Linux Audio

Check our new training course

Loading...
   1/*
   2 *  linux/fs/pipe.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
   5 */
   6
   7#include <linux/mm.h>
   8#include <linux/file.h>
   9#include <linux/poll.h>
  10#include <linux/slab.h>
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/fs.h>
  14#include <linux/log2.h>
  15#include <linux/mount.h>
  16#include <linux/magic.h>
  17#include <linux/pipe_fs_i.h>
  18#include <linux/uio.h>
  19#include <linux/highmem.h>
  20#include <linux/pagemap.h>
  21#include <linux/audit.h>
  22#include <linux/syscalls.h>
  23#include <linux/fcntl.h>
  24
  25#include <asm/uaccess.h>
  26#include <asm/ioctls.h>
  27
  28/*
  29 * The max size that a non-root user is allowed to grow the pipe. Can
  30 * be set by root in /proc/sys/fs/pipe-max-size
  31 */
  32unsigned int pipe_max_size = 1048576;
  33
  34/*
  35 * Minimum pipe size, as required by POSIX
  36 */
  37unsigned int pipe_min_size = PAGE_SIZE;
  38
  39/*
  40 * We use a start+len construction, which provides full use of the 
  41 * allocated memory.
  42 * -- Florian Coosmann (FGC)
  43 * 
  44 * Reads with count = 0 should always return 0.
  45 * -- Julian Bradfield 1999-06-07.
  46 *
  47 * FIFOs and Pipes now generate SIGIO for both readers and writers.
  48 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
  49 *
  50 * pipe_read & write cleanup
  51 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
  52 */
  53
  54static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
  55{
  56	if (pipe->inode)
  57		mutex_lock_nested(&pipe->inode->i_mutex, subclass);
  58}
  59
  60void pipe_lock(struct pipe_inode_info *pipe)
  61{
  62	/*
  63	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
  64	 */
  65	pipe_lock_nested(pipe, I_MUTEX_PARENT);
  66}
  67EXPORT_SYMBOL(pipe_lock);
  68
  69void pipe_unlock(struct pipe_inode_info *pipe)
  70{
  71	if (pipe->inode)
  72		mutex_unlock(&pipe->inode->i_mutex);
  73}
  74EXPORT_SYMBOL(pipe_unlock);
  75
  76void pipe_double_lock(struct pipe_inode_info *pipe1,
  77		      struct pipe_inode_info *pipe2)
  78{
  79	BUG_ON(pipe1 == pipe2);
  80
  81	if (pipe1 < pipe2) {
  82		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
  83		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
  84	} else {
  85		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
  86		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
  87	}
  88}
  89
  90/* Drop the inode semaphore and wait for a pipe event, atomically */
  91void pipe_wait(struct pipe_inode_info *pipe)
  92{
  93	DEFINE_WAIT(wait);
  94
  95	/*
  96	 * Pipes are system-local resources, so sleeping on them
  97	 * is considered a noninteractive wait:
  98	 */
  99	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
 100	pipe_unlock(pipe);
 101	schedule();
 102	finish_wait(&pipe->wait, &wait);
 103	pipe_lock(pipe);
 104}
 105
 106static int
 107pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
 108			int atomic)
 109{
 110	unsigned long copy;
 111
 112	while (len > 0) {
 113		while (!iov->iov_len)
 114			iov++;
 115		copy = min_t(unsigned long, len, iov->iov_len);
 116
 117		if (atomic) {
 118			if (__copy_from_user_inatomic(to, iov->iov_base, copy))
 119				return -EFAULT;
 120		} else {
 121			if (copy_from_user(to, iov->iov_base, copy))
 122				return -EFAULT;
 123		}
 124		to += copy;
 125		len -= copy;
 126		iov->iov_base += copy;
 127		iov->iov_len -= copy;
 128	}
 129	return 0;
 130}
 131
 132static int
 133pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
 134		      int atomic)
 135{
 136	unsigned long copy;
 137
 138	while (len > 0) {
 139		while (!iov->iov_len)
 140			iov++;
 141		copy = min_t(unsigned long, len, iov->iov_len);
 142
 143		if (atomic) {
 144			if (__copy_to_user_inatomic(iov->iov_base, from, copy))
 145				return -EFAULT;
 146		} else {
 147			if (copy_to_user(iov->iov_base, from, copy))
 148				return -EFAULT;
 149		}
 150		from += copy;
 151		len -= copy;
 152		iov->iov_base += copy;
 153		iov->iov_len -= copy;
 154	}
 155	return 0;
 156}
 157
 158/*
 159 * Attempt to pre-fault in the user memory, so we can use atomic copies.
 160 * Returns the number of bytes not faulted in.
 161 */
 162static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
 163{
 164	while (!iov->iov_len)
 165		iov++;
 166
 167	while (len > 0) {
 168		unsigned long this_len;
 169
 170		this_len = min_t(unsigned long, len, iov->iov_len);
 171		if (fault_in_pages_writeable(iov->iov_base, this_len))
 172			break;
 173
 174		len -= this_len;
 175		iov++;
 176	}
 177
 178	return len;
 179}
 180
 181/*
 182 * Pre-fault in the user memory, so we can use atomic copies.
 183 */
 184static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
 185{
 186	while (!iov->iov_len)
 187		iov++;
 188
 189	while (len > 0) {
 190		unsigned long this_len;
 191
 192		this_len = min_t(unsigned long, len, iov->iov_len);
 193		fault_in_pages_readable(iov->iov_base, this_len);
 194		len -= this_len;
 195		iov++;
 196	}
 197}
 198
 199static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
 200				  struct pipe_buffer *buf)
 201{
 202	struct page *page = buf->page;
 203
 204	/*
 205	 * If nobody else uses this page, and we don't already have a
 206	 * temporary page, let's keep track of it as a one-deep
 207	 * allocation cache. (Otherwise just release our reference to it)
 208	 */
 209	if (page_count(page) == 1 && !pipe->tmp_page)
 210		pipe->tmp_page = page;
 211	else
 212		page_cache_release(page);
 213}
 214
 215/**
 216 * generic_pipe_buf_map - virtually map a pipe buffer
 217 * @pipe:	the pipe that the buffer belongs to
 218 * @buf:	the buffer that should be mapped
 219 * @atomic:	whether to use an atomic map
 220 *
 221 * Description:
 222 *	This function returns a kernel virtual address mapping for the
 223 *	pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
 224 *	and the caller has to be careful not to fault before calling
 225 *	the unmap function.
 226 *
 227 *	Note that this function occupies KM_USER0 if @atomic != 0.
 228 */
 229void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
 230			   struct pipe_buffer *buf, int atomic)
 231{
 232	if (atomic) {
 233		buf->flags |= PIPE_BUF_FLAG_ATOMIC;
 234		return kmap_atomic(buf->page);
 235	}
 236
 237	return kmap(buf->page);
 238}
 239EXPORT_SYMBOL(generic_pipe_buf_map);
 240
 241/**
 242 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
 243 * @pipe:	the pipe that the buffer belongs to
 244 * @buf:	the buffer that should be unmapped
 245 * @map_data:	the data that the mapping function returned
 246 *
 247 * Description:
 248 *	This function undoes the mapping that ->map() provided.
 249 */
 250void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
 251			    struct pipe_buffer *buf, void *map_data)
 252{
 253	if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
 254		buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
 255		kunmap_atomic(map_data);
 256	} else
 257		kunmap(buf->page);
 258}
 259EXPORT_SYMBOL(generic_pipe_buf_unmap);
 260
 261/**
 262 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
 263 * @pipe:	the pipe that the buffer belongs to
 264 * @buf:	the buffer to attempt to steal
 265 *
 266 * Description:
 267 *	This function attempts to steal the &struct page attached to
 268 *	@buf. If successful, this function returns 0 and returns with
 269 *	the page locked. The caller may then reuse the page for whatever
 270 *	he wishes; the typical use is insertion into a different file
 271 *	page cache.
 272 */
 273int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
 274			   struct pipe_buffer *buf)
 275{
 276	struct page *page = buf->page;
 277
 278	/*
 279	 * A reference of one is golden, that means that the owner of this
 280	 * page is the only one holding a reference to it. lock the page
 281	 * and return OK.
 282	 */
 283	if (page_count(page) == 1) {
 284		lock_page(page);
 285		return 0;
 286	}
 287
 288	return 1;
 289}
 290EXPORT_SYMBOL(generic_pipe_buf_steal);
 291
 292/**
 293 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
 294 * @pipe:	the pipe that the buffer belongs to
 295 * @buf:	the buffer to get a reference to
 296 *
 297 * Description:
 298 *	This function grabs an extra reference to @buf. It's used in
 299 *	in the tee() system call, when we duplicate the buffers in one
 300 *	pipe into another.
 301 */
 302void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
 303{
 304	page_cache_get(buf->page);
 305}
 306EXPORT_SYMBOL(generic_pipe_buf_get);
 307
 308/**
 309 * generic_pipe_buf_confirm - verify contents of the pipe buffer
 310 * @info:	the pipe that the buffer belongs to
 311 * @buf:	the buffer to confirm
 312 *
 313 * Description:
 314 *	This function does nothing, because the generic pipe code uses
 315 *	pages that are always good when inserted into the pipe.
 316 */
 317int generic_pipe_buf_confirm(struct pipe_inode_info *info,
 318			     struct pipe_buffer *buf)
 319{
 320	return 0;
 321}
 322EXPORT_SYMBOL(generic_pipe_buf_confirm);
 323
 324/**
 325 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
 326 * @pipe:	the pipe that the buffer belongs to
 327 * @buf:	the buffer to put a reference to
 328 *
 329 * Description:
 330 *	This function releases a reference to @buf.
 331 */
 332void generic_pipe_buf_release(struct pipe_inode_info *pipe,
 333			      struct pipe_buffer *buf)
 334{
 335	page_cache_release(buf->page);
 336}
 337EXPORT_SYMBOL(generic_pipe_buf_release);
 338
 339static const struct pipe_buf_operations anon_pipe_buf_ops = {
 340	.can_merge = 1,
 341	.map = generic_pipe_buf_map,
 342	.unmap = generic_pipe_buf_unmap,
 343	.confirm = generic_pipe_buf_confirm,
 344	.release = anon_pipe_buf_release,
 345	.steal = generic_pipe_buf_steal,
 346	.get = generic_pipe_buf_get,
 347};
 348
 349static const struct pipe_buf_operations packet_pipe_buf_ops = {
 350	.can_merge = 0,
 351	.map = generic_pipe_buf_map,
 352	.unmap = generic_pipe_buf_unmap,
 353	.confirm = generic_pipe_buf_confirm,
 354	.release = anon_pipe_buf_release,
 355	.steal = generic_pipe_buf_steal,
 356	.get = generic_pipe_buf_get,
 357};
 358
 359static ssize_t
 360pipe_read(struct kiocb *iocb, const struct iovec *_iov,
 361	   unsigned long nr_segs, loff_t pos)
 362{
 363	struct file *filp = iocb->ki_filp;
 364	struct inode *inode = filp->f_path.dentry->d_inode;
 365	struct pipe_inode_info *pipe;
 366	int do_wakeup;
 367	ssize_t ret;
 368	struct iovec *iov = (struct iovec *)_iov;
 369	size_t total_len;
 370
 371	total_len = iov_length(iov, nr_segs);
 372	/* Null read succeeds. */
 373	if (unlikely(total_len == 0))
 374		return 0;
 375
 376	do_wakeup = 0;
 377	ret = 0;
 378	mutex_lock(&inode->i_mutex);
 379	pipe = inode->i_pipe;
 380	for (;;) {
 381		int bufs = pipe->nrbufs;
 382		if (bufs) {
 383			int curbuf = pipe->curbuf;
 384			struct pipe_buffer *buf = pipe->bufs + curbuf;
 385			const struct pipe_buf_operations *ops = buf->ops;
 386			void *addr;
 387			size_t chars = buf->len;
 388			int error, atomic;
 389
 390			if (chars > total_len)
 391				chars = total_len;
 392
 393			error = ops->confirm(pipe, buf);
 394			if (error) {
 395				if (!ret)
 396					ret = error;
 397				break;
 398			}
 399
 400			atomic = !iov_fault_in_pages_write(iov, chars);
 401redo:
 402			addr = ops->map(pipe, buf, atomic);
 403			error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
 404			ops->unmap(pipe, buf, addr);
 405			if (unlikely(error)) {
 406				/*
 407				 * Just retry with the slow path if we failed.
 408				 */
 409				if (atomic) {
 410					atomic = 0;
 411					goto redo;
 412				}
 413				if (!ret)
 414					ret = error;
 415				break;
 416			}
 417			ret += chars;
 418			buf->offset += chars;
 419			buf->len -= chars;
 420
 421			/* Was it a packet buffer? Clean up and exit */
 422			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
 423				total_len = chars;
 424				buf->len = 0;
 425			}
 426
 427			if (!buf->len) {
 428				buf->ops = NULL;
 429				ops->release(pipe, buf);
 430				curbuf = (curbuf + 1) & (pipe->buffers - 1);
 431				pipe->curbuf = curbuf;
 432				pipe->nrbufs = --bufs;
 433				do_wakeup = 1;
 434			}
 435			total_len -= chars;
 436			if (!total_len)
 437				break;	/* common path: read succeeded */
 438		}
 439		if (bufs)	/* More to do? */
 440			continue;
 441		if (!pipe->writers)
 442			break;
 443		if (!pipe->waiting_writers) {
 444			/* syscall merging: Usually we must not sleep
 445			 * if O_NONBLOCK is set, or if we got some data.
 446			 * But if a writer sleeps in kernel space, then
 447			 * we can wait for that data without violating POSIX.
 448			 */
 449			if (ret)
 450				break;
 451			if (filp->f_flags & O_NONBLOCK) {
 452				ret = -EAGAIN;
 453				break;
 454			}
 455		}
 456		if (signal_pending(current)) {
 457			if (!ret)
 458				ret = -ERESTARTSYS;
 459			break;
 460		}
 461		if (do_wakeup) {
 462			wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
 463 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 464		}
 465		pipe_wait(pipe);
 466	}
 467	mutex_unlock(&inode->i_mutex);
 468
 469	/* Signal writers asynchronously that there is more room. */
 470	if (do_wakeup) {
 471		wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
 472		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 473	}
 474	if (ret > 0)
 475		file_accessed(filp);
 476	return ret;
 477}
 478
 479static inline int is_packetized(struct file *file)
 480{
 481	return (file->f_flags & O_DIRECT) != 0;
 482}
 483
 484static ssize_t
 485pipe_write(struct kiocb *iocb, const struct iovec *_iov,
 486	    unsigned long nr_segs, loff_t ppos)
 487{
 488	struct file *filp = iocb->ki_filp;
 489	struct inode *inode = filp->f_path.dentry->d_inode;
 490	struct pipe_inode_info *pipe;
 491	ssize_t ret;
 492	int do_wakeup;
 493	struct iovec *iov = (struct iovec *)_iov;
 494	size_t total_len;
 495	ssize_t chars;
 496
 497	total_len = iov_length(iov, nr_segs);
 498	/* Null write succeeds. */
 499	if (unlikely(total_len == 0))
 500		return 0;
 501
 502	do_wakeup = 0;
 503	ret = 0;
 504	mutex_lock(&inode->i_mutex);
 505	pipe = inode->i_pipe;
 506
 507	if (!pipe->readers) {
 508		send_sig(SIGPIPE, current, 0);
 509		ret = -EPIPE;
 510		goto out;
 511	}
 512
 513	/* We try to merge small writes */
 514	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
 515	if (pipe->nrbufs && chars != 0) {
 516		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
 517							(pipe->buffers - 1);
 518		struct pipe_buffer *buf = pipe->bufs + lastbuf;
 519		const struct pipe_buf_operations *ops = buf->ops;
 520		int offset = buf->offset + buf->len;
 521
 522		if (ops->can_merge && offset + chars <= PAGE_SIZE) {
 523			int error, atomic = 1;
 524			void *addr;
 525
 526			error = ops->confirm(pipe, buf);
 527			if (error)
 528				goto out;
 529
 530			iov_fault_in_pages_read(iov, chars);
 531redo1:
 532			addr = ops->map(pipe, buf, atomic);
 533			error = pipe_iov_copy_from_user(offset + addr, iov,
 534							chars, atomic);
 535			ops->unmap(pipe, buf, addr);
 536			ret = error;
 537			do_wakeup = 1;
 538			if (error) {
 539				if (atomic) {
 540					atomic = 0;
 541					goto redo1;
 542				}
 543				goto out;
 544			}
 545			buf->len += chars;
 546			total_len -= chars;
 547			ret = chars;
 548			if (!total_len)
 549				goto out;
 550		}
 551	}
 552
 553	for (;;) {
 554		int bufs;
 555
 556		if (!pipe->readers) {
 557			send_sig(SIGPIPE, current, 0);
 558			if (!ret)
 559				ret = -EPIPE;
 560			break;
 561		}
 562		bufs = pipe->nrbufs;
 563		if (bufs < pipe->buffers) {
 564			int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
 565			struct pipe_buffer *buf = pipe->bufs + newbuf;
 566			struct page *page = pipe->tmp_page;
 567			char *src;
 568			int error, atomic = 1;
 569
 570			if (!page) {
 571				page = alloc_page(GFP_HIGHUSER);
 572				if (unlikely(!page)) {
 573					ret = ret ? : -ENOMEM;
 574					break;
 575				}
 576				pipe->tmp_page = page;
 577			}
 578			/* Always wake up, even if the copy fails. Otherwise
 579			 * we lock up (O_NONBLOCK-)readers that sleep due to
 580			 * syscall merging.
 581			 * FIXME! Is this really true?
 582			 */
 583			do_wakeup = 1;
 584			chars = PAGE_SIZE;
 585			if (chars > total_len)
 586				chars = total_len;
 587
 588			iov_fault_in_pages_read(iov, chars);
 589redo2:
 590			if (atomic)
 591				src = kmap_atomic(page);
 592			else
 593				src = kmap(page);
 594
 595			error = pipe_iov_copy_from_user(src, iov, chars,
 596							atomic);
 597			if (atomic)
 598				kunmap_atomic(src);
 599			else
 600				kunmap(page);
 601
 602			if (unlikely(error)) {
 603				if (atomic) {
 604					atomic = 0;
 605					goto redo2;
 606				}
 607				if (!ret)
 608					ret = error;
 609				break;
 610			}
 611			ret += chars;
 612
 613			/* Insert it into the buffer array */
 614			buf->page = page;
 615			buf->ops = &anon_pipe_buf_ops;
 616			buf->offset = 0;
 617			buf->len = chars;
 618			buf->flags = 0;
 619			if (is_packetized(filp)) {
 620				buf->ops = &packet_pipe_buf_ops;
 621				buf->flags = PIPE_BUF_FLAG_PACKET;
 622			}
 623			pipe->nrbufs = ++bufs;
 624			pipe->tmp_page = NULL;
 625
 626			total_len -= chars;
 627			if (!total_len)
 628				break;
 629		}
 630		if (bufs < pipe->buffers)
 631			continue;
 632		if (filp->f_flags & O_NONBLOCK) {
 633			if (!ret)
 634				ret = -EAGAIN;
 635			break;
 636		}
 637		if (signal_pending(current)) {
 638			if (!ret)
 639				ret = -ERESTARTSYS;
 640			break;
 641		}
 642		if (do_wakeup) {
 643			wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
 644			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 645			do_wakeup = 0;
 646		}
 647		pipe->waiting_writers++;
 648		pipe_wait(pipe);
 649		pipe->waiting_writers--;
 650	}
 651out:
 652	mutex_unlock(&inode->i_mutex);
 653	if (do_wakeup) {
 654		wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
 655		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 656	}
 657	if (ret > 0) {
 658		int err = file_update_time(filp);
 659		if (err)
 660			ret = err;
 661	}
 662	return ret;
 663}
 664
 665static ssize_t
 666bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
 667{
 668	return -EBADF;
 669}
 670
 671static ssize_t
 672bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
 673	   loff_t *ppos)
 674{
 675	return -EBADF;
 676}
 677
 678static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 679{
 680	struct inode *inode = filp->f_path.dentry->d_inode;
 681	struct pipe_inode_info *pipe;
 682	int count, buf, nrbufs;
 683
 684	switch (cmd) {
 685		case FIONREAD:
 686			mutex_lock(&inode->i_mutex);
 687			pipe = inode->i_pipe;
 688			count = 0;
 689			buf = pipe->curbuf;
 690			nrbufs = pipe->nrbufs;
 691			while (--nrbufs >= 0) {
 692				count += pipe->bufs[buf].len;
 693				buf = (buf+1) & (pipe->buffers - 1);
 694			}
 695			mutex_unlock(&inode->i_mutex);
 696
 697			return put_user(count, (int __user *)arg);
 698		default:
 699			return -ENOIOCTLCMD;
 700	}
 701}
 702
 703/* No kernel lock held - fine */
 704static unsigned int
 705pipe_poll(struct file *filp, poll_table *wait)
 706{
 707	unsigned int mask;
 708	struct inode *inode = filp->f_path.dentry->d_inode;
 709	struct pipe_inode_info *pipe = inode->i_pipe;
 710	int nrbufs;
 711
 712	poll_wait(filp, &pipe->wait, wait);
 713
 714	/* Reading only -- no need for acquiring the semaphore.  */
 715	nrbufs = pipe->nrbufs;
 716	mask = 0;
 717	if (filp->f_mode & FMODE_READ) {
 718		mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
 719		if (!pipe->writers && filp->f_version != pipe->w_counter)
 720			mask |= POLLHUP;
 721	}
 722
 723	if (filp->f_mode & FMODE_WRITE) {
 724		mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
 725		/*
 726		 * Most Unices do not set POLLERR for FIFOs but on Linux they
 727		 * behave exactly like pipes for poll().
 728		 */
 729		if (!pipe->readers)
 730			mask |= POLLERR;
 731	}
 732
 733	return mask;
 734}
 735
 736static int
 737pipe_release(struct inode *inode, int decr, int decw)
 738{
 739	struct pipe_inode_info *pipe;
 740
 741	mutex_lock(&inode->i_mutex);
 742	pipe = inode->i_pipe;
 743	pipe->readers -= decr;
 744	pipe->writers -= decw;
 745
 746	if (!pipe->readers && !pipe->writers) {
 747		free_pipe_info(inode);
 748	} else {
 749		wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
 750		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 751		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 752	}
 753	mutex_unlock(&inode->i_mutex);
 754
 755	return 0;
 756}
 757
 758static int
 759pipe_read_fasync(int fd, struct file *filp, int on)
 760{
 761	struct inode *inode = filp->f_path.dentry->d_inode;
 762	int retval;
 763
 764	mutex_lock(&inode->i_mutex);
 765	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
 766	mutex_unlock(&inode->i_mutex);
 767
 768	return retval;
 769}
 770
 771
 772static int
 773pipe_write_fasync(int fd, struct file *filp, int on)
 774{
 775	struct inode *inode = filp->f_path.dentry->d_inode;
 776	int retval;
 777
 778	mutex_lock(&inode->i_mutex);
 779	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
 780	mutex_unlock(&inode->i_mutex);
 781
 782	return retval;
 783}
 784
 785
 786static int
 787pipe_rdwr_fasync(int fd, struct file *filp, int on)
 788{
 789	struct inode *inode = filp->f_path.dentry->d_inode;
 790	struct pipe_inode_info *pipe = inode->i_pipe;
 791	int retval;
 792
 793	mutex_lock(&inode->i_mutex);
 794	retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
 795	if (retval >= 0) {
 796		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
 797		if (retval < 0) /* this can happen only if on == T */
 798			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
 799	}
 800	mutex_unlock(&inode->i_mutex);
 801	return retval;
 802}
 803
 804
 805static int
 806pipe_read_release(struct inode *inode, struct file *filp)
 807{
 808	return pipe_release(inode, 1, 0);
 809}
 810
 811static int
 812pipe_write_release(struct inode *inode, struct file *filp)
 813{
 814	return pipe_release(inode, 0, 1);
 815}
 816
 817static int
 818pipe_rdwr_release(struct inode *inode, struct file *filp)
 819{
 820	int decr, decw;
 821
 822	decr = (filp->f_mode & FMODE_READ) != 0;
 823	decw = (filp->f_mode & FMODE_WRITE) != 0;
 824	return pipe_release(inode, decr, decw);
 825}
 826
 827static int
 828pipe_read_open(struct inode *inode, struct file *filp)
 829{
 830	int ret = -ENOENT;
 831
 832	mutex_lock(&inode->i_mutex);
 833
 834	if (inode->i_pipe) {
 835		ret = 0;
 836		inode->i_pipe->readers++;
 837	}
 838
 839	mutex_unlock(&inode->i_mutex);
 840
 841	return ret;
 842}
 843
 844static int
 845pipe_write_open(struct inode *inode, struct file *filp)
 846{
 847	int ret = -ENOENT;
 848
 849	mutex_lock(&inode->i_mutex);
 850
 851	if (inode->i_pipe) {
 852		ret = 0;
 853		inode->i_pipe->writers++;
 854	}
 855
 856	mutex_unlock(&inode->i_mutex);
 857
 858	return ret;
 859}
 860
 861static int
 862pipe_rdwr_open(struct inode *inode, struct file *filp)
 863{
 864	int ret = -ENOENT;
 865
 866	mutex_lock(&inode->i_mutex);
 867
 868	if (inode->i_pipe) {
 869		ret = 0;
 870		if (filp->f_mode & FMODE_READ)
 871			inode->i_pipe->readers++;
 872		if (filp->f_mode & FMODE_WRITE)
 873			inode->i_pipe->writers++;
 874	}
 875
 876	mutex_unlock(&inode->i_mutex);
 877
 878	return ret;
 879}
 880
 881/*
 882 * The file_operations structs are not static because they
 883 * are also used in linux/fs/fifo.c to do operations on FIFOs.
 884 *
 885 * Pipes reuse fifos' file_operations structs.
 886 */
 887const struct file_operations read_pipefifo_fops = {
 888	.llseek		= no_llseek,
 889	.read		= do_sync_read,
 890	.aio_read	= pipe_read,
 891	.write		= bad_pipe_w,
 892	.poll		= pipe_poll,
 893	.unlocked_ioctl	= pipe_ioctl,
 894	.open		= pipe_read_open,
 895	.release	= pipe_read_release,
 896	.fasync		= pipe_read_fasync,
 897};
 898
 899const struct file_operations write_pipefifo_fops = {
 900	.llseek		= no_llseek,
 901	.read		= bad_pipe_r,
 902	.write		= do_sync_write,
 903	.aio_write	= pipe_write,
 904	.poll		= pipe_poll,
 905	.unlocked_ioctl	= pipe_ioctl,
 906	.open		= pipe_write_open,
 907	.release	= pipe_write_release,
 908	.fasync		= pipe_write_fasync,
 909};
 910
 911const struct file_operations rdwr_pipefifo_fops = {
 912	.llseek		= no_llseek,
 913	.read		= do_sync_read,
 914	.aio_read	= pipe_read,
 915	.write		= do_sync_write,
 916	.aio_write	= pipe_write,
 917	.poll		= pipe_poll,
 918	.unlocked_ioctl	= pipe_ioctl,
 919	.open		= pipe_rdwr_open,
 920	.release	= pipe_rdwr_release,
 921	.fasync		= pipe_rdwr_fasync,
 922};
 923
 924struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
 925{
 926	struct pipe_inode_info *pipe;
 927
 928	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
 929	if (pipe) {
 930		pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
 931		if (pipe->bufs) {
 932			init_waitqueue_head(&pipe->wait);
 933			pipe->r_counter = pipe->w_counter = 1;
 934			pipe->inode = inode;
 935			pipe->buffers = PIPE_DEF_BUFFERS;
 936			return pipe;
 937		}
 938		kfree(pipe);
 939	}
 940
 941	return NULL;
 942}
 943
 944void __free_pipe_info(struct pipe_inode_info *pipe)
 945{
 946	int i;
 947
 948	for (i = 0; i < pipe->buffers; i++) {
 949		struct pipe_buffer *buf = pipe->bufs + i;
 950		if (buf->ops)
 951			buf->ops->release(pipe, buf);
 952	}
 953	if (pipe->tmp_page)
 954		__free_page(pipe->tmp_page);
 955	kfree(pipe->bufs);
 956	kfree(pipe);
 957}
 958
 959void free_pipe_info(struct inode *inode)
 960{
 961	__free_pipe_info(inode->i_pipe);
 962	inode->i_pipe = NULL;
 963}
 964
 965static struct vfsmount *pipe_mnt __read_mostly;
 966
 967/*
 968 * pipefs_dname() is called from d_path().
 969 */
 970static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
 971{
 972	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
 973				dentry->d_inode->i_ino);
 974}
 975
 976static const struct dentry_operations pipefs_dentry_operations = {
 977	.d_dname	= pipefs_dname,
 978};
 979
 980static struct inode * get_pipe_inode(void)
 981{
 982	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
 983	struct pipe_inode_info *pipe;
 984
 985	if (!inode)
 986		goto fail_inode;
 987
 988	inode->i_ino = get_next_ino();
 989
 990	pipe = alloc_pipe_info(inode);
 991	if (!pipe)
 992		goto fail_iput;
 993	inode->i_pipe = pipe;
 994
 995	pipe->readers = pipe->writers = 1;
 996	inode->i_fop = &rdwr_pipefifo_fops;
 997
 998	/*
 999	 * Mark the inode dirty from the very beginning,
1000	 * that way it will never be moved to the dirty
1001	 * list because "mark_inode_dirty()" will think
1002	 * that it already _is_ on the dirty list.
1003	 */
1004	inode->i_state = I_DIRTY;
1005	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1006	inode->i_uid = current_fsuid();
1007	inode->i_gid = current_fsgid();
1008	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1009
1010	return inode;
1011
1012fail_iput:
1013	iput(inode);
1014
1015fail_inode:
1016	return NULL;
1017}
1018
1019struct file *create_write_pipe(int flags)
1020{
1021	int err;
1022	struct inode *inode;
1023	struct file *f;
1024	struct path path;
1025	struct qstr name = { .name = "" };
1026
1027	err = -ENFILE;
1028	inode = get_pipe_inode();
1029	if (!inode)
1030		goto err;
1031
1032	err = -ENOMEM;
1033	path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
1034	if (!path.dentry)
1035		goto err_inode;
1036	path.mnt = mntget(pipe_mnt);
1037
1038	d_instantiate(path.dentry, inode);
1039
1040	err = -ENFILE;
1041	f = alloc_file(&path, FMODE_WRITE, &write_pipefifo_fops);
1042	if (!f)
1043		goto err_dentry;
1044	f->f_mapping = inode->i_mapping;
1045
1046	f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT));
1047	f->f_version = 0;
1048
1049	return f;
1050
1051 err_dentry:
1052	free_pipe_info(inode);
1053	path_put(&path);
1054	return ERR_PTR(err);
1055
1056 err_inode:
1057	free_pipe_info(inode);
1058	iput(inode);
1059 err:
1060	return ERR_PTR(err);
1061}
1062
1063void free_write_pipe(struct file *f)
1064{
1065	free_pipe_info(f->f_dentry->d_inode);
1066	path_put(&f->f_path);
1067	put_filp(f);
1068}
1069
1070struct file *create_read_pipe(struct file *wrf, int flags)
1071{
1072	/* Grab pipe from the writer */
1073	struct file *f = alloc_file(&wrf->f_path, FMODE_READ,
1074				    &read_pipefifo_fops);
1075	if (!f)
1076		return ERR_PTR(-ENFILE);
1077
1078	path_get(&wrf->f_path);
1079	f->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1080
1081	return f;
1082}
1083
1084int do_pipe_flags(int *fd, int flags)
1085{
1086	struct file *fw, *fr;
1087	int error;
1088	int fdw, fdr;
1089
1090	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
1091		return -EINVAL;
1092
1093	fw = create_write_pipe(flags);
1094	if (IS_ERR(fw))
1095		return PTR_ERR(fw);
1096	fr = create_read_pipe(fw, flags);
1097	error = PTR_ERR(fr);
1098	if (IS_ERR(fr))
1099		goto err_write_pipe;
1100
1101	error = get_unused_fd_flags(flags);
1102	if (error < 0)
1103		goto err_read_pipe;
1104	fdr = error;
1105
1106	error = get_unused_fd_flags(flags);
1107	if (error < 0)
1108		goto err_fdr;
1109	fdw = error;
1110
1111	audit_fd_pair(fdr, fdw);
1112	fd_install(fdr, fr);
1113	fd_install(fdw, fw);
1114	fd[0] = fdr;
1115	fd[1] = fdw;
1116
1117	return 0;
1118
1119 err_fdr:
1120	put_unused_fd(fdr);
1121 err_read_pipe:
1122	path_put(&fr->f_path);
1123	put_filp(fr);
1124 err_write_pipe:
1125	free_write_pipe(fw);
1126	return error;
1127}
1128
1129/*
1130 * sys_pipe() is the normal C calling standard for creating
1131 * a pipe. It's not the way Unix traditionally does this, though.
1132 */
1133SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1134{
1135	int fd[2];
1136	int error;
1137
1138	error = do_pipe_flags(fd, flags);
1139	if (!error) {
1140		if (copy_to_user(fildes, fd, sizeof(fd))) {
1141			sys_close(fd[0]);
1142			sys_close(fd[1]);
1143			error = -EFAULT;
1144		}
1145	}
1146	return error;
1147}
1148
1149SYSCALL_DEFINE1(pipe, int __user *, fildes)
1150{
1151	return sys_pipe2(fildes, 0);
1152}
1153
1154/*
1155 * Allocate a new array of pipe buffers and copy the info over. Returns the
1156 * pipe size if successful, or return -ERROR on error.
1157 */
1158static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1159{
1160	struct pipe_buffer *bufs;
1161
1162	/*
1163	 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1164	 * expect a lot of shrink+grow operations, just free and allocate
1165	 * again like we would do for growing. If the pipe currently
1166	 * contains more buffers than arg, then return busy.
1167	 */
1168	if (nr_pages < pipe->nrbufs)
1169		return -EBUSY;
1170
1171	bufs = kcalloc(nr_pages, sizeof(*bufs), GFP_KERNEL | __GFP_NOWARN);
1172	if (unlikely(!bufs))
1173		return -ENOMEM;
1174
1175	/*
1176	 * The pipe array wraps around, so just start the new one at zero
1177	 * and adjust the indexes.
1178	 */
1179	if (pipe->nrbufs) {
1180		unsigned int tail;
1181		unsigned int head;
1182
1183		tail = pipe->curbuf + pipe->nrbufs;
1184		if (tail < pipe->buffers)
1185			tail = 0;
1186		else
1187			tail &= (pipe->buffers - 1);
1188
1189		head = pipe->nrbufs - tail;
1190		if (head)
1191			memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1192		if (tail)
1193			memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1194	}
1195
1196	pipe->curbuf = 0;
1197	kfree(pipe->bufs);
1198	pipe->bufs = bufs;
1199	pipe->buffers = nr_pages;
1200	return nr_pages * PAGE_SIZE;
1201}
1202
1203/*
1204 * Currently we rely on the pipe array holding a power-of-2 number
1205 * of pages.
1206 */
1207static inline unsigned int round_pipe_size(unsigned int size)
1208{
1209	unsigned long nr_pages;
1210
1211	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1212	return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1213}
1214
1215/*
1216 * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1217 * will return an error.
1218 */
1219int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1220		 size_t *lenp, loff_t *ppos)
1221{
1222	int ret;
1223
1224	ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1225	if (ret < 0 || !write)
1226		return ret;
1227
1228	pipe_max_size = round_pipe_size(pipe_max_size);
1229	return ret;
1230}
1231
1232/*
1233 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1234 * location, so checking ->i_pipe is not enough to verify that this is a
1235 * pipe.
1236 */
1237struct pipe_inode_info *get_pipe_info(struct file *file)
1238{
1239	struct inode *i = file->f_path.dentry->d_inode;
1240
1241	return S_ISFIFO(i->i_mode) ? i->i_pipe : NULL;
1242}
1243
1244long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1245{
1246	struct pipe_inode_info *pipe;
1247	long ret;
1248
1249	pipe = get_pipe_info(file);
1250	if (!pipe)
1251		return -EBADF;
1252
1253	mutex_lock(&pipe->inode->i_mutex);
1254
1255	switch (cmd) {
1256	case F_SETPIPE_SZ: {
1257		unsigned int size, nr_pages;
1258
1259		size = round_pipe_size(arg);
1260		nr_pages = size >> PAGE_SHIFT;
1261
1262		ret = -EINVAL;
1263		if (!nr_pages)
1264			goto out;
1265
1266		if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1267			ret = -EPERM;
1268			goto out;
1269		}
1270		ret = pipe_set_size(pipe, nr_pages);
1271		break;
1272		}
1273	case F_GETPIPE_SZ:
1274		ret = pipe->buffers * PAGE_SIZE;
1275		break;
1276	default:
1277		ret = -EINVAL;
1278		break;
1279	}
1280
1281out:
1282	mutex_unlock(&pipe->inode->i_mutex);
1283	return ret;
1284}
1285
1286static const struct super_operations pipefs_ops = {
1287	.destroy_inode = free_inode_nonrcu,
1288	.statfs = simple_statfs,
1289};
1290
1291/*
1292 * pipefs should _never_ be mounted by userland - too much of security hassle,
1293 * no real gain from having the whole whorehouse mounted. So we don't need
1294 * any operations on the root directory. However, we need a non-trivial
1295 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1296 */
1297static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1298			 int flags, const char *dev_name, void *data)
1299{
1300	return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1301			&pipefs_dentry_operations, PIPEFS_MAGIC);
1302}
1303
1304static struct file_system_type pipe_fs_type = {
1305	.name		= "pipefs",
1306	.mount		= pipefs_mount,
1307	.kill_sb	= kill_anon_super,
1308};
1309
1310static int __init init_pipe_fs(void)
1311{
1312	int err = register_filesystem(&pipe_fs_type);
1313
1314	if (!err) {
1315		pipe_mnt = kern_mount(&pipe_fs_type);
1316		if (IS_ERR(pipe_mnt)) {
1317			err = PTR_ERR(pipe_mnt);
1318			unregister_filesystem(&pipe_fs_type);
1319		}
1320	}
1321	return err;
1322}
1323
1324fs_initcall(init_pipe_fs);
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/pipe.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/file.h>
  10#include <linux/poll.h>
  11#include <linux/slab.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/fs.h>
  15#include <linux/log2.h>
  16#include <linux/mount.h>
  17#include <linux/magic.h>
  18#include <linux/pipe_fs_i.h>
  19#include <linux/uio.h>
  20#include <linux/highmem.h>
  21#include <linux/pagemap.h>
  22#include <linux/audit.h>
  23#include <linux/syscalls.h>
  24#include <linux/fcntl.h>
  25#include <linux/memcontrol.h>
  26
  27#include <linux/uaccess.h>
  28#include <asm/ioctls.h>
  29
  30#include "internal.h"
  31
  32/*
  33 * The max size that a non-root user is allowed to grow the pipe. Can
  34 * be set by root in /proc/sys/fs/pipe-max-size
  35 */
  36unsigned int pipe_max_size = 1048576;
  37
  38/* Maximum allocatable pages per user. Hard limit is unset by default, soft
  39 * matches default values.
  40 */
  41unsigned long pipe_user_pages_hard;
  42unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
  43
  44/*
  45 * We use a start+len construction, which provides full use of the 
  46 * allocated memory.
  47 * -- Florian Coosmann (FGC)
  48 * 
  49 * Reads with count = 0 should always return 0.
  50 * -- Julian Bradfield 1999-06-07.
  51 *
  52 * FIFOs and Pipes now generate SIGIO for both readers and writers.
  53 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
  54 *
  55 * pipe_read & write cleanup
  56 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
  57 */
  58
  59static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
  60{
  61	if (pipe->files)
  62		mutex_lock_nested(&pipe->mutex, subclass);
  63}
  64
  65void pipe_lock(struct pipe_inode_info *pipe)
  66{
  67	/*
  68	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
  69	 */
  70	pipe_lock_nested(pipe, I_MUTEX_PARENT);
  71}
  72EXPORT_SYMBOL(pipe_lock);
  73
  74void pipe_unlock(struct pipe_inode_info *pipe)
  75{
  76	if (pipe->files)
  77		mutex_unlock(&pipe->mutex);
  78}
  79EXPORT_SYMBOL(pipe_unlock);
  80
  81static inline void __pipe_lock(struct pipe_inode_info *pipe)
  82{
  83	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
  84}
  85
  86static inline void __pipe_unlock(struct pipe_inode_info *pipe)
  87{
  88	mutex_unlock(&pipe->mutex);
  89}
  90
  91void pipe_double_lock(struct pipe_inode_info *pipe1,
  92		      struct pipe_inode_info *pipe2)
  93{
  94	BUG_ON(pipe1 == pipe2);
  95
  96	if (pipe1 < pipe2) {
  97		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
  98		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
  99	} else {
 100		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
 101		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
 102	}
 103}
 104
 105/* Drop the inode semaphore and wait for a pipe event, atomically */
 106void pipe_wait(struct pipe_inode_info *pipe)
 107{
 108	DEFINE_WAIT(wait);
 109
 110	/*
 111	 * Pipes are system-local resources, so sleeping on them
 112	 * is considered a noninteractive wait:
 113	 */
 114	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
 115	pipe_unlock(pipe);
 116	schedule();
 117	finish_wait(&pipe->wait, &wait);
 118	pipe_lock(pipe);
 119}
 120
 121static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
 122				  struct pipe_buffer *buf)
 123{
 124	struct page *page = buf->page;
 125
 126	/*
 127	 * If nobody else uses this page, and we don't already have a
 128	 * temporary page, let's keep track of it as a one-deep
 129	 * allocation cache. (Otherwise just release our reference to it)
 130	 */
 131	if (page_count(page) == 1 && !pipe->tmp_page)
 132		pipe->tmp_page = page;
 133	else
 134		put_page(page);
 135}
 136
 137static int anon_pipe_buf_steal(struct pipe_inode_info *pipe,
 138			       struct pipe_buffer *buf)
 139{
 140	struct page *page = buf->page;
 141
 142	if (page_count(page) == 1) {
 143		if (memcg_kmem_enabled())
 144			memcg_kmem_uncharge(page, 0);
 145		__SetPageLocked(page);
 146		return 0;
 147	}
 148	return 1;
 149}
 150
 151/**
 152 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
 153 * @pipe:	the pipe that the buffer belongs to
 154 * @buf:	the buffer to attempt to steal
 155 *
 156 * Description:
 157 *	This function attempts to steal the &struct page attached to
 158 *	@buf. If successful, this function returns 0 and returns with
 159 *	the page locked. The caller may then reuse the page for whatever
 160 *	he wishes; the typical use is insertion into a different file
 161 *	page cache.
 162 */
 163int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
 164			   struct pipe_buffer *buf)
 165{
 166	struct page *page = buf->page;
 167
 168	/*
 169	 * A reference of one is golden, that means that the owner of this
 170	 * page is the only one holding a reference to it. lock the page
 171	 * and return OK.
 172	 */
 173	if (page_count(page) == 1) {
 174		lock_page(page);
 175		return 0;
 176	}
 177
 178	return 1;
 179}
 180EXPORT_SYMBOL(generic_pipe_buf_steal);
 181
 182/**
 183 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
 184 * @pipe:	the pipe that the buffer belongs to
 185 * @buf:	the buffer to get a reference to
 186 *
 187 * Description:
 188 *	This function grabs an extra reference to @buf. It's used in
 189 *	in the tee() system call, when we duplicate the buffers in one
 190 *	pipe into another.
 191 */
 192void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
 193{
 194	get_page(buf->page);
 195}
 196EXPORT_SYMBOL(generic_pipe_buf_get);
 197
 198/**
 199 * generic_pipe_buf_confirm - verify contents of the pipe buffer
 200 * @info:	the pipe that the buffer belongs to
 201 * @buf:	the buffer to confirm
 202 *
 203 * Description:
 204 *	This function does nothing, because the generic pipe code uses
 205 *	pages that are always good when inserted into the pipe.
 206 */
 207int generic_pipe_buf_confirm(struct pipe_inode_info *info,
 208			     struct pipe_buffer *buf)
 209{
 210	return 0;
 211}
 212EXPORT_SYMBOL(generic_pipe_buf_confirm);
 213
 214/**
 215 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
 216 * @pipe:	the pipe that the buffer belongs to
 217 * @buf:	the buffer to put a reference to
 218 *
 219 * Description:
 220 *	This function releases a reference to @buf.
 221 */
 222void generic_pipe_buf_release(struct pipe_inode_info *pipe,
 223			      struct pipe_buffer *buf)
 224{
 225	put_page(buf->page);
 226}
 227EXPORT_SYMBOL(generic_pipe_buf_release);
 228
 229static const struct pipe_buf_operations anon_pipe_buf_ops = {
 230	.can_merge = 1,
 231	.confirm = generic_pipe_buf_confirm,
 232	.release = anon_pipe_buf_release,
 233	.steal = anon_pipe_buf_steal,
 234	.get = generic_pipe_buf_get,
 235};
 236
 237static const struct pipe_buf_operations packet_pipe_buf_ops = {
 238	.can_merge = 0,
 239	.confirm = generic_pipe_buf_confirm,
 240	.release = anon_pipe_buf_release,
 241	.steal = anon_pipe_buf_steal,
 242	.get = generic_pipe_buf_get,
 243};
 244
 245static ssize_t
 246pipe_read(struct kiocb *iocb, struct iov_iter *to)
 247{
 248	size_t total_len = iov_iter_count(to);
 249	struct file *filp = iocb->ki_filp;
 250	struct pipe_inode_info *pipe = filp->private_data;
 251	int do_wakeup;
 252	ssize_t ret;
 253
 254	/* Null read succeeds. */
 255	if (unlikely(total_len == 0))
 256		return 0;
 257
 258	do_wakeup = 0;
 259	ret = 0;
 260	__pipe_lock(pipe);
 261	for (;;) {
 262		int bufs = pipe->nrbufs;
 263		if (bufs) {
 264			int curbuf = pipe->curbuf;
 265			struct pipe_buffer *buf = pipe->bufs + curbuf;
 266			size_t chars = buf->len;
 267			size_t written;
 268			int error;
 269
 270			if (chars > total_len)
 271				chars = total_len;
 272
 273			error = pipe_buf_confirm(pipe, buf);
 274			if (error) {
 275				if (!ret)
 276					ret = error;
 277				break;
 278			}
 279
 280			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
 281			if (unlikely(written < chars)) {
 282				if (!ret)
 283					ret = -EFAULT;
 284				break;
 285			}
 286			ret += chars;
 287			buf->offset += chars;
 288			buf->len -= chars;
 289
 290			/* Was it a packet buffer? Clean up and exit */
 291			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
 292				total_len = chars;
 293				buf->len = 0;
 294			}
 295
 296			if (!buf->len) {
 297				pipe_buf_release(pipe, buf);
 298				curbuf = (curbuf + 1) & (pipe->buffers - 1);
 299				pipe->curbuf = curbuf;
 300				pipe->nrbufs = --bufs;
 301				do_wakeup = 1;
 302			}
 303			total_len -= chars;
 304			if (!total_len)
 305				break;	/* common path: read succeeded */
 306		}
 307		if (bufs)	/* More to do? */
 308			continue;
 309		if (!pipe->writers)
 310			break;
 311		if (!pipe->waiting_writers) {
 312			/* syscall merging: Usually we must not sleep
 313			 * if O_NONBLOCK is set, or if we got some data.
 314			 * But if a writer sleeps in kernel space, then
 315			 * we can wait for that data without violating POSIX.
 316			 */
 317			if (ret)
 318				break;
 319			if (filp->f_flags & O_NONBLOCK) {
 320				ret = -EAGAIN;
 321				break;
 322			}
 323		}
 324		if (signal_pending(current)) {
 325			if (!ret)
 326				ret = -ERESTARTSYS;
 327			break;
 328		}
 329		if (do_wakeup) {
 330			wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
 331 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 332		}
 333		pipe_wait(pipe);
 334	}
 335	__pipe_unlock(pipe);
 336
 337	/* Signal writers asynchronously that there is more room. */
 338	if (do_wakeup) {
 339		wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
 340		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 341	}
 342	if (ret > 0)
 343		file_accessed(filp);
 344	return ret;
 345}
 346
 347static inline int is_packetized(struct file *file)
 348{
 349	return (file->f_flags & O_DIRECT) != 0;
 350}
 351
 352static ssize_t
 353pipe_write(struct kiocb *iocb, struct iov_iter *from)
 354{
 355	struct file *filp = iocb->ki_filp;
 356	struct pipe_inode_info *pipe = filp->private_data;
 357	ssize_t ret = 0;
 358	int do_wakeup = 0;
 359	size_t total_len = iov_iter_count(from);
 360	ssize_t chars;
 361
 362	/* Null write succeeds. */
 363	if (unlikely(total_len == 0))
 364		return 0;
 365
 366	__pipe_lock(pipe);
 367
 368	if (!pipe->readers) {
 369		send_sig(SIGPIPE, current, 0);
 370		ret = -EPIPE;
 371		goto out;
 372	}
 373
 374	/* We try to merge small writes */
 375	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
 376	if (pipe->nrbufs && chars != 0) {
 377		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
 378							(pipe->buffers - 1);
 379		struct pipe_buffer *buf = pipe->bufs + lastbuf;
 380		int offset = buf->offset + buf->len;
 381
 382		if (buf->ops->can_merge && offset + chars <= PAGE_SIZE) {
 383			ret = pipe_buf_confirm(pipe, buf);
 384			if (ret)
 385				goto out;
 386
 387			ret = copy_page_from_iter(buf->page, offset, chars, from);
 388			if (unlikely(ret < chars)) {
 389				ret = -EFAULT;
 390				goto out;
 391			}
 392			do_wakeup = 1;
 393			buf->len += ret;
 394			if (!iov_iter_count(from))
 395				goto out;
 396		}
 397	}
 398
 399	for (;;) {
 400		int bufs;
 401
 402		if (!pipe->readers) {
 403			send_sig(SIGPIPE, current, 0);
 404			if (!ret)
 405				ret = -EPIPE;
 406			break;
 407		}
 408		bufs = pipe->nrbufs;
 409		if (bufs < pipe->buffers) {
 410			int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
 411			struct pipe_buffer *buf = pipe->bufs + newbuf;
 412			struct page *page = pipe->tmp_page;
 413			int copied;
 414
 415			if (!page) {
 416				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
 417				if (unlikely(!page)) {
 418					ret = ret ? : -ENOMEM;
 419					break;
 420				}
 421				pipe->tmp_page = page;
 422			}
 423			/* Always wake up, even if the copy fails. Otherwise
 424			 * we lock up (O_NONBLOCK-)readers that sleep due to
 425			 * syscall merging.
 426			 * FIXME! Is this really true?
 427			 */
 428			do_wakeup = 1;
 429			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
 430			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
 431				if (!ret)
 432					ret = -EFAULT;
 433				break;
 434			}
 435			ret += copied;
 436
 437			/* Insert it into the buffer array */
 438			buf->page = page;
 439			buf->ops = &anon_pipe_buf_ops;
 440			buf->offset = 0;
 441			buf->len = copied;
 442			buf->flags = 0;
 443			if (is_packetized(filp)) {
 444				buf->ops = &packet_pipe_buf_ops;
 445				buf->flags = PIPE_BUF_FLAG_PACKET;
 446			}
 447			pipe->nrbufs = ++bufs;
 448			pipe->tmp_page = NULL;
 449
 450			if (!iov_iter_count(from))
 451				break;
 452		}
 453		if (bufs < pipe->buffers)
 454			continue;
 455		if (filp->f_flags & O_NONBLOCK) {
 456			if (!ret)
 457				ret = -EAGAIN;
 458			break;
 459		}
 460		if (signal_pending(current)) {
 461			if (!ret)
 462				ret = -ERESTARTSYS;
 463			break;
 464		}
 465		if (do_wakeup) {
 466			wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
 467			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 468			do_wakeup = 0;
 469		}
 470		pipe->waiting_writers++;
 471		pipe_wait(pipe);
 472		pipe->waiting_writers--;
 473	}
 474out:
 475	__pipe_unlock(pipe);
 476	if (do_wakeup) {
 477		wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
 478		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 479	}
 480	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
 481		int err = file_update_time(filp);
 482		if (err)
 483			ret = err;
 484		sb_end_write(file_inode(filp)->i_sb);
 485	}
 486	return ret;
 487}
 488
 489static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 490{
 491	struct pipe_inode_info *pipe = filp->private_data;
 492	int count, buf, nrbufs;
 493
 494	switch (cmd) {
 495		case FIONREAD:
 496			__pipe_lock(pipe);
 497			count = 0;
 498			buf = pipe->curbuf;
 499			nrbufs = pipe->nrbufs;
 500			while (--nrbufs >= 0) {
 501				count += pipe->bufs[buf].len;
 502				buf = (buf+1) & (pipe->buffers - 1);
 503			}
 504			__pipe_unlock(pipe);
 505
 506			return put_user(count, (int __user *)arg);
 507		default:
 508			return -ENOIOCTLCMD;
 509	}
 510}
 511
 512/* No kernel lock held - fine */
 513static __poll_t
 514pipe_poll(struct file *filp, poll_table *wait)
 515{
 516	__poll_t mask;
 517	struct pipe_inode_info *pipe = filp->private_data;
 518	int nrbufs;
 519
 520	poll_wait(filp, &pipe->wait, wait);
 521
 522	/* Reading only -- no need for acquiring the semaphore.  */
 523	nrbufs = pipe->nrbufs;
 524	mask = 0;
 525	if (filp->f_mode & FMODE_READ) {
 526		mask = (nrbufs > 0) ? EPOLLIN | EPOLLRDNORM : 0;
 527		if (!pipe->writers && filp->f_version != pipe->w_counter)
 528			mask |= EPOLLHUP;
 529	}
 530
 531	if (filp->f_mode & FMODE_WRITE) {
 532		mask |= (nrbufs < pipe->buffers) ? EPOLLOUT | EPOLLWRNORM : 0;
 533		/*
 534		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
 535		 * behave exactly like pipes for poll().
 536		 */
 537		if (!pipe->readers)
 538			mask |= EPOLLERR;
 539	}
 540
 541	return mask;
 542}
 543
 544static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
 545{
 546	int kill = 0;
 547
 548	spin_lock(&inode->i_lock);
 549	if (!--pipe->files) {
 550		inode->i_pipe = NULL;
 551		kill = 1;
 552	}
 553	spin_unlock(&inode->i_lock);
 554
 555	if (kill)
 556		free_pipe_info(pipe);
 557}
 558
 559static int
 560pipe_release(struct inode *inode, struct file *file)
 561{
 562	struct pipe_inode_info *pipe = file->private_data;
 563
 564	__pipe_lock(pipe);
 565	if (file->f_mode & FMODE_READ)
 566		pipe->readers--;
 567	if (file->f_mode & FMODE_WRITE)
 568		pipe->writers--;
 569
 570	if (pipe->readers || pipe->writers) {
 571		wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM | EPOLLERR | EPOLLHUP);
 572		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 573		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 574	}
 575	__pipe_unlock(pipe);
 576
 577	put_pipe_info(inode, pipe);
 578	return 0;
 579}
 580
 581static int
 582pipe_fasync(int fd, struct file *filp, int on)
 583{
 584	struct pipe_inode_info *pipe = filp->private_data;
 585	int retval = 0;
 586
 587	__pipe_lock(pipe);
 588	if (filp->f_mode & FMODE_READ)
 589		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
 590	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
 591		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
 592		if (retval < 0 && (filp->f_mode & FMODE_READ))
 593			/* this can happen only if on == T */
 594			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
 595	}
 596	__pipe_unlock(pipe);
 597	return retval;
 598}
 599
 600static unsigned long account_pipe_buffers(struct user_struct *user,
 601                                 unsigned long old, unsigned long new)
 602{
 603	return atomic_long_add_return(new - old, &user->pipe_bufs);
 604}
 605
 606static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
 607{
 608	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
 609
 610	return soft_limit && user_bufs > soft_limit;
 611}
 612
 613static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
 614{
 615	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
 616
 617	return hard_limit && user_bufs > hard_limit;
 618}
 619
 620static bool is_unprivileged_user(void)
 621{
 622	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
 623}
 624
 625struct pipe_inode_info *alloc_pipe_info(void)
 626{
 627	struct pipe_inode_info *pipe;
 628	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
 629	struct user_struct *user = get_current_user();
 630	unsigned long user_bufs;
 631	unsigned int max_size = READ_ONCE(pipe_max_size);
 632
 633	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
 634	if (pipe == NULL)
 635		goto out_free_uid;
 636
 637	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
 638		pipe_bufs = max_size >> PAGE_SHIFT;
 639
 640	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
 641
 642	if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) {
 643		user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
 644		pipe_bufs = 1;
 645	}
 646
 647	if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user())
 648		goto out_revert_acct;
 649
 650	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
 651			     GFP_KERNEL_ACCOUNT);
 652
 653	if (pipe->bufs) {
 654		init_waitqueue_head(&pipe->wait);
 655		pipe->r_counter = pipe->w_counter = 1;
 656		pipe->buffers = pipe_bufs;
 657		pipe->user = user;
 658		mutex_init(&pipe->mutex);
 659		return pipe;
 660	}
 661
 662out_revert_acct:
 663	(void) account_pipe_buffers(user, pipe_bufs, 0);
 664	kfree(pipe);
 665out_free_uid:
 666	free_uid(user);
 667	return NULL;
 668}
 669
 670void free_pipe_info(struct pipe_inode_info *pipe)
 671{
 672	int i;
 673
 674	(void) account_pipe_buffers(pipe->user, pipe->buffers, 0);
 675	free_uid(pipe->user);
 676	for (i = 0; i < pipe->buffers; i++) {
 677		struct pipe_buffer *buf = pipe->bufs + i;
 678		if (buf->ops)
 679			pipe_buf_release(pipe, buf);
 680	}
 681	if (pipe->tmp_page)
 682		__free_page(pipe->tmp_page);
 683	kfree(pipe->bufs);
 684	kfree(pipe);
 685}
 686
 687static struct vfsmount *pipe_mnt __read_mostly;
 688
 689/*
 690 * pipefs_dname() is called from d_path().
 691 */
 692static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
 693{
 694	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
 695				d_inode(dentry)->i_ino);
 696}
 697
 698static const struct dentry_operations pipefs_dentry_operations = {
 699	.d_dname	= pipefs_dname,
 700};
 701
 702static struct inode * get_pipe_inode(void)
 703{
 704	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
 705	struct pipe_inode_info *pipe;
 706
 707	if (!inode)
 708		goto fail_inode;
 709
 710	inode->i_ino = get_next_ino();
 711
 712	pipe = alloc_pipe_info();
 713	if (!pipe)
 714		goto fail_iput;
 715
 716	inode->i_pipe = pipe;
 717	pipe->files = 2;
 718	pipe->readers = pipe->writers = 1;
 719	inode->i_fop = &pipefifo_fops;
 720
 721	/*
 722	 * Mark the inode dirty from the very beginning,
 723	 * that way it will never be moved to the dirty
 724	 * list because "mark_inode_dirty()" will think
 725	 * that it already _is_ on the dirty list.
 726	 */
 727	inode->i_state = I_DIRTY;
 728	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
 729	inode->i_uid = current_fsuid();
 730	inode->i_gid = current_fsgid();
 731	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 732
 733	return inode;
 734
 735fail_iput:
 736	iput(inode);
 737
 738fail_inode:
 739	return NULL;
 740}
 741
 742int create_pipe_files(struct file **res, int flags)
 743{
 744	int err;
 745	struct inode *inode = get_pipe_inode();
 746	struct file *f;
 747	struct path path;
 748
 749	if (!inode)
 750		return -ENFILE;
 751
 752	err = -ENOMEM;
 753	path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &empty_name);
 754	if (!path.dentry)
 755		goto err_inode;
 756	path.mnt = mntget(pipe_mnt);
 757
 758	d_instantiate(path.dentry, inode);
 759
 760	f = alloc_file(&path, FMODE_WRITE, &pipefifo_fops);
 761	if (IS_ERR(f)) {
 762		err = PTR_ERR(f);
 763		goto err_dentry;
 764	}
 765
 766	f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT));
 767	f->private_data = inode->i_pipe;
 768
 769	res[0] = alloc_file(&path, FMODE_READ, &pipefifo_fops);
 770	if (IS_ERR(res[0])) {
 771		err = PTR_ERR(res[0]);
 772		goto err_file;
 773	}
 774
 775	path_get(&path);
 776	res[0]->private_data = inode->i_pipe;
 777	res[0]->f_flags = O_RDONLY | (flags & O_NONBLOCK);
 778	res[1] = f;
 779	return 0;
 780
 781err_file:
 782	put_filp(f);
 783err_dentry:
 784	free_pipe_info(inode->i_pipe);
 785	path_put(&path);
 786	return err;
 787
 788err_inode:
 789	free_pipe_info(inode->i_pipe);
 790	iput(inode);
 791	return err;
 792}
 793
 794static int __do_pipe_flags(int *fd, struct file **files, int flags)
 795{
 796	int error;
 797	int fdw, fdr;
 798
 799	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
 800		return -EINVAL;
 801
 802	error = create_pipe_files(files, flags);
 803	if (error)
 804		return error;
 805
 806	error = get_unused_fd_flags(flags);
 807	if (error < 0)
 808		goto err_read_pipe;
 809	fdr = error;
 810
 811	error = get_unused_fd_flags(flags);
 812	if (error < 0)
 813		goto err_fdr;
 814	fdw = error;
 815
 816	audit_fd_pair(fdr, fdw);
 817	fd[0] = fdr;
 818	fd[1] = fdw;
 819	return 0;
 820
 821 err_fdr:
 822	put_unused_fd(fdr);
 823 err_read_pipe:
 824	fput(files[0]);
 825	fput(files[1]);
 826	return error;
 827}
 828
 829int do_pipe_flags(int *fd, int flags)
 830{
 831	struct file *files[2];
 832	int error = __do_pipe_flags(fd, files, flags);
 833	if (!error) {
 834		fd_install(fd[0], files[0]);
 835		fd_install(fd[1], files[1]);
 836	}
 837	return error;
 838}
 839
 840/*
 841 * sys_pipe() is the normal C calling standard for creating
 842 * a pipe. It's not the way Unix traditionally does this, though.
 843 */
 844static int do_pipe2(int __user *fildes, int flags)
 845{
 846	struct file *files[2];
 847	int fd[2];
 848	int error;
 849
 850	error = __do_pipe_flags(fd, files, flags);
 851	if (!error) {
 852		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
 853			fput(files[0]);
 854			fput(files[1]);
 855			put_unused_fd(fd[0]);
 856			put_unused_fd(fd[1]);
 857			error = -EFAULT;
 858		} else {
 859			fd_install(fd[0], files[0]);
 860			fd_install(fd[1], files[1]);
 861		}
 862	}
 863	return error;
 864}
 865
 866SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
 867{
 868	return do_pipe2(fildes, flags);
 869}
 870
 871SYSCALL_DEFINE1(pipe, int __user *, fildes)
 872{
 873	return do_pipe2(fildes, 0);
 874}
 875
 876static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
 877{
 878	int cur = *cnt;	
 879
 880	while (cur == *cnt) {
 881		pipe_wait(pipe);
 882		if (signal_pending(current))
 883			break;
 884	}
 885	return cur == *cnt ? -ERESTARTSYS : 0;
 886}
 887
 888static void wake_up_partner(struct pipe_inode_info *pipe)
 889{
 890	wake_up_interruptible(&pipe->wait);
 891}
 892
 893static int fifo_open(struct inode *inode, struct file *filp)
 894{
 895	struct pipe_inode_info *pipe;
 896	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
 897	int ret;
 898
 899	filp->f_version = 0;
 900
 901	spin_lock(&inode->i_lock);
 902	if (inode->i_pipe) {
 903		pipe = inode->i_pipe;
 904		pipe->files++;
 905		spin_unlock(&inode->i_lock);
 906	} else {
 907		spin_unlock(&inode->i_lock);
 908		pipe = alloc_pipe_info();
 909		if (!pipe)
 910			return -ENOMEM;
 911		pipe->files = 1;
 912		spin_lock(&inode->i_lock);
 913		if (unlikely(inode->i_pipe)) {
 914			inode->i_pipe->files++;
 915			spin_unlock(&inode->i_lock);
 916			free_pipe_info(pipe);
 917			pipe = inode->i_pipe;
 918		} else {
 919			inode->i_pipe = pipe;
 920			spin_unlock(&inode->i_lock);
 921		}
 922	}
 923	filp->private_data = pipe;
 924	/* OK, we have a pipe and it's pinned down */
 925
 926	__pipe_lock(pipe);
 927
 928	/* We can only do regular read/write on fifos */
 929	filp->f_mode &= (FMODE_READ | FMODE_WRITE);
 930
 931	switch (filp->f_mode) {
 932	case FMODE_READ:
 933	/*
 934	 *  O_RDONLY
 935	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
 936	 *  opened, even when there is no process writing the FIFO.
 937	 */
 938		pipe->r_counter++;
 939		if (pipe->readers++ == 0)
 940			wake_up_partner(pipe);
 941
 942		if (!is_pipe && !pipe->writers) {
 943			if ((filp->f_flags & O_NONBLOCK)) {
 944				/* suppress EPOLLHUP until we have
 945				 * seen a writer */
 946				filp->f_version = pipe->w_counter;
 947			} else {
 948				if (wait_for_partner(pipe, &pipe->w_counter))
 949					goto err_rd;
 950			}
 951		}
 952		break;
 953	
 954	case FMODE_WRITE:
 955	/*
 956	 *  O_WRONLY
 957	 *  POSIX.1 says that O_NONBLOCK means return -1 with
 958	 *  errno=ENXIO when there is no process reading the FIFO.
 959	 */
 960		ret = -ENXIO;
 961		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
 962			goto err;
 963
 964		pipe->w_counter++;
 965		if (!pipe->writers++)
 966			wake_up_partner(pipe);
 967
 968		if (!is_pipe && !pipe->readers) {
 969			if (wait_for_partner(pipe, &pipe->r_counter))
 970				goto err_wr;
 971		}
 972		break;
 973	
 974	case FMODE_READ | FMODE_WRITE:
 975	/*
 976	 *  O_RDWR
 977	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
 978	 *  This implementation will NEVER block on a O_RDWR open, since
 979	 *  the process can at least talk to itself.
 980	 */
 981
 982		pipe->readers++;
 983		pipe->writers++;
 984		pipe->r_counter++;
 985		pipe->w_counter++;
 986		if (pipe->readers == 1 || pipe->writers == 1)
 987			wake_up_partner(pipe);
 988		break;
 989
 990	default:
 991		ret = -EINVAL;
 992		goto err;
 993	}
 994
 995	/* Ok! */
 996	__pipe_unlock(pipe);
 997	return 0;
 998
 999err_rd:
1000	if (!--pipe->readers)
1001		wake_up_interruptible(&pipe->wait);
1002	ret = -ERESTARTSYS;
1003	goto err;
1004
1005err_wr:
1006	if (!--pipe->writers)
1007		wake_up_interruptible(&pipe->wait);
1008	ret = -ERESTARTSYS;
1009	goto err;
1010
1011err:
1012	__pipe_unlock(pipe);
1013
1014	put_pipe_info(inode, pipe);
1015	return ret;
1016}
1017
1018const struct file_operations pipefifo_fops = {
1019	.open		= fifo_open,
1020	.llseek		= no_llseek,
1021	.read_iter	= pipe_read,
1022	.write_iter	= pipe_write,
1023	.poll		= pipe_poll,
1024	.unlocked_ioctl	= pipe_ioctl,
1025	.release	= pipe_release,
1026	.fasync		= pipe_fasync,
1027};
1028
1029/*
1030 * Currently we rely on the pipe array holding a power-of-2 number
1031 * of pages. Returns 0 on error.
1032 */
1033unsigned int round_pipe_size(unsigned long size)
1034{
1035	if (size > (1U << 31))
1036		return 0;
1037
1038	/* Minimum pipe size, as required by POSIX */
1039	if (size < PAGE_SIZE)
1040		return PAGE_SIZE;
1041
1042	return roundup_pow_of_two(size);
1043}
1044
1045/*
1046 * Allocate a new array of pipe buffers and copy the info over. Returns the
1047 * pipe size if successful, or return -ERROR on error.
1048 */
1049static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1050{
1051	struct pipe_buffer *bufs;
1052	unsigned int size, nr_pages;
1053	unsigned long user_bufs;
1054	long ret = 0;
1055
1056	size = round_pipe_size(arg);
1057	nr_pages = size >> PAGE_SHIFT;
1058
1059	if (!nr_pages)
1060		return -EINVAL;
1061
1062	/*
1063	 * If trying to increase the pipe capacity, check that an
1064	 * unprivileged user is not trying to exceed various limits
1065	 * (soft limit check here, hard limit check just below).
1066	 * Decreasing the pipe capacity is always permitted, even
1067	 * if the user is currently over a limit.
1068	 */
1069	if (nr_pages > pipe->buffers &&
1070			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1071		return -EPERM;
1072
1073	user_bufs = account_pipe_buffers(pipe->user, pipe->buffers, nr_pages);
1074
1075	if (nr_pages > pipe->buffers &&
1076			(too_many_pipe_buffers_hard(user_bufs) ||
1077			 too_many_pipe_buffers_soft(user_bufs)) &&
1078			is_unprivileged_user()) {
1079		ret = -EPERM;
1080		goto out_revert_acct;
1081	}
1082
1083	/*
1084	 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1085	 * expect a lot of shrink+grow operations, just free and allocate
1086	 * again like we would do for growing. If the pipe currently
1087	 * contains more buffers than arg, then return busy.
1088	 */
1089	if (nr_pages < pipe->nrbufs) {
1090		ret = -EBUSY;
1091		goto out_revert_acct;
1092	}
1093
1094	bufs = kcalloc(nr_pages, sizeof(*bufs),
1095		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1096	if (unlikely(!bufs)) {
1097		ret = -ENOMEM;
1098		goto out_revert_acct;
1099	}
1100
1101	/*
1102	 * The pipe array wraps around, so just start the new one at zero
1103	 * and adjust the indexes.
1104	 */
1105	if (pipe->nrbufs) {
1106		unsigned int tail;
1107		unsigned int head;
1108
1109		tail = pipe->curbuf + pipe->nrbufs;
1110		if (tail < pipe->buffers)
1111			tail = 0;
1112		else
1113			tail &= (pipe->buffers - 1);
1114
1115		head = pipe->nrbufs - tail;
1116		if (head)
1117			memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1118		if (tail)
1119			memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1120	}
1121
1122	pipe->curbuf = 0;
1123	kfree(pipe->bufs);
1124	pipe->bufs = bufs;
1125	pipe->buffers = nr_pages;
1126	return nr_pages * PAGE_SIZE;
1127
1128out_revert_acct:
1129	(void) account_pipe_buffers(pipe->user, nr_pages, pipe->buffers);
1130	return ret;
1131}
1132
1133/*
1134 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1135 * location, so checking ->i_pipe is not enough to verify that this is a
1136 * pipe.
1137 */
1138struct pipe_inode_info *get_pipe_info(struct file *file)
1139{
1140	return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1141}
1142
1143long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1144{
1145	struct pipe_inode_info *pipe;
1146	long ret;
1147
1148	pipe = get_pipe_info(file);
1149	if (!pipe)
1150		return -EBADF;
1151
1152	__pipe_lock(pipe);
1153
1154	switch (cmd) {
1155	case F_SETPIPE_SZ:
1156		ret = pipe_set_size(pipe, arg);
1157		break;
1158	case F_GETPIPE_SZ:
1159		ret = pipe->buffers * PAGE_SIZE;
1160		break;
1161	default:
1162		ret = -EINVAL;
1163		break;
1164	}
1165
1166	__pipe_unlock(pipe);
1167	return ret;
1168}
1169
1170static const struct super_operations pipefs_ops = {
1171	.destroy_inode = free_inode_nonrcu,
1172	.statfs = simple_statfs,
1173};
1174
1175/*
1176 * pipefs should _never_ be mounted by userland - too much of security hassle,
1177 * no real gain from having the whole whorehouse mounted. So we don't need
1178 * any operations on the root directory. However, we need a non-trivial
1179 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1180 */
1181static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1182			 int flags, const char *dev_name, void *data)
1183{
1184	return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1185			&pipefs_dentry_operations, PIPEFS_MAGIC);
1186}
1187
1188static struct file_system_type pipe_fs_type = {
1189	.name		= "pipefs",
1190	.mount		= pipefs_mount,
1191	.kill_sb	= kill_anon_super,
1192};
1193
1194static int __init init_pipe_fs(void)
1195{
1196	int err = register_filesystem(&pipe_fs_type);
1197
1198	if (!err) {
1199		pipe_mnt = kern_mount(&pipe_fs_type);
1200		if (IS_ERR(pipe_mnt)) {
1201			err = PTR_ERR(pipe_mnt);
1202			unregister_filesystem(&pipe_fs_type);
1203		}
1204	}
1205	return err;
1206}
1207
1208fs_initcall(init_pipe_fs);