Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: Instruction/Exception emulation
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/ktime.h>
  15#include <linux/kvm_host.h>
  16#include <linux/vmalloc.h>
  17#include <linux/fs.h>
  18#include <linux/bootmem.h>
  19#include <linux/random.h>
  20#include <asm/page.h>
  21#include <asm/cacheflush.h>
  22#include <asm/cacheops.h>
  23#include <asm/cpu-info.h>
  24#include <asm/mmu_context.h>
  25#include <asm/tlbflush.h>
  26#include <asm/inst.h>
  27
  28#undef CONFIG_MIPS_MT
  29#include <asm/r4kcache.h>
  30#define CONFIG_MIPS_MT
  31
  32#include "interrupt.h"
  33#include "commpage.h"
  34
  35#include "trace.h"
  36
  37/*
  38 * Compute the return address and do emulate branch simulation, if required.
  39 * This function should be called only in branch delay slot active.
  40 */
  41static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
  42				  unsigned long *out)
  43{
  44	unsigned int dspcontrol;
  45	union mips_instruction insn;
  46	struct kvm_vcpu_arch *arch = &vcpu->arch;
  47	long epc = instpc;
  48	long nextpc;
  49	int err;
  50
  51	if (epc & 3) {
  52		kvm_err("%s: unaligned epc\n", __func__);
  53		return -EINVAL;
  54	}
  55
  56	/* Read the instruction */
  57	err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
  58	if (err)
  59		return err;
  60
  61	switch (insn.i_format.opcode) {
  62		/* jr and jalr are in r_format format. */
  63	case spec_op:
  64		switch (insn.r_format.func) {
  65		case jalr_op:
  66			arch->gprs[insn.r_format.rd] = epc + 8;
  67			/* Fall through */
  68		case jr_op:
  69			nextpc = arch->gprs[insn.r_format.rs];
  70			break;
  71		default:
  72			return -EINVAL;
  73		}
  74		break;
  75
  76		/*
  77		 * This group contains:
  78		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
  79		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
  80		 */
  81	case bcond_op:
  82		switch (insn.i_format.rt) {
  83		case bltz_op:
  84		case bltzl_op:
  85			if ((long)arch->gprs[insn.i_format.rs] < 0)
  86				epc = epc + 4 + (insn.i_format.simmediate << 2);
  87			else
  88				epc += 8;
  89			nextpc = epc;
  90			break;
  91
  92		case bgez_op:
  93		case bgezl_op:
  94			if ((long)arch->gprs[insn.i_format.rs] >= 0)
  95				epc = epc + 4 + (insn.i_format.simmediate << 2);
  96			else
  97				epc += 8;
  98			nextpc = epc;
  99			break;
 100
 101		case bltzal_op:
 102		case bltzall_op:
 103			arch->gprs[31] = epc + 8;
 104			if ((long)arch->gprs[insn.i_format.rs] < 0)
 105				epc = epc + 4 + (insn.i_format.simmediate << 2);
 106			else
 107				epc += 8;
 108			nextpc = epc;
 109			break;
 110
 111		case bgezal_op:
 112		case bgezall_op:
 113			arch->gprs[31] = epc + 8;
 114			if ((long)arch->gprs[insn.i_format.rs] >= 0)
 115				epc = epc + 4 + (insn.i_format.simmediate << 2);
 116			else
 117				epc += 8;
 118			nextpc = epc;
 119			break;
 120		case bposge32_op:
 121			if (!cpu_has_dsp) {
 122				kvm_err("%s: DSP branch but not DSP ASE\n",
 123					__func__);
 124				return -EINVAL;
 125			}
 126
 127			dspcontrol = rddsp(0x01);
 128
 129			if (dspcontrol >= 32)
 130				epc = epc + 4 + (insn.i_format.simmediate << 2);
 131			else
 132				epc += 8;
 133			nextpc = epc;
 134			break;
 135		default:
 136			return -EINVAL;
 137		}
 138		break;
 139
 140		/* These are unconditional and in j_format. */
 141	case jal_op:
 142		arch->gprs[31] = instpc + 8;
 143	case j_op:
 144		epc += 4;
 145		epc >>= 28;
 146		epc <<= 28;
 147		epc |= (insn.j_format.target << 2);
 148		nextpc = epc;
 149		break;
 150
 151		/* These are conditional and in i_format. */
 152	case beq_op:
 153	case beql_op:
 154		if (arch->gprs[insn.i_format.rs] ==
 155		    arch->gprs[insn.i_format.rt])
 156			epc = epc + 4 + (insn.i_format.simmediate << 2);
 157		else
 158			epc += 8;
 159		nextpc = epc;
 160		break;
 161
 162	case bne_op:
 163	case bnel_op:
 164		if (arch->gprs[insn.i_format.rs] !=
 165		    arch->gprs[insn.i_format.rt])
 166			epc = epc + 4 + (insn.i_format.simmediate << 2);
 167		else
 168			epc += 8;
 169		nextpc = epc;
 170		break;
 171
 172	case blez_op:	/* POP06 */
 173#ifndef CONFIG_CPU_MIPSR6
 174	case blezl_op:	/* removed in R6 */
 175#endif
 176		if (insn.i_format.rt != 0)
 177			goto compact_branch;
 178		if ((long)arch->gprs[insn.i_format.rs] <= 0)
 179			epc = epc + 4 + (insn.i_format.simmediate << 2);
 180		else
 181			epc += 8;
 182		nextpc = epc;
 183		break;
 184
 185	case bgtz_op:	/* POP07 */
 186#ifndef CONFIG_CPU_MIPSR6
 187	case bgtzl_op:	/* removed in R6 */
 188#endif
 189		if (insn.i_format.rt != 0)
 190			goto compact_branch;
 191		if ((long)arch->gprs[insn.i_format.rs] > 0)
 192			epc = epc + 4 + (insn.i_format.simmediate << 2);
 193		else
 194			epc += 8;
 195		nextpc = epc;
 196		break;
 197
 198		/* And now the FPA/cp1 branch instructions. */
 199	case cop1_op:
 200		kvm_err("%s: unsupported cop1_op\n", __func__);
 201		return -EINVAL;
 202
 203#ifdef CONFIG_CPU_MIPSR6
 204	/* R6 added the following compact branches with forbidden slots */
 205	case blezl_op:	/* POP26 */
 206	case bgtzl_op:	/* POP27 */
 207		/* only rt == 0 isn't compact branch */
 208		if (insn.i_format.rt != 0)
 209			goto compact_branch;
 210		return -EINVAL;
 211	case pop10_op:
 212	case pop30_op:
 213		/* only rs == rt == 0 is reserved, rest are compact branches */
 214		if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
 215			goto compact_branch;
 216		return -EINVAL;
 217	case pop66_op:
 218	case pop76_op:
 219		/* only rs == 0 isn't compact branch */
 220		if (insn.i_format.rs != 0)
 221			goto compact_branch;
 222		return -EINVAL;
 223compact_branch:
 224		/*
 225		 * If we've hit an exception on the forbidden slot, then
 226		 * the branch must not have been taken.
 227		 */
 228		epc += 8;
 229		nextpc = epc;
 230		break;
 231#else
 232compact_branch:
 233		/* Fall through - Compact branches not supported before R6 */
 234#endif
 235	default:
 236		return -EINVAL;
 237	}
 238
 239	*out = nextpc;
 240	return 0;
 241}
 242
 243enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
 244{
 245	int err;
 246
 247	if (cause & CAUSEF_BD) {
 248		err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
 249					     &vcpu->arch.pc);
 250		if (err)
 251			return EMULATE_FAIL;
 252	} else {
 253		vcpu->arch.pc += 4;
 254	}
 255
 256	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
 257
 258	return EMULATE_DONE;
 259}
 260
 261/**
 262 * kvm_get_badinstr() - Get bad instruction encoding.
 263 * @opc:	Guest pointer to faulting instruction.
 264 * @vcpu:	KVM VCPU information.
 265 *
 266 * Gets the instruction encoding of the faulting instruction, using the saved
 267 * BadInstr register value if it exists, otherwise falling back to reading guest
 268 * memory at @opc.
 269 *
 270 * Returns:	The instruction encoding of the faulting instruction.
 271 */
 272int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
 273{
 274	if (cpu_has_badinstr) {
 275		*out = vcpu->arch.host_cp0_badinstr;
 276		return 0;
 277	} else {
 278		return kvm_get_inst(opc, vcpu, out);
 279	}
 280}
 281
 282/**
 283 * kvm_get_badinstrp() - Get bad prior instruction encoding.
 284 * @opc:	Guest pointer to prior faulting instruction.
 285 * @vcpu:	KVM VCPU information.
 286 *
 287 * Gets the instruction encoding of the prior faulting instruction (the branch
 288 * containing the delay slot which faulted), using the saved BadInstrP register
 289 * value if it exists, otherwise falling back to reading guest memory at @opc.
 290 *
 291 * Returns:	The instruction encoding of the prior faulting instruction.
 292 */
 293int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
 294{
 295	if (cpu_has_badinstrp) {
 296		*out = vcpu->arch.host_cp0_badinstrp;
 297		return 0;
 298	} else {
 299		return kvm_get_inst(opc, vcpu, out);
 300	}
 301}
 302
 303/**
 304 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
 305 * @vcpu:	Virtual CPU.
 306 *
 307 * Returns:	1 if the CP0_Count timer is disabled by either the guest
 308 *		CP0_Cause.DC bit or the count_ctl.DC bit.
 309 *		0 otherwise (in which case CP0_Count timer is running).
 310 */
 311int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
 312{
 313	struct mips_coproc *cop0 = vcpu->arch.cop0;
 314
 315	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
 316		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
 317}
 318
 319/**
 320 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
 321 *
 322 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
 323 *
 324 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 325 */
 326static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
 327{
 328	s64 now_ns, periods;
 329	u64 delta;
 330
 331	now_ns = ktime_to_ns(now);
 332	delta = now_ns + vcpu->arch.count_dyn_bias;
 333
 334	if (delta >= vcpu->arch.count_period) {
 335		/* If delta is out of safe range the bias needs adjusting */
 336		periods = div64_s64(now_ns, vcpu->arch.count_period);
 337		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
 338		/* Recalculate delta with new bias */
 339		delta = now_ns + vcpu->arch.count_dyn_bias;
 340	}
 341
 342	/*
 343	 * We've ensured that:
 344	 *   delta < count_period
 345	 *
 346	 * Therefore the intermediate delta*count_hz will never overflow since
 347	 * at the boundary condition:
 348	 *   delta = count_period
 349	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
 350	 *   delta * count_hz = NSEC_PER_SEC * 2^32
 351	 */
 352	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
 353}
 354
 355/**
 356 * kvm_mips_count_time() - Get effective current time.
 357 * @vcpu:	Virtual CPU.
 358 *
 359 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
 360 * except when the master disable bit is set in count_ctl, in which case it is
 361 * count_resume, i.e. the time that the count was disabled.
 362 *
 363 * Returns:	Effective monotonic ktime for CP0_Count.
 364 */
 365static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
 366{
 367	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
 368		return vcpu->arch.count_resume;
 369
 370	return ktime_get();
 371}
 372
 373/**
 374 * kvm_mips_read_count_running() - Read the current count value as if running.
 375 * @vcpu:	Virtual CPU.
 376 * @now:	Kernel time to read CP0_Count at.
 377 *
 378 * Returns the current guest CP0_Count register at time @now and handles if the
 379 * timer interrupt is pending and hasn't been handled yet.
 380 *
 381 * Returns:	The current value of the guest CP0_Count register.
 382 */
 383static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
 384{
 385	struct mips_coproc *cop0 = vcpu->arch.cop0;
 386	ktime_t expires, threshold;
 387	u32 count, compare;
 388	int running;
 389
 390	/* Calculate the biased and scaled guest CP0_Count */
 391	count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
 392	compare = kvm_read_c0_guest_compare(cop0);
 393
 394	/*
 395	 * Find whether CP0_Count has reached the closest timer interrupt. If
 396	 * not, we shouldn't inject it.
 397	 */
 398	if ((s32)(count - compare) < 0)
 399		return count;
 400
 401	/*
 402	 * The CP0_Count we're going to return has already reached the closest
 403	 * timer interrupt. Quickly check if it really is a new interrupt by
 404	 * looking at whether the interval until the hrtimer expiry time is
 405	 * less than 1/4 of the timer period.
 406	 */
 407	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
 408	threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
 409	if (ktime_before(expires, threshold)) {
 410		/*
 411		 * Cancel it while we handle it so there's no chance of
 412		 * interference with the timeout handler.
 413		 */
 414		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
 415
 416		/* Nothing should be waiting on the timeout */
 417		kvm_mips_callbacks->queue_timer_int(vcpu);
 418
 419		/*
 420		 * Restart the timer if it was running based on the expiry time
 421		 * we read, so that we don't push it back 2 periods.
 422		 */
 423		if (running) {
 424			expires = ktime_add_ns(expires,
 425					       vcpu->arch.count_period);
 426			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
 427				      HRTIMER_MODE_ABS);
 428		}
 429	}
 430
 431	return count;
 432}
 433
 434/**
 435 * kvm_mips_read_count() - Read the current count value.
 436 * @vcpu:	Virtual CPU.
 437 *
 438 * Read the current guest CP0_Count value, taking into account whether the timer
 439 * is stopped.
 440 *
 441 * Returns:	The current guest CP0_Count value.
 442 */
 443u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
 444{
 445	struct mips_coproc *cop0 = vcpu->arch.cop0;
 446
 447	/* If count disabled just read static copy of count */
 448	if (kvm_mips_count_disabled(vcpu))
 449		return kvm_read_c0_guest_count(cop0);
 450
 451	return kvm_mips_read_count_running(vcpu, ktime_get());
 452}
 453
 454/**
 455 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
 456 * @vcpu:	Virtual CPU.
 457 * @count:	Output pointer for CP0_Count value at point of freeze.
 458 *
 459 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
 460 * at the point it was frozen. It is guaranteed that any pending interrupts at
 461 * the point it was frozen are handled, and none after that point.
 462 *
 463 * This is useful where the time/CP0_Count is needed in the calculation of the
 464 * new parameters.
 465 *
 466 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 467 *
 468 * Returns:	The ktime at the point of freeze.
 469 */
 470ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
 471{
 472	ktime_t now;
 473
 474	/* stop hrtimer before finding time */
 475	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 476	now = ktime_get();
 477
 478	/* find count at this point and handle pending hrtimer */
 479	*count = kvm_mips_read_count_running(vcpu, now);
 480
 481	return now;
 482}
 483
 484/**
 485 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
 486 * @vcpu:	Virtual CPU.
 487 * @now:	ktime at point of resume.
 488 * @count:	CP0_Count at point of resume.
 489 *
 490 * Resumes the timer and updates the timer expiry based on @now and @count.
 491 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
 492 * parameters need to be changed.
 493 *
 494 * It is guaranteed that a timer interrupt immediately after resume will be
 495 * handled, but not if CP_Compare is exactly at @count. That case is already
 496 * handled by kvm_mips_freeze_timer().
 497 *
 498 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 499 */
 500static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
 501				    ktime_t now, u32 count)
 502{
 503	struct mips_coproc *cop0 = vcpu->arch.cop0;
 504	u32 compare;
 505	u64 delta;
 506	ktime_t expire;
 507
 508	/* Calculate timeout (wrap 0 to 2^32) */
 509	compare = kvm_read_c0_guest_compare(cop0);
 510	delta = (u64)(u32)(compare - count - 1) + 1;
 511	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
 512	expire = ktime_add_ns(now, delta);
 513
 514	/* Update hrtimer to use new timeout */
 515	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 516	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
 517}
 518
 519/**
 520 * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
 521 * @vcpu:	Virtual CPU.
 522 * @before:	Time before Count was saved, lower bound of drift calculation.
 523 * @count:	CP0_Count at point of restore.
 524 * @min_drift:	Minimum amount of drift permitted before correction.
 525 *		Must be <= 0.
 526 *
 527 * Restores the timer from a particular @count, accounting for drift. This can
 528 * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
 529 * to be used for a period of time, but the exact ktime corresponding to the
 530 * final Count that must be restored is not known.
 531 *
 532 * It is gauranteed that a timer interrupt immediately after restore will be
 533 * handled, but not if CP0_Compare is exactly at @count. That case should
 534 * already be handled when the hardware timer state is saved.
 535 *
 536 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
 537 * stopped).
 538 *
 539 * Returns:	Amount of correction to count_bias due to drift.
 540 */
 541int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
 542			     u32 count, int min_drift)
 543{
 544	ktime_t now, count_time;
 545	u32 now_count, before_count;
 546	u64 delta;
 547	int drift, ret = 0;
 548
 549	/* Calculate expected count at before */
 550	before_count = vcpu->arch.count_bias +
 551			kvm_mips_ktime_to_count(vcpu, before);
 552
 553	/*
 554	 * Detect significantly negative drift, where count is lower than
 555	 * expected. Some negative drift is expected when hardware counter is
 556	 * set after kvm_mips_freeze_timer(), and it is harmless to allow the
 557	 * time to jump forwards a little, within reason. If the drift is too
 558	 * significant, adjust the bias to avoid a big Guest.CP0_Count jump.
 559	 */
 560	drift = count - before_count;
 561	if (drift < min_drift) {
 562		count_time = before;
 563		vcpu->arch.count_bias += drift;
 564		ret = drift;
 565		goto resume;
 566	}
 567
 568	/* Calculate expected count right now */
 569	now = ktime_get();
 570	now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
 571
 572	/*
 573	 * Detect positive drift, where count is higher than expected, and
 574	 * adjust the bias to avoid guest time going backwards.
 575	 */
 576	drift = count - now_count;
 577	if (drift > 0) {
 578		count_time = now;
 579		vcpu->arch.count_bias += drift;
 580		ret = drift;
 581		goto resume;
 582	}
 583
 584	/* Subtract nanosecond delta to find ktime when count was read */
 585	delta = (u64)(u32)(now_count - count);
 586	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
 587	count_time = ktime_sub_ns(now, delta);
 588
 589resume:
 590	/* Resume using the calculated ktime */
 591	kvm_mips_resume_hrtimer(vcpu, count_time, count);
 592	return ret;
 593}
 594
 595/**
 596 * kvm_mips_write_count() - Modify the count and update timer.
 597 * @vcpu:	Virtual CPU.
 598 * @count:	Guest CP0_Count value to set.
 599 *
 600 * Sets the CP0_Count value and updates the timer accordingly.
 601 */
 602void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
 603{
 604	struct mips_coproc *cop0 = vcpu->arch.cop0;
 605	ktime_t now;
 606
 607	/* Calculate bias */
 608	now = kvm_mips_count_time(vcpu);
 609	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
 610
 611	if (kvm_mips_count_disabled(vcpu))
 612		/* The timer's disabled, adjust the static count */
 613		kvm_write_c0_guest_count(cop0, count);
 614	else
 615		/* Update timeout */
 616		kvm_mips_resume_hrtimer(vcpu, now, count);
 617}
 618
 619/**
 620 * kvm_mips_init_count() - Initialise timer.
 621 * @vcpu:	Virtual CPU.
 622 * @count_hz:	Frequency of timer.
 623 *
 624 * Initialise the timer to the specified frequency, zero it, and set it going if
 625 * it's enabled.
 626 */
 627void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
 628{
 629	vcpu->arch.count_hz = count_hz;
 630	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
 631	vcpu->arch.count_dyn_bias = 0;
 632
 633	/* Starting at 0 */
 634	kvm_mips_write_count(vcpu, 0);
 635}
 636
 637/**
 638 * kvm_mips_set_count_hz() - Update the frequency of the timer.
 639 * @vcpu:	Virtual CPU.
 640 * @count_hz:	Frequency of CP0_Count timer in Hz.
 641 *
 642 * Change the frequency of the CP0_Count timer. This is done atomically so that
 643 * CP0_Count is continuous and no timer interrupt is lost.
 644 *
 645 * Returns:	-EINVAL if @count_hz is out of range.
 646 *		0 on success.
 647 */
 648int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
 649{
 650	struct mips_coproc *cop0 = vcpu->arch.cop0;
 651	int dc;
 652	ktime_t now;
 653	u32 count;
 654
 655	/* ensure the frequency is in a sensible range... */
 656	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
 657		return -EINVAL;
 658	/* ... and has actually changed */
 659	if (vcpu->arch.count_hz == count_hz)
 660		return 0;
 661
 662	/* Safely freeze timer so we can keep it continuous */
 663	dc = kvm_mips_count_disabled(vcpu);
 664	if (dc) {
 665		now = kvm_mips_count_time(vcpu);
 666		count = kvm_read_c0_guest_count(cop0);
 667	} else {
 668		now = kvm_mips_freeze_hrtimer(vcpu, &count);
 669	}
 670
 671	/* Update the frequency */
 672	vcpu->arch.count_hz = count_hz;
 673	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
 674	vcpu->arch.count_dyn_bias = 0;
 675
 676	/* Calculate adjusted bias so dynamic count is unchanged */
 677	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
 678
 679	/* Update and resume hrtimer */
 680	if (!dc)
 681		kvm_mips_resume_hrtimer(vcpu, now, count);
 682	return 0;
 683}
 684
 685/**
 686 * kvm_mips_write_compare() - Modify compare and update timer.
 687 * @vcpu:	Virtual CPU.
 688 * @compare:	New CP0_Compare value.
 689 * @ack:	Whether to acknowledge timer interrupt.
 690 *
 691 * Update CP0_Compare to a new value and update the timeout.
 692 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
 693 * any pending timer interrupt is preserved.
 694 */
 695void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
 696{
 697	struct mips_coproc *cop0 = vcpu->arch.cop0;
 698	int dc;
 699	u32 old_compare = kvm_read_c0_guest_compare(cop0);
 700	s32 delta = compare - old_compare;
 701	u32 cause;
 702	ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
 703	u32 count;
 704
 705	/* if unchanged, must just be an ack */
 706	if (old_compare == compare) {
 707		if (!ack)
 708			return;
 709		kvm_mips_callbacks->dequeue_timer_int(vcpu);
 710		kvm_write_c0_guest_compare(cop0, compare);
 711		return;
 712	}
 713
 714	/*
 715	 * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
 716	 * too to prevent guest CP0_Count hitting guest CP0_Compare.
 717	 *
 718	 * The new GTOffset corresponds to the new value of CP0_Compare, and is
 719	 * set prior to it being written into the guest context. We disable
 720	 * preemption until the new value is written to prevent restore of a
 721	 * GTOffset corresponding to the old CP0_Compare value.
 722	 */
 723	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta > 0) {
 724		preempt_disable();
 725		write_c0_gtoffset(compare - read_c0_count());
 726		back_to_back_c0_hazard();
 727	}
 728
 729	/* freeze_hrtimer() takes care of timer interrupts <= count */
 730	dc = kvm_mips_count_disabled(vcpu);
 731	if (!dc)
 732		now = kvm_mips_freeze_hrtimer(vcpu, &count);
 733
 734	if (ack)
 735		kvm_mips_callbacks->dequeue_timer_int(vcpu);
 736	else if (IS_ENABLED(CONFIG_KVM_MIPS_VZ))
 737		/*
 738		 * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
 739		 * preserve guest CP0_Cause.TI if we don't want to ack it.
 740		 */
 741		cause = kvm_read_c0_guest_cause(cop0);
 742
 743	kvm_write_c0_guest_compare(cop0, compare);
 744
 745	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
 746		if (delta > 0)
 747			preempt_enable();
 748
 749		back_to_back_c0_hazard();
 750
 751		if (!ack && cause & CAUSEF_TI)
 752			kvm_write_c0_guest_cause(cop0, cause);
 753	}
 754
 755	/* resume_hrtimer() takes care of timer interrupts > count */
 756	if (!dc)
 757		kvm_mips_resume_hrtimer(vcpu, now, count);
 758
 759	/*
 760	 * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
 761	 * until after the new CP0_Compare is written, otherwise new guest
 762	 * CP0_Count could hit new guest CP0_Compare.
 763	 */
 764	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta <= 0)
 765		write_c0_gtoffset(compare - read_c0_count());
 766}
 767
 768/**
 769 * kvm_mips_count_disable() - Disable count.
 770 * @vcpu:	Virtual CPU.
 771 *
 772 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
 773 * time will be handled but not after.
 774 *
 775 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
 776 * count_ctl.DC has been set (count disabled).
 777 *
 778 * Returns:	The time that the timer was stopped.
 779 */
 780static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
 781{
 782	struct mips_coproc *cop0 = vcpu->arch.cop0;
 783	u32 count;
 784	ktime_t now;
 785
 786	/* Stop hrtimer */
 787	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 788
 789	/* Set the static count from the dynamic count, handling pending TI */
 790	now = ktime_get();
 791	count = kvm_mips_read_count_running(vcpu, now);
 792	kvm_write_c0_guest_count(cop0, count);
 793
 794	return now;
 795}
 796
 797/**
 798 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
 799 * @vcpu:	Virtual CPU.
 800 *
 801 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
 802 * before the final stop time will be handled if the timer isn't disabled by
 803 * count_ctl.DC, but not after.
 804 *
 805 * Assumes CP0_Cause.DC is clear (count enabled).
 806 */
 807void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
 808{
 809	struct mips_coproc *cop0 = vcpu->arch.cop0;
 810
 811	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
 812	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
 813		kvm_mips_count_disable(vcpu);
 814}
 815
 816/**
 817 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
 818 * @vcpu:	Virtual CPU.
 819 *
 820 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
 821 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
 822 * potentially before even returning, so the caller should be careful with
 823 * ordering of CP0_Cause modifications so as not to lose it.
 824 *
 825 * Assumes CP0_Cause.DC is set (count disabled).
 826 */
 827void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
 828{
 829	struct mips_coproc *cop0 = vcpu->arch.cop0;
 830	u32 count;
 831
 832	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
 833
 834	/*
 835	 * Set the dynamic count to match the static count.
 836	 * This starts the hrtimer if count_ctl.DC allows it.
 837	 * Otherwise it conveniently updates the biases.
 838	 */
 839	count = kvm_read_c0_guest_count(cop0);
 840	kvm_mips_write_count(vcpu, count);
 841}
 842
 843/**
 844 * kvm_mips_set_count_ctl() - Update the count control KVM register.
 845 * @vcpu:	Virtual CPU.
 846 * @count_ctl:	Count control register new value.
 847 *
 848 * Set the count control KVM register. The timer is updated accordingly.
 849 *
 850 * Returns:	-EINVAL if reserved bits are set.
 851 *		0 on success.
 852 */
 853int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
 854{
 855	struct mips_coproc *cop0 = vcpu->arch.cop0;
 856	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
 857	s64 delta;
 858	ktime_t expire, now;
 859	u32 count, compare;
 860
 861	/* Only allow defined bits to be changed */
 862	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
 863		return -EINVAL;
 864
 865	/* Apply new value */
 866	vcpu->arch.count_ctl = count_ctl;
 867
 868	/* Master CP0_Count disable */
 869	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
 870		/* Is CP0_Cause.DC already disabling CP0_Count? */
 871		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
 872			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
 873				/* Just record the current time */
 874				vcpu->arch.count_resume = ktime_get();
 875		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
 876			/* disable timer and record current time */
 877			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
 878		} else {
 879			/*
 880			 * Calculate timeout relative to static count at resume
 881			 * time (wrap 0 to 2^32).
 882			 */
 883			count = kvm_read_c0_guest_count(cop0);
 884			compare = kvm_read_c0_guest_compare(cop0);
 885			delta = (u64)(u32)(compare - count - 1) + 1;
 886			delta = div_u64(delta * NSEC_PER_SEC,
 887					vcpu->arch.count_hz);
 888			expire = ktime_add_ns(vcpu->arch.count_resume, delta);
 889
 890			/* Handle pending interrupt */
 891			now = ktime_get();
 892			if (ktime_compare(now, expire) >= 0)
 893				/* Nothing should be waiting on the timeout */
 894				kvm_mips_callbacks->queue_timer_int(vcpu);
 895
 896			/* Resume hrtimer without changing bias */
 897			count = kvm_mips_read_count_running(vcpu, now);
 898			kvm_mips_resume_hrtimer(vcpu, now, count);
 899		}
 900	}
 901
 902	return 0;
 903}
 904
 905/**
 906 * kvm_mips_set_count_resume() - Update the count resume KVM register.
 907 * @vcpu:		Virtual CPU.
 908 * @count_resume:	Count resume register new value.
 909 *
 910 * Set the count resume KVM register.
 911 *
 912 * Returns:	-EINVAL if out of valid range (0..now).
 913 *		0 on success.
 914 */
 915int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
 916{
 917	/*
 918	 * It doesn't make sense for the resume time to be in the future, as it
 919	 * would be possible for the next interrupt to be more than a full
 920	 * period in the future.
 921	 */
 922	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
 923		return -EINVAL;
 924
 925	vcpu->arch.count_resume = ns_to_ktime(count_resume);
 926	return 0;
 927}
 928
 929/**
 930 * kvm_mips_count_timeout() - Push timer forward on timeout.
 931 * @vcpu:	Virtual CPU.
 932 *
 933 * Handle an hrtimer event by push the hrtimer forward a period.
 934 *
 935 * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
 936 */
 937enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
 938{
 939	/* Add the Count period to the current expiry time */
 940	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
 941			       vcpu->arch.count_period);
 942	return HRTIMER_RESTART;
 943}
 944
 945enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
 946{
 947	struct mips_coproc *cop0 = vcpu->arch.cop0;
 948	enum emulation_result er = EMULATE_DONE;
 949
 950	if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
 951		kvm_clear_c0_guest_status(cop0, ST0_ERL);
 952		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
 953	} else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
 954		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
 955			  kvm_read_c0_guest_epc(cop0));
 956		kvm_clear_c0_guest_status(cop0, ST0_EXL);
 957		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
 958
 959	} else {
 960		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
 961			vcpu->arch.pc);
 962		er = EMULATE_FAIL;
 963	}
 964
 965	return er;
 966}
 967
 968enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
 969{
 970	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
 971		  vcpu->arch.pending_exceptions);
 972
 973	++vcpu->stat.wait_exits;
 974	trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
 975	if (!vcpu->arch.pending_exceptions) {
 976		kvm_vz_lose_htimer(vcpu);
 977		vcpu->arch.wait = 1;
 978		kvm_vcpu_block(vcpu);
 979
 980		/*
 981		 * We we are runnable, then definitely go off to user space to
 982		 * check if any I/O interrupts are pending.
 983		 */
 984		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
 985			kvm_clear_request(KVM_REQ_UNHALT, vcpu);
 986			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
 987		}
 988	}
 989
 990	return EMULATE_DONE;
 991}
 992
 993static void kvm_mips_change_entryhi(struct kvm_vcpu *vcpu,
 994				    unsigned long entryhi)
 995{
 996	struct mips_coproc *cop0 = vcpu->arch.cop0;
 997	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
 998	int cpu, i;
 999	u32 nasid = entryhi & KVM_ENTRYHI_ASID;
1000
1001	if (((kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID) != nasid)) {
1002		trace_kvm_asid_change(vcpu, kvm_read_c0_guest_entryhi(cop0) &
1003				      KVM_ENTRYHI_ASID, nasid);
1004
1005		/*
1006		 * Flush entries from the GVA page tables.
1007		 * Guest user page table will get flushed lazily on re-entry to
1008		 * guest user if the guest ASID actually changes.
1009		 */
1010		kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_KERN);
1011
1012		/*
1013		 * Regenerate/invalidate kernel MMU context.
1014		 * The user MMU context will be regenerated lazily on re-entry
1015		 * to guest user if the guest ASID actually changes.
1016		 */
1017		preempt_disable();
1018		cpu = smp_processor_id();
1019		get_new_mmu_context(kern_mm, cpu);
1020		for_each_possible_cpu(i)
1021			if (i != cpu)
1022				cpu_context(i, kern_mm) = 0;
1023		preempt_enable();
1024	}
1025	kvm_write_c0_guest_entryhi(cop0, entryhi);
1026}
1027
1028enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
1029{
1030	struct mips_coproc *cop0 = vcpu->arch.cop0;
1031	struct kvm_mips_tlb *tlb;
1032	unsigned long pc = vcpu->arch.pc;
1033	int index;
1034
1035	index = kvm_read_c0_guest_index(cop0);
1036	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1037		/* UNDEFINED */
1038		kvm_debug("[%#lx] TLBR Index %#x out of range\n", pc, index);
1039		index &= KVM_MIPS_GUEST_TLB_SIZE - 1;
1040	}
1041
1042	tlb = &vcpu->arch.guest_tlb[index];
1043	kvm_write_c0_guest_pagemask(cop0, tlb->tlb_mask);
1044	kvm_write_c0_guest_entrylo0(cop0, tlb->tlb_lo[0]);
1045	kvm_write_c0_guest_entrylo1(cop0, tlb->tlb_lo[1]);
1046	kvm_mips_change_entryhi(vcpu, tlb->tlb_hi);
1047
1048	return EMULATE_DONE;
1049}
1050
1051/**
1052 * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
1053 * @vcpu:	VCPU with changed mappings.
1054 * @tlb:	TLB entry being removed.
1055 *
1056 * This is called to indicate a single change in guest MMU mappings, so that we
1057 * can arrange TLB flushes on this and other CPUs.
1058 */
1059static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
1060					  struct kvm_mips_tlb *tlb)
1061{
1062	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
1063	struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
1064	int cpu, i;
1065	bool user;
1066
1067	/* No need to flush for entries which are already invalid */
1068	if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V))
1069		return;
1070	/* Don't touch host kernel page tables or TLB mappings */
1071	if ((unsigned long)tlb->tlb_hi > 0x7fffffff)
1072		return;
1073	/* User address space doesn't need flushing for KSeg2/3 changes */
1074	user = tlb->tlb_hi < KVM_GUEST_KSEG0;
1075
1076	preempt_disable();
1077
1078	/* Invalidate page table entries */
1079	kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user);
1080
1081	/*
1082	 * Probe the shadow host TLB for the entry being overwritten, if one
1083	 * matches, invalidate it
1084	 */
1085	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true);
1086
1087	/* Invalidate the whole ASID on other CPUs */
1088	cpu = smp_processor_id();
1089	for_each_possible_cpu(i) {
1090		if (i == cpu)
1091			continue;
1092		if (user)
1093			cpu_context(i, user_mm) = 0;
1094		cpu_context(i, kern_mm) = 0;
1095	}
1096
1097	preempt_enable();
1098}
1099
1100/* Write Guest TLB Entry @ Index */
1101enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
1102{
1103	struct mips_coproc *cop0 = vcpu->arch.cop0;
1104	int index = kvm_read_c0_guest_index(cop0);
1105	struct kvm_mips_tlb *tlb = NULL;
1106	unsigned long pc = vcpu->arch.pc;
1107
1108	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1109		kvm_debug("%s: illegal index: %d\n", __func__, index);
1110		kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1111			  pc, index, kvm_read_c0_guest_entryhi(cop0),
1112			  kvm_read_c0_guest_entrylo0(cop0),
1113			  kvm_read_c0_guest_entrylo1(cop0),
1114			  kvm_read_c0_guest_pagemask(cop0));
1115		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
1116	}
1117
1118	tlb = &vcpu->arch.guest_tlb[index];
1119
1120	kvm_mips_invalidate_guest_tlb(vcpu, tlb);
1121
1122	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1123	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1124	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1125	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1126
1127	kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1128		  pc, index, kvm_read_c0_guest_entryhi(cop0),
1129		  kvm_read_c0_guest_entrylo0(cop0),
1130		  kvm_read_c0_guest_entrylo1(cop0),
1131		  kvm_read_c0_guest_pagemask(cop0));
1132
1133	return EMULATE_DONE;
1134}
1135
1136/* Write Guest TLB Entry @ Random Index */
1137enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
1138{
1139	struct mips_coproc *cop0 = vcpu->arch.cop0;
1140	struct kvm_mips_tlb *tlb = NULL;
1141	unsigned long pc = vcpu->arch.pc;
1142	int index;
1143
1144	get_random_bytes(&index, sizeof(index));
1145	index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
1146
1147	tlb = &vcpu->arch.guest_tlb[index];
1148
1149	kvm_mips_invalidate_guest_tlb(vcpu, tlb);
1150
1151	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1152	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1153	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1154	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1155
1156	kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
1157		  pc, index, kvm_read_c0_guest_entryhi(cop0),
1158		  kvm_read_c0_guest_entrylo0(cop0),
1159		  kvm_read_c0_guest_entrylo1(cop0));
1160
1161	return EMULATE_DONE;
1162}
1163
1164enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
1165{
1166	struct mips_coproc *cop0 = vcpu->arch.cop0;
1167	long entryhi = kvm_read_c0_guest_entryhi(cop0);
1168	unsigned long pc = vcpu->arch.pc;
1169	int index = -1;
1170
1171	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1172
1173	kvm_write_c0_guest_index(cop0, index);
1174
1175	kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
1176		  index);
1177
1178	return EMULATE_DONE;
1179}
1180
1181/**
1182 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
1183 * @vcpu:	Virtual CPU.
1184 *
1185 * Finds the mask of bits which are writable in the guest's Config1 CP0
1186 * register, by userland (currently read-only to the guest).
1187 */
1188unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
1189{
1190	unsigned int mask = 0;
1191
1192	/* Permit FPU to be present if FPU is supported */
1193	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
1194		mask |= MIPS_CONF1_FP;
1195
1196	return mask;
1197}
1198
1199/**
1200 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
1201 * @vcpu:	Virtual CPU.
1202 *
1203 * Finds the mask of bits which are writable in the guest's Config3 CP0
1204 * register, by userland (currently read-only to the guest).
1205 */
1206unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
1207{
1208	/* Config4 and ULRI are optional */
1209	unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
1210
1211	/* Permit MSA to be present if MSA is supported */
1212	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
1213		mask |= MIPS_CONF3_MSA;
1214
1215	return mask;
1216}
1217
1218/**
1219 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
1220 * @vcpu:	Virtual CPU.
1221 *
1222 * Finds the mask of bits which are writable in the guest's Config4 CP0
1223 * register, by userland (currently read-only to the guest).
1224 */
1225unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
1226{
1227	/* Config5 is optional */
1228	unsigned int mask = MIPS_CONF_M;
1229
1230	/* KScrExist */
1231	mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT;
1232
1233	return mask;
1234}
1235
1236/**
1237 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
1238 * @vcpu:	Virtual CPU.
1239 *
1240 * Finds the mask of bits which are writable in the guest's Config5 CP0
1241 * register, by the guest itself.
1242 */
1243unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
1244{
1245	unsigned int mask = 0;
1246
1247	/* Permit MSAEn changes if MSA supported and enabled */
1248	if (kvm_mips_guest_has_msa(&vcpu->arch))
1249		mask |= MIPS_CONF5_MSAEN;
1250
1251	/*
1252	 * Permit guest FPU mode changes if FPU is enabled and the relevant
1253	 * feature exists according to FIR register.
1254	 */
1255	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1256		if (cpu_has_fre)
1257			mask |= MIPS_CONF5_FRE;
1258		/* We don't support UFR or UFE */
1259	}
1260
1261	return mask;
1262}
1263
1264enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
1265					   u32 *opc, u32 cause,
1266					   struct kvm_run *run,
1267					   struct kvm_vcpu *vcpu)
1268{
1269	struct mips_coproc *cop0 = vcpu->arch.cop0;
1270	enum emulation_result er = EMULATE_DONE;
1271	u32 rt, rd, sel;
1272	unsigned long curr_pc;
1273
1274	/*
1275	 * Update PC and hold onto current PC in case there is
1276	 * an error and we want to rollback the PC
1277	 */
1278	curr_pc = vcpu->arch.pc;
1279	er = update_pc(vcpu, cause);
1280	if (er == EMULATE_FAIL)
1281		return er;
1282
1283	if (inst.co_format.co) {
1284		switch (inst.co_format.func) {
1285		case tlbr_op:	/*  Read indexed TLB entry  */
1286			er = kvm_mips_emul_tlbr(vcpu);
1287			break;
1288		case tlbwi_op:	/*  Write indexed  */
1289			er = kvm_mips_emul_tlbwi(vcpu);
1290			break;
1291		case tlbwr_op:	/*  Write random  */
1292			er = kvm_mips_emul_tlbwr(vcpu);
1293			break;
1294		case tlbp_op:	/* TLB Probe */
1295			er = kvm_mips_emul_tlbp(vcpu);
1296			break;
1297		case rfe_op:
1298			kvm_err("!!!COP0_RFE!!!\n");
1299			break;
1300		case eret_op:
1301			er = kvm_mips_emul_eret(vcpu);
1302			goto dont_update_pc;
1303		case wait_op:
1304			er = kvm_mips_emul_wait(vcpu);
1305			break;
1306		case hypcall_op:
1307			er = kvm_mips_emul_hypcall(vcpu, inst);
1308			break;
1309		}
1310	} else {
1311		rt = inst.c0r_format.rt;
1312		rd = inst.c0r_format.rd;
1313		sel = inst.c0r_format.sel;
1314
1315		switch (inst.c0r_format.rs) {
1316		case mfc_op:
1317#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1318			cop0->stat[rd][sel]++;
1319#endif
1320			/* Get reg */
1321			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1322				vcpu->arch.gprs[rt] =
1323				    (s32)kvm_mips_read_count(vcpu);
1324			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1325				vcpu->arch.gprs[rt] = 0x0;
1326#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1327				kvm_mips_trans_mfc0(inst, opc, vcpu);
1328#endif
1329			} else {
1330				vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
1331
1332#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1333				kvm_mips_trans_mfc0(inst, opc, vcpu);
1334#endif
1335			}
1336
1337			trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1338				      KVM_TRACE_COP0(rd, sel),
1339				      vcpu->arch.gprs[rt]);
1340			break;
1341
1342		case dmfc_op:
1343			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1344
1345			trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1346				      KVM_TRACE_COP0(rd, sel),
1347				      vcpu->arch.gprs[rt]);
1348			break;
1349
1350		case mtc_op:
1351#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1352			cop0->stat[rd][sel]++;
1353#endif
1354			trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1355				      KVM_TRACE_COP0(rd, sel),
1356				      vcpu->arch.gprs[rt]);
1357
1358			if ((rd == MIPS_CP0_TLB_INDEX)
1359			    && (vcpu->arch.gprs[rt] >=
1360				KVM_MIPS_GUEST_TLB_SIZE)) {
1361				kvm_err("Invalid TLB Index: %ld",
1362					vcpu->arch.gprs[rt]);
1363				er = EMULATE_FAIL;
1364				break;
1365			}
1366			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1367				/*
1368				 * Preserve core number, and keep the exception
1369				 * base in guest KSeg0.
1370				 */
1371				kvm_change_c0_guest_ebase(cop0, 0x1ffff000,
1372							  vcpu->arch.gprs[rt]);
1373			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1374				kvm_mips_change_entryhi(vcpu,
1375							vcpu->arch.gprs[rt]);
1376			}
1377			/* Are we writing to COUNT */
1378			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1379				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1380				goto done;
1381			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1382				/* If we are writing to COMPARE */
1383				/* Clear pending timer interrupt, if any */
1384				kvm_mips_write_compare(vcpu,
1385						       vcpu->arch.gprs[rt],
1386						       true);
1387			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1388				unsigned int old_val, val, change;
1389
1390				old_val = kvm_read_c0_guest_status(cop0);
1391				val = vcpu->arch.gprs[rt];
1392				change = val ^ old_val;
1393
1394				/* Make sure that the NMI bit is never set */
1395				val &= ~ST0_NMI;
1396
1397				/*
1398				 * Don't allow CU1 or FR to be set unless FPU
1399				 * capability enabled and exists in guest
1400				 * configuration.
1401				 */
1402				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1403					val &= ~(ST0_CU1 | ST0_FR);
1404
1405				/*
1406				 * Also don't allow FR to be set if host doesn't
1407				 * support it.
1408				 */
1409				if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1410					val &= ~ST0_FR;
1411
1412
1413				/* Handle changes in FPU mode */
1414				preempt_disable();
1415
1416				/*
1417				 * FPU and Vector register state is made
1418				 * UNPREDICTABLE by a change of FR, so don't
1419				 * even bother saving it.
1420				 */
1421				if (change & ST0_FR)
1422					kvm_drop_fpu(vcpu);
1423
1424				/*
1425				 * If MSA state is already live, it is undefined
1426				 * how it interacts with FR=0 FPU state, and we
1427				 * don't want to hit reserved instruction
1428				 * exceptions trying to save the MSA state later
1429				 * when CU=1 && FR=1, so play it safe and save
1430				 * it first.
1431				 */
1432				if (change & ST0_CU1 && !(val & ST0_FR) &&
1433				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1434					kvm_lose_fpu(vcpu);
1435
1436				/*
1437				 * Propagate CU1 (FPU enable) changes
1438				 * immediately if the FPU context is already
1439				 * loaded. When disabling we leave the context
1440				 * loaded so it can be quickly enabled again in
1441				 * the near future.
1442				 */
1443				if (change & ST0_CU1 &&
1444				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1445					change_c0_status(ST0_CU1, val);
1446
1447				preempt_enable();
1448
1449				kvm_write_c0_guest_status(cop0, val);
1450
1451#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1452				/*
1453				 * If FPU present, we need CU1/FR bits to take
1454				 * effect fairly soon.
1455				 */
1456				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1457					kvm_mips_trans_mtc0(inst, opc, vcpu);
1458#endif
1459			} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1460				unsigned int old_val, val, change, wrmask;
1461
1462				old_val = kvm_read_c0_guest_config5(cop0);
1463				val = vcpu->arch.gprs[rt];
1464
1465				/* Only a few bits are writable in Config5 */
1466				wrmask = kvm_mips_config5_wrmask(vcpu);
1467				change = (val ^ old_val) & wrmask;
1468				val = old_val ^ change;
1469
1470
1471				/* Handle changes in FPU/MSA modes */
1472				preempt_disable();
1473
1474				/*
1475				 * Propagate FRE changes immediately if the FPU
1476				 * context is already loaded.
1477				 */
1478				if (change & MIPS_CONF5_FRE &&
1479				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1480					change_c0_config5(MIPS_CONF5_FRE, val);
1481
1482				/*
1483				 * Propagate MSAEn changes immediately if the
1484				 * MSA context is already loaded. When disabling
1485				 * we leave the context loaded so it can be
1486				 * quickly enabled again in the near future.
1487				 */
1488				if (change & MIPS_CONF5_MSAEN &&
1489				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1490					change_c0_config5(MIPS_CONF5_MSAEN,
1491							  val);
1492
1493				preempt_enable();
1494
1495				kvm_write_c0_guest_config5(cop0, val);
1496			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1497				u32 old_cause, new_cause;
1498
1499				old_cause = kvm_read_c0_guest_cause(cop0);
1500				new_cause = vcpu->arch.gprs[rt];
1501				/* Update R/W bits */
1502				kvm_change_c0_guest_cause(cop0, 0x08800300,
1503							  new_cause);
1504				/* DC bit enabling/disabling timer? */
1505				if ((old_cause ^ new_cause) & CAUSEF_DC) {
1506					if (new_cause & CAUSEF_DC)
1507						kvm_mips_count_disable_cause(vcpu);
1508					else
1509						kvm_mips_count_enable_cause(vcpu);
1510				}
1511			} else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
1512				u32 mask = MIPS_HWRENA_CPUNUM |
1513					   MIPS_HWRENA_SYNCISTEP |
1514					   MIPS_HWRENA_CC |
1515					   MIPS_HWRENA_CCRES;
1516
1517				if (kvm_read_c0_guest_config3(cop0) &
1518				    MIPS_CONF3_ULRI)
1519					mask |= MIPS_HWRENA_ULR;
1520				cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
1521			} else {
1522				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1523#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1524				kvm_mips_trans_mtc0(inst, opc, vcpu);
1525#endif
1526			}
1527			break;
1528
1529		case dmtc_op:
1530			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1531				vcpu->arch.pc, rt, rd, sel);
1532			trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1533				      KVM_TRACE_COP0(rd, sel),
1534				      vcpu->arch.gprs[rt]);
1535			er = EMULATE_FAIL;
1536			break;
1537
1538		case mfmc0_op:
1539#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1540			cop0->stat[MIPS_CP0_STATUS][0]++;
1541#endif
1542			if (rt != 0)
1543				vcpu->arch.gprs[rt] =
1544				    kvm_read_c0_guest_status(cop0);
1545			/* EI */
1546			if (inst.mfmc0_format.sc) {
1547				kvm_debug("[%#lx] mfmc0_op: EI\n",
1548					  vcpu->arch.pc);
1549				kvm_set_c0_guest_status(cop0, ST0_IE);
1550			} else {
1551				kvm_debug("[%#lx] mfmc0_op: DI\n",
1552					  vcpu->arch.pc);
1553				kvm_clear_c0_guest_status(cop0, ST0_IE);
1554			}
1555
1556			break;
1557
1558		case wrpgpr_op:
1559			{
1560				u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1561				u32 pss =
1562				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1563				/*
1564				 * We don't support any shadow register sets, so
1565				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1566				 */
1567				if (css || pss) {
1568					er = EMULATE_FAIL;
1569					break;
1570				}
1571				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1572					  vcpu->arch.gprs[rt]);
1573				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1574			}
1575			break;
1576		default:
1577			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1578				vcpu->arch.pc, inst.c0r_format.rs);
1579			er = EMULATE_FAIL;
1580			break;
1581		}
1582	}
1583
1584done:
1585	/* Rollback PC only if emulation was unsuccessful */
1586	if (er == EMULATE_FAIL)
1587		vcpu->arch.pc = curr_pc;
1588
1589dont_update_pc:
1590	/*
1591	 * This is for special instructions whose emulation
1592	 * updates the PC, so do not overwrite the PC under
1593	 * any circumstances
1594	 */
1595
1596	return er;
1597}
1598
1599enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1600					     u32 cause,
1601					     struct kvm_run *run,
1602					     struct kvm_vcpu *vcpu)
1603{
1604	enum emulation_result er;
1605	u32 rt;
1606	void *data = run->mmio.data;
1607	unsigned long curr_pc;
1608
1609	/*
1610	 * Update PC and hold onto current PC in case there is
1611	 * an error and we want to rollback the PC
1612	 */
1613	curr_pc = vcpu->arch.pc;
1614	er = update_pc(vcpu, cause);
1615	if (er == EMULATE_FAIL)
1616		return er;
1617
1618	rt = inst.i_format.rt;
1619
1620	run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1621						vcpu->arch.host_cp0_badvaddr);
1622	if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1623		goto out_fail;
1624
1625	switch (inst.i_format.opcode) {
1626#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1627	case sd_op:
1628		run->mmio.len = 8;
1629		*(u64 *)data = vcpu->arch.gprs[rt];
1630
1631		kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1632			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1633			  vcpu->arch.gprs[rt], *(u64 *)data);
1634		break;
1635#endif
1636
1637	case sw_op:
1638		run->mmio.len = 4;
1639		*(u32 *)data = vcpu->arch.gprs[rt];
1640
1641		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1642			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1643			  vcpu->arch.gprs[rt], *(u32 *)data);
1644		break;
1645
1646	case sh_op:
1647		run->mmio.len = 2;
1648		*(u16 *)data = vcpu->arch.gprs[rt];
1649
1650		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1651			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1652			  vcpu->arch.gprs[rt], *(u16 *)data);
1653		break;
1654
1655	case sb_op:
1656		run->mmio.len = 1;
1657		*(u8 *)data = vcpu->arch.gprs[rt];
1658
1659		kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1660			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1661			  vcpu->arch.gprs[rt], *(u8 *)data);
1662		break;
1663
1664	default:
1665		kvm_err("Store not yet supported (inst=0x%08x)\n",
1666			inst.word);
1667		goto out_fail;
1668	}
1669
1670	run->mmio.is_write = 1;
1671	vcpu->mmio_needed = 1;
1672	vcpu->mmio_is_write = 1;
1673	return EMULATE_DO_MMIO;
1674
1675out_fail:
1676	/* Rollback PC if emulation was unsuccessful */
1677	vcpu->arch.pc = curr_pc;
1678	return EMULATE_FAIL;
1679}
1680
1681enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1682					    u32 cause, struct kvm_run *run,
1683					    struct kvm_vcpu *vcpu)
1684{
1685	enum emulation_result er;
1686	unsigned long curr_pc;
1687	u32 op, rt;
1688
1689	rt = inst.i_format.rt;
1690	op = inst.i_format.opcode;
1691
1692	/*
1693	 * Find the resume PC now while we have safe and easy access to the
1694	 * prior branch instruction, and save it for
1695	 * kvm_mips_complete_mmio_load() to restore later.
1696	 */
1697	curr_pc = vcpu->arch.pc;
1698	er = update_pc(vcpu, cause);
1699	if (er == EMULATE_FAIL)
1700		return er;
1701	vcpu->arch.io_pc = vcpu->arch.pc;
1702	vcpu->arch.pc = curr_pc;
1703
1704	vcpu->arch.io_gpr = rt;
1705
1706	run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1707						vcpu->arch.host_cp0_badvaddr);
1708	if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1709		return EMULATE_FAIL;
1710
1711	vcpu->mmio_needed = 2;	/* signed */
1712	switch (op) {
1713#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1714	case ld_op:
1715		run->mmio.len = 8;
1716		break;
1717
1718	case lwu_op:
1719		vcpu->mmio_needed = 1;	/* unsigned */
1720		/* fall through */
1721#endif
1722	case lw_op:
1723		run->mmio.len = 4;
1724		break;
1725
1726	case lhu_op:
1727		vcpu->mmio_needed = 1;	/* unsigned */
1728		/* fall through */
1729	case lh_op:
1730		run->mmio.len = 2;
1731		break;
1732
1733	case lbu_op:
1734		vcpu->mmio_needed = 1;	/* unsigned */
1735		/* fall through */
1736	case lb_op:
1737		run->mmio.len = 1;
1738		break;
1739
1740	default:
1741		kvm_err("Load not yet supported (inst=0x%08x)\n",
1742			inst.word);
1743		vcpu->mmio_needed = 0;
1744		return EMULATE_FAIL;
1745	}
1746
1747	run->mmio.is_write = 0;
1748	vcpu->mmio_is_write = 0;
1749	return EMULATE_DO_MMIO;
1750}
1751
1752#ifndef CONFIG_KVM_MIPS_VZ
1753static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long),
1754						     unsigned long curr_pc,
1755						     unsigned long addr,
1756						     struct kvm_run *run,
1757						     struct kvm_vcpu *vcpu,
1758						     u32 cause)
1759{
1760	int err;
1761
1762	for (;;) {
1763		/* Carefully attempt the cache operation */
1764		kvm_trap_emul_gva_lockless_begin(vcpu);
1765		err = fn(addr);
1766		kvm_trap_emul_gva_lockless_end(vcpu);
1767
1768		if (likely(!err))
1769			return EMULATE_DONE;
1770
1771		/*
1772		 * Try to handle the fault and retry, maybe we just raced with a
1773		 * GVA invalidation.
1774		 */
1775		switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) {
1776		case KVM_MIPS_GVA:
1777		case KVM_MIPS_GPA:
1778			/* bad virtual or physical address */
1779			return EMULATE_FAIL;
1780		case KVM_MIPS_TLB:
1781			/* no matching guest TLB */
1782			vcpu->arch.host_cp0_badvaddr = addr;
1783			vcpu->arch.pc = curr_pc;
1784			kvm_mips_emulate_tlbmiss_ld(cause, NULL, run, vcpu);
1785			return EMULATE_EXCEPT;
1786		case KVM_MIPS_TLBINV:
1787			/* invalid matching guest TLB */
1788			vcpu->arch.host_cp0_badvaddr = addr;
1789			vcpu->arch.pc = curr_pc;
1790			kvm_mips_emulate_tlbinv_ld(cause, NULL, run, vcpu);
1791			return EMULATE_EXCEPT;
1792		default:
1793			break;
1794		};
1795	}
1796}
1797
1798enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
1799					     u32 *opc, u32 cause,
1800					     struct kvm_run *run,
1801					     struct kvm_vcpu *vcpu)
1802{
1803	enum emulation_result er = EMULATE_DONE;
1804	u32 cache, op_inst, op, base;
1805	s16 offset;
1806	struct kvm_vcpu_arch *arch = &vcpu->arch;
1807	unsigned long va;
1808	unsigned long curr_pc;
1809
1810	/*
1811	 * Update PC and hold onto current PC in case there is
1812	 * an error and we want to rollback the PC
1813	 */
1814	curr_pc = vcpu->arch.pc;
1815	er = update_pc(vcpu, cause);
1816	if (er == EMULATE_FAIL)
1817		return er;
1818
1819	base = inst.i_format.rs;
1820	op_inst = inst.i_format.rt;
1821	if (cpu_has_mips_r6)
1822		offset = inst.spec3_format.simmediate;
1823	else
1824		offset = inst.i_format.simmediate;
1825	cache = op_inst & CacheOp_Cache;
1826	op = op_inst & CacheOp_Op;
1827
1828	va = arch->gprs[base] + offset;
1829
1830	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1831		  cache, op, base, arch->gprs[base], offset);
1832
1833	/*
1834	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1835	 * invalidate the caches entirely by stepping through all the
1836	 * ways/indexes
1837	 */
1838	if (op == Index_Writeback_Inv) {
1839		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1840			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1841			  arch->gprs[base], offset);
1842
1843		if (cache == Cache_D) {
1844#ifdef CONFIG_CPU_R4K_CACHE_TLB
1845			r4k_blast_dcache();
1846#else
1847			switch (boot_cpu_type()) {
1848			case CPU_CAVIUM_OCTEON3:
1849				/* locally flush icache */
1850				local_flush_icache_range(0, 0);
1851				break;
1852			default:
1853				__flush_cache_all();
1854				break;
1855			}
1856#endif
1857		} else if (cache == Cache_I) {
1858#ifdef CONFIG_CPU_R4K_CACHE_TLB
1859			r4k_blast_icache();
1860#else
1861			switch (boot_cpu_type()) {
1862			case CPU_CAVIUM_OCTEON3:
1863				/* locally flush icache */
1864				local_flush_icache_range(0, 0);
1865				break;
1866			default:
1867				flush_icache_all();
1868				break;
1869			}
1870#endif
1871		} else {
1872			kvm_err("%s: unsupported CACHE INDEX operation\n",
1873				__func__);
1874			return EMULATE_FAIL;
1875		}
1876
1877#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1878		kvm_mips_trans_cache_index(inst, opc, vcpu);
1879#endif
1880		goto done;
1881	}
1882
1883	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1884	if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1885		/*
1886		 * Perform the dcache part of icache synchronisation on the
1887		 * guest's behalf.
1888		 */
1889		er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
1890					     curr_pc, va, run, vcpu, cause);
1891		if (er != EMULATE_DONE)
1892			goto done;
1893#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1894		/*
1895		 * Replace the CACHE instruction, with a SYNCI, not the same,
1896		 * but avoids a trap
1897		 */
1898		kvm_mips_trans_cache_va(inst, opc, vcpu);
1899#endif
1900	} else if (op_inst == Hit_Invalidate_I) {
1901		/* Perform the icache synchronisation on the guest's behalf */
1902		er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
1903					     curr_pc, va, run, vcpu, cause);
1904		if (er != EMULATE_DONE)
1905			goto done;
1906		er = kvm_mips_guest_cache_op(protected_flush_icache_line,
1907					     curr_pc, va, run, vcpu, cause);
1908		if (er != EMULATE_DONE)
1909			goto done;
1910
1911#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1912		/* Replace the CACHE instruction, with a SYNCI */
1913		kvm_mips_trans_cache_va(inst, opc, vcpu);
1914#endif
1915	} else {
1916		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1917			cache, op, base, arch->gprs[base], offset);
1918		er = EMULATE_FAIL;
1919	}
1920
1921done:
1922	/* Rollback PC only if emulation was unsuccessful */
1923	if (er == EMULATE_FAIL)
1924		vcpu->arch.pc = curr_pc;
1925	/* Guest exception needs guest to resume */
1926	if (er == EMULATE_EXCEPT)
1927		er = EMULATE_DONE;
1928
1929	return er;
1930}
1931
1932enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
1933					    struct kvm_run *run,
1934					    struct kvm_vcpu *vcpu)
1935{
1936	union mips_instruction inst;
1937	enum emulation_result er = EMULATE_DONE;
1938	int err;
1939
1940	/* Fetch the instruction. */
1941	if (cause & CAUSEF_BD)
1942		opc += 1;
1943	err = kvm_get_badinstr(opc, vcpu, &inst.word);
1944	if (err)
1945		return EMULATE_FAIL;
1946
1947	switch (inst.r_format.opcode) {
1948	case cop0_op:
1949		er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1950		break;
1951
1952#ifndef CONFIG_CPU_MIPSR6
1953	case cache_op:
1954		++vcpu->stat.cache_exits;
1955		trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1956		er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1957		break;
1958#else
1959	case spec3_op:
1960		switch (inst.spec3_format.func) {
1961		case cache6_op:
1962			++vcpu->stat.cache_exits;
1963			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1964			er = kvm_mips_emulate_cache(inst, opc, cause, run,
1965						    vcpu);
1966			break;
1967		default:
1968			goto unknown;
1969		};
1970		break;
1971unknown:
1972#endif
1973
1974	default:
1975		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1976			inst.word);
1977		kvm_arch_vcpu_dump_regs(vcpu);
1978		er = EMULATE_FAIL;
1979		break;
1980	}
1981
1982	return er;
1983}
1984#endif /* CONFIG_KVM_MIPS_VZ */
1985
1986/**
1987 * kvm_mips_guest_exception_base() - Find guest exception vector base address.
1988 *
1989 * Returns:	The base address of the current guest exception vector, taking
1990 *		both Guest.CP0_Status.BEV and Guest.CP0_EBase into account.
1991 */
1992long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu)
1993{
1994	struct mips_coproc *cop0 = vcpu->arch.cop0;
1995
1996	if (kvm_read_c0_guest_status(cop0) & ST0_BEV)
1997		return KVM_GUEST_CKSEG1ADDR(0x1fc00200);
1998	else
1999		return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE;
2000}
2001
2002enum emulation_result kvm_mips_emulate_syscall(u32 cause,
2003					       u32 *opc,
2004					       struct kvm_run *run,
2005					       struct kvm_vcpu *vcpu)
2006{
2007	struct mips_coproc *cop0 = vcpu->arch.cop0;
2008	struct kvm_vcpu_arch *arch = &vcpu->arch;
2009	enum emulation_result er = EMULATE_DONE;
2010
2011	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2012		/* save old pc */
2013		kvm_write_c0_guest_epc(cop0, arch->pc);
2014		kvm_set_c0_guest_status(cop0, ST0_EXL);
2015
2016		if (cause & CAUSEF_BD)
2017			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2018		else
2019			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2020
2021		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
2022
2023		kvm_change_c0_guest_cause(cop0, (0xff),
2024					  (EXCCODE_SYS << CAUSEB_EXCCODE));
2025
2026		/* Set PC to the exception entry point */
2027		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2028
2029	} else {
2030		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
2031		er = EMULATE_FAIL;
2032	}
2033
2034	return er;
2035}
2036
2037enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
2038						  u32 *opc,
2039						  struct kvm_run *run,
2040						  struct kvm_vcpu *vcpu)
2041{
2042	struct mips_coproc *cop0 = vcpu->arch.cop0;
2043	struct kvm_vcpu_arch *arch = &vcpu->arch;
2044	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
2045			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2046
2047	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2048		/* save old pc */
2049		kvm_write_c0_guest_epc(cop0, arch->pc);
2050		kvm_set_c0_guest_status(cop0, ST0_EXL);
2051
2052		if (cause & CAUSEF_BD)
2053			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2054		else
2055			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2056
2057		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
2058			  arch->pc);
2059
2060		/* set pc to the exception entry point */
2061		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2062
2063	} else {
2064		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2065			  arch->pc);
2066
2067		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2068	}
2069
2070	kvm_change_c0_guest_cause(cop0, (0xff),
2071				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
2072
2073	/* setup badvaddr, context and entryhi registers for the guest */
2074	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2075	/* XXXKYMA: is the context register used by linux??? */
2076	kvm_write_c0_guest_entryhi(cop0, entryhi);
2077
2078	return EMULATE_DONE;
2079}
2080
2081enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
2082						 u32 *opc,
2083						 struct kvm_run *run,
2084						 struct kvm_vcpu *vcpu)
2085{
2086	struct mips_coproc *cop0 = vcpu->arch.cop0;
2087	struct kvm_vcpu_arch *arch = &vcpu->arch;
2088	unsigned long entryhi =
2089		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2090		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2091
2092	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2093		/* save old pc */
2094		kvm_write_c0_guest_epc(cop0, arch->pc);
2095		kvm_set_c0_guest_status(cop0, ST0_EXL);
2096
2097		if (cause & CAUSEF_BD)
2098			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2099		else
2100			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2101
2102		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
2103			  arch->pc);
2104	} else {
2105		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2106			  arch->pc);
2107	}
2108
2109	/* set pc to the exception entry point */
2110	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2111
2112	kvm_change_c0_guest_cause(cop0, (0xff),
2113				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
2114
2115	/* setup badvaddr, context and entryhi registers for the guest */
2116	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2117	/* XXXKYMA: is the context register used by linux??? */
2118	kvm_write_c0_guest_entryhi(cop0, entryhi);
2119
2120	return EMULATE_DONE;
2121}
2122
2123enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
2124						  u32 *opc,
2125						  struct kvm_run *run,
2126						  struct kvm_vcpu *vcpu)
2127{
2128	struct mips_coproc *cop0 = vcpu->arch.cop0;
2129	struct kvm_vcpu_arch *arch = &vcpu->arch;
2130	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2131			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2132
2133	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2134		/* save old pc */
2135		kvm_write_c0_guest_epc(cop0, arch->pc);
2136		kvm_set_c0_guest_status(cop0, ST0_EXL);
2137
2138		if (cause & CAUSEF_BD)
2139			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2140		else
2141			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2142
2143		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2144			  arch->pc);
2145
2146		/* Set PC to the exception entry point */
2147		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2148	} else {
2149		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2150			  arch->pc);
2151		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2152	}
2153
2154	kvm_change_c0_guest_cause(cop0, (0xff),
2155				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
2156
2157	/* setup badvaddr, context and entryhi registers for the guest */
2158	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2159	/* XXXKYMA: is the context register used by linux??? */
2160	kvm_write_c0_guest_entryhi(cop0, entryhi);
2161
2162	return EMULATE_DONE;
2163}
2164
2165enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
2166						 u32 *opc,
2167						 struct kvm_run *run,
2168						 struct kvm_vcpu *vcpu)
2169{
2170	struct mips_coproc *cop0 = vcpu->arch.cop0;
2171	struct kvm_vcpu_arch *arch = &vcpu->arch;
2172	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2173		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2174
2175	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2176		/* save old pc */
2177		kvm_write_c0_guest_epc(cop0, arch->pc);
2178		kvm_set_c0_guest_status(cop0, ST0_EXL);
2179
2180		if (cause & CAUSEF_BD)
2181			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2182		else
2183			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2184
2185		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2186			  arch->pc);
2187	} else {
2188		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2189			  arch->pc);
2190	}
2191
2192	/* Set PC to the exception entry point */
2193	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2194
2195	kvm_change_c0_guest_cause(cop0, (0xff),
2196				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
2197
2198	/* setup badvaddr, context and entryhi registers for the guest */
2199	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2200	/* XXXKYMA: is the context register used by linux??? */
2201	kvm_write_c0_guest_entryhi(cop0, entryhi);
2202
2203	return EMULATE_DONE;
2204}
2205
2206enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
2207					      u32 *opc,
2208					      struct kvm_run *run,
2209					      struct kvm_vcpu *vcpu)
2210{
2211	struct mips_coproc *cop0 = vcpu->arch.cop0;
2212	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2213			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2214	struct kvm_vcpu_arch *arch = &vcpu->arch;
2215
2216	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2217		/* save old pc */
2218		kvm_write_c0_guest_epc(cop0, arch->pc);
2219		kvm_set_c0_guest_status(cop0, ST0_EXL);
2220
2221		if (cause & CAUSEF_BD)
2222			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2223		else
2224			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2225
2226		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2227			  arch->pc);
2228	} else {
2229		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2230			  arch->pc);
2231	}
2232
2233	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2234
2235	kvm_change_c0_guest_cause(cop0, (0xff),
2236				  (EXCCODE_MOD << CAUSEB_EXCCODE));
2237
2238	/* setup badvaddr, context and entryhi registers for the guest */
2239	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2240	/* XXXKYMA: is the context register used by linux??? */
2241	kvm_write_c0_guest_entryhi(cop0, entryhi);
2242
2243	return EMULATE_DONE;
2244}
2245
2246enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2247					       u32 *opc,
2248					       struct kvm_run *run,
2249					       struct kvm_vcpu *vcpu)
2250{
2251	struct mips_coproc *cop0 = vcpu->arch.cop0;
2252	struct kvm_vcpu_arch *arch = &vcpu->arch;
2253
2254	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2255		/* save old pc */
2256		kvm_write_c0_guest_epc(cop0, arch->pc);
2257		kvm_set_c0_guest_status(cop0, ST0_EXL);
2258
2259		if (cause & CAUSEF_BD)
2260			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2261		else
2262			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2263
2264	}
2265
2266	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2267
2268	kvm_change_c0_guest_cause(cop0, (0xff),
2269				  (EXCCODE_CPU << CAUSEB_EXCCODE));
2270	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2271
2272	return EMULATE_DONE;
2273}
2274
2275enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2276					      u32 *opc,
2277					      struct kvm_run *run,
2278					      struct kvm_vcpu *vcpu)
2279{
2280	struct mips_coproc *cop0 = vcpu->arch.cop0;
2281	struct kvm_vcpu_arch *arch = &vcpu->arch;
2282	enum emulation_result er = EMULATE_DONE;
2283
2284	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2285		/* save old pc */
2286		kvm_write_c0_guest_epc(cop0, arch->pc);
2287		kvm_set_c0_guest_status(cop0, ST0_EXL);
2288
2289		if (cause & CAUSEF_BD)
2290			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2291		else
2292			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2293
2294		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2295
2296		kvm_change_c0_guest_cause(cop0, (0xff),
2297					  (EXCCODE_RI << CAUSEB_EXCCODE));
2298
2299		/* Set PC to the exception entry point */
2300		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2301
2302	} else {
2303		kvm_err("Trying to deliver RI when EXL is already set\n");
2304		er = EMULATE_FAIL;
2305	}
2306
2307	return er;
2308}
2309
2310enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2311					      u32 *opc,
2312					      struct kvm_run *run,
2313					      struct kvm_vcpu *vcpu)
2314{
2315	struct mips_coproc *cop0 = vcpu->arch.cop0;
2316	struct kvm_vcpu_arch *arch = &vcpu->arch;
2317	enum emulation_result er = EMULATE_DONE;
2318
2319	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2320		/* save old pc */
2321		kvm_write_c0_guest_epc(cop0, arch->pc);
2322		kvm_set_c0_guest_status(cop0, ST0_EXL);
2323
2324		if (cause & CAUSEF_BD)
2325			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2326		else
2327			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2328
2329		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2330
2331		kvm_change_c0_guest_cause(cop0, (0xff),
2332					  (EXCCODE_BP << CAUSEB_EXCCODE));
2333
2334		/* Set PC to the exception entry point */
2335		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2336
2337	} else {
2338		kvm_err("Trying to deliver BP when EXL is already set\n");
2339		er = EMULATE_FAIL;
2340	}
2341
2342	return er;
2343}
2344
2345enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2346						u32 *opc,
2347						struct kvm_run *run,
2348						struct kvm_vcpu *vcpu)
2349{
2350	struct mips_coproc *cop0 = vcpu->arch.cop0;
2351	struct kvm_vcpu_arch *arch = &vcpu->arch;
2352	enum emulation_result er = EMULATE_DONE;
2353
2354	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2355		/* save old pc */
2356		kvm_write_c0_guest_epc(cop0, arch->pc);
2357		kvm_set_c0_guest_status(cop0, ST0_EXL);
2358
2359		if (cause & CAUSEF_BD)
2360			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2361		else
2362			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2363
2364		kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2365
2366		kvm_change_c0_guest_cause(cop0, (0xff),
2367					  (EXCCODE_TR << CAUSEB_EXCCODE));
2368
2369		/* Set PC to the exception entry point */
2370		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2371
2372	} else {
2373		kvm_err("Trying to deliver TRAP when EXL is already set\n");
2374		er = EMULATE_FAIL;
2375	}
2376
2377	return er;
2378}
2379
2380enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2381						  u32 *opc,
2382						  struct kvm_run *run,
2383						  struct kvm_vcpu *vcpu)
2384{
2385	struct mips_coproc *cop0 = vcpu->arch.cop0;
2386	struct kvm_vcpu_arch *arch = &vcpu->arch;
2387	enum emulation_result er = EMULATE_DONE;
2388
2389	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2390		/* save old pc */
2391		kvm_write_c0_guest_epc(cop0, arch->pc);
2392		kvm_set_c0_guest_status(cop0, ST0_EXL);
2393
2394		if (cause & CAUSEF_BD)
2395			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2396		else
2397			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2398
2399		kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2400
2401		kvm_change_c0_guest_cause(cop0, (0xff),
2402					  (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2403
2404		/* Set PC to the exception entry point */
2405		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2406
2407	} else {
2408		kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2409		er = EMULATE_FAIL;
2410	}
2411
2412	return er;
2413}
2414
2415enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2416					       u32 *opc,
2417					       struct kvm_run *run,
2418					       struct kvm_vcpu *vcpu)
2419{
2420	struct mips_coproc *cop0 = vcpu->arch.cop0;
2421	struct kvm_vcpu_arch *arch = &vcpu->arch;
2422	enum emulation_result er = EMULATE_DONE;
2423
2424	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2425		/* save old pc */
2426		kvm_write_c0_guest_epc(cop0, arch->pc);
2427		kvm_set_c0_guest_status(cop0, ST0_EXL);
2428
2429		if (cause & CAUSEF_BD)
2430			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2431		else
2432			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2433
2434		kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2435
2436		kvm_change_c0_guest_cause(cop0, (0xff),
2437					  (EXCCODE_FPE << CAUSEB_EXCCODE));
2438
2439		/* Set PC to the exception entry point */
2440		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2441
2442	} else {
2443		kvm_err("Trying to deliver FPE when EXL is already set\n");
2444		er = EMULATE_FAIL;
2445	}
2446
2447	return er;
2448}
2449
2450enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2451						  u32 *opc,
2452						  struct kvm_run *run,
2453						  struct kvm_vcpu *vcpu)
2454{
2455	struct mips_coproc *cop0 = vcpu->arch.cop0;
2456	struct kvm_vcpu_arch *arch = &vcpu->arch;
2457	enum emulation_result er = EMULATE_DONE;
2458
2459	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2460		/* save old pc */
2461		kvm_write_c0_guest_epc(cop0, arch->pc);
2462		kvm_set_c0_guest_status(cop0, ST0_EXL);
2463
2464		if (cause & CAUSEF_BD)
2465			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2466		else
2467			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2468
2469		kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2470
2471		kvm_change_c0_guest_cause(cop0, (0xff),
2472					  (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2473
2474		/* Set PC to the exception entry point */
2475		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2476
2477	} else {
2478		kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2479		er = EMULATE_FAIL;
2480	}
2481
2482	return er;
2483}
2484
2485enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
2486					 struct kvm_run *run,
2487					 struct kvm_vcpu *vcpu)
2488{
2489	struct mips_coproc *cop0 = vcpu->arch.cop0;
2490	struct kvm_vcpu_arch *arch = &vcpu->arch;
2491	enum emulation_result er = EMULATE_DONE;
2492	unsigned long curr_pc;
2493	union mips_instruction inst;
2494	int err;
2495
2496	/*
2497	 * Update PC and hold onto current PC in case there is
2498	 * an error and we want to rollback the PC
2499	 */
2500	curr_pc = vcpu->arch.pc;
2501	er = update_pc(vcpu, cause);
2502	if (er == EMULATE_FAIL)
2503		return er;
2504
2505	/* Fetch the instruction. */
2506	if (cause & CAUSEF_BD)
2507		opc += 1;
2508	err = kvm_get_badinstr(opc, vcpu, &inst.word);
2509	if (err) {
2510		kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err);
2511		return EMULATE_FAIL;
2512	}
2513
2514	if (inst.r_format.opcode == spec3_op &&
2515	    inst.r_format.func == rdhwr_op &&
2516	    inst.r_format.rs == 0 &&
2517	    (inst.r_format.re >> 3) == 0) {
2518		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2519		int rd = inst.r_format.rd;
2520		int rt = inst.r_format.rt;
2521		int sel = inst.r_format.re & 0x7;
2522
2523		/* If usermode, check RDHWR rd is allowed by guest HWREna */
2524		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2525			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2526				  rd, opc);
2527			goto emulate_ri;
2528		}
2529		switch (rd) {
2530		case MIPS_HWR_CPUNUM:		/* CPU number */
2531			arch->gprs[rt] = vcpu->vcpu_id;
2532			break;
2533		case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
2534			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2535					     current_cpu_data.icache.linesz);
2536			break;
2537		case MIPS_HWR_CC:		/* Read count register */
2538			arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
2539			break;
2540		case MIPS_HWR_CCRES:		/* Count register resolution */
2541			switch (current_cpu_data.cputype) {
2542			case CPU_20KC:
2543			case CPU_25KF:
2544				arch->gprs[rt] = 1;
2545				break;
2546			default:
2547				arch->gprs[rt] = 2;
2548			}
2549			break;
2550		case MIPS_HWR_ULR:		/* Read UserLocal register */
2551			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2552			break;
2553
2554		default:
2555			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2556			goto emulate_ri;
2557		}
2558
2559		trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2560			      vcpu->arch.gprs[rt]);
2561	} else {
2562		kvm_debug("Emulate RI not supported @ %p: %#x\n",
2563			  opc, inst.word);
2564		goto emulate_ri;
2565	}
2566
2567	return EMULATE_DONE;
2568
2569emulate_ri:
2570	/*
2571	 * Rollback PC (if in branch delay slot then the PC already points to
2572	 * branch target), and pass the RI exception to the guest OS.
2573	 */
2574	vcpu->arch.pc = curr_pc;
2575	return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2576}
2577
2578enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2579						  struct kvm_run *run)
2580{
2581	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2582	enum emulation_result er = EMULATE_DONE;
2583
2584	if (run->mmio.len > sizeof(*gpr)) {
2585		kvm_err("Bad MMIO length: %d", run->mmio.len);
2586		er = EMULATE_FAIL;
2587		goto done;
2588	}
2589
2590	/* Restore saved resume PC */
2591	vcpu->arch.pc = vcpu->arch.io_pc;
2592
2593	switch (run->mmio.len) {
2594	case 8:
2595		*gpr = *(s64 *)run->mmio.data;
2596		break;
2597
2598	case 4:
2599		if (vcpu->mmio_needed == 2)
2600			*gpr = *(s32 *)run->mmio.data;
2601		else
2602			*gpr = *(u32 *)run->mmio.data;
2603		break;
2604
2605	case 2:
2606		if (vcpu->mmio_needed == 2)
2607			*gpr = *(s16 *) run->mmio.data;
2608		else
2609			*gpr = *(u16 *)run->mmio.data;
2610
2611		break;
2612	case 1:
2613		if (vcpu->mmio_needed == 2)
2614			*gpr = *(s8 *) run->mmio.data;
2615		else
2616			*gpr = *(u8 *) run->mmio.data;
2617		break;
2618	}
2619
2620done:
2621	return er;
2622}
2623
2624static enum emulation_result kvm_mips_emulate_exc(u32 cause,
2625						  u32 *opc,
2626						  struct kvm_run *run,
2627						  struct kvm_vcpu *vcpu)
2628{
2629	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2630	struct mips_coproc *cop0 = vcpu->arch.cop0;
2631	struct kvm_vcpu_arch *arch = &vcpu->arch;
2632	enum emulation_result er = EMULATE_DONE;
2633
2634	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2635		/* save old pc */
2636		kvm_write_c0_guest_epc(cop0, arch->pc);
2637		kvm_set_c0_guest_status(cop0, ST0_EXL);
2638
2639		if (cause & CAUSEF_BD)
2640			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2641		else
2642			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2643
2644		kvm_change_c0_guest_cause(cop0, (0xff),
2645					  (exccode << CAUSEB_EXCCODE));
2646
2647		/* Set PC to the exception entry point */
2648		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2649		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2650
2651		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2652			  exccode, kvm_read_c0_guest_epc(cop0),
2653			  kvm_read_c0_guest_badvaddr(cop0));
2654	} else {
2655		kvm_err("Trying to deliver EXC when EXL is already set\n");
2656		er = EMULATE_FAIL;
2657	}
2658
2659	return er;
2660}
2661
2662enum emulation_result kvm_mips_check_privilege(u32 cause,
2663					       u32 *opc,
2664					       struct kvm_run *run,
2665					       struct kvm_vcpu *vcpu)
2666{
2667	enum emulation_result er = EMULATE_DONE;
2668	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2669	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2670
2671	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2672
2673	if (usermode) {
2674		switch (exccode) {
2675		case EXCCODE_INT:
2676		case EXCCODE_SYS:
2677		case EXCCODE_BP:
2678		case EXCCODE_RI:
2679		case EXCCODE_TR:
2680		case EXCCODE_MSAFPE:
2681		case EXCCODE_FPE:
2682		case EXCCODE_MSADIS:
2683			break;
2684
2685		case EXCCODE_CPU:
2686			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2687				er = EMULATE_PRIV_FAIL;
2688			break;
2689
2690		case EXCCODE_MOD:
2691			break;
2692
2693		case EXCCODE_TLBL:
2694			/*
2695			 * We we are accessing Guest kernel space, then send an
2696			 * address error exception to the guest
2697			 */
2698			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2699				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2700					  badvaddr);
2701				cause &= ~0xff;
2702				cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2703				er = EMULATE_PRIV_FAIL;
2704			}
2705			break;
2706
2707		case EXCCODE_TLBS:
2708			/*
2709			 * We we are accessing Guest kernel space, then send an
2710			 * address error exception to the guest
2711			 */
2712			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2713				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2714					  badvaddr);
2715				cause &= ~0xff;
2716				cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2717				er = EMULATE_PRIV_FAIL;
2718			}
2719			break;
2720
2721		case EXCCODE_ADES:
2722			kvm_debug("%s: address error ST @ %#lx\n", __func__,
2723				  badvaddr);
2724			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2725				cause &= ~0xff;
2726				cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2727			}
2728			er = EMULATE_PRIV_FAIL;
2729			break;
2730		case EXCCODE_ADEL:
2731			kvm_debug("%s: address error LD @ %#lx\n", __func__,
2732				  badvaddr);
2733			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2734				cause &= ~0xff;
2735				cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2736			}
2737			er = EMULATE_PRIV_FAIL;
2738			break;
2739		default:
2740			er = EMULATE_PRIV_FAIL;
2741			break;
2742		}
2743	}
2744
2745	if (er == EMULATE_PRIV_FAIL)
2746		kvm_mips_emulate_exc(cause, opc, run, vcpu);
2747
2748	return er;
2749}
2750
2751/*
2752 * User Address (UA) fault, this could happen if
2753 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2754 *     case we pass on the fault to the guest kernel and let it handle it.
2755 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2756 *     case we inject the TLB from the Guest TLB into the shadow host TLB
2757 */
2758enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
2759					      u32 *opc,
2760					      struct kvm_run *run,
2761					      struct kvm_vcpu *vcpu,
2762					      bool write_fault)
2763{
2764	enum emulation_result er = EMULATE_DONE;
2765	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2766	unsigned long va = vcpu->arch.host_cp0_badvaddr;
2767	int index;
2768
2769	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
2770		  vcpu->arch.host_cp0_badvaddr);
2771
2772	/*
2773	 * KVM would not have got the exception if this entry was valid in the
2774	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2775	 * send the guest an exception. The guest exc handler should then inject
2776	 * an entry into the guest TLB.
2777	 */
2778	index = kvm_mips_guest_tlb_lookup(vcpu,
2779		      (va & VPN2_MASK) |
2780		      (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2781		       KVM_ENTRYHI_ASID));
2782	if (index < 0) {
2783		if (exccode == EXCCODE_TLBL) {
2784			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2785		} else if (exccode == EXCCODE_TLBS) {
2786			er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2787		} else {
2788			kvm_err("%s: invalid exc code: %d\n", __func__,
2789				exccode);
2790			er = EMULATE_FAIL;
2791		}
2792	} else {
2793		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2794
2795		/*
2796		 * Check if the entry is valid, if not then setup a TLB invalid
2797		 * exception to the guest
2798		 */
2799		if (!TLB_IS_VALID(*tlb, va)) {
2800			if (exccode == EXCCODE_TLBL) {
2801				er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2802								vcpu);
2803			} else if (exccode == EXCCODE_TLBS) {
2804				er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2805								vcpu);
2806			} else {
2807				kvm_err("%s: invalid exc code: %d\n", __func__,
2808					exccode);
2809				er = EMULATE_FAIL;
2810			}
2811		} else {
2812			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2813				  tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
2814			/*
2815			 * OK we have a Guest TLB entry, now inject it into the
2816			 * shadow host TLB
2817			 */
2818			if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va,
2819								 write_fault)) {
2820				kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
2821					__func__, va, index, vcpu,
2822					read_c0_entryhi());
2823				er = EMULATE_FAIL;
2824			}
2825		}
2826	}
2827
2828	return er;
2829}