Loading...
1/*
2 * SuperH KGDB support
3 *
4 * Copyright (C) 2008 - 2012 Paul Mundt
5 *
6 * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
7 *
8 * This file is subject to the terms and conditions of the GNU General Public
9 * License. See the file "COPYING" in the main directory of this archive
10 * for more details.
11 */
12#include <linux/kgdb.h>
13#include <linux/kdebug.h>
14#include <linux/irq.h>
15#include <linux/io.h>
16#include <asm/cacheflush.h>
17#include <asm/traps.h>
18
19/* Macros for single step instruction identification */
20#define OPCODE_BT(op) (((op) & 0xff00) == 0x8900)
21#define OPCODE_BF(op) (((op) & 0xff00) == 0x8b00)
22#define OPCODE_BTF_DISP(op) (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
23 (((op) & 0x7f ) << 1))
24#define OPCODE_BFS(op) (((op) & 0xff00) == 0x8f00)
25#define OPCODE_BTS(op) (((op) & 0xff00) == 0x8d00)
26#define OPCODE_BRA(op) (((op) & 0xf000) == 0xa000)
27#define OPCODE_BRA_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
28 (((op) & 0x7ff) << 1))
29#define OPCODE_BRAF(op) (((op) & 0xf0ff) == 0x0023)
30#define OPCODE_BRAF_REG(op) (((op) & 0x0f00) >> 8)
31#define OPCODE_BSR(op) (((op) & 0xf000) == 0xb000)
32#define OPCODE_BSR_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
33 (((op) & 0x7ff) << 1))
34#define OPCODE_BSRF(op) (((op) & 0xf0ff) == 0x0003)
35#define OPCODE_BSRF_REG(op) (((op) >> 8) & 0xf)
36#define OPCODE_JMP(op) (((op) & 0xf0ff) == 0x402b)
37#define OPCODE_JMP_REG(op) (((op) >> 8) & 0xf)
38#define OPCODE_JSR(op) (((op) & 0xf0ff) == 0x400b)
39#define OPCODE_JSR_REG(op) (((op) >> 8) & 0xf)
40#define OPCODE_RTS(op) ((op) == 0xb)
41#define OPCODE_RTE(op) ((op) == 0x2b)
42
43#define SR_T_BIT_MASK 0x1
44#define STEP_OPCODE 0xc33d
45
46/* Calculate the new address for after a step */
47static short *get_step_address(struct pt_regs *linux_regs)
48{
49 insn_size_t op = __raw_readw(linux_regs->pc);
50 long addr;
51
52 /* BT */
53 if (OPCODE_BT(op)) {
54 if (linux_regs->sr & SR_T_BIT_MASK)
55 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
56 else
57 addr = linux_regs->pc + 2;
58 }
59
60 /* BTS */
61 else if (OPCODE_BTS(op)) {
62 if (linux_regs->sr & SR_T_BIT_MASK)
63 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
64 else
65 addr = linux_regs->pc + 4; /* Not in delay slot */
66 }
67
68 /* BF */
69 else if (OPCODE_BF(op)) {
70 if (!(linux_regs->sr & SR_T_BIT_MASK))
71 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
72 else
73 addr = linux_regs->pc + 2;
74 }
75
76 /* BFS */
77 else if (OPCODE_BFS(op)) {
78 if (!(linux_regs->sr & SR_T_BIT_MASK))
79 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
80 else
81 addr = linux_regs->pc + 4; /* Not in delay slot */
82 }
83
84 /* BRA */
85 else if (OPCODE_BRA(op))
86 addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op);
87
88 /* BRAF */
89 else if (OPCODE_BRAF(op))
90 addr = linux_regs->pc + 4
91 + linux_regs->regs[OPCODE_BRAF_REG(op)];
92
93 /* BSR */
94 else if (OPCODE_BSR(op))
95 addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op);
96
97 /* BSRF */
98 else if (OPCODE_BSRF(op))
99 addr = linux_regs->pc + 4
100 + linux_regs->regs[OPCODE_BSRF_REG(op)];
101
102 /* JMP */
103 else if (OPCODE_JMP(op))
104 addr = linux_regs->regs[OPCODE_JMP_REG(op)];
105
106 /* JSR */
107 else if (OPCODE_JSR(op))
108 addr = linux_regs->regs[OPCODE_JSR_REG(op)];
109
110 /* RTS */
111 else if (OPCODE_RTS(op))
112 addr = linux_regs->pr;
113
114 /* RTE */
115 else if (OPCODE_RTE(op))
116 addr = linux_regs->regs[15];
117
118 /* Other */
119 else
120 addr = linux_regs->pc + instruction_size(op);
121
122 flush_icache_range(addr, addr + instruction_size(op));
123 return (short *)addr;
124}
125
126/*
127 * Replace the instruction immediately after the current instruction
128 * (i.e. next in the expected flow of control) with a trap instruction,
129 * so that returning will cause only a single instruction to be executed.
130 * Note that this model is slightly broken for instructions with delay
131 * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
132 * instruction in the delay slot will be executed.
133 */
134
135static unsigned long stepped_address;
136static insn_size_t stepped_opcode;
137
138static void do_single_step(struct pt_regs *linux_regs)
139{
140 /* Determine where the target instruction will send us to */
141 unsigned short *addr = get_step_address(linux_regs);
142
143 stepped_address = (int)addr;
144
145 /* Replace it */
146 stepped_opcode = __raw_readw((long)addr);
147 *addr = STEP_OPCODE;
148
149 /* Flush and return */
150 flush_icache_range((long)addr, (long)addr +
151 instruction_size(stepped_opcode));
152}
153
154/* Undo a single step */
155static void undo_single_step(struct pt_regs *linux_regs)
156{
157 /* If we have stepped, put back the old instruction */
158 /* Use stepped_address in case we stopped elsewhere */
159 if (stepped_opcode != 0) {
160 __raw_writew(stepped_opcode, stepped_address);
161 flush_icache_range(stepped_address, stepped_address + 2);
162 }
163
164 stepped_opcode = 0;
165}
166
167struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
168 { "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
169 { "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
170 { "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
171 { "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
172 { "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
173 { "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
174 { "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
175 { "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
176 { "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
177 { "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
178 { "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
179 { "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
180 { "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
181 { "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
182 { "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
183 { "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
184 { "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, pc) },
185 { "pr", GDB_SIZEOF_REG, offsetof(struct pt_regs, pr) },
186 { "sr", GDB_SIZEOF_REG, offsetof(struct pt_regs, sr) },
187 { "gbr", GDB_SIZEOF_REG, offsetof(struct pt_regs, gbr) },
188 { "mach", GDB_SIZEOF_REG, offsetof(struct pt_regs, mach) },
189 { "macl", GDB_SIZEOF_REG, offsetof(struct pt_regs, macl) },
190 { "vbr", GDB_SIZEOF_REG, -1 },
191};
192
193int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
194{
195 if (regno < 0 || regno >= DBG_MAX_REG_NUM)
196 return -EINVAL;
197
198 if (dbg_reg_def[regno].offset != -1)
199 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
200 dbg_reg_def[regno].size);
201
202 return 0;
203}
204
205char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
206{
207 if (regno >= DBG_MAX_REG_NUM || regno < 0)
208 return NULL;
209
210 if (dbg_reg_def[regno].size != -1)
211 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
212 dbg_reg_def[regno].size);
213
214 switch (regno) {
215 case GDB_VBR:
216 __asm__ __volatile__ ("stc vbr, %0" : "=r" (mem));
217 break;
218 }
219
220 return dbg_reg_def[regno].name;
221}
222
223void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
224{
225 struct pt_regs *thread_regs = task_pt_regs(p);
226 int reg;
227
228 /* Initialize to zero */
229 for (reg = 0; reg < DBG_MAX_REG_NUM; reg++)
230 gdb_regs[reg] = 0;
231
232 /*
233 * Copy out GP regs 8 to 14.
234 *
235 * switch_to() relies on SR.RB toggling, so regs 0->7 are banked
236 * and need privileged instructions to get to. The r15 value we
237 * fetch from the thread info directly.
238 */
239 for (reg = GDB_R8; reg < GDB_R15; reg++)
240 gdb_regs[reg] = thread_regs->regs[reg];
241
242 gdb_regs[GDB_R15] = p->thread.sp;
243 gdb_regs[GDB_PC] = p->thread.pc;
244
245 /*
246 * Additional registers we have context for
247 */
248 gdb_regs[GDB_PR] = thread_regs->pr;
249 gdb_regs[GDB_GBR] = thread_regs->gbr;
250}
251
252int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
253 char *remcomInBuffer, char *remcomOutBuffer,
254 struct pt_regs *linux_regs)
255{
256 unsigned long addr;
257 char *ptr;
258
259 /* Undo any stepping we may have done */
260 undo_single_step(linux_regs);
261
262 switch (remcomInBuffer[0]) {
263 case 'c':
264 case 's':
265 /* try to read optional parameter, pc unchanged if no parm */
266 ptr = &remcomInBuffer[1];
267 if (kgdb_hex2long(&ptr, &addr))
268 linux_regs->pc = addr;
269 case 'D':
270 case 'k':
271 atomic_set(&kgdb_cpu_doing_single_step, -1);
272
273 if (remcomInBuffer[0] == 's') {
274 do_single_step(linux_regs);
275 kgdb_single_step = 1;
276
277 atomic_set(&kgdb_cpu_doing_single_step,
278 raw_smp_processor_id());
279 }
280
281 return 0;
282 }
283
284 /* this means that we do not want to exit from the handler: */
285 return -1;
286}
287
288unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
289{
290 if (exception == 60)
291 return instruction_pointer(regs) - 2;
292 return instruction_pointer(regs);
293}
294
295void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
296{
297 regs->pc = ip;
298}
299
300/*
301 * The primary entry points for the kgdb debug trap table entries.
302 */
303BUILD_TRAP_HANDLER(singlestep)
304{
305 unsigned long flags;
306 TRAP_HANDLER_DECL;
307
308 local_irq_save(flags);
309 regs->pc -= instruction_size(__raw_readw(regs->pc - 4));
310 kgdb_handle_exception(0, SIGTRAP, 0, regs);
311 local_irq_restore(flags);
312}
313
314static void kgdb_call_nmi_hook(void *ignored)
315{
316 kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
317}
318
319void kgdb_roundup_cpus(unsigned long flags)
320{
321 local_irq_enable();
322 smp_call_function(kgdb_call_nmi_hook, NULL, 0);
323 local_irq_disable();
324}
325
326static int __kgdb_notify(struct die_args *args, unsigned long cmd)
327{
328 int ret;
329
330 switch (cmd) {
331 case DIE_BREAKPOINT:
332 /*
333 * This means a user thread is single stepping
334 * a system call which should be ignored
335 */
336 if (test_thread_flag(TIF_SINGLESTEP))
337 return NOTIFY_DONE;
338
339 ret = kgdb_handle_exception(args->trapnr & 0xff, args->signr,
340 args->err, args->regs);
341 if (ret)
342 return NOTIFY_DONE;
343
344 break;
345 }
346
347 return NOTIFY_STOP;
348}
349
350static int
351kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
352{
353 unsigned long flags;
354 int ret;
355
356 local_irq_save(flags);
357 ret = __kgdb_notify(ptr, cmd);
358 local_irq_restore(flags);
359
360 return ret;
361}
362
363static struct notifier_block kgdb_notifier = {
364 .notifier_call = kgdb_notify,
365
366 /*
367 * Lowest-prio notifier priority, we want to be notified last:
368 */
369 .priority = -INT_MAX,
370};
371
372int kgdb_arch_init(void)
373{
374 return register_die_notifier(&kgdb_notifier);
375}
376
377void kgdb_arch_exit(void)
378{
379 unregister_die_notifier(&kgdb_notifier);
380}
381
382struct kgdb_arch arch_kgdb_ops = {
383 /* Breakpoint instruction: trapa #0x3c */
384#ifdef CONFIG_CPU_LITTLE_ENDIAN
385 .gdb_bpt_instr = { 0x3c, 0xc3 },
386#else
387 .gdb_bpt_instr = { 0xc3, 0x3c },
388#endif
389};
1/*
2 * SuperH KGDB support
3 *
4 * Copyright (C) 2008 - 2012 Paul Mundt
5 *
6 * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
7 *
8 * This file is subject to the terms and conditions of the GNU General Public
9 * License. See the file "COPYING" in the main directory of this archive
10 * for more details.
11 */
12#include <linux/kgdb.h>
13#include <linux/kdebug.h>
14#include <linux/irq.h>
15#include <linux/io.h>
16#include <linux/sched.h>
17#include <linux/sched/task_stack.h>
18
19#include <asm/cacheflush.h>
20#include <asm/traps.h>
21
22/* Macros for single step instruction identification */
23#define OPCODE_BT(op) (((op) & 0xff00) == 0x8900)
24#define OPCODE_BF(op) (((op) & 0xff00) == 0x8b00)
25#define OPCODE_BTF_DISP(op) (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
26 (((op) & 0x7f ) << 1))
27#define OPCODE_BFS(op) (((op) & 0xff00) == 0x8f00)
28#define OPCODE_BTS(op) (((op) & 0xff00) == 0x8d00)
29#define OPCODE_BRA(op) (((op) & 0xf000) == 0xa000)
30#define OPCODE_BRA_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
31 (((op) & 0x7ff) << 1))
32#define OPCODE_BRAF(op) (((op) & 0xf0ff) == 0x0023)
33#define OPCODE_BRAF_REG(op) (((op) & 0x0f00) >> 8)
34#define OPCODE_BSR(op) (((op) & 0xf000) == 0xb000)
35#define OPCODE_BSR_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
36 (((op) & 0x7ff) << 1))
37#define OPCODE_BSRF(op) (((op) & 0xf0ff) == 0x0003)
38#define OPCODE_BSRF_REG(op) (((op) >> 8) & 0xf)
39#define OPCODE_JMP(op) (((op) & 0xf0ff) == 0x402b)
40#define OPCODE_JMP_REG(op) (((op) >> 8) & 0xf)
41#define OPCODE_JSR(op) (((op) & 0xf0ff) == 0x400b)
42#define OPCODE_JSR_REG(op) (((op) >> 8) & 0xf)
43#define OPCODE_RTS(op) ((op) == 0xb)
44#define OPCODE_RTE(op) ((op) == 0x2b)
45
46#define SR_T_BIT_MASK 0x1
47#define STEP_OPCODE 0xc33d
48
49/* Calculate the new address for after a step */
50static short *get_step_address(struct pt_regs *linux_regs)
51{
52 insn_size_t op = __raw_readw(linux_regs->pc);
53 long addr;
54
55 /* BT */
56 if (OPCODE_BT(op)) {
57 if (linux_regs->sr & SR_T_BIT_MASK)
58 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
59 else
60 addr = linux_regs->pc + 2;
61 }
62
63 /* BTS */
64 else if (OPCODE_BTS(op)) {
65 if (linux_regs->sr & SR_T_BIT_MASK)
66 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
67 else
68 addr = linux_regs->pc + 4; /* Not in delay slot */
69 }
70
71 /* BF */
72 else if (OPCODE_BF(op)) {
73 if (!(linux_regs->sr & SR_T_BIT_MASK))
74 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
75 else
76 addr = linux_regs->pc + 2;
77 }
78
79 /* BFS */
80 else if (OPCODE_BFS(op)) {
81 if (!(linux_regs->sr & SR_T_BIT_MASK))
82 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
83 else
84 addr = linux_regs->pc + 4; /* Not in delay slot */
85 }
86
87 /* BRA */
88 else if (OPCODE_BRA(op))
89 addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op);
90
91 /* BRAF */
92 else if (OPCODE_BRAF(op))
93 addr = linux_regs->pc + 4
94 + linux_regs->regs[OPCODE_BRAF_REG(op)];
95
96 /* BSR */
97 else if (OPCODE_BSR(op))
98 addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op);
99
100 /* BSRF */
101 else if (OPCODE_BSRF(op))
102 addr = linux_regs->pc + 4
103 + linux_regs->regs[OPCODE_BSRF_REG(op)];
104
105 /* JMP */
106 else if (OPCODE_JMP(op))
107 addr = linux_regs->regs[OPCODE_JMP_REG(op)];
108
109 /* JSR */
110 else if (OPCODE_JSR(op))
111 addr = linux_regs->regs[OPCODE_JSR_REG(op)];
112
113 /* RTS */
114 else if (OPCODE_RTS(op))
115 addr = linux_regs->pr;
116
117 /* RTE */
118 else if (OPCODE_RTE(op))
119 addr = linux_regs->regs[15];
120
121 /* Other */
122 else
123 addr = linux_regs->pc + instruction_size(op);
124
125 flush_icache_range(addr, addr + instruction_size(op));
126 return (short *)addr;
127}
128
129/*
130 * Replace the instruction immediately after the current instruction
131 * (i.e. next in the expected flow of control) with a trap instruction,
132 * so that returning will cause only a single instruction to be executed.
133 * Note that this model is slightly broken for instructions with delay
134 * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
135 * instruction in the delay slot will be executed.
136 */
137
138static unsigned long stepped_address;
139static insn_size_t stepped_opcode;
140
141static void do_single_step(struct pt_regs *linux_regs)
142{
143 /* Determine where the target instruction will send us to */
144 unsigned short *addr = get_step_address(linux_regs);
145
146 stepped_address = (int)addr;
147
148 /* Replace it */
149 stepped_opcode = __raw_readw((long)addr);
150 *addr = STEP_OPCODE;
151
152 /* Flush and return */
153 flush_icache_range((long)addr, (long)addr +
154 instruction_size(stepped_opcode));
155}
156
157/* Undo a single step */
158static void undo_single_step(struct pt_regs *linux_regs)
159{
160 /* If we have stepped, put back the old instruction */
161 /* Use stepped_address in case we stopped elsewhere */
162 if (stepped_opcode != 0) {
163 __raw_writew(stepped_opcode, stepped_address);
164 flush_icache_range(stepped_address, stepped_address + 2);
165 }
166
167 stepped_opcode = 0;
168}
169
170struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
171 { "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
172 { "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
173 { "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
174 { "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
175 { "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
176 { "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
177 { "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
178 { "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
179 { "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
180 { "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
181 { "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
182 { "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
183 { "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
184 { "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
185 { "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
186 { "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
187 { "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, pc) },
188 { "pr", GDB_SIZEOF_REG, offsetof(struct pt_regs, pr) },
189 { "sr", GDB_SIZEOF_REG, offsetof(struct pt_regs, sr) },
190 { "gbr", GDB_SIZEOF_REG, offsetof(struct pt_regs, gbr) },
191 { "mach", GDB_SIZEOF_REG, offsetof(struct pt_regs, mach) },
192 { "macl", GDB_SIZEOF_REG, offsetof(struct pt_regs, macl) },
193 { "vbr", GDB_SIZEOF_REG, -1 },
194};
195
196int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
197{
198 if (regno < 0 || regno >= DBG_MAX_REG_NUM)
199 return -EINVAL;
200
201 if (dbg_reg_def[regno].offset != -1)
202 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
203 dbg_reg_def[regno].size);
204
205 return 0;
206}
207
208char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
209{
210 if (regno >= DBG_MAX_REG_NUM || regno < 0)
211 return NULL;
212
213 if (dbg_reg_def[regno].size != -1)
214 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
215 dbg_reg_def[regno].size);
216
217 switch (regno) {
218 case GDB_VBR:
219 __asm__ __volatile__ ("stc vbr, %0" : "=r" (mem));
220 break;
221 }
222
223 return dbg_reg_def[regno].name;
224}
225
226void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
227{
228 struct pt_regs *thread_regs = task_pt_regs(p);
229 int reg;
230
231 /* Initialize to zero */
232 for (reg = 0; reg < DBG_MAX_REG_NUM; reg++)
233 gdb_regs[reg] = 0;
234
235 /*
236 * Copy out GP regs 8 to 14.
237 *
238 * switch_to() relies on SR.RB toggling, so regs 0->7 are banked
239 * and need privileged instructions to get to. The r15 value we
240 * fetch from the thread info directly.
241 */
242 for (reg = GDB_R8; reg < GDB_R15; reg++)
243 gdb_regs[reg] = thread_regs->regs[reg];
244
245 gdb_regs[GDB_R15] = p->thread.sp;
246 gdb_regs[GDB_PC] = p->thread.pc;
247
248 /*
249 * Additional registers we have context for
250 */
251 gdb_regs[GDB_PR] = thread_regs->pr;
252 gdb_regs[GDB_GBR] = thread_regs->gbr;
253}
254
255int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
256 char *remcomInBuffer, char *remcomOutBuffer,
257 struct pt_regs *linux_regs)
258{
259 unsigned long addr;
260 char *ptr;
261
262 /* Undo any stepping we may have done */
263 undo_single_step(linux_regs);
264
265 switch (remcomInBuffer[0]) {
266 case 'c':
267 case 's':
268 /* try to read optional parameter, pc unchanged if no parm */
269 ptr = &remcomInBuffer[1];
270 if (kgdb_hex2long(&ptr, &addr))
271 linux_regs->pc = addr;
272 case 'D':
273 case 'k':
274 atomic_set(&kgdb_cpu_doing_single_step, -1);
275
276 if (remcomInBuffer[0] == 's') {
277 do_single_step(linux_regs);
278 kgdb_single_step = 1;
279
280 atomic_set(&kgdb_cpu_doing_single_step,
281 raw_smp_processor_id());
282 }
283
284 return 0;
285 }
286
287 /* this means that we do not want to exit from the handler: */
288 return -1;
289}
290
291unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
292{
293 if (exception == 60)
294 return instruction_pointer(regs) - 2;
295 return instruction_pointer(regs);
296}
297
298void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
299{
300 regs->pc = ip;
301}
302
303/*
304 * The primary entry points for the kgdb debug trap table entries.
305 */
306BUILD_TRAP_HANDLER(singlestep)
307{
308 unsigned long flags;
309 TRAP_HANDLER_DECL;
310
311 local_irq_save(flags);
312 regs->pc -= instruction_size(__raw_readw(regs->pc - 4));
313 kgdb_handle_exception(0, SIGTRAP, 0, regs);
314 local_irq_restore(flags);
315}
316
317static void kgdb_call_nmi_hook(void *ignored)
318{
319 kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
320}
321
322void kgdb_roundup_cpus(unsigned long flags)
323{
324 local_irq_enable();
325 smp_call_function(kgdb_call_nmi_hook, NULL, 0);
326 local_irq_disable();
327}
328
329static int __kgdb_notify(struct die_args *args, unsigned long cmd)
330{
331 int ret;
332
333 switch (cmd) {
334 case DIE_BREAKPOINT:
335 /*
336 * This means a user thread is single stepping
337 * a system call which should be ignored
338 */
339 if (test_thread_flag(TIF_SINGLESTEP))
340 return NOTIFY_DONE;
341
342 ret = kgdb_handle_exception(args->trapnr & 0xff, args->signr,
343 args->err, args->regs);
344 if (ret)
345 return NOTIFY_DONE;
346
347 break;
348 }
349
350 return NOTIFY_STOP;
351}
352
353static int
354kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
355{
356 unsigned long flags;
357 int ret;
358
359 local_irq_save(flags);
360 ret = __kgdb_notify(ptr, cmd);
361 local_irq_restore(flags);
362
363 return ret;
364}
365
366static struct notifier_block kgdb_notifier = {
367 .notifier_call = kgdb_notify,
368
369 /*
370 * Lowest-prio notifier priority, we want to be notified last:
371 */
372 .priority = -INT_MAX,
373};
374
375int kgdb_arch_init(void)
376{
377 return register_die_notifier(&kgdb_notifier);
378}
379
380void kgdb_arch_exit(void)
381{
382 unregister_die_notifier(&kgdb_notifier);
383}
384
385struct kgdb_arch arch_kgdb_ops = {
386 /* Breakpoint instruction: trapa #0x3c */
387#ifdef CONFIG_CPU_LITTLE_ENDIAN
388 .gdb_bpt_instr = { 0x3c, 0xc3 },
389#else
390 .gdb_bpt_instr = { 0xc3, 0x3c },
391#endif
392};