Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * SuperH Timer Support - TMU
  3 *
  4 *  Copyright (C) 2009 Magnus Damm
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License as published by
  8 * the Free Software Foundation; either version 2 of the License
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write to the Free Software
 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 18 */
 19
 
 
 
 
 
 20#include <linux/init.h>
 21#include <linux/platform_device.h>
 22#include <linux/spinlock.h>
 23#include <linux/interrupt.h>
 24#include <linux/ioport.h>
 25#include <linux/delay.h>
 26#include <linux/io.h>
 27#include <linux/clk.h>
 28#include <linux/irq.h>
 29#include <linux/err.h>
 30#include <linux/clocksource.h>
 31#include <linux/clockchips.h>
 32#include <linux/sh_timer.h>
 33#include <linux/slab.h>
 34#include <linux/module.h>
 
 
 35#include <linux/pm_domain.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36
 37struct sh_tmu_priv {
 38	void __iomem *mapbase;
 39	struct clk *clk;
 40	struct irqaction irqaction;
 41	struct platform_device *pdev;
 42	unsigned long rate;
 43	unsigned long periodic;
 44	struct clock_event_device ced;
 45	struct clocksource cs;
 
 
 46};
 47
 48static DEFINE_RAW_SPINLOCK(sh_tmu_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 49
 50#define TSTR -1 /* shared register */
 51#define TCOR  0 /* channel register */
 52#define TCNT 1 /* channel register */
 53#define TCR 2 /* channel register */
 54
 55static inline unsigned long sh_tmu_read(struct sh_tmu_priv *p, int reg_nr)
 
 
 
 
 
 
 
 
 
 56{
 57	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
 58	void __iomem *base = p->mapbase;
 59	unsigned long offs;
 60
 61	if (reg_nr == TSTR)
 62		return ioread8(base - cfg->channel_offset);
 
 
 
 
 
 
 63
 64	offs = reg_nr << 2;
 65
 66	if (reg_nr == TCR)
 67		return ioread16(base + offs);
 68	else
 69		return ioread32(base + offs);
 70}
 71
 72static inline void sh_tmu_write(struct sh_tmu_priv *p, int reg_nr,
 73				unsigned long value)
 74{
 75	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
 76	void __iomem *base = p->mapbase;
 77	unsigned long offs;
 78
 79	if (reg_nr == TSTR) {
 80		iowrite8(value, base - cfg->channel_offset);
 81		return;
 
 
 
 
 82	}
 83
 84	offs = reg_nr << 2;
 85
 86	if (reg_nr == TCR)
 87		iowrite16(value, base + offs);
 88	else
 89		iowrite32(value, base + offs);
 90}
 91
 92static void sh_tmu_start_stop_ch(struct sh_tmu_priv *p, int start)
 93{
 94	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
 95	unsigned long flags, value;
 96
 97	/* start stop register shared by multiple timer channels */
 98	raw_spin_lock_irqsave(&sh_tmu_lock, flags);
 99	value = sh_tmu_read(p, TSTR);
100
101	if (start)
102		value |= 1 << cfg->timer_bit;
103	else
104		value &= ~(1 << cfg->timer_bit);
105
106	sh_tmu_write(p, TSTR, value);
107	raw_spin_unlock_irqrestore(&sh_tmu_lock, flags);
108}
109
110static int sh_tmu_enable(struct sh_tmu_priv *p)
111{
112	int ret;
113
114	/* enable clock */
115	ret = clk_enable(p->clk);
116	if (ret) {
117		dev_err(&p->pdev->dev, "cannot enable clock\n");
 
118		return ret;
119	}
120
121	/* make sure channel is disabled */
122	sh_tmu_start_stop_ch(p, 0);
123
124	/* maximum timeout */
125	sh_tmu_write(p, TCOR, 0xffffffff);
126	sh_tmu_write(p, TCNT, 0xffffffff);
127
128	/* configure channel to parent clock / 4, irq off */
129	p->rate = clk_get_rate(p->clk) / 4;
130	sh_tmu_write(p, TCR, 0x0000);
131
132	/* enable channel */
133	sh_tmu_start_stop_ch(p, 1);
134
135	return 0;
136}
137
138static void sh_tmu_disable(struct sh_tmu_priv *p)
 
 
 
 
 
 
 
 
 
 
 
139{
140	/* disable channel */
141	sh_tmu_start_stop_ch(p, 0);
142
143	/* disable interrupts in TMU block */
144	sh_tmu_write(p, TCR, 0x0000);
145
146	/* stop clock */
147	clk_disable(p->clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148}
149
150static void sh_tmu_set_next(struct sh_tmu_priv *p, unsigned long delta,
151			    int periodic)
152{
153	/* stop timer */
154	sh_tmu_start_stop_ch(p, 0);
155
156	/* acknowledge interrupt */
157	sh_tmu_read(p, TCR);
158
159	/* enable interrupt */
160	sh_tmu_write(p, TCR, 0x0020);
161
162	/* reload delta value in case of periodic timer */
163	if (periodic)
164		sh_tmu_write(p, TCOR, delta);
165	else
166		sh_tmu_write(p, TCOR, 0xffffffff);
167
168	sh_tmu_write(p, TCNT, delta);
169
170	/* start timer */
171	sh_tmu_start_stop_ch(p, 1);
172}
173
174static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
175{
176	struct sh_tmu_priv *p = dev_id;
177
178	/* disable or acknowledge interrupt */
179	if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT)
180		sh_tmu_write(p, TCR, 0x0000);
181	else
182		sh_tmu_write(p, TCR, 0x0020);
183
184	/* notify clockevent layer */
185	p->ced.event_handler(&p->ced);
186	return IRQ_HANDLED;
187}
188
189static struct sh_tmu_priv *cs_to_sh_tmu(struct clocksource *cs)
190{
191	return container_of(cs, struct sh_tmu_priv, cs);
192}
193
194static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
195{
196	struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
197
198	return sh_tmu_read(p, TCNT) ^ 0xffffffff;
199}
200
201static int sh_tmu_clocksource_enable(struct clocksource *cs)
202{
203	struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
204	int ret;
205
206	ret = sh_tmu_enable(p);
 
 
 
207	if (!ret)
208		__clocksource_updatefreq_hz(cs, p->rate);
 
209	return ret;
210}
211
212static void sh_tmu_clocksource_disable(struct clocksource *cs)
213{
214	sh_tmu_disable(cs_to_sh_tmu(cs));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215}
216
217static int sh_tmu_register_clocksource(struct sh_tmu_priv *p,
218				       char *name, unsigned long rating)
219{
220	struct clocksource *cs = &p->cs;
221
222	cs->name = name;
223	cs->rating = rating;
224	cs->read = sh_tmu_clocksource_read;
225	cs->enable = sh_tmu_clocksource_enable;
226	cs->disable = sh_tmu_clocksource_disable;
 
 
227	cs->mask = CLOCKSOURCE_MASK(32);
228	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
229
230	dev_info(&p->pdev->dev, "used as clock source\n");
 
231
232	/* Register with dummy 1 Hz value, gets updated in ->enable() */
233	clocksource_register_hz(cs, 1);
234	return 0;
235}
236
237static struct sh_tmu_priv *ced_to_sh_tmu(struct clock_event_device *ced)
238{
239	return container_of(ced, struct sh_tmu_priv, ced);
240}
241
242static void sh_tmu_clock_event_start(struct sh_tmu_priv *p, int periodic)
243{
244	struct clock_event_device *ced = &p->ced;
245
246	sh_tmu_enable(p);
247
248	clockevents_config(ced, p->rate);
249
250	if (periodic) {
251		p->periodic = (p->rate + HZ/2) / HZ;
252		sh_tmu_set_next(p, p->periodic, 1);
253	}
254}
255
256static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
257				    struct clock_event_device *ced)
 
 
 
 
 
 
 
 
 
258{
259	struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
260	int disabled = 0;
261
262	/* deal with old setting first */
263	switch (ced->mode) {
264	case CLOCK_EVT_MODE_PERIODIC:
265	case CLOCK_EVT_MODE_ONESHOT:
266		sh_tmu_disable(p);
267		disabled = 1;
268		break;
269	default:
270		break;
271	}
272
273	switch (mode) {
274	case CLOCK_EVT_MODE_PERIODIC:
275		dev_info(&p->pdev->dev, "used for periodic clock events\n");
276		sh_tmu_clock_event_start(p, 1);
277		break;
278	case CLOCK_EVT_MODE_ONESHOT:
279		dev_info(&p->pdev->dev, "used for oneshot clock events\n");
280		sh_tmu_clock_event_start(p, 0);
281		break;
282	case CLOCK_EVT_MODE_UNUSED:
283		if (!disabled)
284			sh_tmu_disable(p);
285		break;
286	case CLOCK_EVT_MODE_SHUTDOWN:
287	default:
288		break;
289	}
290}
291
292static int sh_tmu_clock_event_next(unsigned long delta,
293				   struct clock_event_device *ced)
294{
295	struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
296
297	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
298
299	/* program new delta value */
300	sh_tmu_set_next(p, delta, 0);
301	return 0;
302}
303
304static void sh_tmu_register_clockevent(struct sh_tmu_priv *p,
305				       char *name, unsigned long rating)
306{
307	struct clock_event_device *ced = &p->ced;
308	int ret;
309
310	memset(ced, 0, sizeof(*ced));
 
 
 
 
 
 
 
 
 
311
312	ced->name = name;
313	ced->features = CLOCK_EVT_FEAT_PERIODIC;
314	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
315	ced->rating = rating;
316	ced->cpumask = cpumask_of(0);
317	ced->set_next_event = sh_tmu_clock_event_next;
318	ced->set_mode = sh_tmu_clock_event_mode;
319
320	dev_info(&p->pdev->dev, "used for clock events\n");
321
322	clockevents_config_and_register(ced, 1, 0x300, 0xffffffff);
323
324	ret = setup_irq(p->irqaction.irq, &p->irqaction);
 
 
 
 
 
 
 
325	if (ret) {
326		dev_err(&p->pdev->dev, "failed to request irq %d\n",
327			p->irqaction.irq);
328		return;
329	}
330}
331
332static int sh_tmu_register(struct sh_tmu_priv *p, char *name,
333		    unsigned long clockevent_rating,
334		    unsigned long clocksource_rating)
335{
336	if (clockevent_rating)
337		sh_tmu_register_clockevent(p, name, clockevent_rating);
338	else if (clocksource_rating)
339		sh_tmu_register_clocksource(p, name, clocksource_rating);
 
 
340
341	return 0;
342}
343
344static int sh_tmu_setup(struct sh_tmu_priv *p, struct platform_device *pdev)
 
 
345{
346	struct sh_timer_config *cfg = pdev->dev.platform_data;
347	struct resource *res;
348	int irq, ret;
349	ret = -ENXIO;
350
351	memset(p, 0, sizeof(*p));
352	p->pdev = pdev;
353
354	if (!cfg) {
355		dev_err(&p->pdev->dev, "missing platform data\n");
356		goto err0;
 
 
 
 
 
 
 
357	}
358
359	platform_set_drvdata(pdev, p);
 
 
 
 
 
 
 
 
 
360
361	res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
362	if (!res) {
363		dev_err(&p->pdev->dev, "failed to get I/O memory\n");
364		goto err0;
365	}
366
367	irq = platform_get_irq(p->pdev, 0);
368	if (irq < 0) {
369		dev_err(&p->pdev->dev, "failed to get irq\n");
370		goto err0;
371	}
372
373	/* map memory, let mapbase point to our channel */
374	p->mapbase = ioremap_nocache(res->start, resource_size(res));
375	if (p->mapbase == NULL) {
376		dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
377		goto err0;
378	}
379
380	/* setup data for setup_irq() (too early for request_irq()) */
381	p->irqaction.name = dev_name(&p->pdev->dev);
382	p->irqaction.handler = sh_tmu_interrupt;
383	p->irqaction.dev_id = p;
384	p->irqaction.irq = irq;
385	p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
386			     IRQF_IRQPOLL  | IRQF_NOBALANCING;
387
388	/* get hold of clock */
389	p->clk = clk_get(&p->pdev->dev, "tmu_fck");
390	if (IS_ERR(p->clk)) {
391		dev_err(&p->pdev->dev, "cannot get clock\n");
392		ret = PTR_ERR(p->clk);
393		goto err1;
394	}
395
396	return sh_tmu_register(p, (char *)dev_name(&p->pdev->dev),
397			       cfg->clockevent_rating,
398			       cfg->clocksource_rating);
399 err1:
400	iounmap(p->mapbase);
401 err0:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
402	return ret;
403}
404
405static int __devinit sh_tmu_probe(struct platform_device *pdev)
406{
407	struct sh_tmu_priv *p = platform_get_drvdata(pdev);
408	int ret;
409
410	if (!is_early_platform_device(pdev))
411		pm_genpd_dev_always_on(&pdev->dev, true);
 
 
412
413	if (p) {
414		dev_info(&pdev->dev, "kept as earlytimer\n");
415		return 0;
416	}
417
418	p = kmalloc(sizeof(*p), GFP_KERNEL);
419	if (p == NULL) {
420		dev_err(&pdev->dev, "failed to allocate driver data\n");
421		return -ENOMEM;
422	}
423
424	ret = sh_tmu_setup(p, pdev);
425	if (ret) {
426		kfree(p);
427		platform_set_drvdata(pdev, NULL);
 
428	}
429	return ret;
 
 
 
 
 
 
 
 
 
430}
431
432static int __devexit sh_tmu_remove(struct platform_device *pdev)
433{
434	return -EBUSY; /* cannot unregister clockevent and clocksource */
435}
436
 
 
 
 
 
 
 
 
 
 
 
 
 
437static struct platform_driver sh_tmu_device_driver = {
438	.probe		= sh_tmu_probe,
439	.remove		= __devexit_p(sh_tmu_remove),
440	.driver		= {
441		.name	= "sh_tmu",
442	}
 
 
443};
444
445static int __init sh_tmu_init(void)
446{
447	return platform_driver_register(&sh_tmu_device_driver);
448}
449
450static void __exit sh_tmu_exit(void)
451{
452	platform_driver_unregister(&sh_tmu_device_driver);
453}
454
455early_platform_init("earlytimer", &sh_tmu_device_driver);
456module_init(sh_tmu_init);
457module_exit(sh_tmu_exit);
458
459MODULE_AUTHOR("Magnus Damm");
460MODULE_DESCRIPTION("SuperH TMU Timer Driver");
461MODULE_LICENSE("GPL v2");
v4.17
  1/*
  2 * SuperH Timer Support - TMU
  3 *
  4 *  Copyright (C) 2009 Magnus Damm
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License as published by
  8 * the Free Software Foundation; either version 2 of the License
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 
 
 
 
 14 */
 15
 16#include <linux/clk.h>
 17#include <linux/clockchips.h>
 18#include <linux/clocksource.h>
 19#include <linux/delay.h>
 20#include <linux/err.h>
 21#include <linux/init.h>
 
 
 22#include <linux/interrupt.h>
 
 
 23#include <linux/io.h>
 24#include <linux/ioport.h>
 25#include <linux/irq.h>
 
 
 
 
 
 26#include <linux/module.h>
 27#include <linux/of.h>
 28#include <linux/platform_device.h>
 29#include <linux/pm_domain.h>
 30#include <linux/pm_runtime.h>
 31#include <linux/sh_timer.h>
 32#include <linux/slab.h>
 33#include <linux/spinlock.h>
 34
 35enum sh_tmu_model {
 36	SH_TMU,
 37	SH_TMU_SH3,
 38};
 39
 40struct sh_tmu_device;
 41
 42struct sh_tmu_channel {
 43	struct sh_tmu_device *tmu;
 44	unsigned int index;
 45
 46	void __iomem *base;
 47	int irq;
 48
 
 
 
 
 
 
 49	unsigned long periodic;
 50	struct clock_event_device ced;
 51	struct clocksource cs;
 52	bool cs_enabled;
 53	unsigned int enable_count;
 54};
 55
 56struct sh_tmu_device {
 57	struct platform_device *pdev;
 58
 59	void __iomem *mapbase;
 60	struct clk *clk;
 61	unsigned long rate;
 62
 63	enum sh_tmu_model model;
 64
 65	raw_spinlock_t lock; /* Protect the shared start/stop register */
 66
 67	struct sh_tmu_channel *channels;
 68	unsigned int num_channels;
 69
 70	bool has_clockevent;
 71	bool has_clocksource;
 72};
 73
 74#define TSTR -1 /* shared register */
 75#define TCOR  0 /* channel register */
 76#define TCNT 1 /* channel register */
 77#define TCR 2 /* channel register */
 78
 79#define TCR_UNF			(1 << 8)
 80#define TCR_UNIE		(1 << 5)
 81#define TCR_TPSC_CLK4		(0 << 0)
 82#define TCR_TPSC_CLK16		(1 << 0)
 83#define TCR_TPSC_CLK64		(2 << 0)
 84#define TCR_TPSC_CLK256		(3 << 0)
 85#define TCR_TPSC_CLK1024	(4 << 0)
 86#define TCR_TPSC_MASK		(7 << 0)
 87
 88static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
 89{
 
 
 90	unsigned long offs;
 91
 92	if (reg_nr == TSTR) {
 93		switch (ch->tmu->model) {
 94		case SH_TMU_SH3:
 95			return ioread8(ch->tmu->mapbase + 2);
 96		case SH_TMU:
 97			return ioread8(ch->tmu->mapbase + 4);
 98		}
 99	}
100
101	offs = reg_nr << 2;
102
103	if (reg_nr == TCR)
104		return ioread16(ch->base + offs);
105	else
106		return ioread32(ch->base + offs);
107}
108
109static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
110				unsigned long value)
111{
 
 
112	unsigned long offs;
113
114	if (reg_nr == TSTR) {
115		switch (ch->tmu->model) {
116		case SH_TMU_SH3:
117			return iowrite8(value, ch->tmu->mapbase + 2);
118		case SH_TMU:
119			return iowrite8(value, ch->tmu->mapbase + 4);
120		}
121	}
122
123	offs = reg_nr << 2;
124
125	if (reg_nr == TCR)
126		iowrite16(value, ch->base + offs);
127	else
128		iowrite32(value, ch->base + offs);
129}
130
131static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
132{
 
133	unsigned long flags, value;
134
135	/* start stop register shared by multiple timer channels */
136	raw_spin_lock_irqsave(&ch->tmu->lock, flags);
137	value = sh_tmu_read(ch, TSTR);
138
139	if (start)
140		value |= 1 << ch->index;
141	else
142		value &= ~(1 << ch->index);
143
144	sh_tmu_write(ch, TSTR, value);
145	raw_spin_unlock_irqrestore(&ch->tmu->lock, flags);
146}
147
148static int __sh_tmu_enable(struct sh_tmu_channel *ch)
149{
150	int ret;
151
152	/* enable clock */
153	ret = clk_enable(ch->tmu->clk);
154	if (ret) {
155		dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
156			ch->index);
157		return ret;
158	}
159
160	/* make sure channel is disabled */
161	sh_tmu_start_stop_ch(ch, 0);
162
163	/* maximum timeout */
164	sh_tmu_write(ch, TCOR, 0xffffffff);
165	sh_tmu_write(ch, TCNT, 0xffffffff);
166
167	/* configure channel to parent clock / 4, irq off */
168	sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
 
169
170	/* enable channel */
171	sh_tmu_start_stop_ch(ch, 1);
172
173	return 0;
174}
175
176static int sh_tmu_enable(struct sh_tmu_channel *ch)
177{
178	if (ch->enable_count++ > 0)
179		return 0;
180
181	pm_runtime_get_sync(&ch->tmu->pdev->dev);
182	dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
183
184	return __sh_tmu_enable(ch);
185}
186
187static void __sh_tmu_disable(struct sh_tmu_channel *ch)
188{
189	/* disable channel */
190	sh_tmu_start_stop_ch(ch, 0);
191
192	/* disable interrupts in TMU block */
193	sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
194
195	/* stop clock */
196	clk_disable(ch->tmu->clk);
197}
198
199static void sh_tmu_disable(struct sh_tmu_channel *ch)
200{
201	if (WARN_ON(ch->enable_count == 0))
202		return;
203
204	if (--ch->enable_count > 0)
205		return;
206
207	__sh_tmu_disable(ch);
208
209	dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
210	pm_runtime_put(&ch->tmu->pdev->dev);
211}
212
213static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
214			    int periodic)
215{
216	/* stop timer */
217	sh_tmu_start_stop_ch(ch, 0);
218
219	/* acknowledge interrupt */
220	sh_tmu_read(ch, TCR);
221
222	/* enable interrupt */
223	sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
224
225	/* reload delta value in case of periodic timer */
226	if (periodic)
227		sh_tmu_write(ch, TCOR, delta);
228	else
229		sh_tmu_write(ch, TCOR, 0xffffffff);
230
231	sh_tmu_write(ch, TCNT, delta);
232
233	/* start timer */
234	sh_tmu_start_stop_ch(ch, 1);
235}
236
237static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
238{
239	struct sh_tmu_channel *ch = dev_id;
240
241	/* disable or acknowledge interrupt */
242	if (clockevent_state_oneshot(&ch->ced))
243		sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
244	else
245		sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
246
247	/* notify clockevent layer */
248	ch->ced.event_handler(&ch->ced);
249	return IRQ_HANDLED;
250}
251
252static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
253{
254	return container_of(cs, struct sh_tmu_channel, cs);
255}
256
257static u64 sh_tmu_clocksource_read(struct clocksource *cs)
258{
259	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
260
261	return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
262}
263
264static int sh_tmu_clocksource_enable(struct clocksource *cs)
265{
266	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
267	int ret;
268
269	if (WARN_ON(ch->cs_enabled))
270		return 0;
271
272	ret = sh_tmu_enable(ch);
273	if (!ret)
274		ch->cs_enabled = true;
275
276	return ret;
277}
278
279static void sh_tmu_clocksource_disable(struct clocksource *cs)
280{
281	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
282
283	if (WARN_ON(!ch->cs_enabled))
284		return;
285
286	sh_tmu_disable(ch);
287	ch->cs_enabled = false;
288}
289
290static void sh_tmu_clocksource_suspend(struct clocksource *cs)
291{
292	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
293
294	if (!ch->cs_enabled)
295		return;
296
297	if (--ch->enable_count == 0) {
298		__sh_tmu_disable(ch);
299		pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
300	}
301}
302
303static void sh_tmu_clocksource_resume(struct clocksource *cs)
304{
305	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
306
307	if (!ch->cs_enabled)
308		return;
309
310	if (ch->enable_count++ == 0) {
311		pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
312		__sh_tmu_enable(ch);
313	}
314}
315
316static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
317				       const char *name)
318{
319	struct clocksource *cs = &ch->cs;
320
321	cs->name = name;
322	cs->rating = 200;
323	cs->read = sh_tmu_clocksource_read;
324	cs->enable = sh_tmu_clocksource_enable;
325	cs->disable = sh_tmu_clocksource_disable;
326	cs->suspend = sh_tmu_clocksource_suspend;
327	cs->resume = sh_tmu_clocksource_resume;
328	cs->mask = CLOCKSOURCE_MASK(32);
329	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
330
331	dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
332		 ch->index);
333
334	clocksource_register_hz(cs, ch->tmu->rate);
 
335	return 0;
336}
337
338static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
339{
340	return container_of(ced, struct sh_tmu_channel, ced);
341}
342
343static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
344{
345	sh_tmu_enable(ch);
 
 
 
 
346
347	if (periodic) {
348		ch->periodic = (ch->tmu->rate + HZ/2) / HZ;
349		sh_tmu_set_next(ch, ch->periodic, 1);
350	}
351}
352
353static int sh_tmu_clock_event_shutdown(struct clock_event_device *ced)
354{
355	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
356
357	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
358		sh_tmu_disable(ch);
359	return 0;
360}
361
362static int sh_tmu_clock_event_set_state(struct clock_event_device *ced,
363					int periodic)
364{
365	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
 
366
367	/* deal with old setting first */
368	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
369		sh_tmu_disable(ch);
370
371	dev_info(&ch->tmu->pdev->dev, "ch%u: used for %s clock events\n",
372		 ch->index, periodic ? "periodic" : "oneshot");
373	sh_tmu_clock_event_start(ch, periodic);
374	return 0;
375}
376
377static int sh_tmu_clock_event_set_oneshot(struct clock_event_device *ced)
378{
379	return sh_tmu_clock_event_set_state(ced, 0);
380}
381
382static int sh_tmu_clock_event_set_periodic(struct clock_event_device *ced)
383{
384	return sh_tmu_clock_event_set_state(ced, 1);
 
 
 
 
 
 
 
 
 
 
385}
386
387static int sh_tmu_clock_event_next(unsigned long delta,
388				   struct clock_event_device *ced)
389{
390	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
391
392	BUG_ON(!clockevent_state_oneshot(ced));
393
394	/* program new delta value */
395	sh_tmu_set_next(ch, delta, 0);
396	return 0;
397}
398
399static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
 
400{
401	pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
402}
403
404static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
405{
406	pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
407}
408
409static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
410				       const char *name)
411{
412	struct clock_event_device *ced = &ch->ced;
413	int ret;
414
415	ced->name = name;
416	ced->features = CLOCK_EVT_FEAT_PERIODIC;
417	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
418	ced->rating = 200;
419	ced->cpumask = cpu_possible_mask;
420	ced->set_next_event = sh_tmu_clock_event_next;
421	ced->set_state_shutdown = sh_tmu_clock_event_shutdown;
422	ced->set_state_periodic = sh_tmu_clock_event_set_periodic;
423	ced->set_state_oneshot = sh_tmu_clock_event_set_oneshot;
424	ced->suspend = sh_tmu_clock_event_suspend;
425	ced->resume = sh_tmu_clock_event_resume;
426
427	dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
428		 ch->index);
429
430	clockevents_config_and_register(ced, ch->tmu->rate, 0x300, 0xffffffff);
431
432	ret = request_irq(ch->irq, sh_tmu_interrupt,
433			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
434			  dev_name(&ch->tmu->pdev->dev), ch);
435	if (ret) {
436		dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
437			ch->index, ch->irq);
438		return;
439	}
440}
441
442static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
443			   bool clockevent, bool clocksource)
444{
445	if (clockevent) {
446		ch->tmu->has_clockevent = true;
447		sh_tmu_register_clockevent(ch, name);
448	} else if (clocksource) {
449		ch->tmu->has_clocksource = true;
450		sh_tmu_register_clocksource(ch, name);
451	}
452
453	return 0;
454}
455
456static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
457				bool clockevent, bool clocksource,
458				struct sh_tmu_device *tmu)
459{
460	/* Skip unused channels. */
461	if (!clockevent && !clocksource)
462		return 0;
 
463
464	ch->tmu = tmu;
465	ch->index = index;
466
467	if (tmu->model == SH_TMU_SH3)
468		ch->base = tmu->mapbase + 4 + ch->index * 12;
469	else
470		ch->base = tmu->mapbase + 8 + ch->index * 12;
471
472	ch->irq = platform_get_irq(tmu->pdev, index);
473	if (ch->irq < 0) {
474		dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n",
475			ch->index);
476		return ch->irq;
477	}
478
479	ch->cs_enabled = false;
480	ch->enable_count = 0;
481
482	return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
483			       clockevent, clocksource);
484}
485
486static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
487{
488	struct resource *res;
489
490	res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
491	if (!res) {
492		dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
493		return -ENXIO;
494	}
495
496	tmu->mapbase = ioremap_nocache(res->start, resource_size(res));
497	if (tmu->mapbase == NULL)
498		return -ENXIO;
499
500	return 0;
501}
502
503static int sh_tmu_parse_dt(struct sh_tmu_device *tmu)
504{
505	struct device_node *np = tmu->pdev->dev.of_node;
506
507	tmu->model = SH_TMU;
508	tmu->num_channels = 3;
509
510	of_property_read_u32(np, "#renesas,channels", &tmu->num_channels);
511
512	if (tmu->num_channels != 2 && tmu->num_channels != 3) {
513		dev_err(&tmu->pdev->dev, "invalid number of channels %u\n",
514			tmu->num_channels);
515		return -EINVAL;
516	}
517
518	return 0;
519}
520
521static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
522{
523	unsigned int i;
524	int ret;
525
526	tmu->pdev = pdev;
527
528	raw_spin_lock_init(&tmu->lock);
529
530	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
531		ret = sh_tmu_parse_dt(tmu);
532		if (ret < 0)
533			return ret;
534	} else if (pdev->dev.platform_data) {
535		const struct platform_device_id *id = pdev->id_entry;
536		struct sh_timer_config *cfg = pdev->dev.platform_data;
537
538		tmu->model = id->driver_data;
539		tmu->num_channels = hweight8(cfg->channels_mask);
540	} else {
541		dev_err(&tmu->pdev->dev, "missing platform data\n");
542		return -ENXIO;
543	}
544
545	/* Get hold of clock. */
546	tmu->clk = clk_get(&tmu->pdev->dev, "fck");
547	if (IS_ERR(tmu->clk)) {
548		dev_err(&tmu->pdev->dev, "cannot get clock\n");
549		return PTR_ERR(tmu->clk);
550	}
551
552	ret = clk_prepare(tmu->clk);
553	if (ret < 0)
554		goto err_clk_put;
555
556	/* Determine clock rate. */
557	ret = clk_enable(tmu->clk);
558	if (ret < 0)
559		goto err_clk_unprepare;
560
561	tmu->rate = clk_get_rate(tmu->clk) / 4;
562	clk_disable(tmu->clk);
563
564	/* Map the memory resource. */
565	ret = sh_tmu_map_memory(tmu);
566	if (ret < 0) {
567		dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
568		goto err_clk_unprepare;
569	}
570
571	/* Allocate and setup the channels. */
572	tmu->channels = kzalloc(sizeof(*tmu->channels) * tmu->num_channels,
573				GFP_KERNEL);
574	if (tmu->channels == NULL) {
575		ret = -ENOMEM;
576		goto err_unmap;
577	}
578
579	/*
580	 * Use the first channel as a clock event device and the second channel
581	 * as a clock source.
582	 */
583	for (i = 0; i < tmu->num_channels; ++i) {
584		ret = sh_tmu_channel_setup(&tmu->channels[i], i,
585					   i == 0, i == 1, tmu);
586		if (ret < 0)
587			goto err_unmap;
588	}
589
590	platform_set_drvdata(pdev, tmu);
591
592	return 0;
593
594err_unmap:
595	kfree(tmu->channels);
596	iounmap(tmu->mapbase);
597err_clk_unprepare:
598	clk_unprepare(tmu->clk);
599err_clk_put:
600	clk_put(tmu->clk);
601	return ret;
602}
603
604static int sh_tmu_probe(struct platform_device *pdev)
605{
606	struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
607	int ret;
608
609	if (!is_early_platform_device(pdev)) {
610		pm_runtime_set_active(&pdev->dev);
611		pm_runtime_enable(&pdev->dev);
612	}
613
614	if (tmu) {
615		dev_info(&pdev->dev, "kept as earlytimer\n");
616		goto out;
617	}
618
619	tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
620	if (tmu == NULL)
 
621		return -ENOMEM;
 
622
623	ret = sh_tmu_setup(tmu, pdev);
624	if (ret) {
625		kfree(tmu);
626		pm_runtime_idle(&pdev->dev);
627		return ret;
628	}
629	if (is_early_platform_device(pdev))
630		return 0;
631
632 out:
633	if (tmu->has_clockevent || tmu->has_clocksource)
634		pm_runtime_irq_safe(&pdev->dev);
635	else
636		pm_runtime_idle(&pdev->dev);
637
638	return 0;
639}
640
641static int sh_tmu_remove(struct platform_device *pdev)
642{
643	return -EBUSY; /* cannot unregister clockevent and clocksource */
644}
645
646static const struct platform_device_id sh_tmu_id_table[] = {
647	{ "sh-tmu", SH_TMU },
648	{ "sh-tmu-sh3", SH_TMU_SH3 },
649	{ }
650};
651MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
652
653static const struct of_device_id sh_tmu_of_table[] __maybe_unused = {
654	{ .compatible = "renesas,tmu" },
655	{ }
656};
657MODULE_DEVICE_TABLE(of, sh_tmu_of_table);
658
659static struct platform_driver sh_tmu_device_driver = {
660	.probe		= sh_tmu_probe,
661	.remove		= sh_tmu_remove,
662	.driver		= {
663		.name	= "sh_tmu",
664		.of_match_table = of_match_ptr(sh_tmu_of_table),
665	},
666	.id_table	= sh_tmu_id_table,
667};
668
669static int __init sh_tmu_init(void)
670{
671	return platform_driver_register(&sh_tmu_device_driver);
672}
673
674static void __exit sh_tmu_exit(void)
675{
676	platform_driver_unregister(&sh_tmu_device_driver);
677}
678
679early_platform_init("earlytimer", &sh_tmu_device_driver);
680subsys_initcall(sh_tmu_init);
681module_exit(sh_tmu_exit);
682
683MODULE_AUTHOR("Magnus Damm");
684MODULE_DESCRIPTION("SuperH TMU Timer Driver");
685MODULE_LICENSE("GPL v2");