Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * SPI bus driver for CSR SiRFprimaII
  3 *
  4 * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
  5 *
  6 * Licensed under GPLv2 or later.
  7 */
  8
  9#include <linux/module.h>
 10#include <linux/kernel.h>
 11#include <linux/slab.h>
 12#include <linux/clk.h>
 
 13#include <linux/interrupt.h>
 14#include <linux/io.h>
 15#include <linux/of.h>
 16#include <linux/bitops.h>
 17#include <linux/err.h>
 18#include <linux/platform_device.h>
 19#include <linux/of_gpio.h>
 20#include <linux/spi/spi.h>
 21#include <linux/spi/spi_bitbang.h>
 22#include <linux/pinctrl/consumer.h>
 
 
 
 23
 24#define DRIVER_NAME "sirfsoc_spi"
 25
 26#define SIRFSOC_SPI_CTRL		0x0000
 27#define SIRFSOC_SPI_CMD			0x0004
 28#define SIRFSOC_SPI_TX_RX_EN		0x0008
 29#define SIRFSOC_SPI_INT_EN		0x000C
 30#define SIRFSOC_SPI_INT_STATUS		0x0010
 31#define SIRFSOC_SPI_TX_DMA_IO_CTRL	0x0100
 32#define SIRFSOC_SPI_TX_DMA_IO_LEN	0x0104
 33#define SIRFSOC_SPI_TXFIFO_CTRL		0x0108
 34#define SIRFSOC_SPI_TXFIFO_LEVEL_CHK	0x010C
 35#define SIRFSOC_SPI_TXFIFO_OP		0x0110
 36#define SIRFSOC_SPI_TXFIFO_STATUS	0x0114
 37#define SIRFSOC_SPI_TXFIFO_DATA		0x0118
 38#define SIRFSOC_SPI_RX_DMA_IO_CTRL	0x0120
 39#define SIRFSOC_SPI_RX_DMA_IO_LEN	0x0124
 40#define SIRFSOC_SPI_RXFIFO_CTRL		0x0128
 41#define SIRFSOC_SPI_RXFIFO_LEVEL_CHK	0x012C
 42#define SIRFSOC_SPI_RXFIFO_OP		0x0130
 43#define SIRFSOC_SPI_RXFIFO_STATUS	0x0134
 44#define SIRFSOC_SPI_RXFIFO_DATA		0x0138
 45#define SIRFSOC_SPI_DUMMY_DELAY_CTL	0x0144
 46
 47/* SPI CTRL register defines */
 48#define SIRFSOC_SPI_SLV_MODE		BIT(16)
 49#define SIRFSOC_SPI_CMD_MODE		BIT(17)
 50#define SIRFSOC_SPI_CS_IO_OUT		BIT(18)
 51#define SIRFSOC_SPI_CS_IO_MODE		BIT(19)
 52#define SIRFSOC_SPI_CLK_IDLE_STAT	BIT(20)
 53#define SIRFSOC_SPI_CS_IDLE_STAT	BIT(21)
 54#define SIRFSOC_SPI_TRAN_MSB		BIT(22)
 55#define SIRFSOC_SPI_DRV_POS_EDGE	BIT(23)
 56#define SIRFSOC_SPI_CS_HOLD_TIME	BIT(24)
 57#define SIRFSOC_SPI_CLK_SAMPLE_MODE	BIT(25)
 58#define SIRFSOC_SPI_TRAN_DAT_FORMAT_8	(0 << 26)
 59#define SIRFSOC_SPI_TRAN_DAT_FORMAT_12	(1 << 26)
 60#define SIRFSOC_SPI_TRAN_DAT_FORMAT_16	(2 << 26)
 61#define SIRFSOC_SPI_TRAN_DAT_FORMAT_32	(3 << 26)
 62#define SIRFSOC_SPI_CMD_BYTE_NUM(x)		((x & 3) << 28)
 63#define SIRFSOC_SPI_ENA_AUTO_CLR		BIT(30)
 64#define SIRFSOC_SPI_MUL_DAT_MODE		BIT(31)
 65
 66/* Interrupt Enable */
 67#define SIRFSOC_SPI_RX_DONE_INT_EN		BIT(0)
 68#define SIRFSOC_SPI_TX_DONE_INT_EN		BIT(1)
 69#define SIRFSOC_SPI_RX_OFLOW_INT_EN		BIT(2)
 70#define SIRFSOC_SPI_TX_UFLOW_INT_EN		BIT(3)
 71#define SIRFSOC_SPI_RX_IO_DMA_INT_EN	BIT(4)
 72#define SIRFSOC_SPI_TX_IO_DMA_INT_EN	BIT(5)
 73#define SIRFSOC_SPI_RXFIFO_FULL_INT_EN	BIT(6)
 74#define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN	BIT(7)
 75#define SIRFSOC_SPI_RXFIFO_THD_INT_EN	BIT(8)
 76#define SIRFSOC_SPI_TXFIFO_THD_INT_EN	BIT(9)
 77#define SIRFSOC_SPI_FRM_END_INT_EN	BIT(10)
 78
 79#define SIRFSOC_SPI_INT_MASK_ALL		0x1FFF
 80
 81/* Interrupt status */
 82#define SIRFSOC_SPI_RX_DONE		BIT(0)
 83#define SIRFSOC_SPI_TX_DONE		BIT(1)
 84#define SIRFSOC_SPI_RX_OFLOW		BIT(2)
 85#define SIRFSOC_SPI_TX_UFLOW		BIT(3)
 
 86#define SIRFSOC_SPI_RX_FIFO_FULL	BIT(6)
 87#define SIRFSOC_SPI_TXFIFO_EMPTY	BIT(7)
 88#define SIRFSOC_SPI_RXFIFO_THD_REACH	BIT(8)
 89#define SIRFSOC_SPI_TXFIFO_THD_REACH	BIT(9)
 90#define SIRFSOC_SPI_FRM_END		BIT(10)
 91
 92/* TX RX enable */
 93#define SIRFSOC_SPI_RX_EN		BIT(0)
 94#define SIRFSOC_SPI_TX_EN		BIT(1)
 95#define SIRFSOC_SPI_CMD_TX_EN		BIT(2)
 96
 97#define SIRFSOC_SPI_IO_MODE_SEL		BIT(0)
 98#define SIRFSOC_SPI_RX_DMA_FLUSH	BIT(2)
 99
100/* FIFO OPs */
101#define SIRFSOC_SPI_FIFO_RESET		BIT(0)
102#define SIRFSOC_SPI_FIFO_START		BIT(1)
103
104/* FIFO CTRL */
105#define SIRFSOC_SPI_FIFO_WIDTH_BYTE	(0 << 0)
106#define SIRFSOC_SPI_FIFO_WIDTH_WORD	(1 << 0)
107#define SIRFSOC_SPI_FIFO_WIDTH_DWORD	(2 << 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
109/* FIFO Status */
110#define	SIRFSOC_SPI_FIFO_LEVEL_MASK	0xFF
111#define SIRFSOC_SPI_FIFO_FULL		BIT(8)
112#define SIRFSOC_SPI_FIFO_EMPTY		BIT(9)
113
114/* 256 bytes rx/tx FIFO */
115#define SIRFSOC_SPI_FIFO_SIZE		256
116#define SIRFSOC_SPI_DAT_FRM_LEN_MAX	(64 * 1024)
117
118#define SIRFSOC_SPI_FIFO_SC(x)		((x) & 0x3F)
119#define SIRFSOC_SPI_FIFO_LC(x)		(((x) & 0x3F) << 10)
120#define SIRFSOC_SPI_FIFO_HC(x)		(((x) & 0x3F) << 20)
121#define SIRFSOC_SPI_FIFO_THD(x)		(((x) & 0xFF) << 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
123struct sirfsoc_spi {
124	struct spi_bitbang bitbang;
125	struct completion done;
 
126
127	void __iomem *base;
128	u32 ctrl_freq;  /* SPI controller clock speed */
129	struct clk *clk;
130	struct pinctrl *p;
131
132	/* rx & tx bufs from the spi_transfer */
133	const void *tx;
134	void *rx;
135
136	/* place received word into rx buffer */
137	void (*rx_word) (struct sirfsoc_spi *);
138	/* get word from tx buffer for sending */
139	void (*tx_word) (struct sirfsoc_spi *);
140
141	/* number of words left to be tranmitted/received */
142	unsigned int left_tx_cnt;
143	unsigned int left_rx_cnt;
 
 
 
 
 
 
 
144
145	/* tasklet to push tx msg into FIFO */
146	struct tasklet_struct tasklet_tx;
 
 
 
 
 
 
 
 
 
 
 
 
 
147
148	int chipselect[0];
 
 
 
 
 
149};
150
 
 
 
 
 
 
 
 
 
151static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
152{
153	u32 data;
154	u8 *rx = sspi->rx;
155
156	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
157
158	if (rx) {
159		*rx++ = (u8) data;
160		sspi->rx = rx;
161	}
162
163	sspi->left_rx_cnt--;
164}
165
166static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
167{
168	u32 data = 0;
169	const u8 *tx = sspi->tx;
170
171	if (tx) {
172		data = *tx++;
173		sspi->tx = tx;
174	}
175
176	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
177	sspi->left_tx_cnt--;
178}
179
180static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
181{
182	u32 data;
183	u16 *rx = sspi->rx;
184
185	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
186
187	if (rx) {
188		*rx++ = (u16) data;
189		sspi->rx = rx;
190	}
191
192	sspi->left_rx_cnt--;
193}
194
195static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
196{
197	u32 data = 0;
198	const u16 *tx = sspi->tx;
199
200	if (tx) {
201		data = *tx++;
202		sspi->tx = tx;
203	}
204
205	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
206	sspi->left_tx_cnt--;
207}
208
209static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
210{
211	u32 data;
212	u32 *rx = sspi->rx;
213
214	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
215
216	if (rx) {
217		*rx++ = (u32) data;
218		sspi->rx = rx;
219	}
220
221	sspi->left_rx_cnt--;
222
223}
224
225static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
226{
227	u32 data = 0;
228	const u32 *tx = sspi->tx;
229
230	if (tx) {
231		data = *tx++;
232		sspi->tx = tx;
233	}
234
235	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
236	sspi->left_tx_cnt--;
237}
238
239static void spi_sirfsoc_tasklet_tx(unsigned long arg)
240{
241	struct sirfsoc_spi *sspi = (struct sirfsoc_spi *)arg;
242
243	/* Fill Tx FIFO while there are left words to be transmitted */
244	while (!((readl(sspi->base + SIRFSOC_SPI_TXFIFO_STATUS) &
245			SIRFSOC_SPI_FIFO_FULL)) &&
246			sspi->left_tx_cnt)
247		sspi->tx_word(sspi);
248}
249
250static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
251{
252	struct sirfsoc_spi *sspi = dev_id;
253	u32 spi_stat = readl(sspi->base + SIRFSOC_SPI_INT_STATUS);
254
255	writel(spi_stat, sspi->base + SIRFSOC_SPI_INT_STATUS);
256
 
 
 
 
 
 
 
 
 
257	/* Error Conditions */
258	if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
259			spi_stat & SIRFSOC_SPI_TX_UFLOW) {
260		complete(&sspi->done);
261		writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
262	}
263
264	if (spi_stat & SIRFSOC_SPI_FRM_END) {
265		while (!((readl(sspi->base + SIRFSOC_SPI_RXFIFO_STATUS)
266				& SIRFSOC_SPI_FIFO_EMPTY)) &&
267				sspi->left_rx_cnt)
268			sspi->rx_word(sspi);
269
270		/* Received all words */
271		if ((sspi->left_rx_cnt == 0) && (sspi->left_tx_cnt == 0)) {
272			complete(&sspi->done);
273			writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
274		}
 
 
 
275	}
276
277	if (spi_stat & SIRFSOC_SPI_RXFIFO_THD_REACH ||
278		spi_stat & SIRFSOC_SPI_TXFIFO_THD_REACH ||
279		spi_stat & SIRFSOC_SPI_RX_FIFO_FULL ||
280		spi_stat & SIRFSOC_SPI_TXFIFO_EMPTY)
281		tasklet_schedule(&sspi->tasklet_tx);
 
 
 
 
 
 
 
 
 
 
 
282
283	return IRQ_HANDLED;
284}
285
286static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
 
 
 
 
 
 
 
 
287{
288	struct sirfsoc_spi *sspi;
289	int timeout = t->len * 10;
 
 
290	sspi = spi_master_get_devdata(spi->master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
291
292	sspi->tx = t->tx_buf;
293	sspi->rx = t->rx_buf;
294	sspi->left_tx_cnt = sspi->left_rx_cnt = t->len;
295	INIT_COMPLETION(sspi->done);
 
 
296
297	writel(SIRFSOC_SPI_INT_MASK_ALL, sspi->base + SIRFSOC_SPI_INT_STATUS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298
299	if (t->len == 1) {
300		writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
301			SIRFSOC_SPI_ENA_AUTO_CLR,
302			sspi->base + SIRFSOC_SPI_CTRL);
303		writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
304		writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
305	} else if ((t->len > 1) && (t->len < SIRFSOC_SPI_DAT_FRM_LEN_MAX)) {
306		writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307				SIRFSOC_SPI_MUL_DAT_MODE |
308				SIRFSOC_SPI_ENA_AUTO_CLR,
309			sspi->base + SIRFSOC_SPI_CTRL);
310		writel(t->len - 1, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
311		writel(t->len - 1, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
312	} else {
313		writel(readl(sspi->base + SIRFSOC_SPI_CTRL),
314			sspi->base + SIRFSOC_SPI_CTRL);
315		writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
316		writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
317	}
318
319	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
320	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
321	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
322	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
323
324	/* Send the first word to trigger the whole tx/rx process */
325	sspi->tx_word(sspi);
326
327	writel(SIRFSOC_SPI_RX_OFLOW_INT_EN | SIRFSOC_SPI_TX_UFLOW_INT_EN |
328		SIRFSOC_SPI_RXFIFO_THD_INT_EN | SIRFSOC_SPI_TXFIFO_THD_INT_EN |
329		SIRFSOC_SPI_FRM_END_INT_EN | SIRFSOC_SPI_RXFIFO_FULL_INT_EN |
330		SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN, sspi->base + SIRFSOC_SPI_INT_EN);
331	writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN, sspi->base + SIRFSOC_SPI_TX_RX_EN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332
333	if (wait_for_completion_timeout(&sspi->done, timeout) == 0)
334		dev_err(&spi->dev, "transfer timeout\n");
 
335
336	/* TX, RX FIFO stop */
337	writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
338	writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
339	writel(0, sspi->base + SIRFSOC_SPI_TX_RX_EN);
340	writel(0, sspi->base + SIRFSOC_SPI_INT_EN);
 
 
 
 
 
 
 
 
 
 
 
 
341
342	return t->len - sspi->left_rx_cnt;
343}
344
345static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
346{
347	struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);
348
349	if (sspi->chipselect[spi->chip_select] == 0) {
350		u32 regval = readl(sspi->base + SIRFSOC_SPI_CTRL);
351		regval |= SIRFSOC_SPI_CS_IO_OUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352		switch (value) {
353		case BITBANG_CS_ACTIVE:
354			if (spi->mode & SPI_CS_HIGH)
355				regval |= SIRFSOC_SPI_CS_IO_OUT;
356			else
357				regval &= ~SIRFSOC_SPI_CS_IO_OUT;
358			break;
359		case BITBANG_CS_INACTIVE:
360			if (spi->mode & SPI_CS_HIGH)
361				regval &= ~SIRFSOC_SPI_CS_IO_OUT;
362			else
363				regval |= SIRFSOC_SPI_CS_IO_OUT;
364			break;
365		}
366		writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367	} else {
368		int gpio = sspi->chipselect[spi->chip_select];
369		gpio_direction_output(gpio, spi->mode & SPI_CS_HIGH ? 0 : 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
370	}
 
 
371}
372
373static int
374spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
375{
376	struct sirfsoc_spi *sspi;
377	u8 bits_per_word = 0;
378	int hz = 0;
379	u32 regval;
380	u32 txfifo_ctrl, rxfifo_ctrl;
381	u32 fifo_size = SIRFSOC_SPI_FIFO_SIZE / 4;
382
383	sspi = spi_master_get_devdata(spi->master);
384
385	bits_per_word = t && t->bits_per_word ? t->bits_per_word :
386		spi->bits_per_word;
387	hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;
388
389	/* Enable IO mode for RX, TX */
390	writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
391	writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
392	regval = (sspi->ctrl_freq / (2 * hz)) - 1;
393
394	if (regval > 0xFFFF || regval < 0) {
395		dev_err(&spi->dev, "Speed %d not supported\n", hz);
396		return -EINVAL;
397	}
398
399	switch (bits_per_word) {
400	case 8:
401		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
402		sspi->rx_word = spi_sirfsoc_rx_word_u8;
403		sspi->tx_word = spi_sirfsoc_tx_word_u8;
404		txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
405					SIRFSOC_SPI_FIFO_WIDTH_BYTE;
406		rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
407					SIRFSOC_SPI_FIFO_WIDTH_BYTE;
408		break;
409	case 12:
410	case 16:
411		regval |= (bits_per_word ==  12) ? SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
 
412			SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
413		sspi->rx_word = spi_sirfsoc_rx_word_u16;
414		sspi->tx_word = spi_sirfsoc_tx_word_u16;
415		txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
416					SIRFSOC_SPI_FIFO_WIDTH_WORD;
417		rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
418					SIRFSOC_SPI_FIFO_WIDTH_WORD;
419		break;
420	case 32:
421		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
422		sspi->rx_word = spi_sirfsoc_rx_word_u32;
423		sspi->tx_word = spi_sirfsoc_tx_word_u32;
424		txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
425					SIRFSOC_SPI_FIFO_WIDTH_DWORD;
426		rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
427					SIRFSOC_SPI_FIFO_WIDTH_DWORD;
428		break;
429	default:
430		dev_err(&spi->dev, "Bits per word %d not supported\n",
431		       bits_per_word);
432		return -EINVAL;
433	}
434
435	if (!(spi->mode & SPI_CS_HIGH))
436		regval |= SIRFSOC_SPI_CS_IDLE_STAT;
437	if (!(spi->mode & SPI_LSB_FIRST))
438		regval |= SIRFSOC_SPI_TRAN_MSB;
439	if (spi->mode & SPI_CPOL)
440		regval |= SIRFSOC_SPI_CLK_IDLE_STAT;
441
442	/*
443	 * Data should be driven at least 1/2 cycle before the fetch edge to make
444	 * sure that data gets stable at the fetch edge.
445	 */
446	if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
447	    (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA)))
448		regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
449	else
450		regval |= SIRFSOC_SPI_DRV_POS_EDGE;
451
452	writel(SIRFSOC_SPI_FIFO_SC(fifo_size - 2) |
453			SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
454			SIRFSOC_SPI_FIFO_HC(2),
455		sspi->base + SIRFSOC_SPI_TXFIFO_LEVEL_CHK);
456	writel(SIRFSOC_SPI_FIFO_SC(2) |
457			SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
458			SIRFSOC_SPI_FIFO_HC(fifo_size - 2),
459		sspi->base + SIRFSOC_SPI_RXFIFO_LEVEL_CHK);
460	writel(txfifo_ctrl, sspi->base + SIRFSOC_SPI_TXFIFO_CTRL);
461	writel(rxfifo_ctrl, sspi->base + SIRFSOC_SPI_RXFIFO_CTRL);
462
463	writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464	return 0;
465}
466
467static int spi_sirfsoc_setup(struct spi_device *spi)
468{
469	struct sirfsoc_spi *sspi;
470
471	if (!spi->max_speed_hz)
472		return -EINVAL;
473
474	sspi = spi_master_get_devdata(spi->master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
475
476	if (!spi->bits_per_word)
477		spi->bits_per_word = 8;
478
479	return spi_sirfsoc_setup_transfer(spi, NULL);
 
 
480}
481
482static int __devinit spi_sirfsoc_probe(struct platform_device *pdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
483{
484	struct sirfsoc_spi *sspi;
485	struct spi_master *master;
486	struct resource *mem_res;
487	int num_cs, cs_gpio, irq;
488	int i;
489	int ret;
 
490
491	ret = of_property_read_u32(pdev->dev.of_node,
492			"sirf,spi-num-chipselects", &num_cs);
493	if (ret < 0) {
494		dev_err(&pdev->dev, "Unable to get chip select number\n");
495		goto err_cs;
496	}
497
498	master = spi_alloc_master(&pdev->dev, sizeof(*sspi) + sizeof(int) * num_cs);
499	if (!master) {
500		dev_err(&pdev->dev, "Unable to allocate SPI master\n");
501		return -ENOMEM;
502	}
 
503	platform_set_drvdata(pdev, master);
504	sspi = spi_master_get_devdata(master);
505
 
 
 
 
 
 
506	mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
507	if (!mem_res) {
508		dev_err(&pdev->dev, "Unable to get IO resource\n");
509		ret = -ENODEV;
510		goto free_master;
511	}
512	master->num_chipselect = num_cs;
513
514	for (i = 0; i < master->num_chipselect; i++) {
515		cs_gpio = of_get_named_gpio(pdev->dev.of_node, "cs-gpios", i);
516		if (cs_gpio < 0) {
517			dev_err(&pdev->dev, "can't get cs gpio from DT\n");
518			ret = -ENODEV;
519			goto free_master;
520		}
521
522		sspi->chipselect[i] = cs_gpio;
523		if (cs_gpio == 0)
524			continue; /* use cs from spi controller */
525
526		ret = gpio_request(cs_gpio, DRIVER_NAME);
527		if (ret) {
528			while (i > 0) {
529				i--;
530				if (sspi->chipselect[i] > 0)
531					gpio_free(sspi->chipselect[i]);
532			}
533			dev_err(&pdev->dev, "fail to request cs gpios\n");
534			goto free_master;
535		}
536	}
537
538	sspi->base = devm_request_and_ioremap(&pdev->dev, mem_res);
539	if (!sspi->base) {
540		dev_err(&pdev->dev, "IO remap failed!\n");
541		ret = -ENOMEM;
542		goto free_master;
543	}
544
545	irq = platform_get_irq(pdev, 0);
546	if (irq < 0) {
547		ret = -ENXIO;
548		goto free_master;
549	}
550	ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
551				DRIVER_NAME, sspi);
552	if (ret)
553		goto free_master;
554
555	sspi->bitbang.master = spi_master_get(master);
556	sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
557	sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
558	sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
559	sspi->bitbang.master->setup = spi_sirfsoc_setup;
 
560	master->bus_num = pdev->id;
 
 
 
 
 
561	sspi->bitbang.master->dev.of_node = pdev->dev.of_node;
562
563	sspi->p = pinctrl_get_select_default(&pdev->dev);
564	ret = IS_ERR(sspi->p);
565	if (ret)
 
 
566		goto free_master;
 
 
 
 
 
 
 
567
568	sspi->clk = clk_get(&pdev->dev, NULL);
569	if (IS_ERR(sspi->clk)) {
570		ret = -EINVAL;
571		goto free_pin;
572	}
573	clk_enable(sspi->clk);
 
 
574	sspi->ctrl_freq = clk_get_rate(sspi->clk);
575
576	init_completion(&sspi->done);
577
578	tasklet_init(&sspi->tasklet_tx, spi_sirfsoc_tasklet_tx,
579		     (unsigned long)sspi);
580
581	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
582	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
583	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
584	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
585	/* We are not using dummy delay between command and data */
586	writel(0, sspi->base + SIRFSOC_SPI_DUMMY_DELAY_CTL);
587
588	ret = spi_bitbang_start(&sspi->bitbang);
589	if (ret)
590		goto free_clk;
591
592	dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num);
593
594	return 0;
595
596free_clk:
597	clk_disable(sspi->clk);
598	clk_put(sspi->clk);
599free_pin:
600	pinctrl_put(sspi->p);
 
 
601free_master:
602	spi_master_put(master);
603err_cs:
604	return ret;
605}
606
607static int  __devexit spi_sirfsoc_remove(struct platform_device *pdev)
608{
609	struct spi_master *master;
610	struct sirfsoc_spi *sspi;
611	int i;
612
613	master = platform_get_drvdata(pdev);
614	sspi = spi_master_get_devdata(master);
615
616	spi_bitbang_stop(&sspi->bitbang);
617	for (i = 0; i < master->num_chipselect; i++) {
618		if (sspi->chipselect[i] > 0)
619			gpio_free(sspi->chipselect[i]);
620	}
621	clk_disable(sspi->clk);
622	clk_put(sspi->clk);
623	pinctrl_put(sspi->p);
 
624	spi_master_put(master);
625	return 0;
626}
627
628#ifdef CONFIG_PM
629static int spi_sirfsoc_suspend(struct device *dev)
630{
631	struct platform_device *pdev = to_platform_device(dev);
632	struct spi_master *master = platform_get_drvdata(pdev);
633	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
 
 
 
 
 
634
635	clk_disable(sspi->clk);
636	return 0;
637}
638
639static int spi_sirfsoc_resume(struct device *dev)
640{
641	struct platform_device *pdev = to_platform_device(dev);
642	struct spi_master *master = platform_get_drvdata(pdev);
643	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
644
645	clk_enable(sspi->clk);
646	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
647	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
648	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
649	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
650
651	return 0;
652}
653
654static const struct dev_pm_ops spi_sirfsoc_pm_ops = {
655	.suspend = spi_sirfsoc_suspend,
656	.resume = spi_sirfsoc_resume,
657};
658#endif
659
660static const struct of_device_id spi_sirfsoc_of_match[] = {
661	{ .compatible = "sirf,prima2-spi", },
662	{}
663};
664MODULE_DEVICE_TABLE(of, sirfsoc_spi_of_match);
665
666static struct platform_driver spi_sirfsoc_driver = {
667	.driver = {
668		.name = DRIVER_NAME,
669		.owner = THIS_MODULE,
670#ifdef CONFIG_PM
671		.pm     = &spi_sirfsoc_pm_ops,
672#endif
673		.of_match_table = spi_sirfsoc_of_match,
674	},
675	.probe = spi_sirfsoc_probe,
676	.remove = __devexit_p(spi_sirfsoc_remove),
677};
678module_platform_driver(spi_sirfsoc_driver);
679
680MODULE_DESCRIPTION("SiRF SoC SPI master driver");
681MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>, "
682		"Barry Song <Baohua.Song@csr.com>");
 
683MODULE_LICENSE("GPL v2");
v4.17
   1/*
   2 * SPI bus driver for CSR SiRFprimaII
   3 *
   4 * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
   5 *
   6 * Licensed under GPLv2 or later.
   7 */
   8
   9#include <linux/module.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/clk.h>
  13#include <linux/completion.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/of.h>
  17#include <linux/bitops.h>
  18#include <linux/err.h>
  19#include <linux/platform_device.h>
  20#include <linux/of_gpio.h>
  21#include <linux/spi/spi.h>
  22#include <linux/spi/spi_bitbang.h>
  23#include <linux/dmaengine.h>
  24#include <linux/dma-direction.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/reset.h>
  27
  28#define DRIVER_NAME "sirfsoc_spi"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  29/* SPI CTRL register defines */
  30#define SIRFSOC_SPI_SLV_MODE		BIT(16)
  31#define SIRFSOC_SPI_CMD_MODE		BIT(17)
  32#define SIRFSOC_SPI_CS_IO_OUT		BIT(18)
  33#define SIRFSOC_SPI_CS_IO_MODE		BIT(19)
  34#define SIRFSOC_SPI_CLK_IDLE_STAT	BIT(20)
  35#define SIRFSOC_SPI_CS_IDLE_STAT	BIT(21)
  36#define SIRFSOC_SPI_TRAN_MSB		BIT(22)
  37#define SIRFSOC_SPI_DRV_POS_EDGE	BIT(23)
  38#define SIRFSOC_SPI_CS_HOLD_TIME	BIT(24)
  39#define SIRFSOC_SPI_CLK_SAMPLE_MODE	BIT(25)
  40#define SIRFSOC_SPI_TRAN_DAT_FORMAT_8	(0 << 26)
  41#define SIRFSOC_SPI_TRAN_DAT_FORMAT_12	(1 << 26)
  42#define SIRFSOC_SPI_TRAN_DAT_FORMAT_16	(2 << 26)
  43#define SIRFSOC_SPI_TRAN_DAT_FORMAT_32	(3 << 26)
  44#define SIRFSOC_SPI_CMD_BYTE_NUM(x)	((x & 3) << 28)
  45#define SIRFSOC_SPI_ENA_AUTO_CLR	BIT(30)
  46#define SIRFSOC_SPI_MUL_DAT_MODE	BIT(31)
  47
  48/* Interrupt Enable */
  49#define SIRFSOC_SPI_RX_DONE_INT_EN	BIT(0)
  50#define SIRFSOC_SPI_TX_DONE_INT_EN	BIT(1)
  51#define SIRFSOC_SPI_RX_OFLOW_INT_EN	BIT(2)
  52#define SIRFSOC_SPI_TX_UFLOW_INT_EN	BIT(3)
  53#define SIRFSOC_SPI_RX_IO_DMA_INT_EN	BIT(4)
  54#define SIRFSOC_SPI_TX_IO_DMA_INT_EN	BIT(5)
  55#define SIRFSOC_SPI_RXFIFO_FULL_INT_EN	BIT(6)
  56#define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN	BIT(7)
  57#define SIRFSOC_SPI_RXFIFO_THD_INT_EN	BIT(8)
  58#define SIRFSOC_SPI_TXFIFO_THD_INT_EN	BIT(9)
  59#define SIRFSOC_SPI_FRM_END_INT_EN	BIT(10)
  60
 
 
  61/* Interrupt status */
  62#define SIRFSOC_SPI_RX_DONE		BIT(0)
  63#define SIRFSOC_SPI_TX_DONE		BIT(1)
  64#define SIRFSOC_SPI_RX_OFLOW		BIT(2)
  65#define SIRFSOC_SPI_TX_UFLOW		BIT(3)
  66#define SIRFSOC_SPI_RX_IO_DMA		BIT(4)
  67#define SIRFSOC_SPI_RX_FIFO_FULL	BIT(6)
  68#define SIRFSOC_SPI_TXFIFO_EMPTY	BIT(7)
  69#define SIRFSOC_SPI_RXFIFO_THD_REACH	BIT(8)
  70#define SIRFSOC_SPI_TXFIFO_THD_REACH	BIT(9)
  71#define SIRFSOC_SPI_FRM_END		BIT(10)
  72
  73/* TX RX enable */
  74#define SIRFSOC_SPI_RX_EN		BIT(0)
  75#define SIRFSOC_SPI_TX_EN		BIT(1)
  76#define SIRFSOC_SPI_CMD_TX_EN		BIT(2)
  77
  78#define SIRFSOC_SPI_IO_MODE_SEL		BIT(0)
  79#define SIRFSOC_SPI_RX_DMA_FLUSH	BIT(2)
  80
  81/* FIFO OPs */
  82#define SIRFSOC_SPI_FIFO_RESET		BIT(0)
  83#define SIRFSOC_SPI_FIFO_START		BIT(1)
  84
  85/* FIFO CTRL */
  86#define SIRFSOC_SPI_FIFO_WIDTH_BYTE	(0 << 0)
  87#define SIRFSOC_SPI_FIFO_WIDTH_WORD	(1 << 0)
  88#define SIRFSOC_SPI_FIFO_WIDTH_DWORD	(2 << 0)
  89/* USP related */
  90#define SIRFSOC_USP_SYNC_MODE		BIT(0)
  91#define SIRFSOC_USP_SLV_MODE		BIT(1)
  92#define SIRFSOC_USP_LSB			BIT(4)
  93#define SIRFSOC_USP_EN			BIT(5)
  94#define SIRFSOC_USP_RXD_FALLING_EDGE	BIT(6)
  95#define SIRFSOC_USP_TXD_FALLING_EDGE	BIT(7)
  96#define SIRFSOC_USP_CS_HIGH_VALID	BIT(9)
  97#define SIRFSOC_USP_SCLK_IDLE_STAT	BIT(11)
  98#define SIRFSOC_USP_TFS_IO_MODE		BIT(14)
  99#define SIRFSOC_USP_TFS_IO_INPUT	BIT(19)
 100
 101#define SIRFSOC_USP_RXD_DELAY_LEN_MASK	0xFF
 102#define SIRFSOC_USP_TXD_DELAY_LEN_MASK	0xFF
 103#define SIRFSOC_USP_RXD_DELAY_OFFSET	0
 104#define SIRFSOC_USP_TXD_DELAY_OFFSET	8
 105#define SIRFSOC_USP_RXD_DELAY_LEN	1
 106#define SIRFSOC_USP_TXD_DELAY_LEN	1
 107#define SIRFSOC_USP_CLK_DIVISOR_OFFSET	21
 108#define SIRFSOC_USP_CLK_DIVISOR_MASK	0x3FF
 109#define SIRFSOC_USP_CLK_10_11_MASK	0x3
 110#define SIRFSOC_USP_CLK_10_11_OFFSET	30
 111#define SIRFSOC_USP_CLK_12_15_MASK	0xF
 112#define SIRFSOC_USP_CLK_12_15_OFFSET	24
 113
 114#define SIRFSOC_USP_TX_DATA_OFFSET	0
 115#define SIRFSOC_USP_TX_SYNC_OFFSET	8
 116#define SIRFSOC_USP_TX_FRAME_OFFSET	16
 117#define SIRFSOC_USP_TX_SHIFTER_OFFSET	24
 118
 119#define SIRFSOC_USP_TX_DATA_MASK	0xFF
 120#define SIRFSOC_USP_TX_SYNC_MASK	0xFF
 121#define SIRFSOC_USP_TX_FRAME_MASK	0xFF
 122#define SIRFSOC_USP_TX_SHIFTER_MASK	0x1F
 123
 124#define SIRFSOC_USP_RX_DATA_OFFSET	0
 125#define SIRFSOC_USP_RX_FRAME_OFFSET	8
 126#define SIRFSOC_USP_RX_SHIFTER_OFFSET	16
 127
 128#define SIRFSOC_USP_RX_DATA_MASK	0xFF
 129#define SIRFSOC_USP_RX_FRAME_MASK	0xFF
 130#define SIRFSOC_USP_RX_SHIFTER_MASK	0x1F
 131#define SIRFSOC_USP_CS_HIGH_VALUE	BIT(1)
 132
 133#define SIRFSOC_SPI_FIFO_SC_OFFSET	0
 134#define SIRFSOC_SPI_FIFO_LC_OFFSET	10
 135#define SIRFSOC_SPI_FIFO_HC_OFFSET	20
 136
 137#define SIRFSOC_SPI_FIFO_FULL_MASK(s)	(1 << ((s)->fifo_full_offset))
 138#define SIRFSOC_SPI_FIFO_EMPTY_MASK(s)	(1 << ((s)->fifo_full_offset + 1))
 139#define SIRFSOC_SPI_FIFO_THD_MASK(s)	((s)->fifo_size - 1)
 140#define SIRFSOC_SPI_FIFO_THD_OFFSET	2
 141#define SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(s, val)	\
 142	((val) & (s)->fifo_level_chk_mask)
 143
 144enum sirf_spi_type {
 145	SIRF_REAL_SPI,
 146	SIRF_USP_SPI_P2,
 147	SIRF_USP_SPI_A7,
 148};
 149
 150/*
 151 * only if the rx/tx buffer and transfer size are 4-bytes aligned, we use dma
 152 * due to the limitation of dma controller
 153 */
 154
 155#define ALIGNED(x) (!((u32)x & 0x3))
 156#define IS_DMA_VALID(x) (x && ALIGNED(x->tx_buf) && ALIGNED(x->rx_buf) && \
 157	ALIGNED(x->len) && (x->len < 2 * PAGE_SIZE))
 158
 159#define SIRFSOC_MAX_CMD_BYTES	4
 160#define SIRFSOC_SPI_DEFAULT_FRQ 1000000
 161
 162struct sirf_spi_register {
 163	/*SPI and USP-SPI common*/
 164	u32 tx_rx_en;
 165	u32 int_en;
 166	u32 int_st;
 167	u32 tx_dma_io_ctrl;
 168	u32 tx_dma_io_len;
 169	u32 txfifo_ctrl;
 170	u32 txfifo_level_chk;
 171	u32 txfifo_op;
 172	u32 txfifo_st;
 173	u32 txfifo_data;
 174	u32 rx_dma_io_ctrl;
 175	u32 rx_dma_io_len;
 176	u32 rxfifo_ctrl;
 177	u32 rxfifo_level_chk;
 178	u32 rxfifo_op;
 179	u32 rxfifo_st;
 180	u32 rxfifo_data;
 181	/*SPI self*/
 182	u32 spi_ctrl;
 183	u32 spi_cmd;
 184	u32 spi_dummy_delay_ctrl;
 185	/*USP-SPI self*/
 186	u32 usp_mode1;
 187	u32 usp_mode2;
 188	u32 usp_tx_frame_ctrl;
 189	u32 usp_rx_frame_ctrl;
 190	u32 usp_pin_io_data;
 191	u32 usp_risc_dsp_mode;
 192	u32 usp_async_param_reg;
 193	u32 usp_irda_x_mode_div;
 194	u32 usp_sm_cfg;
 195	u32 usp_int_en_clr;
 196};
 197
 198static const struct sirf_spi_register real_spi_register = {
 199	.tx_rx_en		= 0x8,
 200	.int_en		= 0xc,
 201	.int_st		= 0x10,
 202	.tx_dma_io_ctrl	= 0x100,
 203	.tx_dma_io_len	= 0x104,
 204	.txfifo_ctrl	= 0x108,
 205	.txfifo_level_chk	= 0x10c,
 206	.txfifo_op		= 0x110,
 207	.txfifo_st		= 0x114,
 208	.txfifo_data	= 0x118,
 209	.rx_dma_io_ctrl	= 0x120,
 210	.rx_dma_io_len	= 0x124,
 211	.rxfifo_ctrl	= 0x128,
 212	.rxfifo_level_chk	= 0x12c,
 213	.rxfifo_op		= 0x130,
 214	.rxfifo_st		= 0x134,
 215	.rxfifo_data	= 0x138,
 216	.spi_ctrl		= 0x0,
 217	.spi_cmd		= 0x4,
 218	.spi_dummy_delay_ctrl	= 0x144,
 219};
 220
 221static const struct sirf_spi_register usp_spi_register = {
 222	.tx_rx_en		= 0x10,
 223	.int_en		= 0x14,
 224	.int_st		= 0x18,
 225	.tx_dma_io_ctrl	= 0x100,
 226	.tx_dma_io_len	= 0x104,
 227	.txfifo_ctrl	= 0x108,
 228	.txfifo_level_chk	= 0x10c,
 229	.txfifo_op		= 0x110,
 230	.txfifo_st		= 0x114,
 231	.txfifo_data	= 0x118,
 232	.rx_dma_io_ctrl	= 0x120,
 233	.rx_dma_io_len	= 0x124,
 234	.rxfifo_ctrl	= 0x128,
 235	.rxfifo_level_chk	= 0x12c,
 236	.rxfifo_op		= 0x130,
 237	.rxfifo_st		= 0x134,
 238	.rxfifo_data	= 0x138,
 239	.usp_mode1		= 0x0,
 240	.usp_mode2		= 0x4,
 241	.usp_tx_frame_ctrl	= 0x8,
 242	.usp_rx_frame_ctrl	= 0xc,
 243	.usp_pin_io_data	= 0x1c,
 244	.usp_risc_dsp_mode	= 0x20,
 245	.usp_async_param_reg	= 0x24,
 246	.usp_irda_x_mode_div	= 0x28,
 247	.usp_sm_cfg		= 0x2c,
 248	.usp_int_en_clr		= 0x140,
 249};
 250
 251struct sirfsoc_spi {
 252	struct spi_bitbang bitbang;
 253	struct completion rx_done;
 254	struct completion tx_done;
 255
 256	void __iomem *base;
 257	u32 ctrl_freq;  /* SPI controller clock speed */
 258	struct clk *clk;
 
 259
 260	/* rx & tx bufs from the spi_transfer */
 261	const void *tx;
 262	void *rx;
 263
 264	/* place received word into rx buffer */
 265	void (*rx_word) (struct sirfsoc_spi *);
 266	/* get word from tx buffer for sending */
 267	void (*tx_word) (struct sirfsoc_spi *);
 268
 269	/* number of words left to be tranmitted/received */
 270	unsigned int left_tx_word;
 271	unsigned int left_rx_word;
 272
 273	/* rx & tx DMA channels */
 274	struct dma_chan *rx_chan;
 275	struct dma_chan *tx_chan;
 276	dma_addr_t src_start;
 277	dma_addr_t dst_start;
 278	int word_width; /* in bytes */
 279
 280	/*
 281	 * if tx size is not more than 4 and rx size is NULL, use
 282	 * command model
 283	 */
 284	bool	tx_by_cmd;
 285	bool	hw_cs;
 286	enum sirf_spi_type type;
 287	const struct sirf_spi_register *regs;
 288	unsigned int fifo_size;
 289	/* fifo empty offset is (fifo full offset + 1)*/
 290	unsigned int fifo_full_offset;
 291	/* fifo_level_chk_mask is (fifo_size/4 - 1) */
 292	unsigned int fifo_level_chk_mask;
 293	unsigned int dat_max_frm_len;
 294};
 295
 296struct sirf_spi_comp_data {
 297	const struct sirf_spi_register *regs;
 298	enum sirf_spi_type type;
 299	unsigned int dat_max_frm_len;
 300	unsigned int fifo_size;
 301	void (*hwinit)(struct sirfsoc_spi *sspi);
 302};
 303
 304static void sirfsoc_usp_hwinit(struct sirfsoc_spi *sspi)
 305{
 306	/* reset USP and let USP can operate */
 307	writel(readl(sspi->base + sspi->regs->usp_mode1) &
 308		~SIRFSOC_USP_EN, sspi->base + sspi->regs->usp_mode1);
 309	writel(readl(sspi->base + sspi->regs->usp_mode1) |
 310		SIRFSOC_USP_EN, sspi->base + sspi->regs->usp_mode1);
 311}
 312
 313static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
 314{
 315	u32 data;
 316	u8 *rx = sspi->rx;
 317
 318	data = readl(sspi->base + sspi->regs->rxfifo_data);
 319
 320	if (rx) {
 321		*rx++ = (u8) data;
 322		sspi->rx = rx;
 323	}
 324
 325	sspi->left_rx_word--;
 326}
 327
 328static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
 329{
 330	u32 data = 0;
 331	const u8 *tx = sspi->tx;
 332
 333	if (tx) {
 334		data = *tx++;
 335		sspi->tx = tx;
 336	}
 337	writel(data, sspi->base + sspi->regs->txfifo_data);
 338	sspi->left_tx_word--;
 
 339}
 340
 341static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
 342{
 343	u32 data;
 344	u16 *rx = sspi->rx;
 345
 346	data = readl(sspi->base + sspi->regs->rxfifo_data);
 347
 348	if (rx) {
 349		*rx++ = (u16) data;
 350		sspi->rx = rx;
 351	}
 352
 353	sspi->left_rx_word--;
 354}
 355
 356static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
 357{
 358	u32 data = 0;
 359	const u16 *tx = sspi->tx;
 360
 361	if (tx) {
 362		data = *tx++;
 363		sspi->tx = tx;
 364	}
 365
 366	writel(data, sspi->base + sspi->regs->txfifo_data);
 367	sspi->left_tx_word--;
 368}
 369
 370static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
 371{
 372	u32 data;
 373	u32 *rx = sspi->rx;
 374
 375	data = readl(sspi->base + sspi->regs->rxfifo_data);
 376
 377	if (rx) {
 378		*rx++ = (u32) data;
 379		sspi->rx = rx;
 380	}
 381
 382	sspi->left_rx_word--;
 383
 384}
 385
 386static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
 387{
 388	u32 data = 0;
 389	const u32 *tx = sspi->tx;
 390
 391	if (tx) {
 392		data = *tx++;
 393		sspi->tx = tx;
 394	}
 395
 396	writel(data, sspi->base + sspi->regs->txfifo_data);
 397	sspi->left_tx_word--;
 
 
 
 
 
 
 
 
 
 
 
 398}
 399
 400static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
 401{
 402	struct sirfsoc_spi *sspi = dev_id;
 403	u32 spi_stat;
 
 
 404
 405	spi_stat = readl(sspi->base + sspi->regs->int_st);
 406	if (sspi->tx_by_cmd && sspi->type == SIRF_REAL_SPI
 407		&& (spi_stat & SIRFSOC_SPI_FRM_END)) {
 408		complete(&sspi->tx_done);
 409		writel(0x0, sspi->base + sspi->regs->int_en);
 410		writel(readl(sspi->base + sspi->regs->int_st),
 411				sspi->base + sspi->regs->int_st);
 412		return IRQ_HANDLED;
 413	}
 414	/* Error Conditions */
 415	if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
 416			spi_stat & SIRFSOC_SPI_TX_UFLOW) {
 417		complete(&sspi->tx_done);
 418		complete(&sspi->rx_done);
 419		switch (sspi->type) {
 420		case SIRF_REAL_SPI:
 421		case SIRF_USP_SPI_P2:
 422			writel(0x0, sspi->base + sspi->regs->int_en);
 423			break;
 424		case SIRF_USP_SPI_A7:
 425			writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
 426			break;
 
 
 
 
 427		}
 428		writel(readl(sspi->base + sspi->regs->int_st),
 429				sspi->base + sspi->regs->int_st);
 430		return IRQ_HANDLED;
 431	}
 432	if (spi_stat & SIRFSOC_SPI_TXFIFO_EMPTY)
 433		complete(&sspi->tx_done);
 434	while (!(readl(sspi->base + sspi->regs->int_st) &
 435		SIRFSOC_SPI_RX_IO_DMA))
 436		cpu_relax();
 437	complete(&sspi->rx_done);
 438	switch (sspi->type) {
 439	case SIRF_REAL_SPI:
 440	case SIRF_USP_SPI_P2:
 441		writel(0x0, sspi->base + sspi->regs->int_en);
 442		break;
 443	case SIRF_USP_SPI_A7:
 444		writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
 445		break;
 446	}
 447	writel(readl(sspi->base + sspi->regs->int_st),
 448			sspi->base + sspi->regs->int_st);
 449
 450	return IRQ_HANDLED;
 451}
 452
 453static void spi_sirfsoc_dma_fini_callback(void *data)
 454{
 455	struct completion *dma_complete = data;
 456
 457	complete(dma_complete);
 458}
 459
 460static void spi_sirfsoc_cmd_transfer(struct spi_device *spi,
 461	struct spi_transfer *t)
 462{
 463	struct sirfsoc_spi *sspi;
 464	int timeout = t->len * 10;
 465	u32 cmd;
 466
 467	sspi = spi_master_get_devdata(spi->master);
 468	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op);
 469	writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->txfifo_op);
 470	memcpy(&cmd, sspi->tx, t->len);
 471	if (sspi->word_width == 1 && !(spi->mode & SPI_LSB_FIRST))
 472		cmd = cpu_to_be32(cmd) >>
 473			((SIRFSOC_MAX_CMD_BYTES - t->len) * 8);
 474	if (sspi->word_width == 2 && t->len == 4 &&
 475			(!(spi->mode & SPI_LSB_FIRST)))
 476		cmd = ((cmd & 0xffff) << 16) | (cmd >> 16);
 477	writel(cmd, sspi->base + sspi->regs->spi_cmd);
 478	writel(SIRFSOC_SPI_FRM_END_INT_EN,
 479		sspi->base + sspi->regs->int_en);
 480	writel(SIRFSOC_SPI_CMD_TX_EN,
 481		sspi->base + sspi->regs->tx_rx_en);
 482	if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
 483		dev_err(&spi->dev, "cmd transfer timeout\n");
 484		return;
 485	}
 486	sspi->left_rx_word -= t->len;
 487}
 488
 489static void spi_sirfsoc_dma_transfer(struct spi_device *spi,
 490	struct spi_transfer *t)
 491{
 492	struct sirfsoc_spi *sspi;
 493	struct dma_async_tx_descriptor *rx_desc, *tx_desc;
 494	int timeout = t->len * 10;
 495
 496	sspi = spi_master_get_devdata(spi->master);
 497	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->rxfifo_op);
 498	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op);
 499	switch (sspi->type) {
 500	case SIRF_REAL_SPI:
 501		writel(SIRFSOC_SPI_FIFO_START,
 502			sspi->base + sspi->regs->rxfifo_op);
 503		writel(SIRFSOC_SPI_FIFO_START,
 504			sspi->base + sspi->regs->txfifo_op);
 505		writel(0, sspi->base + sspi->regs->int_en);
 506		break;
 507	case SIRF_USP_SPI_P2:
 508		writel(0x0, sspi->base + sspi->regs->rxfifo_op);
 509		writel(0x0, sspi->base + sspi->regs->txfifo_op);
 510		writel(0, sspi->base + sspi->regs->int_en);
 511		break;
 512	case SIRF_USP_SPI_A7:
 513		writel(0x0, sspi->base + sspi->regs->rxfifo_op);
 514		writel(0x0, sspi->base + sspi->regs->txfifo_op);
 515		writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
 516		break;
 517	}
 518	writel(readl(sspi->base + sspi->regs->int_st),
 519		sspi->base + sspi->regs->int_st);
 520	if (sspi->left_tx_word < sspi->dat_max_frm_len) {
 521		switch (sspi->type) {
 522		case SIRF_REAL_SPI:
 523			writel(readl(sspi->base + sspi->regs->spi_ctrl) |
 524				SIRFSOC_SPI_ENA_AUTO_CLR |
 525				SIRFSOC_SPI_MUL_DAT_MODE,
 526				sspi->base + sspi->regs->spi_ctrl);
 527			writel(sspi->left_tx_word - 1,
 528				sspi->base + sspi->regs->tx_dma_io_len);
 529			writel(sspi->left_tx_word - 1,
 530				sspi->base + sspi->regs->rx_dma_io_len);
 531			break;
 532		case SIRF_USP_SPI_P2:
 533		case SIRF_USP_SPI_A7:
 534			/*USP simulate SPI, tx/rx_dma_io_len indicates bytes*/
 535			writel(sspi->left_tx_word * sspi->word_width,
 536				sspi->base + sspi->regs->tx_dma_io_len);
 537			writel(sspi->left_tx_word * sspi->word_width,
 538				sspi->base + sspi->regs->rx_dma_io_len);
 539			break;
 540		}
 541	} else {
 542		if (sspi->type == SIRF_REAL_SPI)
 543			writel(readl(sspi->base + sspi->regs->spi_ctrl),
 544				sspi->base + sspi->regs->spi_ctrl);
 545		writel(0, sspi->base + sspi->regs->tx_dma_io_len);
 546		writel(0, sspi->base + sspi->regs->rx_dma_io_len);
 547	}
 548	sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len,
 549					(t->tx_buf != t->rx_buf) ?
 550					DMA_FROM_DEVICE : DMA_BIDIRECTIONAL);
 551	rx_desc = dmaengine_prep_slave_single(sspi->rx_chan,
 552		sspi->dst_start, t->len, DMA_DEV_TO_MEM,
 553		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 554	rx_desc->callback = spi_sirfsoc_dma_fini_callback;
 555	rx_desc->callback_param = &sspi->rx_done;
 556
 557	sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len,
 558					(t->tx_buf != t->rx_buf) ?
 559					DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
 560	tx_desc = dmaengine_prep_slave_single(sspi->tx_chan,
 561		sspi->src_start, t->len, DMA_MEM_TO_DEV,
 562		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 563	tx_desc->callback = spi_sirfsoc_dma_fini_callback;
 564	tx_desc->callback_param = &sspi->tx_done;
 565
 566	dmaengine_submit(tx_desc);
 567	dmaengine_submit(rx_desc);
 568	dma_async_issue_pending(sspi->tx_chan);
 569	dma_async_issue_pending(sspi->rx_chan);
 570	writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
 571			sspi->base + sspi->regs->tx_rx_en);
 572	if (sspi->type == SIRF_USP_SPI_P2 ||
 573		sspi->type == SIRF_USP_SPI_A7) {
 574		writel(SIRFSOC_SPI_FIFO_START,
 575			sspi->base + sspi->regs->rxfifo_op);
 576		writel(SIRFSOC_SPI_FIFO_START,
 577			sspi->base + sspi->regs->txfifo_op);
 578	}
 579	if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) {
 580		dev_err(&spi->dev, "transfer timeout\n");
 581		dmaengine_terminate_all(sspi->rx_chan);
 582	} else
 583		sspi->left_rx_word = 0;
 584	/*
 585	 * we only wait tx-done event if transferring by DMA. for PIO,
 586	 * we get rx data by writing tx data, so if rx is done, tx has
 587	 * done earlier
 588	 */
 589	if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
 590		dev_err(&spi->dev, "transfer timeout\n");
 591		if (sspi->type == SIRF_USP_SPI_P2 ||
 592			sspi->type == SIRF_USP_SPI_A7)
 593			writel(0, sspi->base + sspi->regs->tx_rx_en);
 594		dmaengine_terminate_all(sspi->tx_chan);
 595	}
 596	dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE);
 597	dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE);
 598	/* TX, RX FIFO stop */
 599	writel(0, sspi->base + sspi->regs->rxfifo_op);
 600	writel(0, sspi->base + sspi->regs->txfifo_op);
 601	if (sspi->left_tx_word >= sspi->dat_max_frm_len)
 602		writel(0, sspi->base + sspi->regs->tx_rx_en);
 603	if (sspi->type == SIRF_USP_SPI_P2 ||
 604		sspi->type == SIRF_USP_SPI_A7)
 605		writel(0, sspi->base + sspi->regs->tx_rx_en);
 606}
 607
 608static void spi_sirfsoc_pio_transfer(struct spi_device *spi,
 609		struct spi_transfer *t)
 610{
 611	struct sirfsoc_spi *sspi;
 612	int timeout = t->len * 10;
 613	unsigned int data_units;
 614
 615	sspi = spi_master_get_devdata(spi->master);
 616	do {
 617		writel(SIRFSOC_SPI_FIFO_RESET,
 618			sspi->base + sspi->regs->rxfifo_op);
 619		writel(SIRFSOC_SPI_FIFO_RESET,
 620			sspi->base + sspi->regs->txfifo_op);
 621		switch (sspi->type) {
 622		case SIRF_USP_SPI_P2:
 623			writel(0x0, sspi->base + sspi->regs->rxfifo_op);
 624			writel(0x0, sspi->base + sspi->regs->txfifo_op);
 625			writel(0, sspi->base + sspi->regs->int_en);
 626			writel(readl(sspi->base + sspi->regs->int_st),
 627				sspi->base + sspi->regs->int_st);
 628			writel(min((sspi->left_tx_word * sspi->word_width),
 629				sspi->fifo_size),
 630				sspi->base + sspi->regs->tx_dma_io_len);
 631			writel(min((sspi->left_rx_word * sspi->word_width),
 632				sspi->fifo_size),
 633				sspi->base + sspi->regs->rx_dma_io_len);
 634			break;
 635		case SIRF_USP_SPI_A7:
 636			writel(0x0, sspi->base + sspi->regs->rxfifo_op);
 637			writel(0x0, sspi->base + sspi->regs->txfifo_op);
 638			writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
 639			writel(readl(sspi->base + sspi->regs->int_st),
 640				sspi->base + sspi->regs->int_st);
 641			writel(min((sspi->left_tx_word * sspi->word_width),
 642				sspi->fifo_size),
 643				sspi->base + sspi->regs->tx_dma_io_len);
 644			writel(min((sspi->left_rx_word * sspi->word_width),
 645				sspi->fifo_size),
 646				sspi->base + sspi->regs->rx_dma_io_len);
 647			break;
 648		case SIRF_REAL_SPI:
 649			writel(SIRFSOC_SPI_FIFO_START,
 650				sspi->base + sspi->regs->rxfifo_op);
 651			writel(SIRFSOC_SPI_FIFO_START,
 652				sspi->base + sspi->regs->txfifo_op);
 653			writel(0, sspi->base + sspi->regs->int_en);
 654			writel(readl(sspi->base + sspi->regs->int_st),
 655				sspi->base + sspi->regs->int_st);
 656			writel(readl(sspi->base + sspi->regs->spi_ctrl) |
 657				SIRFSOC_SPI_MUL_DAT_MODE |
 658				SIRFSOC_SPI_ENA_AUTO_CLR,
 659				sspi->base + sspi->regs->spi_ctrl);
 660			data_units = sspi->fifo_size / sspi->word_width;
 661			writel(min(sspi->left_tx_word, data_units) - 1,
 662				sspi->base + sspi->regs->tx_dma_io_len);
 663			writel(min(sspi->left_rx_word, data_units) - 1,
 664				sspi->base + sspi->regs->rx_dma_io_len);
 665			break;
 666		}
 667		while (!((readl(sspi->base + sspi->regs->txfifo_st)
 668			& SIRFSOC_SPI_FIFO_FULL_MASK(sspi))) &&
 669			sspi->left_tx_word)
 670			sspi->tx_word(sspi);
 671		writel(SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN |
 672			SIRFSOC_SPI_TX_UFLOW_INT_EN |
 673			SIRFSOC_SPI_RX_OFLOW_INT_EN |
 674			SIRFSOC_SPI_RX_IO_DMA_INT_EN,
 675			sspi->base + sspi->regs->int_en);
 676		writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
 677			sspi->base + sspi->regs->tx_rx_en);
 678		if (sspi->type == SIRF_USP_SPI_P2 ||
 679			sspi->type == SIRF_USP_SPI_A7) {
 680			writel(SIRFSOC_SPI_FIFO_START,
 681				sspi->base + sspi->regs->rxfifo_op);
 682			writel(SIRFSOC_SPI_FIFO_START,
 683				sspi->base + sspi->regs->txfifo_op);
 684		}
 685		if (!wait_for_completion_timeout(&sspi->tx_done, timeout) ||
 686			!wait_for_completion_timeout(&sspi->rx_done, timeout)) {
 687			dev_err(&spi->dev, "transfer timeout\n");
 688			if (sspi->type == SIRF_USP_SPI_P2 ||
 689				sspi->type == SIRF_USP_SPI_A7)
 690				writel(0, sspi->base + sspi->regs->tx_rx_en);
 691			break;
 692		}
 693		while (!((readl(sspi->base + sspi->regs->rxfifo_st)
 694			& SIRFSOC_SPI_FIFO_EMPTY_MASK(sspi))) &&
 695			sspi->left_rx_word)
 696			sspi->rx_word(sspi);
 697		if (sspi->type == SIRF_USP_SPI_P2 ||
 698			sspi->type == SIRF_USP_SPI_A7)
 699			writel(0, sspi->base + sspi->regs->tx_rx_en);
 700		writel(0, sspi->base + sspi->regs->rxfifo_op);
 701		writel(0, sspi->base + sspi->regs->txfifo_op);
 702	} while (sspi->left_tx_word != 0 || sspi->left_rx_word != 0);
 703}
 704
 705static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
 706{
 707	struct sirfsoc_spi *sspi;
 708
 709	sspi = spi_master_get_devdata(spi->master);
 710	sspi->tx = t->tx_buf;
 711	sspi->rx = t->rx_buf;
 712	sspi->left_tx_word = sspi->left_rx_word = t->len / sspi->word_width;
 713	reinit_completion(&sspi->rx_done);
 714	reinit_completion(&sspi->tx_done);
 715	/*
 716	 * in the transfer, if transfer data using command register with rx_buf
 717	 * null, just fill command data into command register and wait for its
 718	 * completion.
 719	 */
 720	if (sspi->type == SIRF_REAL_SPI && sspi->tx_by_cmd)
 721		spi_sirfsoc_cmd_transfer(spi, t);
 722	else if (IS_DMA_VALID(t))
 723		spi_sirfsoc_dma_transfer(spi, t);
 724	else
 725		spi_sirfsoc_pio_transfer(spi, t);
 726
 727	return t->len - sspi->left_rx_word * sspi->word_width;
 728}
 729
 730static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
 731{
 732	struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);
 733
 734	if (sspi->hw_cs) {
 735		u32 regval;
 736
 737		switch (sspi->type) {
 738		case SIRF_REAL_SPI:
 739			regval = readl(sspi->base + sspi->regs->spi_ctrl);
 740			switch (value) {
 741			case BITBANG_CS_ACTIVE:
 742				if (spi->mode & SPI_CS_HIGH)
 743					regval |= SIRFSOC_SPI_CS_IO_OUT;
 744				else
 745					regval &= ~SIRFSOC_SPI_CS_IO_OUT;
 746				break;
 747			case BITBANG_CS_INACTIVE:
 748				if (spi->mode & SPI_CS_HIGH)
 749					regval &= ~SIRFSOC_SPI_CS_IO_OUT;
 750				else
 751					regval |= SIRFSOC_SPI_CS_IO_OUT;
 752				break;
 753			}
 754			writel(regval, sspi->base + sspi->regs->spi_ctrl);
 755			break;
 756		case SIRF_USP_SPI_P2:
 757		case SIRF_USP_SPI_A7:
 758			regval = readl(sspi->base +
 759					sspi->regs->usp_pin_io_data);
 760			switch (value) {
 761			case BITBANG_CS_ACTIVE:
 762				if (spi->mode & SPI_CS_HIGH)
 763					regval |= SIRFSOC_USP_CS_HIGH_VALUE;
 764				else
 765					regval &= ~(SIRFSOC_USP_CS_HIGH_VALUE);
 766				break;
 767			case BITBANG_CS_INACTIVE:
 768				if (spi->mode & SPI_CS_HIGH)
 769					regval &= ~(SIRFSOC_USP_CS_HIGH_VALUE);
 770				else
 771					regval |= SIRFSOC_USP_CS_HIGH_VALUE;
 772				break;
 773			}
 774			writel(regval,
 775				sspi->base + sspi->regs->usp_pin_io_data);
 776			break;
 777		}
 778	} else {
 779		switch (value) {
 780		case BITBANG_CS_ACTIVE:
 781			gpio_direction_output(spi->cs_gpio,
 782					spi->mode & SPI_CS_HIGH ? 1 : 0);
 
 
 783			break;
 784		case BITBANG_CS_INACTIVE:
 785			gpio_direction_output(spi->cs_gpio,
 786					spi->mode & SPI_CS_HIGH ? 0 : 1);
 
 
 787			break;
 788		}
 789	}
 790}
 791
 792static int spi_sirfsoc_config_mode(struct spi_device *spi)
 793{
 794	struct sirfsoc_spi *sspi;
 795	u32 regval, usp_mode1;
 796
 797	sspi = spi_master_get_devdata(spi->master);
 798	regval = readl(sspi->base + sspi->regs->spi_ctrl);
 799	usp_mode1 = readl(sspi->base + sspi->regs->usp_mode1);
 800	if (!(spi->mode & SPI_CS_HIGH)) {
 801		regval |= SIRFSOC_SPI_CS_IDLE_STAT;
 802		usp_mode1 &= ~SIRFSOC_USP_CS_HIGH_VALID;
 803	} else {
 804		regval &= ~SIRFSOC_SPI_CS_IDLE_STAT;
 805		usp_mode1 |= SIRFSOC_USP_CS_HIGH_VALID;
 806	}
 807	if (!(spi->mode & SPI_LSB_FIRST)) {
 808		regval |= SIRFSOC_SPI_TRAN_MSB;
 809		usp_mode1 &= ~SIRFSOC_USP_LSB;
 810	} else {
 811		regval &= ~SIRFSOC_SPI_TRAN_MSB;
 812		usp_mode1 |= SIRFSOC_USP_LSB;
 813	}
 814	if (spi->mode & SPI_CPOL) {
 815		regval |= SIRFSOC_SPI_CLK_IDLE_STAT;
 816		usp_mode1 |= SIRFSOC_USP_SCLK_IDLE_STAT;
 817	} else {
 818		regval &= ~SIRFSOC_SPI_CLK_IDLE_STAT;
 819		usp_mode1 &= ~SIRFSOC_USP_SCLK_IDLE_STAT;
 820	}
 821	/*
 822	 * Data should be driven at least 1/2 cycle before the fetch edge
 823	 * to make sure that data gets stable at the fetch edge.
 824	 */
 825	if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
 826	    (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA))) {
 827		regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
 828		usp_mode1 |= (SIRFSOC_USP_TXD_FALLING_EDGE |
 829				SIRFSOC_USP_RXD_FALLING_EDGE);
 830	} else {
 831		regval |= SIRFSOC_SPI_DRV_POS_EDGE;
 832		usp_mode1 &= ~(SIRFSOC_USP_RXD_FALLING_EDGE |
 833				SIRFSOC_USP_TXD_FALLING_EDGE);
 834	}
 835	writel((SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size - 2) <<
 836		SIRFSOC_SPI_FIFO_SC_OFFSET) |
 837		(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size / 2) <<
 838		SIRFSOC_SPI_FIFO_LC_OFFSET) |
 839		(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, 2) <<
 840		SIRFSOC_SPI_FIFO_HC_OFFSET),
 841		sspi->base + sspi->regs->txfifo_level_chk);
 842	writel((SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, 2) <<
 843		SIRFSOC_SPI_FIFO_SC_OFFSET) |
 844		(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size / 2) <<
 845		SIRFSOC_SPI_FIFO_LC_OFFSET) |
 846		(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size - 2) <<
 847		SIRFSOC_SPI_FIFO_HC_OFFSET),
 848		sspi->base + sspi->regs->rxfifo_level_chk);
 849	/*
 850	 * it should never set to hardware cs mode because in hardware cs mode,
 851	 * cs signal can't controlled by driver.
 852	 */
 853	switch (sspi->type) {
 854	case SIRF_REAL_SPI:
 855		regval |= SIRFSOC_SPI_CS_IO_MODE;
 856		writel(regval, sspi->base + sspi->regs->spi_ctrl);
 857		break;
 858	case SIRF_USP_SPI_P2:
 859	case SIRF_USP_SPI_A7:
 860		usp_mode1 |= SIRFSOC_USP_SYNC_MODE;
 861		usp_mode1 |= SIRFSOC_USP_TFS_IO_MODE;
 862		usp_mode1 &= ~SIRFSOC_USP_TFS_IO_INPUT;
 863		writel(usp_mode1, sspi->base + sspi->regs->usp_mode1);
 864		break;
 865	}
 866
 867	return 0;
 868}
 869
 870static int
 871spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
 872{
 873	struct sirfsoc_spi *sspi;
 874	u8 bits_per_word = 0;
 875	int hz = 0;
 876	u32 regval, txfifo_ctrl, rxfifo_ctrl, tx_frm_ctl, rx_frm_ctl, usp_mode2;
 
 
 877
 878	sspi = spi_master_get_devdata(spi->master);
 879
 880	bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
 
 881	hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;
 882
 883	usp_mode2 = regval = (sspi->ctrl_freq / (2 * hz)) - 1;
 
 
 
 
 884	if (regval > 0xFFFF || regval < 0) {
 885		dev_err(&spi->dev, "Speed %d not supported\n", hz);
 886		return -EINVAL;
 887	}
 
 888	switch (bits_per_word) {
 889	case 8:
 890		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
 891		sspi->rx_word = spi_sirfsoc_rx_word_u8;
 892		sspi->tx_word = spi_sirfsoc_tx_word_u8;
 
 
 
 
 893		break;
 894	case 12:
 895	case 16:
 896		regval |= (bits_per_word ==  12) ?
 897			SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
 898			SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
 899		sspi->rx_word = spi_sirfsoc_rx_word_u16;
 900		sspi->tx_word = spi_sirfsoc_tx_word_u16;
 
 
 
 
 901		break;
 902	case 32:
 903		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
 904		sspi->rx_word = spi_sirfsoc_rx_word_u32;
 905		sspi->tx_word = spi_sirfsoc_tx_word_u32;
 
 
 
 
 906		break;
 907	default:
 908		dev_err(&spi->dev, "bpw %d not supported\n", bits_per_word);
 
 909		return -EINVAL;
 910	}
 911	sspi->word_width = DIV_ROUND_UP(bits_per_word, 8);
 912	txfifo_ctrl = (((sspi->fifo_size / 2) &
 913			SIRFSOC_SPI_FIFO_THD_MASK(sspi))
 914			<< SIRFSOC_SPI_FIFO_THD_OFFSET) |
 915			(sspi->word_width >> 1);
 916	rxfifo_ctrl = (((sspi->fifo_size / 2) &
 917			SIRFSOC_SPI_FIFO_THD_MASK(sspi))
 918			<< SIRFSOC_SPI_FIFO_THD_OFFSET) |
 919			(sspi->word_width >> 1);
 920	writel(txfifo_ctrl, sspi->base + sspi->regs->txfifo_ctrl);
 921	writel(rxfifo_ctrl, sspi->base + sspi->regs->rxfifo_ctrl);
 922	if (sspi->type == SIRF_USP_SPI_P2 ||
 923		sspi->type == SIRF_USP_SPI_A7) {
 924		tx_frm_ctl = 0;
 925		tx_frm_ctl |= ((bits_per_word - 1) & SIRFSOC_USP_TX_DATA_MASK)
 926				<< SIRFSOC_USP_TX_DATA_OFFSET;
 927		tx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_TXD_DELAY_LEN
 928				- 1) & SIRFSOC_USP_TX_SYNC_MASK) <<
 929				SIRFSOC_USP_TX_SYNC_OFFSET;
 930		tx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_TXD_DELAY_LEN
 931				+ 2 - 1) & SIRFSOC_USP_TX_FRAME_MASK) <<
 932				SIRFSOC_USP_TX_FRAME_OFFSET;
 933		tx_frm_ctl |= ((bits_per_word - 1) &
 934				SIRFSOC_USP_TX_SHIFTER_MASK) <<
 935				SIRFSOC_USP_TX_SHIFTER_OFFSET;
 936		rx_frm_ctl = 0;
 937		rx_frm_ctl |= ((bits_per_word - 1) & SIRFSOC_USP_RX_DATA_MASK)
 938				<< SIRFSOC_USP_RX_DATA_OFFSET;
 939		rx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_RXD_DELAY_LEN
 940				+ 2 - 1) & SIRFSOC_USP_RX_FRAME_MASK) <<
 941				SIRFSOC_USP_RX_FRAME_OFFSET;
 942		rx_frm_ctl |= ((bits_per_word - 1)
 943				& SIRFSOC_USP_RX_SHIFTER_MASK) <<
 944				SIRFSOC_USP_RX_SHIFTER_OFFSET;
 945		writel(tx_frm_ctl | (((usp_mode2 >> 10) &
 946			SIRFSOC_USP_CLK_10_11_MASK) <<
 947			SIRFSOC_USP_CLK_10_11_OFFSET),
 948			sspi->base + sspi->regs->usp_tx_frame_ctrl);
 949		writel(rx_frm_ctl | (((usp_mode2 >> 12) &
 950			SIRFSOC_USP_CLK_12_15_MASK) <<
 951			SIRFSOC_USP_CLK_12_15_OFFSET),
 952			sspi->base + sspi->regs->usp_rx_frame_ctrl);
 953		writel(readl(sspi->base + sspi->regs->usp_mode2) |
 954			((usp_mode2 & SIRFSOC_USP_CLK_DIVISOR_MASK) <<
 955			SIRFSOC_USP_CLK_DIVISOR_OFFSET) |
 956			(SIRFSOC_USP_RXD_DELAY_LEN <<
 957			 SIRFSOC_USP_RXD_DELAY_OFFSET) |
 958			(SIRFSOC_USP_TXD_DELAY_LEN <<
 959			 SIRFSOC_USP_TXD_DELAY_OFFSET),
 960			sspi->base + sspi->regs->usp_mode2);
 961	}
 962	if (sspi->type == SIRF_REAL_SPI)
 963		writel(regval, sspi->base + sspi->regs->spi_ctrl);
 964	spi_sirfsoc_config_mode(spi);
 965	if (sspi->type == SIRF_REAL_SPI) {
 966		if (t && t->tx_buf && !t->rx_buf &&
 967			(t->len <= SIRFSOC_MAX_CMD_BYTES)) {
 968			sspi->tx_by_cmd = true;
 969			writel(readl(sspi->base + sspi->regs->spi_ctrl) |
 970				(SIRFSOC_SPI_CMD_BYTE_NUM((t->len - 1)) |
 971				SIRFSOC_SPI_CMD_MODE),
 972				sspi->base + sspi->regs->spi_ctrl);
 973		} else {
 974			sspi->tx_by_cmd = false;
 975			writel(readl(sspi->base + sspi->regs->spi_ctrl) &
 976				~SIRFSOC_SPI_CMD_MODE,
 977				sspi->base + sspi->regs->spi_ctrl);
 978		}
 979	}
 980	if (IS_DMA_VALID(t)) {
 981		/* Enable DMA mode for RX, TX */
 982		writel(0, sspi->base + sspi->regs->tx_dma_io_ctrl);
 983		writel(SIRFSOC_SPI_RX_DMA_FLUSH,
 984			sspi->base + sspi->regs->rx_dma_io_ctrl);
 985	} else {
 986		/* Enable IO mode for RX, TX */
 987		writel(SIRFSOC_SPI_IO_MODE_SEL,
 988			sspi->base + sspi->regs->tx_dma_io_ctrl);
 989		writel(SIRFSOC_SPI_IO_MODE_SEL,
 990			sspi->base + sspi->regs->rx_dma_io_ctrl);
 991	}
 992	return 0;
 993}
 994
 995static int spi_sirfsoc_setup(struct spi_device *spi)
 996{
 997	struct sirfsoc_spi *sspi;
 998	int ret = 0;
 
 
 999
1000	sspi = spi_master_get_devdata(spi->master);
1001	if (spi->cs_gpio == -ENOENT)
1002		sspi->hw_cs = true;
1003	else {
1004		sspi->hw_cs = false;
1005		if (!spi_get_ctldata(spi)) {
1006			void *cs = kmalloc(sizeof(int), GFP_KERNEL);
1007			if (!cs) {
1008				ret = -ENOMEM;
1009				goto exit;
1010			}
1011			ret = gpio_is_valid(spi->cs_gpio);
1012			if (!ret) {
1013				dev_err(&spi->dev, "no valid gpio\n");
1014				ret = -ENOENT;
1015				goto exit;
1016			}
1017			ret = gpio_request(spi->cs_gpio, DRIVER_NAME);
1018			if (ret) {
1019				dev_err(&spi->dev, "failed to request gpio\n");
1020				goto exit;
1021			}
1022			spi_set_ctldata(spi, cs);
1023		}
1024	}
1025	spi_sirfsoc_config_mode(spi);
1026	spi_sirfsoc_chipselect(spi, BITBANG_CS_INACTIVE);
1027exit:
1028	return ret;
1029}
1030
1031static void spi_sirfsoc_cleanup(struct spi_device *spi)
1032{
1033	if (spi_get_ctldata(spi)) {
1034		gpio_free(spi->cs_gpio);
1035		kfree(spi_get_ctldata(spi));
1036	}
1037}
1038
1039static const struct sirf_spi_comp_data sirf_real_spi = {
1040	.regs = &real_spi_register,
1041	.type = SIRF_REAL_SPI,
1042	.dat_max_frm_len = 64 * 1024,
1043	.fifo_size = 256,
1044};
1045
1046static const struct sirf_spi_comp_data sirf_usp_spi_p2 = {
1047	.regs = &usp_spi_register,
1048	.type = SIRF_USP_SPI_P2,
1049	.dat_max_frm_len = 1024 * 1024,
1050	.fifo_size = 128,
1051	.hwinit = sirfsoc_usp_hwinit,
1052};
1053
1054static const struct sirf_spi_comp_data sirf_usp_spi_a7 = {
1055	.regs = &usp_spi_register,
1056	.type = SIRF_USP_SPI_A7,
1057	.dat_max_frm_len = 1024 * 1024,
1058	.fifo_size = 512,
1059	.hwinit = sirfsoc_usp_hwinit,
1060};
1061
1062static const struct of_device_id spi_sirfsoc_of_match[] = {
1063	{ .compatible = "sirf,prima2-spi", .data = &sirf_real_spi},
1064	{ .compatible = "sirf,prima2-usp-spi", .data = &sirf_usp_spi_p2},
1065	{ .compatible = "sirf,atlas7-usp-spi", .data = &sirf_usp_spi_a7},
1066	{}
1067};
1068MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match);
1069
1070static int spi_sirfsoc_probe(struct platform_device *pdev)
1071{
1072	struct sirfsoc_spi *sspi;
1073	struct spi_master *master;
1074	struct resource *mem_res;
1075	const struct sirf_spi_comp_data *spi_comp_data;
1076	int irq;
1077	int ret;
1078	const struct of_device_id *match;
1079
1080	ret = device_reset(&pdev->dev);
1081	if (ret) {
1082		dev_err(&pdev->dev, "SPI reset failed!\n");
1083		return ret;
 
1084	}
1085
1086	master = spi_alloc_master(&pdev->dev, sizeof(*sspi));
1087	if (!master) {
1088		dev_err(&pdev->dev, "Unable to allocate SPI master\n");
1089		return -ENOMEM;
1090	}
1091	match = of_match_node(spi_sirfsoc_of_match, pdev->dev.of_node);
1092	platform_set_drvdata(pdev, master);
1093	sspi = spi_master_get_devdata(master);
1094	sspi->fifo_full_offset = ilog2(sspi->fifo_size);
1095	spi_comp_data = match->data;
1096	sspi->regs = spi_comp_data->regs;
1097	sspi->type = spi_comp_data->type;
1098	sspi->fifo_level_chk_mask = (sspi->fifo_size / 4) - 1;
1099	sspi->dat_max_frm_len = spi_comp_data->dat_max_frm_len;
1100	sspi->fifo_size = spi_comp_data->fifo_size;
1101	mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1102	sspi->base = devm_ioremap_resource(&pdev->dev, mem_res);
1103	if (IS_ERR(sspi->base)) {
1104		ret = PTR_ERR(sspi->base);
1105		goto free_master;
1106	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107	irq = platform_get_irq(pdev, 0);
1108	if (irq < 0) {
1109		ret = -ENXIO;
1110		goto free_master;
1111	}
1112	ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
1113				DRIVER_NAME, sspi);
1114	if (ret)
1115		goto free_master;
1116
1117	sspi->bitbang.master = master;
1118	sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
1119	sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
1120	sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
1121	sspi->bitbang.master->setup = spi_sirfsoc_setup;
1122	sspi->bitbang.master->cleanup = spi_sirfsoc_cleanup;
1123	master->bus_num = pdev->id;
1124	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH;
1125	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(12) |
1126					SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
1127	master->max_speed_hz = SIRFSOC_SPI_DEFAULT_FRQ;
1128	master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
1129	sspi->bitbang.master->dev.of_node = pdev->dev.of_node;
1130
1131	/* request DMA channels */
1132	sspi->rx_chan = dma_request_slave_channel(&pdev->dev, "rx");
1133	if (!sspi->rx_chan) {
1134		dev_err(&pdev->dev, "can not allocate rx dma channel\n");
1135		ret = -ENODEV;
1136		goto free_master;
1137	}
1138	sspi->tx_chan = dma_request_slave_channel(&pdev->dev, "tx");
1139	if (!sspi->tx_chan) {
1140		dev_err(&pdev->dev, "can not allocate tx dma channel\n");
1141		ret = -ENODEV;
1142		goto free_rx_dma;
1143	}
1144
1145	sspi->clk = clk_get(&pdev->dev, NULL);
1146	if (IS_ERR(sspi->clk)) {
1147		ret = PTR_ERR(sspi->clk);
1148		goto free_tx_dma;
1149	}
1150	clk_prepare_enable(sspi->clk);
1151	if (spi_comp_data->hwinit)
1152		spi_comp_data->hwinit(sspi);
1153	sspi->ctrl_freq = clk_get_rate(sspi->clk);
1154
1155	init_completion(&sspi->rx_done);
1156	init_completion(&sspi->tx_done);
 
 
 
 
 
 
 
 
 
1157
1158	ret = spi_bitbang_start(&sspi->bitbang);
1159	if (ret)
1160		goto free_clk;
1161	dev_info(&pdev->dev, "registered, bus number = %d\n", master->bus_num);
 
1162
1163	return 0;
 
1164free_clk:
1165	clk_disable_unprepare(sspi->clk);
1166	clk_put(sspi->clk);
1167free_tx_dma:
1168	dma_release_channel(sspi->tx_chan);
1169free_rx_dma:
1170	dma_release_channel(sspi->rx_chan);
1171free_master:
1172	spi_master_put(master);
1173
1174	return ret;
1175}
1176
1177static int  spi_sirfsoc_remove(struct platform_device *pdev)
1178{
1179	struct spi_master *master;
1180	struct sirfsoc_spi *sspi;
 
1181
1182	master = platform_get_drvdata(pdev);
1183	sspi = spi_master_get_devdata(master);
 
1184	spi_bitbang_stop(&sspi->bitbang);
1185	clk_disable_unprepare(sspi->clk);
 
 
 
 
1186	clk_put(sspi->clk);
1187	dma_release_channel(sspi->rx_chan);
1188	dma_release_channel(sspi->tx_chan);
1189	spi_master_put(master);
1190	return 0;
1191}
1192
1193#ifdef CONFIG_PM_SLEEP
1194static int spi_sirfsoc_suspend(struct device *dev)
1195{
1196	struct spi_master *master = dev_get_drvdata(dev);
 
1197	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
1198	int ret;
1199
1200	ret = spi_master_suspend(master);
1201	if (ret)
1202		return ret;
1203
1204	clk_disable(sspi->clk);
1205	return 0;
1206}
1207
1208static int spi_sirfsoc_resume(struct device *dev)
1209{
1210	struct spi_master *master = dev_get_drvdata(dev);
 
1211	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
1212
1213	clk_enable(sspi->clk);
1214	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op);
1215	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->rxfifo_op);
1216	writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->txfifo_op);
1217	writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->rxfifo_op);
 
1218	return 0;
1219}
 
 
 
 
 
1220#endif
1221
1222static SIMPLE_DEV_PM_OPS(spi_sirfsoc_pm_ops, spi_sirfsoc_suspend,
1223			 spi_sirfsoc_resume);
 
 
 
1224
1225static struct platform_driver spi_sirfsoc_driver = {
1226	.driver = {
1227		.name = DRIVER_NAME,
 
 
1228		.pm     = &spi_sirfsoc_pm_ops,
 
1229		.of_match_table = spi_sirfsoc_of_match,
1230	},
1231	.probe = spi_sirfsoc_probe,
1232	.remove = spi_sirfsoc_remove,
1233};
1234module_platform_driver(spi_sirfsoc_driver);
 
1235MODULE_DESCRIPTION("SiRF SoC SPI master driver");
1236MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>");
1237MODULE_AUTHOR("Barry Song <Baohua.Song@csr.com>");
1238MODULE_AUTHOR("Qipan Li <Qipan.Li@csr.com>");
1239MODULE_LICENSE("GPL v2");