Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v3.5.6
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 */
  5#include <linux/kallsyms.h>
  6#include <linux/kprobes.h>
  7#include <linux/uaccess.h>
  8#include <linux/utsname.h>
  9#include <linux/hardirq.h>
 10#include <linux/kdebug.h>
 11#include <linux/module.h>
 12#include <linux/ptrace.h>
 
 
 13#include <linux/ftrace.h>
 14#include <linux/kexec.h>
 15#include <linux/bug.h>
 16#include <linux/nmi.h>
 17#include <linux/sysfs.h>
 18
 
 19#include <asm/stacktrace.h>
 20
 21
 22int panic_on_unrecovered_nmi;
 23int panic_on_io_nmi;
 24unsigned int code_bytes = 64;
 25int kstack_depth_to_print = 3 * STACKSLOTS_PER_LINE;
 26static int die_counter;
 27
 28void printk_address(unsigned long address, int reliable)
 
 29{
 30	printk(" [<%p>] %s%pB\n", (void *) address,
 31			reliable ? "" : "? ", (void *) address);
 32}
 33
 34#ifdef CONFIG_FUNCTION_GRAPH_TRACER
 35static void
 36print_ftrace_graph_addr(unsigned long addr, void *data,
 37			const struct stacktrace_ops *ops,
 38			struct thread_info *tinfo, int *graph)
 39{
 40	struct task_struct *task;
 41	unsigned long ret_addr;
 42	int index;
 43
 44	if (addr != (unsigned long)return_to_handler)
 45		return;
 46
 47	task = tinfo->task;
 48	index = task->curr_ret_stack;
 49
 50	if (!task->ret_stack || index < *graph)
 51		return;
 52
 53	index -= *graph;
 54	ret_addr = task->ret_stack[index].ret;
 
 
 55
 56	ops->address(data, ret_addr, 1);
 57
 58	(*graph)++;
 59}
 60#else
 61static inline void
 62print_ftrace_graph_addr(unsigned long addr, void *data,
 63			const struct stacktrace_ops *ops,
 64			struct thread_info *tinfo, int *graph)
 65{ }
 66#endif
 67
 68/*
 69 * x86-64 can have up to three kernel stacks:
 70 * process stack
 71 * interrupt stack
 72 * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
 73 */
 74
 75static inline int valid_stack_ptr(struct thread_info *tinfo,
 76			void *p, unsigned int size, void *end)
 77{
 78	void *t = tinfo;
 79	if (end) {
 80		if (p < end && p >= (end-THREAD_SIZE))
 81			return 1;
 82		else
 83			return 0;
 84	}
 85	return p > t && p < t + THREAD_SIZE - size;
 86}
 87
 88unsigned long
 89print_context_stack(struct thread_info *tinfo,
 90		unsigned long *stack, unsigned long bp,
 91		const struct stacktrace_ops *ops, void *data,
 92		unsigned long *end, int *graph)
 93{
 94	struct stack_frame *frame = (struct stack_frame *)bp;
 95
 96	while (valid_stack_ptr(tinfo, stack, sizeof(*stack), end)) {
 97		unsigned long addr;
 98
 99		addr = *stack;
100		if (__kernel_text_address(addr)) {
101			if ((unsigned long) stack == bp + sizeof(long)) {
102				ops->address(data, addr, 1);
103				frame = frame->next_frame;
104				bp = (unsigned long) frame;
105			} else {
106				ops->address(data, addr, 0);
107			}
108			print_ftrace_graph_addr(addr, data, ops, tinfo, graph);
109		}
110		stack++;
111	}
112	return bp;
113}
114EXPORT_SYMBOL_GPL(print_context_stack);
115
116unsigned long
117print_context_stack_bp(struct thread_info *tinfo,
118		       unsigned long *stack, unsigned long bp,
119		       const struct stacktrace_ops *ops, void *data,
120		       unsigned long *end, int *graph)
121{
122	struct stack_frame *frame = (struct stack_frame *)bp;
123	unsigned long *ret_addr = &frame->return_address;
124
125	while (valid_stack_ptr(tinfo, ret_addr, sizeof(*ret_addr), end)) {
126		unsigned long addr = *ret_addr;
127
128		if (!__kernel_text_address(addr))
129			break;
130
131		ops->address(data, addr, 1);
132		frame = frame->next_frame;
133		ret_addr = &frame->return_address;
134		print_ftrace_graph_addr(addr, data, ops, tinfo, graph);
135	}
136
137	return (unsigned long)frame;
138}
139EXPORT_SYMBOL_GPL(print_context_stack_bp);
140
141static int print_trace_stack(void *data, char *name)
 
142{
143	printk("%s <%s> ", (char *)data, name);
144	return 0;
145}
146
147/*
148 * Print one address/symbol entries per line.
149 */
150static void print_trace_address(void *data, unsigned long addr, int reliable)
151{
152	touch_nmi_watchdog();
153	printk(data);
154	printk_address(addr, reliable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155}
156
157static const struct stacktrace_ops print_trace_ops = {
158	.stack			= print_trace_stack,
159	.address		= print_trace_address,
160	.walk_stack		= print_context_stack,
161};
162
163void
164show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
165		unsigned long *stack, unsigned long bp, char *log_lvl)
166{
 
 
 
 
 
 
167	printk("%sCall Trace:\n", log_lvl);
168	dump_trace(task, regs, stack, bp, &print_trace_ops, log_lvl);
169}
170
171void show_trace(struct task_struct *task, struct pt_regs *regs,
172		unsigned long *stack, unsigned long bp)
173{
174	show_trace_log_lvl(task, regs, stack, bp, "");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175}
176
177void show_stack(struct task_struct *task, unsigned long *sp)
178{
179	show_stack_log_lvl(task, NULL, sp, 0, "");
 
 
 
 
 
 
 
 
 
180}
181
182/*
183 * The architecture-independent dump_stack generator
184 */
185void dump_stack(void)
186{
187	unsigned long bp;
188	unsigned long stack;
189
190	bp = stack_frame(current, NULL);
191	printk("Pid: %d, comm: %.20s %s %s %.*s\n",
192		current->pid, current->comm, print_tainted(),
193		init_utsname()->release,
194		(int)strcspn(init_utsname()->version, " "),
195		init_utsname()->version);
196	show_trace(NULL, NULL, &stack, bp);
197}
198EXPORT_SYMBOL(dump_stack);
199
200static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
201static int die_owner = -1;
202static unsigned int die_nest_count;
203
204unsigned __kprobes long oops_begin(void)
205{
206	int cpu;
207	unsigned long flags;
208
209	oops_enter();
210
211	/* racy, but better than risking deadlock. */
212	raw_local_irq_save(flags);
213	cpu = smp_processor_id();
214	if (!arch_spin_trylock(&die_lock)) {
215		if (cpu == die_owner)
216			/* nested oops. should stop eventually */;
217		else
218			arch_spin_lock(&die_lock);
219	}
220	die_nest_count++;
221	die_owner = cpu;
222	console_verbose();
223	bust_spinlocks(1);
224	return flags;
225}
226EXPORT_SYMBOL_GPL(oops_begin);
 
227
228void __kprobes oops_end(unsigned long flags, struct pt_regs *regs, int signr)
 
 
229{
230	if (regs && kexec_should_crash(current))
231		crash_kexec(regs);
232
233	bust_spinlocks(0);
234	die_owner = -1;
235	add_taint(TAINT_DIE);
236	die_nest_count--;
237	if (!die_nest_count)
238		/* Nest count reaches zero, release the lock. */
239		arch_spin_unlock(&die_lock);
240	raw_local_irq_restore(flags);
241	oops_exit();
242
243	if (!signr)
244		return;
245	if (in_interrupt())
246		panic("Fatal exception in interrupt");
247	if (panic_on_oops)
248		panic("Fatal exception");
249	do_exit(signr);
 
 
 
 
 
 
250}
 
251
252int __kprobes __die(const char *str, struct pt_regs *regs, long err)
253{
254#ifdef CONFIG_X86_32
255	unsigned short ss;
256	unsigned long sp;
257#endif
258	printk(KERN_DEFAULT
259	       "%s: %04lx [#%d] ", str, err & 0xffff, ++die_counter);
260#ifdef CONFIG_PREEMPT
261	printk("PREEMPT ");
262#endif
263#ifdef CONFIG_SMP
264	printk("SMP ");
265#endif
266#ifdef CONFIG_DEBUG_PAGEALLOC
267	printk("DEBUG_PAGEALLOC");
268#endif
269	printk("\n");
270	if (notify_die(DIE_OOPS, str, regs, err,
271			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
272		return 1;
273
 
274	show_regs(regs);
275#ifdef CONFIG_X86_32
276	if (user_mode_vm(regs)) {
277		sp = regs->sp;
278		ss = regs->ss & 0xffff;
279	} else {
280		sp = kernel_stack_pointer(regs);
281		savesegment(ss, ss);
282	}
283	printk(KERN_EMERG "EIP: [<%08lx>] ", regs->ip);
284	print_symbol("%s", regs->ip);
285	printk(" SS:ESP %04x:%08lx\n", ss, sp);
286#else
287	/* Executive summary in case the oops scrolled away */
288	printk(KERN_ALERT "RIP ");
289	printk_address(regs->ip, 1);
290	printk(" RSP <%016lx>\n", regs->sp);
291#endif
292	return 0;
293}
 
294
295/*
296 * This is gone through when something in the kernel has done something bad
297 * and is about to be terminated:
298 */
299void die(const char *str, struct pt_regs *regs, long err)
300{
301	unsigned long flags = oops_begin();
302	int sig = SIGSEGV;
303
304	if (!user_mode_vm(regs))
305		report_bug(regs->ip, regs);
306
307	if (__die(str, regs, err))
308		sig = 0;
309	oops_end(flags, regs, sig);
310}
311
312static int __init kstack_setup(char *s)
313{
314	ssize_t ret;
315	unsigned long val;
316
317	if (!s)
318		return -EINVAL;
319
320	ret = kstrtoul(s, 0, &val);
321	if (ret)
322		return ret;
323	kstack_depth_to_print = val;
324	return 0;
325}
326early_param("kstack", kstack_setup);
327
328static int __init code_bytes_setup(char *s)
329{
330	ssize_t ret;
331	unsigned long val;
332
333	if (!s)
334		return -EINVAL;
335
336	ret = kstrtoul(s, 0, &val);
337	if (ret)
338		return ret;
339
340	code_bytes = val;
341	if (code_bytes > 8192)
342		code_bytes = 8192;
343
344	return 1;
345}
346__setup("code_bytes=", code_bytes_setup);
v4.17
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 */
  5#include <linux/kallsyms.h>
  6#include <linux/kprobes.h>
  7#include <linux/uaccess.h>
  8#include <linux/utsname.h>
  9#include <linux/hardirq.h>
 10#include <linux/kdebug.h>
 11#include <linux/module.h>
 12#include <linux/ptrace.h>
 13#include <linux/sched/debug.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/ftrace.h>
 16#include <linux/kexec.h>
 17#include <linux/bug.h>
 18#include <linux/nmi.h>
 19#include <linux/sysfs.h>
 20
 21#include <asm/cpu_entry_area.h>
 22#include <asm/stacktrace.h>
 23#include <asm/unwind.h>
 24
 25int panic_on_unrecovered_nmi;
 26int panic_on_io_nmi;
 27static unsigned int code_bytes = 64;
 
 28static int die_counter;
 29
 30bool in_task_stack(unsigned long *stack, struct task_struct *task,
 31		   struct stack_info *info)
 32{
 33	unsigned long *begin = task_stack_page(task);
 34	unsigned long *end   = task_stack_page(task) + THREAD_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 35
 36	if (stack < begin || stack >= end)
 37		return false;
 38
 39	info->type	= STACK_TYPE_TASK;
 40	info->begin	= begin;
 41	info->end	= end;
 42	info->next_sp	= NULL;
 43
 44	return true;
 
 
 45}
 
 
 
 
 
 
 
 46
 47bool in_entry_stack(unsigned long *stack, struct stack_info *info)
 
 
 
 
 
 
 
 
 48{
 49	struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
 
 
 
 
 
 
 
 
 50
 51	void *begin = ss;
 52	void *end = ss + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 53
 54	if ((void *)stack < begin || (void *)stack >= end)
 55		return false;
 56
 57	info->type	= STACK_TYPE_ENTRY;
 58	info->begin	= begin;
 59	info->end	= end;
 60	info->next_sp	= NULL;
 
 
 
 
 61
 62	return true;
 63}
 
 64
 65static void printk_stack_address(unsigned long address, int reliable,
 66				 char *log_lvl)
 67{
 68	touch_nmi_watchdog();
 69	printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
 70}
 71
 72void show_iret_regs(struct pt_regs *regs)
 
 
 
 73{
 74	printk(KERN_DEFAULT "RIP: %04x:%pS\n", (int)regs->cs, (void *)regs->ip);
 75	printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss,
 76		regs->sp, regs->flags);
 77}
 78
 79static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
 80				  bool partial)
 81{
 82	/*
 83	 * These on_stack() checks aren't strictly necessary: the unwind code
 84	 * has already validated the 'regs' pointer.  The checks are done for
 85	 * ordering reasons: if the registers are on the next stack, we don't
 86	 * want to print them out yet.  Otherwise they'll be shown as part of
 87	 * the wrong stack.  Later, when show_trace_log_lvl() switches to the
 88	 * next stack, this function will be called again with the same regs so
 89	 * they can be printed in the right context.
 90	 */
 91	if (!partial && on_stack(info, regs, sizeof(*regs))) {
 92		__show_regs(regs, 0);
 93
 94	} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
 95				       IRET_FRAME_SIZE)) {
 96		/*
 97		 * When an interrupt or exception occurs in entry code, the
 98		 * full pt_regs might not have been saved yet.  In that case
 99		 * just print the iret frame.
100		 */
101		show_iret_regs(regs);
102	}
103}
104
105void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
106			unsigned long *stack, char *log_lvl)
 
 
 
 
 
 
 
107{
108	struct unwind_state state;
109	struct stack_info stack_info = {0};
110	unsigned long visit_mask = 0;
111	int graph_idx = 0;
112	bool partial = false;
113
114	printk("%sCall Trace:\n", log_lvl);
 
 
115
116	unwind_start(&state, task, regs, stack);
117	stack = stack ? : get_stack_pointer(task, regs);
118	regs = unwind_get_entry_regs(&state, &partial);
119
120	/*
121	 * Iterate through the stacks, starting with the current stack pointer.
122	 * Each stack has a pointer to the next one.
123	 *
124	 * x86-64 can have several stacks:
125	 * - task stack
126	 * - interrupt stack
127	 * - HW exception stacks (double fault, nmi, debug, mce)
128	 * - entry stack
129	 *
130	 * x86-32 can have up to four stacks:
131	 * - task stack
132	 * - softirq stack
133	 * - hardirq stack
134	 * - entry stack
135	 */
136	for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
137		const char *stack_name;
138
139		if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
140			/*
141			 * We weren't on a valid stack.  It's possible that
142			 * we overflowed a valid stack into a guard page.
143			 * See if the next page up is valid so that we can
144			 * generate some kind of backtrace if this happens.
145			 */
146			stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
147			if (get_stack_info(stack, task, &stack_info, &visit_mask))
148				break;
149		}
150
151		stack_name = stack_type_name(stack_info.type);
152		if (stack_name)
153			printk("%s <%s>\n", log_lvl, stack_name);
154
155		if (regs)
156			show_regs_if_on_stack(&stack_info, regs, partial);
157
158		/*
159		 * Scan the stack, printing any text addresses we find.  At the
160		 * same time, follow proper stack frames with the unwinder.
161		 *
162		 * Addresses found during the scan which are not reported by
163		 * the unwinder are considered to be additional clues which are
164		 * sometimes useful for debugging and are prefixed with '?'.
165		 * This also serves as a failsafe option in case the unwinder
166		 * goes off in the weeds.
167		 */
168		for (; stack < stack_info.end; stack++) {
169			unsigned long real_addr;
170			int reliable = 0;
171			unsigned long addr = READ_ONCE_NOCHECK(*stack);
172			unsigned long *ret_addr_p =
173				unwind_get_return_address_ptr(&state);
174
175			if (!__kernel_text_address(addr))
176				continue;
177
178			/*
179			 * Don't print regs->ip again if it was already printed
180			 * by show_regs_if_on_stack().
181			 */
182			if (regs && stack == &regs->ip)
183				goto next;
184
185			if (stack == ret_addr_p)
186				reliable = 1;
187
188			/*
189			 * When function graph tracing is enabled for a
190			 * function, its return address on the stack is
191			 * replaced with the address of an ftrace handler
192			 * (return_to_handler).  In that case, before printing
193			 * the "real" address, we want to print the handler
194			 * address as an "unreliable" hint that function graph
195			 * tracing was involved.
196			 */
197			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
198							  addr, stack);
199			if (real_addr != addr)
200				printk_stack_address(addr, 0, log_lvl);
201			printk_stack_address(real_addr, reliable, log_lvl);
202
203			if (!reliable)
204				continue;
205
206next:
207			/*
208			 * Get the next frame from the unwinder.  No need to
209			 * check for an error: if anything goes wrong, the rest
210			 * of the addresses will just be printed as unreliable.
211			 */
212			unwind_next_frame(&state);
213
214			/* if the frame has entry regs, print them */
215			regs = unwind_get_entry_regs(&state, &partial);
216			if (regs)
217				show_regs_if_on_stack(&stack_info, regs, partial);
218		}
219
220		if (stack_name)
221			printk("%s </%s>\n", log_lvl, stack_name);
222	}
223}
224
225void show_stack(struct task_struct *task, unsigned long *sp)
226{
227	task = task ? : current;
228
229	/*
230	 * Stack frames below this one aren't interesting.  Don't show them
231	 * if we're printing for %current.
232	 */
233	if (!sp && task == current)
234		sp = get_stack_pointer(current, NULL);
235
236	show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT);
237}
238
239void show_stack_regs(struct pt_regs *regs)
 
 
 
240{
241	show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
 
 
 
 
 
 
 
 
 
242}
 
243
244static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
245static int die_owner = -1;
246static unsigned int die_nest_count;
247
248unsigned long oops_begin(void)
249{
250	int cpu;
251	unsigned long flags;
252
253	oops_enter();
254
255	/* racy, but better than risking deadlock. */
256	raw_local_irq_save(flags);
257	cpu = smp_processor_id();
258	if (!arch_spin_trylock(&die_lock)) {
259		if (cpu == die_owner)
260			/* nested oops. should stop eventually */;
261		else
262			arch_spin_lock(&die_lock);
263	}
264	die_nest_count++;
265	die_owner = cpu;
266	console_verbose();
267	bust_spinlocks(1);
268	return flags;
269}
270EXPORT_SYMBOL_GPL(oops_begin);
271NOKPROBE_SYMBOL(oops_begin);
272
273void __noreturn rewind_stack_do_exit(int signr);
274
275void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
276{
277	if (regs && kexec_should_crash(current))
278		crash_kexec(regs);
279
280	bust_spinlocks(0);
281	die_owner = -1;
282	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
283	die_nest_count--;
284	if (!die_nest_count)
285		/* Nest count reaches zero, release the lock. */
286		arch_spin_unlock(&die_lock);
287	raw_local_irq_restore(flags);
288	oops_exit();
289
290	if (!signr)
291		return;
292	if (in_interrupt())
293		panic("Fatal exception in interrupt");
294	if (panic_on_oops)
295		panic("Fatal exception");
296
297	/*
298	 * We're not going to return, but we might be on an IST stack or
299	 * have very little stack space left.  Rewind the stack and kill
300	 * the task.
301	 */
302	rewind_stack_do_exit(signr);
303}
304NOKPROBE_SYMBOL(oops_end);
305
306int __die(const char *str, struct pt_regs *regs, long err)
307{
308#ifdef CONFIG_X86_32
309	unsigned short ss;
310	unsigned long sp;
311#endif
312	printk(KERN_DEFAULT
313	       "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
314	       IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT"         : "",
315	       IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
316	       debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
317	       IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
318	       IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
319	       (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
320
 
 
 
321	if (notify_die(DIE_OOPS, str, regs, err,
322			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
323		return 1;
324
325	print_modules();
326	show_regs(regs);
327#ifdef CONFIG_X86_32
328	if (user_mode(regs)) {
329		sp = regs->sp;
330		ss = regs->ss;
331	} else {
332		sp = kernel_stack_pointer(regs);
333		savesegment(ss, ss);
334	}
335	printk(KERN_EMERG "EIP: %pS SS:ESP: %04x:%08lx\n",
336	       (void *)regs->ip, ss, sp);
 
337#else
338	/* Executive summary in case the oops scrolled away */
339	printk(KERN_ALERT "RIP: %pS RSP: %016lx\n", (void *)regs->ip, regs->sp);
 
 
340#endif
341	return 0;
342}
343NOKPROBE_SYMBOL(__die);
344
345/*
346 * This is gone through when something in the kernel has done something bad
347 * and is about to be terminated:
348 */
349void die(const char *str, struct pt_regs *regs, long err)
350{
351	unsigned long flags = oops_begin();
352	int sig = SIGSEGV;
353
 
 
 
354	if (__die(str, regs, err))
355		sig = 0;
356	oops_end(flags, regs, sig);
357}
358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359static int __init code_bytes_setup(char *s)
360{
361	ssize_t ret;
362	unsigned long val;
363
364	if (!s)
365		return -EINVAL;
366
367	ret = kstrtoul(s, 0, &val);
368	if (ret)
369		return ret;
370
371	code_bytes = val;
372	if (code_bytes > 8192)
373		code_bytes = 8192;
374
375	return 1;
376}
377__setup("code_bytes=", code_bytes_setup);
378
379void show_regs(struct pt_regs *regs)
380{
381	bool all = true;
382	int i;
383
384	show_regs_print_info(KERN_DEFAULT);
385
386	if (IS_ENABLED(CONFIG_X86_32))
387		all = !user_mode(regs);
388
389	__show_regs(regs, all);
390
391	/*
392	 * When in-kernel, we also print out the stack and code at the
393	 * time of the fault..
394	 */
395	if (!user_mode(regs)) {
396		unsigned int code_prologue = code_bytes * 43 / 64;
397		unsigned int code_len = code_bytes;
398		unsigned char c;
399		u8 *ip;
400
401		show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
402
403		printk(KERN_DEFAULT "Code: ");
404
405		ip = (u8 *)regs->ip - code_prologue;
406		if (ip < (u8 *)PAGE_OFFSET || probe_kernel_address(ip, c)) {
407			/* try starting at IP */
408			ip = (u8 *)regs->ip;
409			code_len = code_len - code_prologue + 1;
410		}
411		for (i = 0; i < code_len; i++, ip++) {
412			if (ip < (u8 *)PAGE_OFFSET ||
413					probe_kernel_address(ip, c)) {
414				pr_cont(" Bad RIP value.");
415				break;
416			}
417			if (ip == (u8 *)regs->ip)
418				pr_cont("<%02x> ", c);
419			else
420				pr_cont("%02x ", c);
421		}
422	}
423	pr_cont("\n");
424}