Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
Note: File does not exist in v3.5.6.
  1/*
  2 * blk-mq scheduling framework
  3 *
  4 * Copyright (C) 2016 Jens Axboe
  5 */
  6#include <linux/kernel.h>
  7#include <linux/module.h>
  8#include <linux/blk-mq.h>
  9
 10#include <trace/events/block.h>
 11
 12#include "blk.h"
 13#include "blk-mq.h"
 14#include "blk-mq-debugfs.h"
 15#include "blk-mq-sched.h"
 16#include "blk-mq-tag.h"
 17#include "blk-wbt.h"
 18
 19void blk_mq_sched_free_hctx_data(struct request_queue *q,
 20				 void (*exit)(struct blk_mq_hw_ctx *))
 21{
 22	struct blk_mq_hw_ctx *hctx;
 23	int i;
 24
 25	queue_for_each_hw_ctx(q, hctx, i) {
 26		if (exit && hctx->sched_data)
 27			exit(hctx);
 28		kfree(hctx->sched_data);
 29		hctx->sched_data = NULL;
 30	}
 31}
 32EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
 33
 34void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
 35{
 36	struct request_queue *q = rq->q;
 37	struct io_context *ioc = rq_ioc(bio);
 38	struct io_cq *icq;
 39
 40	spin_lock_irq(q->queue_lock);
 41	icq = ioc_lookup_icq(ioc, q);
 42	spin_unlock_irq(q->queue_lock);
 43
 44	if (!icq) {
 45		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
 46		if (!icq)
 47			return;
 48	}
 49	get_io_context(icq->ioc);
 50	rq->elv.icq = icq;
 51}
 52
 53/*
 54 * Mark a hardware queue as needing a restart. For shared queues, maintain
 55 * a count of how many hardware queues are marked for restart.
 56 */
 57static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
 58{
 59	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
 60		return;
 61
 62	if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
 63		struct request_queue *q = hctx->queue;
 64
 65		if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
 66			atomic_inc(&q->shared_hctx_restart);
 67	} else
 68		set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
 69}
 70
 71static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
 72{
 73	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
 74		return false;
 75
 76	if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
 77		struct request_queue *q = hctx->queue;
 78
 79		if (test_and_clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
 80			atomic_dec(&q->shared_hctx_restart);
 81	} else
 82		clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
 83
 84	return blk_mq_run_hw_queue(hctx, true);
 85}
 86
 87/*
 88 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 89 * its queue by itself in its completion handler, so we don't need to
 90 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 91 */
 92static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
 93{
 94	struct request_queue *q = hctx->queue;
 95	struct elevator_queue *e = q->elevator;
 96	LIST_HEAD(rq_list);
 97
 98	do {
 99		struct request *rq;
100
101		if (e->type->ops.mq.has_work &&
102				!e->type->ops.mq.has_work(hctx))
103			break;
104
105		if (!blk_mq_get_dispatch_budget(hctx))
106			break;
107
108		rq = e->type->ops.mq.dispatch_request(hctx);
109		if (!rq) {
110			blk_mq_put_dispatch_budget(hctx);
111			break;
112		}
113
114		/*
115		 * Now this rq owns the budget which has to be released
116		 * if this rq won't be queued to driver via .queue_rq()
117		 * in blk_mq_dispatch_rq_list().
118		 */
119		list_add(&rq->queuelist, &rq_list);
120	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
121}
122
123static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
124					  struct blk_mq_ctx *ctx)
125{
126	unsigned idx = ctx->index_hw;
127
128	if (++idx == hctx->nr_ctx)
129		idx = 0;
130
131	return hctx->ctxs[idx];
132}
133
134/*
135 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
136 * its queue by itself in its completion handler, so we don't need to
137 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
138 */
139static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
140{
141	struct request_queue *q = hctx->queue;
142	LIST_HEAD(rq_list);
143	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
144
145	do {
146		struct request *rq;
147
148		if (!sbitmap_any_bit_set(&hctx->ctx_map))
149			break;
150
151		if (!blk_mq_get_dispatch_budget(hctx))
152			break;
153
154		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
155		if (!rq) {
156			blk_mq_put_dispatch_budget(hctx);
157			break;
158		}
159
160		/*
161		 * Now this rq owns the budget which has to be released
162		 * if this rq won't be queued to driver via .queue_rq()
163		 * in blk_mq_dispatch_rq_list().
164		 */
165		list_add(&rq->queuelist, &rq_list);
166
167		/* round robin for fair dispatch */
168		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
169
170	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
171
172	WRITE_ONCE(hctx->dispatch_from, ctx);
173}
174
175void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
176{
177	struct request_queue *q = hctx->queue;
178	struct elevator_queue *e = q->elevator;
179	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
180	LIST_HEAD(rq_list);
181
182	/* RCU or SRCU read lock is needed before checking quiesced flag */
183	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
184		return;
185
186	hctx->run++;
187
188	/*
189	 * If we have previous entries on our dispatch list, grab them first for
190	 * more fair dispatch.
191	 */
192	if (!list_empty_careful(&hctx->dispatch)) {
193		spin_lock(&hctx->lock);
194		if (!list_empty(&hctx->dispatch))
195			list_splice_init(&hctx->dispatch, &rq_list);
196		spin_unlock(&hctx->lock);
197	}
198
199	/*
200	 * Only ask the scheduler for requests, if we didn't have residual
201	 * requests from the dispatch list. This is to avoid the case where
202	 * we only ever dispatch a fraction of the requests available because
203	 * of low device queue depth. Once we pull requests out of the IO
204	 * scheduler, we can no longer merge or sort them. So it's best to
205	 * leave them there for as long as we can. Mark the hw queue as
206	 * needing a restart in that case.
207	 *
208	 * We want to dispatch from the scheduler if there was nothing
209	 * on the dispatch list or we were able to dispatch from the
210	 * dispatch list.
211	 */
212	if (!list_empty(&rq_list)) {
213		blk_mq_sched_mark_restart_hctx(hctx);
214		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
215			if (has_sched_dispatch)
216				blk_mq_do_dispatch_sched(hctx);
217			else
218				blk_mq_do_dispatch_ctx(hctx);
219		}
220	} else if (has_sched_dispatch) {
221		blk_mq_do_dispatch_sched(hctx);
222	} else if (q->mq_ops->get_budget) {
223		/*
224		 * If we need to get budget before queuing request, we
225		 * dequeue request one by one from sw queue for avoiding
226		 * to mess up I/O merge when dispatch runs out of resource.
227		 *
228		 * TODO: get more budgets, and dequeue more requests in
229		 * one time.
230		 */
231		blk_mq_do_dispatch_ctx(hctx);
232	} else {
233		blk_mq_flush_busy_ctxs(hctx, &rq_list);
234		blk_mq_dispatch_rq_list(q, &rq_list, false);
235	}
236}
237
238bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
239			    struct request **merged_request)
240{
241	struct request *rq;
242
243	switch (elv_merge(q, &rq, bio)) {
244	case ELEVATOR_BACK_MERGE:
245		if (!blk_mq_sched_allow_merge(q, rq, bio))
246			return false;
247		if (!bio_attempt_back_merge(q, rq, bio))
248			return false;
249		*merged_request = attempt_back_merge(q, rq);
250		if (!*merged_request)
251			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
252		return true;
253	case ELEVATOR_FRONT_MERGE:
254		if (!blk_mq_sched_allow_merge(q, rq, bio))
255			return false;
256		if (!bio_attempt_front_merge(q, rq, bio))
257			return false;
258		*merged_request = attempt_front_merge(q, rq);
259		if (!*merged_request)
260			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
261		return true;
262	case ELEVATOR_DISCARD_MERGE:
263		return bio_attempt_discard_merge(q, rq, bio);
264	default:
265		return false;
266	}
267}
268EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
269
270/*
271 * Reverse check our software queue for entries that we could potentially
272 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
273 * too much time checking for merges.
274 */
275static bool blk_mq_attempt_merge(struct request_queue *q,
276				 struct blk_mq_ctx *ctx, struct bio *bio)
277{
278	struct request *rq;
279	int checked = 8;
280
281	lockdep_assert_held(&ctx->lock);
282
283	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
284		bool merged = false;
285
286		if (!checked--)
287			break;
288
289		if (!blk_rq_merge_ok(rq, bio))
290			continue;
291
292		switch (blk_try_merge(rq, bio)) {
293		case ELEVATOR_BACK_MERGE:
294			if (blk_mq_sched_allow_merge(q, rq, bio))
295				merged = bio_attempt_back_merge(q, rq, bio);
296			break;
297		case ELEVATOR_FRONT_MERGE:
298			if (blk_mq_sched_allow_merge(q, rq, bio))
299				merged = bio_attempt_front_merge(q, rq, bio);
300			break;
301		case ELEVATOR_DISCARD_MERGE:
302			merged = bio_attempt_discard_merge(q, rq, bio);
303			break;
304		default:
305			continue;
306		}
307
308		if (merged)
309			ctx->rq_merged++;
310		return merged;
311	}
312
313	return false;
314}
315
316bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
317{
318	struct elevator_queue *e = q->elevator;
319	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
320	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
321	bool ret = false;
322
323	if (e && e->type->ops.mq.bio_merge) {
324		blk_mq_put_ctx(ctx);
325		return e->type->ops.mq.bio_merge(hctx, bio);
326	}
327
328	if (hctx->flags & BLK_MQ_F_SHOULD_MERGE) {
329		/* default per sw-queue merge */
330		spin_lock(&ctx->lock);
331		ret = blk_mq_attempt_merge(q, ctx, bio);
332		spin_unlock(&ctx->lock);
333	}
334
335	blk_mq_put_ctx(ctx);
336	return ret;
337}
338
339bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
340{
341	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
342}
343EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
344
345void blk_mq_sched_request_inserted(struct request *rq)
346{
347	trace_block_rq_insert(rq->q, rq);
348}
349EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
350
351static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
352				       bool has_sched,
353				       struct request *rq)
354{
355	/* dispatch flush rq directly */
356	if (rq->rq_flags & RQF_FLUSH_SEQ) {
357		spin_lock(&hctx->lock);
358		list_add(&rq->queuelist, &hctx->dispatch);
359		spin_unlock(&hctx->lock);
360		return true;
361	}
362
363	if (has_sched)
364		rq->rq_flags |= RQF_SORTED;
365
366	return false;
367}
368
369/**
370 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
371 * @pos:    loop cursor.
372 * @skip:   the list element that will not be examined. Iteration starts at
373 *          @skip->next.
374 * @head:   head of the list to examine. This list must have at least one
375 *          element, namely @skip.
376 * @member: name of the list_head structure within typeof(*pos).
377 */
378#define list_for_each_entry_rcu_rr(pos, skip, head, member)		\
379	for ((pos) = (skip);						\
380	     (pos = (pos)->member.next != (head) ? list_entry_rcu(	\
381			(pos)->member.next, typeof(*pos), member) :	\
382	      list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
383	     (pos) != (skip); )
384
385/*
386 * Called after a driver tag has been freed to check whether a hctx needs to
387 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
388 * queues in a round-robin fashion if the tag set of @hctx is shared with other
389 * hardware queues.
390 */
391void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
392{
393	struct blk_mq_tags *const tags = hctx->tags;
394	struct blk_mq_tag_set *const set = hctx->queue->tag_set;
395	struct request_queue *const queue = hctx->queue, *q;
396	struct blk_mq_hw_ctx *hctx2;
397	unsigned int i, j;
398
399	if (set->flags & BLK_MQ_F_TAG_SHARED) {
400		/*
401		 * If this is 0, then we know that no hardware queues
402		 * have RESTART marked. We're done.
403		 */
404		if (!atomic_read(&queue->shared_hctx_restart))
405			return;
406
407		rcu_read_lock();
408		list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
409					   tag_set_list) {
410			queue_for_each_hw_ctx(q, hctx2, i)
411				if (hctx2->tags == tags &&
412				    blk_mq_sched_restart_hctx(hctx2))
413					goto done;
414		}
415		j = hctx->queue_num + 1;
416		for (i = 0; i < queue->nr_hw_queues; i++, j++) {
417			if (j == queue->nr_hw_queues)
418				j = 0;
419			hctx2 = queue->queue_hw_ctx[j];
420			if (hctx2->tags == tags &&
421			    blk_mq_sched_restart_hctx(hctx2))
422				break;
423		}
424done:
425		rcu_read_unlock();
426	} else {
427		blk_mq_sched_restart_hctx(hctx);
428	}
429}
430
431void blk_mq_sched_insert_request(struct request *rq, bool at_head,
432				 bool run_queue, bool async)
433{
434	struct request_queue *q = rq->q;
435	struct elevator_queue *e = q->elevator;
436	struct blk_mq_ctx *ctx = rq->mq_ctx;
437	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
438
439	/* flush rq in flush machinery need to be dispatched directly */
440	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
441		blk_insert_flush(rq);
442		goto run;
443	}
444
445	WARN_ON(e && (rq->tag != -1));
446
447	if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
448		goto run;
449
450	if (e && e->type->ops.mq.insert_requests) {
451		LIST_HEAD(list);
452
453		list_add(&rq->queuelist, &list);
454		e->type->ops.mq.insert_requests(hctx, &list, at_head);
455	} else {
456		spin_lock(&ctx->lock);
457		__blk_mq_insert_request(hctx, rq, at_head);
458		spin_unlock(&ctx->lock);
459	}
460
461run:
462	if (run_queue)
463		blk_mq_run_hw_queue(hctx, async);
464}
465
466void blk_mq_sched_insert_requests(struct request_queue *q,
467				  struct blk_mq_ctx *ctx,
468				  struct list_head *list, bool run_queue_async)
469{
470	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
471	struct elevator_queue *e = hctx->queue->elevator;
472
473	if (e && e->type->ops.mq.insert_requests)
474		e->type->ops.mq.insert_requests(hctx, list, false);
475	else
476		blk_mq_insert_requests(hctx, ctx, list);
477
478	blk_mq_run_hw_queue(hctx, run_queue_async);
479}
480
481static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
482				   struct blk_mq_hw_ctx *hctx,
483				   unsigned int hctx_idx)
484{
485	if (hctx->sched_tags) {
486		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
487		blk_mq_free_rq_map(hctx->sched_tags);
488		hctx->sched_tags = NULL;
489	}
490}
491
492static int blk_mq_sched_alloc_tags(struct request_queue *q,
493				   struct blk_mq_hw_ctx *hctx,
494				   unsigned int hctx_idx)
495{
496	struct blk_mq_tag_set *set = q->tag_set;
497	int ret;
498
499	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
500					       set->reserved_tags);
501	if (!hctx->sched_tags)
502		return -ENOMEM;
503
504	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
505	if (ret)
506		blk_mq_sched_free_tags(set, hctx, hctx_idx);
507
508	return ret;
509}
510
511static void blk_mq_sched_tags_teardown(struct request_queue *q)
512{
513	struct blk_mq_tag_set *set = q->tag_set;
514	struct blk_mq_hw_ctx *hctx;
515	int i;
516
517	queue_for_each_hw_ctx(q, hctx, i)
518		blk_mq_sched_free_tags(set, hctx, i);
519}
520
521int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
522			   unsigned int hctx_idx)
523{
524	struct elevator_queue *e = q->elevator;
525	int ret;
526
527	if (!e)
528		return 0;
529
530	ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
531	if (ret)
532		return ret;
533
534	if (e->type->ops.mq.init_hctx) {
535		ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
536		if (ret) {
537			blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
538			return ret;
539		}
540	}
541
542	blk_mq_debugfs_register_sched_hctx(q, hctx);
543
544	return 0;
545}
546
547void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
548			    unsigned int hctx_idx)
549{
550	struct elevator_queue *e = q->elevator;
551
552	if (!e)
553		return;
554
555	blk_mq_debugfs_unregister_sched_hctx(hctx);
556
557	if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
558		e->type->ops.mq.exit_hctx(hctx, hctx_idx);
559		hctx->sched_data = NULL;
560	}
561
562	blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
563}
564
565int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
566{
567	struct blk_mq_hw_ctx *hctx;
568	struct elevator_queue *eq;
569	unsigned int i;
570	int ret;
571
572	if (!e) {
573		q->elevator = NULL;
574		return 0;
575	}
576
577	/*
578	 * Default to double of smaller one between hw queue_depth and 128,
579	 * since we don't split into sync/async like the old code did.
580	 * Additionally, this is a per-hw queue depth.
581	 */
582	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
583				   BLKDEV_MAX_RQ);
584
585	queue_for_each_hw_ctx(q, hctx, i) {
586		ret = blk_mq_sched_alloc_tags(q, hctx, i);
587		if (ret)
588			goto err;
589	}
590
591	ret = e->ops.mq.init_sched(q, e);
592	if (ret)
593		goto err;
594
595	blk_mq_debugfs_register_sched(q);
596
597	queue_for_each_hw_ctx(q, hctx, i) {
598		if (e->ops.mq.init_hctx) {
599			ret = e->ops.mq.init_hctx(hctx, i);
600			if (ret) {
601				eq = q->elevator;
602				blk_mq_exit_sched(q, eq);
603				kobject_put(&eq->kobj);
604				return ret;
605			}
606		}
607		blk_mq_debugfs_register_sched_hctx(q, hctx);
608	}
609
610	return 0;
611
612err:
613	blk_mq_sched_tags_teardown(q);
614	q->elevator = NULL;
615	return ret;
616}
617
618void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
619{
620	struct blk_mq_hw_ctx *hctx;
621	unsigned int i;
622
623	queue_for_each_hw_ctx(q, hctx, i) {
624		blk_mq_debugfs_unregister_sched_hctx(hctx);
625		if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
626			e->type->ops.mq.exit_hctx(hctx, i);
627			hctx->sched_data = NULL;
628		}
629	}
630	blk_mq_debugfs_unregister_sched(q);
631	if (e->type->ops.mq.exit_sched)
632		e->type->ops.mq.exit_sched(e);
633	blk_mq_sched_tags_teardown(q);
634	q->elevator = NULL;
635}
636
637int blk_mq_sched_init(struct request_queue *q)
638{
639	int ret;
640
641	mutex_lock(&q->sysfs_lock);
642	ret = elevator_init(q, NULL);
643	mutex_unlock(&q->sysfs_lock);
644
645	return ret;
646}