464
1465acpi_status
1466acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1467{
1468 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1469 if (*cache == NULL)
1470 return AE_ERROR;
1471 else
1472 return AE_OK;
1473}
1474
1475/*******************************************************************************
1476 *
1477 * FUNCTION: acpi_os_purge_cache
1478 *
1479 * PARAMETERS: Cache - Handle to cache object
1480 *
1481 * RETURN: Status
1482 *
1483 * DESCRIPTION: Free all objects within the requested cache.
1484 *
1485 ******************************************************************************/
1486
1487acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1488{
1489 kmem_cache_shrink(cache);
1490 return (AE_OK);
1491}
1492
1493/*******************************************************************************
1494 *
1495 * FUNCTION: acpi_os_delete_cache
1496 *
1497 * PARAMETERS: Cache - Handle to cache object
1498 *
1499 * RETURN: Status
1500 *
1501 * DESCRIPTION: Free all objects within the requested cache and delete the
1502 * cache object.
1503 *
1504 ******************************************************************************/
1505
1506acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1507{
1508 kmem_cache_destroy(cache);
1509 return (AE_OK);
1510}
1511
1512/*******************************************************************************
1513 *
1514 * FUNCTION: acpi_os_release_object
1515 *
1516 * PARAMETERS: Cache - Handle to cache object
1517 * Object - The object to be released
1518 *
1519 * RETURN: None
1520 *
1521 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1522 * the object is deleted.
1523 *
1524 ******************************************************************************/
1525
1526acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1527{
1528 kmem_cache_free(cache, object);
1529 return (AE_OK);
1530}
1531#endif
1532
1533acpi_status __init acpi_os_initialize(void)
1534{
1535 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1536 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1537 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1538 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1539
1540 return AE_OK;
1541}
1542
1543acpi_status __init acpi_os_initialize1(void)
1544{
1545 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1546 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1547 kacpi_hotplug_wq = alloc_workqueue("kacpi_hotplug", 0, 1);
1548 BUG_ON(!kacpid_wq);
1549 BUG_ON(!kacpi_notify_wq);
1550 BUG_ON(!kacpi_hotplug_wq);
1551 acpi_install_interface_handler(acpi_osi_handler);
1552 acpi_osi_setup_late();
1553 return AE_OK;
1554}
1555
1556acpi_status acpi_os_terminate(void)
1557{
1558 if (acpi_irq_handler) {
1559 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1560 acpi_irq_handler);
1561 }
1562
1563 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1564 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1565 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1566 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1567
1568 destroy_workqueue(kacpid_wq);
1569 destroy_workqueue(kacpi_notify_wq);
1570 destroy_workqueue(kacpi_hotplug_wq);
1571
1572 return AE_OK;
1573}
1574
1575acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1576 u32 pm1b_control)
1577{
1578 int rc = 0;
1579 if (__acpi_os_prepare_sleep)
1580 rc = __acpi_os_prepare_sleep(sleep_state,
1581 pm1a_control, pm1b_control);
1582 if (rc < 0)
1583 return AE_ERROR;
1584 else if (rc > 0)
1585 return AE_CTRL_SKIP;
1586
1587 return AE_OK;
1588}
1589
1590void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1591 u32 pm1a_ctrl, u32 pm1b_ctrl))
1592{
1593 __acpi_os_prepare_sleep = func;
1594}
1/*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 */
25
26#include <linux/module.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/pci.h>
32#include <linux/interrupt.h>
33#include <linux/kmod.h>
34#include <linux/delay.h>
35#include <linux/workqueue.h>
36#include <linux/nmi.h>
37#include <linux/acpi.h>
38#include <linux/efi.h>
39#include <linux/ioport.h>
40#include <linux/list.h>
41#include <linux/jiffies.h>
42#include <linux/semaphore.h>
43
44#include <asm/io.h>
45#include <linux/uaccess.h>
46#include <linux/io-64-nonatomic-lo-hi.h>
47
48#include "internal.h"
49
50#define _COMPONENT ACPI_OS_SERVICES
51ACPI_MODULE_NAME("osl");
52
53struct acpi_os_dpc {
54 acpi_osd_exec_callback function;
55 void *context;
56 struct work_struct work;
57};
58
59#ifdef ENABLE_DEBUGGER
60#include <linux/kdb.h>
61
62/* stuff for debugger support */
63int acpi_in_debugger;
64EXPORT_SYMBOL(acpi_in_debugger);
65#endif /*ENABLE_DEBUGGER */
66
67static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68 u32 pm1b_ctrl);
69static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70 u32 val_b);
71
72static acpi_osd_handler acpi_irq_handler;
73static void *acpi_irq_context;
74static struct workqueue_struct *kacpid_wq;
75static struct workqueue_struct *kacpi_notify_wq;
76static struct workqueue_struct *kacpi_hotplug_wq;
77static bool acpi_os_initialized;
78unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79bool acpi_permanent_mmap = false;
80
81/*
82 * This list of permanent mappings is for memory that may be accessed from
83 * interrupt context, where we can't do the ioremap().
84 */
85struct acpi_ioremap {
86 struct list_head list;
87 void __iomem *virt;
88 acpi_physical_address phys;
89 acpi_size size;
90 unsigned long refcount;
91};
92
93static LIST_HEAD(acpi_ioremaps);
94static DEFINE_MUTEX(acpi_ioremap_lock);
95
96static void __init acpi_request_region (struct acpi_generic_address *gas,
97 unsigned int length, char *desc)
98{
99 u64 addr;
100
101 /* Handle possible alignment issues */
102 memcpy(&addr, &gas->address, sizeof(addr));
103 if (!addr || !length)
104 return;
105
106 /* Resources are never freed */
107 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
108 request_region(addr, length, desc);
109 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
110 request_mem_region(addr, length, desc);
111}
112
113static int __init acpi_reserve_resources(void)
114{
115 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
116 "ACPI PM1a_EVT_BLK");
117
118 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
119 "ACPI PM1b_EVT_BLK");
120
121 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
122 "ACPI PM1a_CNT_BLK");
123
124 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
125 "ACPI PM1b_CNT_BLK");
126
127 if (acpi_gbl_FADT.pm_timer_length == 4)
128 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
129
130 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
131 "ACPI PM2_CNT_BLK");
132
133 /* Length of GPE blocks must be a non-negative multiple of 2 */
134
135 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
136 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
137 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
138
139 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
140 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
141 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
142
143 return 0;
144}
145fs_initcall_sync(acpi_reserve_resources);
146
147void acpi_os_printf(const char *fmt, ...)
148{
149 va_list args;
150 va_start(args, fmt);
151 acpi_os_vprintf(fmt, args);
152 va_end(args);
153}
154EXPORT_SYMBOL(acpi_os_printf);
155
156void acpi_os_vprintf(const char *fmt, va_list args)
157{
158 static char buffer[512];
159
160 vsprintf(buffer, fmt, args);
161
162#ifdef ENABLE_DEBUGGER
163 if (acpi_in_debugger) {
164 kdb_printf("%s", buffer);
165 } else {
166 if (printk_get_level(buffer))
167 printk("%s", buffer);
168 else
169 printk(KERN_CONT "%s", buffer);
170 }
171#else
172 if (acpi_debugger_write_log(buffer) < 0) {
173 if (printk_get_level(buffer))
174 printk("%s", buffer);
175 else
176 printk(KERN_CONT "%s", buffer);
177 }
178#endif
179}
180
181#ifdef CONFIG_KEXEC
182static unsigned long acpi_rsdp;
183static int __init setup_acpi_rsdp(char *arg)
184{
185 return kstrtoul(arg, 16, &acpi_rsdp);
186}
187early_param("acpi_rsdp", setup_acpi_rsdp);
188#endif
189
190acpi_physical_address __init acpi_os_get_root_pointer(void)
191{
192 acpi_physical_address pa;
193
194#ifdef CONFIG_KEXEC
195 if (acpi_rsdp)
196 return acpi_rsdp;
197#endif
198 pa = acpi_arch_get_root_pointer();
199 if (pa)
200 return pa;
201
202 if (efi_enabled(EFI_CONFIG_TABLES)) {
203 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
204 return efi.acpi20;
205 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
206 return efi.acpi;
207 pr_err(PREFIX "System description tables not found\n");
208 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
209 acpi_find_root_pointer(&pa);
210 }
211
212 return pa;
213}
214
215/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
216static struct acpi_ioremap *
217acpi_map_lookup(acpi_physical_address phys, acpi_size size)
218{
219 struct acpi_ioremap *map;
220
221 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
222 if (map->phys <= phys &&
223 phys + size <= map->phys + map->size)
224 return map;
225
226 return NULL;
227}
228
229/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
230static void __iomem *
231acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
232{
233 struct acpi_ioremap *map;
234
235 map = acpi_map_lookup(phys, size);
236 if (map)
237 return map->virt + (phys - map->phys);
238
239 return NULL;
240}
241
242void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
243{
244 struct acpi_ioremap *map;
245 void __iomem *virt = NULL;
246
247 mutex_lock(&acpi_ioremap_lock);
248 map = acpi_map_lookup(phys, size);
249 if (map) {
250 virt = map->virt + (phys - map->phys);
251 map->refcount++;
252 }
253 mutex_unlock(&acpi_ioremap_lock);
254 return virt;
255}
256EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
257
258/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
259static struct acpi_ioremap *
260acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
261{
262 struct acpi_ioremap *map;
263
264 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
265 if (map->virt <= virt &&
266 virt + size <= map->virt + map->size)
267 return map;
268
269 return NULL;
270}
271
272#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
273/* ioremap will take care of cache attributes */
274#define should_use_kmap(pfn) 0
275#else
276#define should_use_kmap(pfn) page_is_ram(pfn)
277#endif
278
279static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
280{
281 unsigned long pfn;
282
283 pfn = pg_off >> PAGE_SHIFT;
284 if (should_use_kmap(pfn)) {
285 if (pg_sz > PAGE_SIZE)
286 return NULL;
287 return (void __iomem __force *)kmap(pfn_to_page(pfn));
288 } else
289 return acpi_os_ioremap(pg_off, pg_sz);
290}
291
292static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
293{
294 unsigned long pfn;
295
296 pfn = pg_off >> PAGE_SHIFT;
297 if (should_use_kmap(pfn))
298 kunmap(pfn_to_page(pfn));
299 else
300 iounmap(vaddr);
301}
302
303/**
304 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
305 * @phys: Start of the physical address range to map.
306 * @size: Size of the physical address range to map.
307 *
308 * Look up the given physical address range in the list of existing ACPI memory
309 * mappings. If found, get a reference to it and return a pointer to it (its
310 * virtual address). If not found, map it, add it to that list and return a
311 * pointer to it.
312 *
313 * During early init (when acpi_permanent_mmap has not been set yet) this
314 * routine simply calls __acpi_map_table() to get the job done.
315 */
316void __iomem *__ref
317acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
318{
319 struct acpi_ioremap *map;
320 void __iomem *virt;
321 acpi_physical_address pg_off;
322 acpi_size pg_sz;
323
324 if (phys > ULONG_MAX) {
325 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
326 return NULL;
327 }
328
329 if (!acpi_permanent_mmap)
330 return __acpi_map_table((unsigned long)phys, size);
331
332 mutex_lock(&acpi_ioremap_lock);
333 /* Check if there's a suitable mapping already. */
334 map = acpi_map_lookup(phys, size);
335 if (map) {
336 map->refcount++;
337 goto out;
338 }
339
340 map = kzalloc(sizeof(*map), GFP_KERNEL);
341 if (!map) {
342 mutex_unlock(&acpi_ioremap_lock);
343 return NULL;
344 }
345
346 pg_off = round_down(phys, PAGE_SIZE);
347 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
348 virt = acpi_map(pg_off, pg_sz);
349 if (!virt) {
350 mutex_unlock(&acpi_ioremap_lock);
351 kfree(map);
352 return NULL;
353 }
354
355 INIT_LIST_HEAD(&map->list);
356 map->virt = virt;
357 map->phys = pg_off;
358 map->size = pg_sz;
359 map->refcount = 1;
360
361 list_add_tail_rcu(&map->list, &acpi_ioremaps);
362
363out:
364 mutex_unlock(&acpi_ioremap_lock);
365 return map->virt + (phys - map->phys);
366}
367EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
368
369void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
370{
371 return (void *)acpi_os_map_iomem(phys, size);
372}
373EXPORT_SYMBOL_GPL(acpi_os_map_memory);
374
375static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
376{
377 if (!--map->refcount)
378 list_del_rcu(&map->list);
379}
380
381static void acpi_os_map_cleanup(struct acpi_ioremap *map)
382{
383 if (!map->refcount) {
384 synchronize_rcu_expedited();
385 acpi_unmap(map->phys, map->virt);
386 kfree(map);
387 }
388}
389
390/**
391 * acpi_os_unmap_iomem - Drop a memory mapping reference.
392 * @virt: Start of the address range to drop a reference to.
393 * @size: Size of the address range to drop a reference to.
394 *
395 * Look up the given virtual address range in the list of existing ACPI memory
396 * mappings, drop a reference to it and unmap it if there are no more active
397 * references to it.
398 *
399 * During early init (when acpi_permanent_mmap has not been set yet) this
400 * routine simply calls __acpi_unmap_table() to get the job done. Since
401 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
402 * here.
403 */
404void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
405{
406 struct acpi_ioremap *map;
407
408 if (!acpi_permanent_mmap) {
409 __acpi_unmap_table(virt, size);
410 return;
411 }
412
413 mutex_lock(&acpi_ioremap_lock);
414 map = acpi_map_lookup_virt(virt, size);
415 if (!map) {
416 mutex_unlock(&acpi_ioremap_lock);
417 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
418 return;
419 }
420 acpi_os_drop_map_ref(map);
421 mutex_unlock(&acpi_ioremap_lock);
422
423 acpi_os_map_cleanup(map);
424}
425EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
426
427void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
428{
429 return acpi_os_unmap_iomem((void __iomem *)virt, size);
430}
431EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
432
433int acpi_os_map_generic_address(struct acpi_generic_address *gas)
434{
435 u64 addr;
436 void __iomem *virt;
437
438 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
439 return 0;
440
441 /* Handle possible alignment issues */
442 memcpy(&addr, &gas->address, sizeof(addr));
443 if (!addr || !gas->bit_width)
444 return -EINVAL;
445
446 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
447 if (!virt)
448 return -EIO;
449
450 return 0;
451}
452EXPORT_SYMBOL(acpi_os_map_generic_address);
453
454void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
455{
456 u64 addr;
457 struct acpi_ioremap *map;
458
459 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
460 return;
461
462 /* Handle possible alignment issues */
463 memcpy(&addr, &gas->address, sizeof(addr));
464 if (!addr || !gas->bit_width)
465 return;
466
467 mutex_lock(&acpi_ioremap_lock);
468 map = acpi_map_lookup(addr, gas->bit_width / 8);
469 if (!map) {
470 mutex_unlock(&acpi_ioremap_lock);
471 return;
472 }
473 acpi_os_drop_map_ref(map);
474 mutex_unlock(&acpi_ioremap_lock);
475
476 acpi_os_map_cleanup(map);
477}
478EXPORT_SYMBOL(acpi_os_unmap_generic_address);
479
480#ifdef ACPI_FUTURE_USAGE
481acpi_status
482acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
483{
484 if (!phys || !virt)
485 return AE_BAD_PARAMETER;
486
487 *phys = virt_to_phys(virt);
488
489 return AE_OK;
490}
491#endif
492
493#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
494static bool acpi_rev_override;
495
496int __init acpi_rev_override_setup(char *str)
497{
498 acpi_rev_override = true;
499 return 1;
500}
501__setup("acpi_rev_override", acpi_rev_override_setup);
502#else
503#define acpi_rev_override false
504#endif
505
506#define ACPI_MAX_OVERRIDE_LEN 100
507
508static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
509
510acpi_status
511acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
512 acpi_string *new_val)
513{
514 if (!init_val || !new_val)
515 return AE_BAD_PARAMETER;
516
517 *new_val = NULL;
518 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
519 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
520 acpi_os_name);
521 *new_val = acpi_os_name;
522 }
523
524 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
525 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
526 *new_val = (char *)5;
527 }
528
529 return AE_OK;
530}
531
532static irqreturn_t acpi_irq(int irq, void *dev_id)
533{
534 u32 handled;
535
536 handled = (*acpi_irq_handler) (acpi_irq_context);
537
538 if (handled) {
539 acpi_irq_handled++;
540 return IRQ_HANDLED;
541 } else {
542 acpi_irq_not_handled++;
543 return IRQ_NONE;
544 }
545}
546
547acpi_status
548acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
549 void *context)
550{
551 unsigned int irq;
552
553 acpi_irq_stats_init();
554
555 /*
556 * ACPI interrupts different from the SCI in our copy of the FADT are
557 * not supported.
558 */
559 if (gsi != acpi_gbl_FADT.sci_interrupt)
560 return AE_BAD_PARAMETER;
561
562 if (acpi_irq_handler)
563 return AE_ALREADY_ACQUIRED;
564
565 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
566 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
567 gsi);
568 return AE_OK;
569 }
570
571 acpi_irq_handler = handler;
572 acpi_irq_context = context;
573 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
574 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
575 acpi_irq_handler = NULL;
576 return AE_NOT_ACQUIRED;
577 }
578 acpi_sci_irq = irq;
579
580 return AE_OK;
581}
582
583acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
584{
585 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
586 return AE_BAD_PARAMETER;
587
588 free_irq(acpi_sci_irq, acpi_irq);
589 acpi_irq_handler = NULL;
590 acpi_sci_irq = INVALID_ACPI_IRQ;
591
592 return AE_OK;
593}
594
595/*
596 * Running in interpreter thread context, safe to sleep
597 */
598
599void acpi_os_sleep(u64 ms)
600{
601 msleep(ms);
602}
603
604void acpi_os_stall(u32 us)
605{
606 while (us) {
607 u32 delay = 1000;
608
609 if (delay > us)
610 delay = us;
611 udelay(delay);
612 touch_nmi_watchdog();
613 us -= delay;
614 }
615}
616
617/*
618 * Support ACPI 3.0 AML Timer operand
619 * Returns 64-bit free-running, monotonically increasing timer
620 * with 100ns granularity
621 */
622u64 acpi_os_get_timer(void)
623{
624 u64 time_ns = ktime_to_ns(ktime_get());
625 do_div(time_ns, 100);
626 return time_ns;
627}
628
629acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
630{
631 u32 dummy;
632
633 if (!value)
634 value = &dummy;
635
636 *value = 0;
637 if (width <= 8) {
638 *(u8 *) value = inb(port);
639 } else if (width <= 16) {
640 *(u16 *) value = inw(port);
641 } else if (width <= 32) {
642 *(u32 *) value = inl(port);
643 } else {
644 BUG();
645 }
646
647 return AE_OK;
648}
649
650EXPORT_SYMBOL(acpi_os_read_port);
651
652acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
653{
654 if (width <= 8) {
655 outb(value, port);
656 } else if (width <= 16) {
657 outw(value, port);
658 } else if (width <= 32) {
659 outl(value, port);
660 } else {
661 BUG();
662 }
663
664 return AE_OK;
665}
666
667EXPORT_SYMBOL(acpi_os_write_port);
668
669int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
670{
671
672 switch (width) {
673 case 8:
674 *(u8 *) value = readb(virt_addr);
675 break;
676 case 16:
677 *(u16 *) value = readw(virt_addr);
678 break;
679 case 32:
680 *(u32 *) value = readl(virt_addr);
681 break;
682 case 64:
683 *(u64 *) value = readq(virt_addr);
684 break;
685 default:
686 return -EINVAL;
687 }
688
689 return 0;
690}
691
692acpi_status
693acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
694{
695 void __iomem *virt_addr;
696 unsigned int size = width / 8;
697 bool unmap = false;
698 u64 dummy;
699 int error;
700
701 rcu_read_lock();
702 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
703 if (!virt_addr) {
704 rcu_read_unlock();
705 virt_addr = acpi_os_ioremap(phys_addr, size);
706 if (!virt_addr)
707 return AE_BAD_ADDRESS;
708 unmap = true;
709 }
710
711 if (!value)
712 value = &dummy;
713
714 error = acpi_os_read_iomem(virt_addr, value, width);
715 BUG_ON(error);
716
717 if (unmap)
718 iounmap(virt_addr);
719 else
720 rcu_read_unlock();
721
722 return AE_OK;
723}
724
725acpi_status
726acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
727{
728 void __iomem *virt_addr;
729 unsigned int size = width / 8;
730 bool unmap = false;
731
732 rcu_read_lock();
733 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
734 if (!virt_addr) {
735 rcu_read_unlock();
736 virt_addr = acpi_os_ioremap(phys_addr, size);
737 if (!virt_addr)
738 return AE_BAD_ADDRESS;
739 unmap = true;
740 }
741
742 switch (width) {
743 case 8:
744 writeb(value, virt_addr);
745 break;
746 case 16:
747 writew(value, virt_addr);
748 break;
749 case 32:
750 writel(value, virt_addr);
751 break;
752 case 64:
753 writeq(value, virt_addr);
754 break;
755 default:
756 BUG();
757 }
758
759 if (unmap)
760 iounmap(virt_addr);
761 else
762 rcu_read_unlock();
763
764 return AE_OK;
765}
766
767acpi_status
768acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
769 u64 *value, u32 width)
770{
771 int result, size;
772 u32 value32;
773
774 if (!value)
775 return AE_BAD_PARAMETER;
776
777 switch (width) {
778 case 8:
779 size = 1;
780 break;
781 case 16:
782 size = 2;
783 break;
784 case 32:
785 size = 4;
786 break;
787 default:
788 return AE_ERROR;
789 }
790
791 result = raw_pci_read(pci_id->segment, pci_id->bus,
792 PCI_DEVFN(pci_id->device, pci_id->function),
793 reg, size, &value32);
794 *value = value32;
795
796 return (result ? AE_ERROR : AE_OK);
797}
798
799acpi_status
800acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
801 u64 value, u32 width)
802{
803 int result, size;
804
805 switch (width) {
806 case 8:
807 size = 1;
808 break;
809 case 16:
810 size = 2;
811 break;
812 case 32:
813 size = 4;
814 break;
815 default:
816 return AE_ERROR;
817 }
818
819 result = raw_pci_write(pci_id->segment, pci_id->bus,
820 PCI_DEVFN(pci_id->device, pci_id->function),
821 reg, size, value);
822
823 return (result ? AE_ERROR : AE_OK);
824}
825
826static void acpi_os_execute_deferred(struct work_struct *work)
827{
828 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
829
830 dpc->function(dpc->context);
831 kfree(dpc);
832}
833
834#ifdef CONFIG_ACPI_DEBUGGER
835static struct acpi_debugger acpi_debugger;
836static bool acpi_debugger_initialized;
837
838int acpi_register_debugger(struct module *owner,
839 const struct acpi_debugger_ops *ops)
840{
841 int ret = 0;
842
843 mutex_lock(&acpi_debugger.lock);
844 if (acpi_debugger.ops) {
845 ret = -EBUSY;
846 goto err_lock;
847 }
848
849 acpi_debugger.owner = owner;
850 acpi_debugger.ops = ops;
851
852err_lock:
853 mutex_unlock(&acpi_debugger.lock);
854 return ret;
855}
856EXPORT_SYMBOL(acpi_register_debugger);
857
858void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
859{
860 mutex_lock(&acpi_debugger.lock);
861 if (ops == acpi_debugger.ops) {
862 acpi_debugger.ops = NULL;
863 acpi_debugger.owner = NULL;
864 }
865 mutex_unlock(&acpi_debugger.lock);
866}
867EXPORT_SYMBOL(acpi_unregister_debugger);
868
869int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
870{
871 int ret;
872 int (*func)(acpi_osd_exec_callback, void *);
873 struct module *owner;
874
875 if (!acpi_debugger_initialized)
876 return -ENODEV;
877 mutex_lock(&acpi_debugger.lock);
878 if (!acpi_debugger.ops) {
879 ret = -ENODEV;
880 goto err_lock;
881 }
882 if (!try_module_get(acpi_debugger.owner)) {
883 ret = -ENODEV;
884 goto err_lock;
885 }
886 func = acpi_debugger.ops->create_thread;
887 owner = acpi_debugger.owner;
888 mutex_unlock(&acpi_debugger.lock);
889
890 ret = func(function, context);
891
892 mutex_lock(&acpi_debugger.lock);
893 module_put(owner);
894err_lock:
895 mutex_unlock(&acpi_debugger.lock);
896 return ret;
897}
898
899ssize_t acpi_debugger_write_log(const char *msg)
900{
901 ssize_t ret;
902 ssize_t (*func)(const char *);
903 struct module *owner;
904
905 if (!acpi_debugger_initialized)
906 return -ENODEV;
907 mutex_lock(&acpi_debugger.lock);
908 if (!acpi_debugger.ops) {
909 ret = -ENODEV;
910 goto err_lock;
911 }
912 if (!try_module_get(acpi_debugger.owner)) {
913 ret = -ENODEV;
914 goto err_lock;
915 }
916 func = acpi_debugger.ops->write_log;
917 owner = acpi_debugger.owner;
918 mutex_unlock(&acpi_debugger.lock);
919
920 ret = func(msg);
921
922 mutex_lock(&acpi_debugger.lock);
923 module_put(owner);
924err_lock:
925 mutex_unlock(&acpi_debugger.lock);
926 return ret;
927}
928
929ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
930{
931 ssize_t ret;
932 ssize_t (*func)(char *, size_t);
933 struct module *owner;
934
935 if (!acpi_debugger_initialized)
936 return -ENODEV;
937 mutex_lock(&acpi_debugger.lock);
938 if (!acpi_debugger.ops) {
939 ret = -ENODEV;
940 goto err_lock;
941 }
942 if (!try_module_get(acpi_debugger.owner)) {
943 ret = -ENODEV;
944 goto err_lock;
945 }
946 func = acpi_debugger.ops->read_cmd;
947 owner = acpi_debugger.owner;
948 mutex_unlock(&acpi_debugger.lock);
949
950 ret = func(buffer, buffer_length);
951
952 mutex_lock(&acpi_debugger.lock);
953 module_put(owner);
954err_lock:
955 mutex_unlock(&acpi_debugger.lock);
956 return ret;
957}
958
959int acpi_debugger_wait_command_ready(void)
960{
961 int ret;
962 int (*func)(bool, char *, size_t);
963 struct module *owner;
964
965 if (!acpi_debugger_initialized)
966 return -ENODEV;
967 mutex_lock(&acpi_debugger.lock);
968 if (!acpi_debugger.ops) {
969 ret = -ENODEV;
970 goto err_lock;
971 }
972 if (!try_module_get(acpi_debugger.owner)) {
973 ret = -ENODEV;
974 goto err_lock;
975 }
976 func = acpi_debugger.ops->wait_command_ready;
977 owner = acpi_debugger.owner;
978 mutex_unlock(&acpi_debugger.lock);
979
980 ret = func(acpi_gbl_method_executing,
981 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
982
983 mutex_lock(&acpi_debugger.lock);
984 module_put(owner);
985err_lock:
986 mutex_unlock(&acpi_debugger.lock);
987 return ret;
988}
989
990int acpi_debugger_notify_command_complete(void)
991{
992 int ret;
993 int (*func)(void);
994 struct module *owner;
995
996 if (!acpi_debugger_initialized)
997 return -ENODEV;
998 mutex_lock(&acpi_debugger.lock);
999 if (!acpi_debugger.ops) {
1000 ret = -ENODEV;
1001 goto err_lock;
1002 }
1003 if (!try_module_get(acpi_debugger.owner)) {
1004 ret = -ENODEV;
1005 goto err_lock;
1006 }
1007 func = acpi_debugger.ops->notify_command_complete;
1008 owner = acpi_debugger.owner;
1009 mutex_unlock(&acpi_debugger.lock);
1010
1011 ret = func();
1012
1013 mutex_lock(&acpi_debugger.lock);
1014 module_put(owner);
1015err_lock:
1016 mutex_unlock(&acpi_debugger.lock);
1017 return ret;
1018}
1019
1020int __init acpi_debugger_init(void)
1021{
1022 mutex_init(&acpi_debugger.lock);
1023 acpi_debugger_initialized = true;
1024 return 0;
1025}
1026#endif
1027
1028/*******************************************************************************
1029 *
1030 * FUNCTION: acpi_os_execute
1031 *
1032 * PARAMETERS: Type - Type of the callback
1033 * Function - Function to be executed
1034 * Context - Function parameters
1035 *
1036 * RETURN: Status
1037 *
1038 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1039 * immediately executes function on a separate thread.
1040 *
1041 ******************************************************************************/
1042
1043acpi_status acpi_os_execute(acpi_execute_type type,
1044 acpi_osd_exec_callback function, void *context)
1045{
1046 acpi_status status = AE_OK;
1047 struct acpi_os_dpc *dpc;
1048 struct workqueue_struct *queue;
1049 int ret;
1050 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1051 "Scheduling function [%p(%p)] for deferred execution.\n",
1052 function, context));
1053
1054 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1055 ret = acpi_debugger_create_thread(function, context);
1056 if (ret) {
1057 pr_err("Call to kthread_create() failed.\n");
1058 status = AE_ERROR;
1059 }
1060 goto out_thread;
1061 }
1062
1063 /*
1064 * Allocate/initialize DPC structure. Note that this memory will be
1065 * freed by the callee. The kernel handles the work_struct list in a
1066 * way that allows us to also free its memory inside the callee.
1067 * Because we may want to schedule several tasks with different
1068 * parameters we can't use the approach some kernel code uses of
1069 * having a static work_struct.
1070 */
1071
1072 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1073 if (!dpc)
1074 return AE_NO_MEMORY;
1075
1076 dpc->function = function;
1077 dpc->context = context;
1078
1079 /*
1080 * To prevent lockdep from complaining unnecessarily, make sure that
1081 * there is a different static lockdep key for each workqueue by using
1082 * INIT_WORK() for each of them separately.
1083 */
1084 if (type == OSL_NOTIFY_HANDLER) {
1085 queue = kacpi_notify_wq;
1086 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1087 } else if (type == OSL_GPE_HANDLER) {
1088 queue = kacpid_wq;
1089 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1090 } else {
1091 pr_err("Unsupported os_execute type %d.\n", type);
1092 status = AE_ERROR;
1093 }
1094
1095 if (ACPI_FAILURE(status))
1096 goto err_workqueue;
1097
1098 /*
1099 * On some machines, a software-initiated SMI causes corruption unless
1100 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1101 * typically it's done in GPE-related methods that are run via
1102 * workqueues, so we can avoid the known corruption cases by always
1103 * queueing on CPU 0.
1104 */
1105 ret = queue_work_on(0, queue, &dpc->work);
1106 if (!ret) {
1107 printk(KERN_ERR PREFIX
1108 "Call to queue_work() failed.\n");
1109 status = AE_ERROR;
1110 }
1111err_workqueue:
1112 if (ACPI_FAILURE(status))
1113 kfree(dpc);
1114out_thread:
1115 return status;
1116}
1117EXPORT_SYMBOL(acpi_os_execute);
1118
1119void acpi_os_wait_events_complete(void)
1120{
1121 /*
1122 * Make sure the GPE handler or the fixed event handler is not used
1123 * on another CPU after removal.
1124 */
1125 if (acpi_sci_irq_valid())
1126 synchronize_hardirq(acpi_sci_irq);
1127 flush_workqueue(kacpid_wq);
1128 flush_workqueue(kacpi_notify_wq);
1129}
1130
1131struct acpi_hp_work {
1132 struct work_struct work;
1133 struct acpi_device *adev;
1134 u32 src;
1135};
1136
1137static void acpi_hotplug_work_fn(struct work_struct *work)
1138{
1139 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1140
1141 acpi_os_wait_events_complete();
1142 acpi_device_hotplug(hpw->adev, hpw->src);
1143 kfree(hpw);
1144}
1145
1146acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1147{
1148 struct acpi_hp_work *hpw;
1149
1150 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1151 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1152 adev, src));
1153
1154 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1155 if (!hpw)
1156 return AE_NO_MEMORY;
1157
1158 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1159 hpw->adev = adev;
1160 hpw->src = src;
1161 /*
1162 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1163 * the hotplug code may call driver .remove() functions, which may
1164 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1165 * these workqueues.
1166 */
1167 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1168 kfree(hpw);
1169 return AE_ERROR;
1170 }
1171 return AE_OK;
1172}
1173
1174bool acpi_queue_hotplug_work(struct work_struct *work)
1175{
1176 return queue_work(kacpi_hotplug_wq, work);
1177}
1178
1179acpi_status
1180acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1181{
1182 struct semaphore *sem = NULL;
1183
1184 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1185 if (!sem)
1186 return AE_NO_MEMORY;
1187
1188 sema_init(sem, initial_units);
1189
1190 *handle = (acpi_handle *) sem;
1191
1192 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1193 *handle, initial_units));
1194
1195 return AE_OK;
1196}
1197
1198/*
1199 * TODO: A better way to delete semaphores? Linux doesn't have a
1200 * 'delete_semaphore()' function -- may result in an invalid
1201 * pointer dereference for non-synchronized consumers. Should
1202 * we at least check for blocked threads and signal/cancel them?
1203 */
1204
1205acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1206{
1207 struct semaphore *sem = (struct semaphore *)handle;
1208
1209 if (!sem)
1210 return AE_BAD_PARAMETER;
1211
1212 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1213
1214 BUG_ON(!list_empty(&sem->wait_list));
1215 kfree(sem);
1216 sem = NULL;
1217
1218 return AE_OK;
1219}
1220
1221/*
1222 * TODO: Support for units > 1?
1223 */
1224acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1225{
1226 acpi_status status = AE_OK;
1227 struct semaphore *sem = (struct semaphore *)handle;
1228 long jiffies;
1229 int ret = 0;
1230
1231 if (!acpi_os_initialized)
1232 return AE_OK;
1233
1234 if (!sem || (units < 1))
1235 return AE_BAD_PARAMETER;
1236
1237 if (units > 1)
1238 return AE_SUPPORT;
1239
1240 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1241 handle, units, timeout));
1242
1243 if (timeout == ACPI_WAIT_FOREVER)
1244 jiffies = MAX_SCHEDULE_TIMEOUT;
1245 else
1246 jiffies = msecs_to_jiffies(timeout);
1247
1248 ret = down_timeout(sem, jiffies);
1249 if (ret)
1250 status = AE_TIME;
1251
1252 if (ACPI_FAILURE(status)) {
1253 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1254 "Failed to acquire semaphore[%p|%d|%d], %s",
1255 handle, units, timeout,
1256 acpi_format_exception(status)));
1257 } else {
1258 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1259 "Acquired semaphore[%p|%d|%d]", handle,
1260 units, timeout));
1261 }
1262
1263 return status;
1264}
1265
1266/*
1267 * TODO: Support for units > 1?
1268 */
1269acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1270{
1271 struct semaphore *sem = (struct semaphore *)handle;
1272
1273 if (!acpi_os_initialized)
1274 return AE_OK;
1275
1276 if (!sem || (units < 1))
1277 return AE_BAD_PARAMETER;
1278
1279 if (units > 1)
1280 return AE_SUPPORT;
1281
1282 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1283 units));
1284
1285 up(sem);
1286
1287 return AE_OK;
1288}
1289
1290acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1291{
1292#ifdef ENABLE_DEBUGGER
1293 if (acpi_in_debugger) {
1294 u32 chars;
1295
1296 kdb_read(buffer, buffer_length);
1297
1298 /* remove the CR kdb includes */
1299 chars = strlen(buffer) - 1;
1300 buffer[chars] = '\0';
1301 }
1302#else
1303 int ret;
1304
1305 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1306 if (ret < 0)
1307 return AE_ERROR;
1308 if (bytes_read)
1309 *bytes_read = ret;
1310#endif
1311
1312 return AE_OK;
1313}
1314EXPORT_SYMBOL(acpi_os_get_line);
1315
1316acpi_status acpi_os_wait_command_ready(void)
1317{
1318 int ret;
1319
1320 ret = acpi_debugger_wait_command_ready();
1321 if (ret < 0)
1322 return AE_ERROR;
1323 return AE_OK;
1324}
1325
1326acpi_status acpi_os_notify_command_complete(void)
1327{
1328 int ret;
1329
1330 ret = acpi_debugger_notify_command_complete();
1331 if (ret < 0)
1332 return AE_ERROR;
1333 return AE_OK;
1334}
1335
1336acpi_status acpi_os_signal(u32 function, void *info)
1337{
1338 switch (function) {
1339 case ACPI_SIGNAL_FATAL:
1340 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1341 break;
1342 case ACPI_SIGNAL_BREAKPOINT:
1343 /*
1344 * AML Breakpoint
1345 * ACPI spec. says to treat it as a NOP unless
1346 * you are debugging. So if/when we integrate
1347 * AML debugger into the kernel debugger its
1348 * hook will go here. But until then it is
1349 * not useful to print anything on breakpoints.
1350 */
1351 break;
1352 default:
1353 break;
1354 }
1355
1356 return AE_OK;
1357}
1358
1359static int __init acpi_os_name_setup(char *str)
1360{
1361 char *p = acpi_os_name;
1362 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1363
1364 if (!str || !*str)
1365 return 0;
1366
1367 for (; count-- && *str; str++) {
1368 if (isalnum(*str) || *str == ' ' || *str == ':')
1369 *p++ = *str;
1370 else if (*str == '\'' || *str == '"')
1371 continue;
1372 else
1373 break;
1374 }
1375 *p = 0;
1376
1377 return 1;
1378
1379}
1380
1381__setup("acpi_os_name=", acpi_os_name_setup);
1382
1383/*
1384 * Disable the auto-serialization of named objects creation methods.
1385 *
1386 * This feature is enabled by default. It marks the AML control methods
1387 * that contain the opcodes to create named objects as "Serialized".
1388 */
1389static int __init acpi_no_auto_serialize_setup(char *str)
1390{
1391 acpi_gbl_auto_serialize_methods = FALSE;
1392 pr_info("ACPI: auto-serialization disabled\n");
1393
1394 return 1;
1395}
1396
1397__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1398
1399/* Check of resource interference between native drivers and ACPI
1400 * OperationRegions (SystemIO and System Memory only).
1401 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1402 * in arbitrary AML code and can interfere with legacy drivers.
1403 * acpi_enforce_resources= can be set to:
1404 *
1405 * - strict (default) (2)
1406 * -> further driver trying to access the resources will not load
1407 * - lax (1)
1408 * -> further driver trying to access the resources will load, but you
1409 * get a system message that something might go wrong...
1410 *
1411 * - no (0)
1412 * -> ACPI Operation Region resources will not be registered
1413 *
1414 */
1415#define ENFORCE_RESOURCES_STRICT 2
1416#define ENFORCE_RESOURCES_LAX 1
1417#define ENFORCE_RESOURCES_NO 0
1418
1419static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1420
1421static int __init acpi_enforce_resources_setup(char *str)
1422{
1423 if (str == NULL || *str == '\0')
1424 return 0;
1425
1426 if (!strcmp("strict", str))
1427 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1428 else if (!strcmp("lax", str))
1429 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1430 else if (!strcmp("no", str))
1431 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1432
1433 return 1;
1434}
1435
1436__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1437
1438/* Check for resource conflicts between ACPI OperationRegions and native
1439 * drivers */
1440int acpi_check_resource_conflict(const struct resource *res)
1441{
1442 acpi_adr_space_type space_id;
1443 acpi_size length;
1444 u8 warn = 0;
1445 int clash = 0;
1446
1447 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1448 return 0;
1449 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1450 return 0;
1451
1452 if (res->flags & IORESOURCE_IO)
1453 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1454 else
1455 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1456
1457 length = resource_size(res);
1458 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1459 warn = 1;
1460 clash = acpi_check_address_range(space_id, res->start, length, warn);
1461
1462 if (clash) {
1463 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1464 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1465 printk(KERN_NOTICE "ACPI: This conflict may"
1466 " cause random problems and system"
1467 " instability\n");
1468 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1469 " for this device, you should use it instead of"
1470 " the native driver\n");
1471 }
1472 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1473 return -EBUSY;
1474 }
1475 return 0;
1476}
1477EXPORT_SYMBOL(acpi_check_resource_conflict);
1478
1479int acpi_check_region(resource_size_t start, resource_size_t n,
1480 const char *name)
1481{
1482 struct resource res = {
1483 .start = start,
1484 .end = start + n - 1,
1485 .name = name,
1486 .flags = IORESOURCE_IO,
1487 };
1488
1489 return acpi_check_resource_conflict(&res);
1490}
1491EXPORT_SYMBOL(acpi_check_region);
1492
1493/*
1494 * Let drivers know whether the resource checks are effective
1495 */
1496int acpi_resources_are_enforced(void)
1497{
1498 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1499}
1500EXPORT_SYMBOL(acpi_resources_are_enforced);
1501
1502/*
1503 * Deallocate the memory for a spinlock.
1504 */
1505void acpi_os_delete_lock(acpi_spinlock handle)
1506{
1507 ACPI_FREE(handle);
1508}
1509
1510/*
1511 * Acquire a spinlock.
1512 *
1513 * handle is a pointer to the spinlock_t.
1514 */
1515
1516acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1517{
1518 acpi_cpu_flags flags;
1519 spin_lock_irqsave(lockp, flags);
1520 return flags;
1521}
1522
1523/*
1524 * Release a spinlock. See above.
1525 */
1526
1527void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1528{
1529 spin_unlock_irqrestore(lockp, flags);
1530}
1531
1532#ifndef ACPI_USE_LOCAL_CACHE
1533
1534/*******************************************************************************
1535 *
1536 * FUNCTION: acpi_os_create_cache
1537 *
1538 * PARAMETERS: name - Ascii name for the cache
1539 * size - Size of each cached object
1540 * depth - Maximum depth of the cache (in objects) <ignored>
1541 * cache - Where the new cache object is returned
1542 *
1543 * RETURN: status
1544 *
1545 * DESCRIPTION: Create a cache object
1546 *
1547 ******************************************************************************/
1548
1549acpi_status
1550acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1551{
1552 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1553 if (*cache == NULL)
1554 return AE_ERROR;
1555 else
1556 return AE_OK;
1557}
1558
1559/*******************************************************************************
1560 *
1561 * FUNCTION: acpi_os_purge_cache
1562 *
1563 * PARAMETERS: Cache - Handle to cache object
1564 *
1565 * RETURN: Status
1566 *
1567 * DESCRIPTION: Free all objects within the requested cache.
1568 *
1569 ******************************************************************************/
1570
1571acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1572{
1573 kmem_cache_shrink(cache);
1574 return (AE_OK);
1575}
1576
1577/*******************************************************************************
1578 *
1579 * FUNCTION: acpi_os_delete_cache
1580 *
1581 * PARAMETERS: Cache - Handle to cache object
1582 *
1583 * RETURN: Status
1584 *
1585 * DESCRIPTION: Free all objects within the requested cache and delete the
1586 * cache object.
1587 *
1588 ******************************************************************************/
1589
1590acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1591{
1592 kmem_cache_destroy(cache);
1593 return (AE_OK);
1594}
1595
1596/*******************************************************************************
1597 *
1598 * FUNCTION: acpi_os_release_object
1599 *
1600 * PARAMETERS: Cache - Handle to cache object
1601 * Object - The object to be released
1602 *
1603 * RETURN: None
1604 *
1605 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1606 * the object is deleted.
1607 *
1608 ******************************************************************************/
1609
1610acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1611{
1612 kmem_cache_free(cache, object);
1613 return (AE_OK);
1614}
1615#endif
1616
1617static int __init acpi_no_static_ssdt_setup(char *s)
1618{
1619 acpi_gbl_disable_ssdt_table_install = TRUE;
1620 pr_info("ACPI: static SSDT installation disabled\n");
1621
1622 return 0;
1623}
1624
1625early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1626
1627static int __init acpi_disable_return_repair(char *s)
1628{
1629 printk(KERN_NOTICE PREFIX
1630 "ACPI: Predefined validation mechanism disabled\n");
1631 acpi_gbl_disable_auto_repair = TRUE;
1632
1633 return 1;
1634}
1635
1636__setup("acpica_no_return_repair", acpi_disable_return_repair);
1637
1638acpi_status __init acpi_os_initialize(void)
1639{
1640 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1641 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1642 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1643 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1644 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1645 /*
1646 * Use acpi_os_map_generic_address to pre-map the reset
1647 * register if it's in system memory.
1648 */
1649 int rv;
1650
1651 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1652 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1653 }
1654 acpi_os_initialized = true;
1655
1656 return AE_OK;
1657}
1658
1659acpi_status __init acpi_os_initialize1(void)
1660{
1661 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1662 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1663 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1664 BUG_ON(!kacpid_wq);
1665 BUG_ON(!kacpi_notify_wq);
1666 BUG_ON(!kacpi_hotplug_wq);
1667 acpi_osi_init();
1668 return AE_OK;
1669}
1670
1671acpi_status acpi_os_terminate(void)
1672{
1673 if (acpi_irq_handler) {
1674 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1675 acpi_irq_handler);
1676 }
1677
1678 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1679 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1680 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1681 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1682 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1683 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1684
1685 destroy_workqueue(kacpid_wq);
1686 destroy_workqueue(kacpi_notify_wq);
1687 destroy_workqueue(kacpi_hotplug_wq);
1688
1689 return AE_OK;
1690}
1691
1692acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1693 u32 pm1b_control)
1694{
1695 int rc = 0;
1696 if (__acpi_os_prepare_sleep)
1697 rc = __acpi_os_prepare_sleep(sleep_state,
1698 pm1a_control, pm1b_control);
1699 if (rc < 0)
1700 return AE_ERROR;
1701 else if (rc > 0)
1702 return AE_CTRL_TERMINATE;
1703
1704 return AE_OK;
1705}
1706
1707void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1708 u32 pm1a_ctrl, u32 pm1b_ctrl))
1709{
1710 __acpi_os_prepare_sleep = func;
1711}
1712
1713#if (ACPI_REDUCED_HARDWARE)
1714acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1715 u32 val_b)
1716{
1717 int rc = 0;
1718 if (__acpi_os_prepare_extended_sleep)
1719 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1720 val_a, val_b);
1721 if (rc < 0)
1722 return AE_ERROR;
1723 else if (rc > 0)
1724 return AE_CTRL_TERMINATE;
1725
1726 return AE_OK;
1727}
1728#else
1729acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1730 u32 val_b)
1731{
1732 return AE_OK;
1733}
1734#endif
1735
1736void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1737 u32 val_a, u32 val_b))
1738{
1739 __acpi_os_prepare_extended_sleep = func;
1740}
1741
1742acpi_status acpi_os_enter_sleep(u8 sleep_state,
1743 u32 reg_a_value, u32 reg_b_value)
1744{
1745 acpi_status status;
1746
1747 if (acpi_gbl_reduced_hardware)
1748 status = acpi_os_prepare_extended_sleep(sleep_state,
1749 reg_a_value,
1750 reg_b_value);
1751 else
1752 status = acpi_os_prepare_sleep(sleep_state,
1753 reg_a_value, reg_b_value);
1754 return status;
1755}