Loading...
1/*
2 * Kernel Probes (KProbes)
3 * arch/mips/kernel/kprobes.c
4 *
5 * Copyright 2006 Sony Corp.
6 * Copyright 2010 Cavium Networks
7 *
8 * Some portions copied from the powerpc version.
9 *
10 * Copyright (C) IBM Corporation, 2002, 2004
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; version 2 of the License.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 */
25
26#include <linux/kprobes.h>
27#include <linux/preempt.h>
28#include <linux/uaccess.h>
29#include <linux/kdebug.h>
30#include <linux/slab.h>
31
32#include <asm/ptrace.h>
33#include <asm/branch.h>
34#include <asm/break.h>
35#include <asm/inst.h>
36
37static const union mips_instruction breakpoint_insn = {
38 .b_format = {
39 .opcode = spec_op,
40 .code = BRK_KPROBE_BP,
41 .func = break_op
42 }
43};
44
45static const union mips_instruction breakpoint2_insn = {
46 .b_format = {
47 .opcode = spec_op,
48 .code = BRK_KPROBE_SSTEPBP,
49 .func = break_op
50 }
51};
52
53DEFINE_PER_CPU(struct kprobe *, current_kprobe);
54DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
55
56static int __kprobes insn_has_delayslot(union mips_instruction insn)
57{
58 switch (insn.i_format.opcode) {
59
60 /*
61 * This group contains:
62 * jr and jalr are in r_format format.
63 */
64 case spec_op:
65 switch (insn.r_format.func) {
66 case jr_op:
67 case jalr_op:
68 break;
69 default:
70 goto insn_ok;
71 }
72
73 /*
74 * This group contains:
75 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77 */
78 case bcond_op:
79
80 /*
81 * These are unconditional and in j_format.
82 */
83 case jal_op:
84 case j_op:
85
86 /*
87 * These are conditional and in i_format.
88 */
89 case beq_op:
90 case beql_op:
91 case bne_op:
92 case bnel_op:
93 case blez_op:
94 case blezl_op:
95 case bgtz_op:
96 case bgtzl_op:
97
98 /*
99 * These are the FPA/cp1 branch instructions.
100 */
101 case cop1_op:
102
103#ifdef CONFIG_CPU_CAVIUM_OCTEON
104 case lwc2_op: /* This is bbit0 on Octeon */
105 case ldc2_op: /* This is bbit032 on Octeon */
106 case swc2_op: /* This is bbit1 on Octeon */
107 case sdc2_op: /* This is bbit132 on Octeon */
108#endif
109 return 1;
110 default:
111 break;
112 }
113insn_ok:
114 return 0;
115}
116
117/*
118 * insn_has_ll_or_sc function checks whether instruction is ll or sc
119 * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
120 * so we need to prevent it and refuse kprobes insertion for such
121 * instructions; cannot do much about breakpoint in the middle of
122 * ll/sc pair; it is upto user to avoid those places
123 */
124static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
125{
126 int ret = 0;
127
128 switch (insn.i_format.opcode) {
129 case ll_op:
130 case lld_op:
131 case sc_op:
132 case scd_op:
133 ret = 1;
134 break;
135 default:
136 break;
137 }
138 return ret;
139}
140
141int __kprobes arch_prepare_kprobe(struct kprobe *p)
142{
143 union mips_instruction insn;
144 union mips_instruction prev_insn;
145 int ret = 0;
146
147 insn = p->addr[0];
148
149 if (insn_has_ll_or_sc(insn)) {
150 pr_notice("Kprobes for ll and sc instructions are not"
151 "supported\n");
152 ret = -EINVAL;
153 goto out;
154 }
155
156 if ((probe_kernel_read(&prev_insn, p->addr - 1,
157 sizeof(mips_instruction)) == 0) &&
158 insn_has_delayslot(prev_insn)) {
159 pr_notice("Kprobes for branch delayslot are not supported\n");
160 ret = -EINVAL;
161 goto out;
162 }
163
164 /* insn: must be on special executable page on mips. */
165 p->ainsn.insn = get_insn_slot();
166 if (!p->ainsn.insn) {
167 ret = -ENOMEM;
168 goto out;
169 }
170
171 /*
172 * In the kprobe->ainsn.insn[] array we store the original
173 * instruction at index zero and a break trap instruction at
174 * index one.
175 *
176 * On MIPS arch if the instruction at probed address is a
177 * branch instruction, we need to execute the instruction at
178 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
179 * doesn't have single stepping support, the BD instruction can
180 * not be executed in-line and it would be executed on SSOL slot
181 * using a normal breakpoint instruction in the next slot.
182 * So, read the instruction and save it for later execution.
183 */
184 if (insn_has_delayslot(insn))
185 memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
186 else
187 memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
188
189 p->ainsn.insn[1] = breakpoint2_insn;
190 p->opcode = *p->addr;
191
192out:
193 return ret;
194}
195
196void __kprobes arch_arm_kprobe(struct kprobe *p)
197{
198 *p->addr = breakpoint_insn;
199 flush_insn_slot(p);
200}
201
202void __kprobes arch_disarm_kprobe(struct kprobe *p)
203{
204 *p->addr = p->opcode;
205 flush_insn_slot(p);
206}
207
208void __kprobes arch_remove_kprobe(struct kprobe *p)
209{
210 free_insn_slot(p->ainsn.insn, 0);
211}
212
213static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
214{
215 kcb->prev_kprobe.kp = kprobe_running();
216 kcb->prev_kprobe.status = kcb->kprobe_status;
217 kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
218 kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
219 kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
220}
221
222static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
223{
224 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
225 kcb->kprobe_status = kcb->prev_kprobe.status;
226 kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
227 kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
228 kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
229}
230
231static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
232 struct kprobe_ctlblk *kcb)
233{
234 __get_cpu_var(current_kprobe) = p;
235 kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
236 kcb->kprobe_saved_epc = regs->cp0_epc;
237}
238
239/**
240 * evaluate_branch_instrucion -
241 *
242 * Evaluate the branch instruction at probed address during probe hit. The
243 * result of evaluation would be the updated epc. The insturction in delayslot
244 * would actually be single stepped using a normal breakpoint) on SSOL slot.
245 *
246 * The result is also saved in the kprobe control block for later use,
247 * in case we need to execute the delayslot instruction. The latter will be
248 * false for NOP instruction in dealyslot and the branch-likely instructions
249 * when the branch is taken. And for those cases we set a flag as
250 * SKIP_DELAYSLOT in the kprobe control block
251 */
252static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
253 struct kprobe_ctlblk *kcb)
254{
255 union mips_instruction insn = p->opcode;
256 long epc;
257 int ret = 0;
258
259 epc = regs->cp0_epc;
260 if (epc & 3)
261 goto unaligned;
262
263 if (p->ainsn.insn->word == 0)
264 kcb->flags |= SKIP_DELAYSLOT;
265 else
266 kcb->flags &= ~SKIP_DELAYSLOT;
267
268 ret = __compute_return_epc_for_insn(regs, insn);
269 if (ret < 0)
270 return ret;
271
272 if (ret == BRANCH_LIKELY_TAKEN)
273 kcb->flags |= SKIP_DELAYSLOT;
274
275 kcb->target_epc = regs->cp0_epc;
276
277 return 0;
278
279unaligned:
280 pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
281 force_sig(SIGBUS, current);
282 return -EFAULT;
283
284}
285
286static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
287 struct kprobe_ctlblk *kcb)
288{
289 int ret = 0;
290
291 regs->cp0_status &= ~ST0_IE;
292
293 /* single step inline if the instruction is a break */
294 if (p->opcode.word == breakpoint_insn.word ||
295 p->opcode.word == breakpoint2_insn.word)
296 regs->cp0_epc = (unsigned long)p->addr;
297 else if (insn_has_delayslot(p->opcode)) {
298 ret = evaluate_branch_instruction(p, regs, kcb);
299 if (ret < 0) {
300 pr_notice("Kprobes: Error in evaluating branch\n");
301 return;
302 }
303 }
304 regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
305}
306
307/*
308 * Called after single-stepping. p->addr is the address of the
309 * instruction whose first byte has been replaced by the "break 0"
310 * instruction. To avoid the SMP problems that can occur when we
311 * temporarily put back the original opcode to single-step, we
312 * single-stepped a copy of the instruction. The address of this
313 * copy is p->ainsn.insn.
314 *
315 * This function prepares to return from the post-single-step
316 * breakpoint trap. In case of branch instructions, the target
317 * epc to be restored.
318 */
319static void __kprobes resume_execution(struct kprobe *p,
320 struct pt_regs *regs,
321 struct kprobe_ctlblk *kcb)
322{
323 if (insn_has_delayslot(p->opcode))
324 regs->cp0_epc = kcb->target_epc;
325 else {
326 unsigned long orig_epc = kcb->kprobe_saved_epc;
327 regs->cp0_epc = orig_epc + 4;
328 }
329}
330
331static int __kprobes kprobe_handler(struct pt_regs *regs)
332{
333 struct kprobe *p;
334 int ret = 0;
335 kprobe_opcode_t *addr;
336 struct kprobe_ctlblk *kcb;
337
338 addr = (kprobe_opcode_t *) regs->cp0_epc;
339
340 /*
341 * We don't want to be preempted for the entire
342 * duration of kprobe processing
343 */
344 preempt_disable();
345 kcb = get_kprobe_ctlblk();
346
347 /* Check we're not actually recursing */
348 if (kprobe_running()) {
349 p = get_kprobe(addr);
350 if (p) {
351 if (kcb->kprobe_status == KPROBE_HIT_SS &&
352 p->ainsn.insn->word == breakpoint_insn.word) {
353 regs->cp0_status &= ~ST0_IE;
354 regs->cp0_status |= kcb->kprobe_saved_SR;
355 goto no_kprobe;
356 }
357 /*
358 * We have reentered the kprobe_handler(), since
359 * another probe was hit while within the handler.
360 * We here save the original kprobes variables and
361 * just single step on the instruction of the new probe
362 * without calling any user handlers.
363 */
364 save_previous_kprobe(kcb);
365 set_current_kprobe(p, regs, kcb);
366 kprobes_inc_nmissed_count(p);
367 prepare_singlestep(p, regs, kcb);
368 kcb->kprobe_status = KPROBE_REENTER;
369 if (kcb->flags & SKIP_DELAYSLOT) {
370 resume_execution(p, regs, kcb);
371 restore_previous_kprobe(kcb);
372 preempt_enable_no_resched();
373 }
374 return 1;
375 } else {
376 if (addr->word != breakpoint_insn.word) {
377 /*
378 * The breakpoint instruction was removed by
379 * another cpu right after we hit, no further
380 * handling of this interrupt is appropriate
381 */
382 ret = 1;
383 goto no_kprobe;
384 }
385 p = __get_cpu_var(current_kprobe);
386 if (p->break_handler && p->break_handler(p, regs))
387 goto ss_probe;
388 }
389 goto no_kprobe;
390 }
391
392 p = get_kprobe(addr);
393 if (!p) {
394 if (addr->word != breakpoint_insn.word) {
395 /*
396 * The breakpoint instruction was removed right
397 * after we hit it. Another cpu has removed
398 * either a probepoint or a debugger breakpoint
399 * at this address. In either case, no further
400 * handling of this interrupt is appropriate.
401 */
402 ret = 1;
403 }
404 /* Not one of ours: let kernel handle it */
405 goto no_kprobe;
406 }
407
408 set_current_kprobe(p, regs, kcb);
409 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
410
411 if (p->pre_handler && p->pre_handler(p, regs)) {
412 /* handler has already set things up, so skip ss setup */
413 return 1;
414 }
415
416ss_probe:
417 prepare_singlestep(p, regs, kcb);
418 if (kcb->flags & SKIP_DELAYSLOT) {
419 kcb->kprobe_status = KPROBE_HIT_SSDONE;
420 if (p->post_handler)
421 p->post_handler(p, regs, 0);
422 resume_execution(p, regs, kcb);
423 preempt_enable_no_resched();
424 } else
425 kcb->kprobe_status = KPROBE_HIT_SS;
426
427 return 1;
428
429no_kprobe:
430 preempt_enable_no_resched();
431 return ret;
432
433}
434
435static inline int post_kprobe_handler(struct pt_regs *regs)
436{
437 struct kprobe *cur = kprobe_running();
438 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
439
440 if (!cur)
441 return 0;
442
443 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
444 kcb->kprobe_status = KPROBE_HIT_SSDONE;
445 cur->post_handler(cur, regs, 0);
446 }
447
448 resume_execution(cur, regs, kcb);
449
450 regs->cp0_status |= kcb->kprobe_saved_SR;
451
452 /* Restore back the original saved kprobes variables and continue. */
453 if (kcb->kprobe_status == KPROBE_REENTER) {
454 restore_previous_kprobe(kcb);
455 goto out;
456 }
457 reset_current_kprobe();
458out:
459 preempt_enable_no_resched();
460
461 return 1;
462}
463
464static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
465{
466 struct kprobe *cur = kprobe_running();
467 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
468
469 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
470 return 1;
471
472 if (kcb->kprobe_status & KPROBE_HIT_SS) {
473 resume_execution(cur, regs, kcb);
474 regs->cp0_status |= kcb->kprobe_old_SR;
475
476 reset_current_kprobe();
477 preempt_enable_no_resched();
478 }
479 return 0;
480}
481
482/*
483 * Wrapper routine for handling exceptions.
484 */
485int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
486 unsigned long val, void *data)
487{
488
489 struct die_args *args = (struct die_args *)data;
490 int ret = NOTIFY_DONE;
491
492 switch (val) {
493 case DIE_BREAK:
494 if (kprobe_handler(args->regs))
495 ret = NOTIFY_STOP;
496 break;
497 case DIE_SSTEPBP:
498 if (post_kprobe_handler(args->regs))
499 ret = NOTIFY_STOP;
500 break;
501
502 case DIE_PAGE_FAULT:
503 /* kprobe_running() needs smp_processor_id() */
504 preempt_disable();
505
506 if (kprobe_running()
507 && kprobe_fault_handler(args->regs, args->trapnr))
508 ret = NOTIFY_STOP;
509 preempt_enable();
510 break;
511 default:
512 break;
513 }
514 return ret;
515}
516
517int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
518{
519 struct jprobe *jp = container_of(p, struct jprobe, kp);
520 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
521
522 kcb->jprobe_saved_regs = *regs;
523 kcb->jprobe_saved_sp = regs->regs[29];
524
525 memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
526 MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
527
528 regs->cp0_epc = (unsigned long)(jp->entry);
529
530 return 1;
531}
532
533/* Defined in the inline asm below. */
534void jprobe_return_end(void);
535
536void __kprobes jprobe_return(void)
537{
538 /* Assembler quirk necessitates this '0,code' business. */
539 asm volatile(
540 "break 0,%0\n\t"
541 ".globl jprobe_return_end\n"
542 "jprobe_return_end:\n"
543 : : "n" (BRK_KPROBE_BP) : "memory");
544}
545
546int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
547{
548 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
549
550 if (regs->cp0_epc >= (unsigned long)jprobe_return &&
551 regs->cp0_epc <= (unsigned long)jprobe_return_end) {
552 *regs = kcb->jprobe_saved_regs;
553 memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
554 MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
555 preempt_enable_no_resched();
556
557 return 1;
558 }
559 return 0;
560}
561
562/*
563 * Function return probe trampoline:
564 * - init_kprobes() establishes a probepoint here
565 * - When the probed function returns, this probe causes the
566 * handlers to fire
567 */
568static void __used kretprobe_trampoline_holder(void)
569{
570 asm volatile(
571 ".set push\n\t"
572 /* Keep the assembler from reordering and placing JR here. */
573 ".set noreorder\n\t"
574 "nop\n\t"
575 ".global kretprobe_trampoline\n"
576 "kretprobe_trampoline:\n\t"
577 "nop\n\t"
578 ".set pop"
579 : : : "memory");
580}
581
582void kretprobe_trampoline(void);
583
584void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
585 struct pt_regs *regs)
586{
587 ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
588
589 /* Replace the return addr with trampoline addr */
590 regs->regs[31] = (unsigned long)kretprobe_trampoline;
591}
592
593/*
594 * Called when the probe at kretprobe trampoline is hit
595 */
596static int __kprobes trampoline_probe_handler(struct kprobe *p,
597 struct pt_regs *regs)
598{
599 struct kretprobe_instance *ri = NULL;
600 struct hlist_head *head, empty_rp;
601 struct hlist_node *node, *tmp;
602 unsigned long flags, orig_ret_address = 0;
603 unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
604
605 INIT_HLIST_HEAD(&empty_rp);
606 kretprobe_hash_lock(current, &head, &flags);
607
608 /*
609 * It is possible to have multiple instances associated with a given
610 * task either because an multiple functions in the call path
611 * have a return probe installed on them, and/or more than one return
612 * return probe was registered for a target function.
613 *
614 * We can handle this because:
615 * - instances are always inserted at the head of the list
616 * - when multiple return probes are registered for the same
617 * function, the first instance's ret_addr will point to the
618 * real return address, and all the rest will point to
619 * kretprobe_trampoline
620 */
621 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
622 if (ri->task != current)
623 /* another task is sharing our hash bucket */
624 continue;
625
626 if (ri->rp && ri->rp->handler)
627 ri->rp->handler(ri, regs);
628
629 orig_ret_address = (unsigned long)ri->ret_addr;
630 recycle_rp_inst(ri, &empty_rp);
631
632 if (orig_ret_address != trampoline_address)
633 /*
634 * This is the real return address. Any other
635 * instances associated with this task are for
636 * other calls deeper on the call stack
637 */
638 break;
639 }
640
641 kretprobe_assert(ri, orig_ret_address, trampoline_address);
642 instruction_pointer(regs) = orig_ret_address;
643
644 reset_current_kprobe();
645 kretprobe_hash_unlock(current, &flags);
646 preempt_enable_no_resched();
647
648 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
649 hlist_del(&ri->hlist);
650 kfree(ri);
651 }
652 /*
653 * By returning a non-zero value, we are telling
654 * kprobe_handler() that we don't want the post_handler
655 * to run (and have re-enabled preemption)
656 */
657 return 1;
658}
659
660int __kprobes arch_trampoline_kprobe(struct kprobe *p)
661{
662 if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
663 return 1;
664
665 return 0;
666}
667
668static struct kprobe trampoline_p = {
669 .addr = (kprobe_opcode_t *)kretprobe_trampoline,
670 .pre_handler = trampoline_probe_handler
671};
672
673int __init arch_init_kprobes(void)
674{
675 return register_kprobe(&trampoline_p);
676}
1/*
2 * Kernel Probes (KProbes)
3 * arch/mips/kernel/kprobes.c
4 *
5 * Copyright 2006 Sony Corp.
6 * Copyright 2010 Cavium Networks
7 *
8 * Some portions copied from the powerpc version.
9 *
10 * Copyright (C) IBM Corporation, 2002, 2004
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; version 2 of the License.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 */
25
26#include <linux/kprobes.h>
27#include <linux/preempt.h>
28#include <linux/uaccess.h>
29#include <linux/kdebug.h>
30#include <linux/slab.h>
31
32#include <asm/ptrace.h>
33#include <asm/branch.h>
34#include <asm/break.h>
35
36#include "probes-common.h"
37
38static const union mips_instruction breakpoint_insn = {
39 .b_format = {
40 .opcode = spec_op,
41 .code = BRK_KPROBE_BP,
42 .func = break_op
43 }
44};
45
46static const union mips_instruction breakpoint2_insn = {
47 .b_format = {
48 .opcode = spec_op,
49 .code = BRK_KPROBE_SSTEPBP,
50 .func = break_op
51 }
52};
53
54DEFINE_PER_CPU(struct kprobe *, current_kprobe);
55DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
56
57static int __kprobes insn_has_delayslot(union mips_instruction insn)
58{
59 return __insn_has_delay_slot(insn);
60}
61
62/*
63 * insn_has_ll_or_sc function checks whether instruction is ll or sc
64 * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
65 * so we need to prevent it and refuse kprobes insertion for such
66 * instructions; cannot do much about breakpoint in the middle of
67 * ll/sc pair; it is upto user to avoid those places
68 */
69static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
70{
71 int ret = 0;
72
73 switch (insn.i_format.opcode) {
74 case ll_op:
75 case lld_op:
76 case sc_op:
77 case scd_op:
78 ret = 1;
79 break;
80 default:
81 break;
82 }
83 return ret;
84}
85
86int __kprobes arch_prepare_kprobe(struct kprobe *p)
87{
88 union mips_instruction insn;
89 union mips_instruction prev_insn;
90 int ret = 0;
91
92 insn = p->addr[0];
93
94 if (insn_has_ll_or_sc(insn)) {
95 pr_notice("Kprobes for ll and sc instructions are not"
96 "supported\n");
97 ret = -EINVAL;
98 goto out;
99 }
100
101 if ((probe_kernel_read(&prev_insn, p->addr - 1,
102 sizeof(mips_instruction)) == 0) &&
103 insn_has_delayslot(prev_insn)) {
104 pr_notice("Kprobes for branch delayslot are not supported\n");
105 ret = -EINVAL;
106 goto out;
107 }
108
109 if (__insn_is_compact_branch(insn)) {
110 pr_notice("Kprobes for compact branches are not supported\n");
111 ret = -EINVAL;
112 goto out;
113 }
114
115 /* insn: must be on special executable page on mips. */
116 p->ainsn.insn = get_insn_slot();
117 if (!p->ainsn.insn) {
118 ret = -ENOMEM;
119 goto out;
120 }
121
122 /*
123 * In the kprobe->ainsn.insn[] array we store the original
124 * instruction at index zero and a break trap instruction at
125 * index one.
126 *
127 * On MIPS arch if the instruction at probed address is a
128 * branch instruction, we need to execute the instruction at
129 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
130 * doesn't have single stepping support, the BD instruction can
131 * not be executed in-line and it would be executed on SSOL slot
132 * using a normal breakpoint instruction in the next slot.
133 * So, read the instruction and save it for later execution.
134 */
135 if (insn_has_delayslot(insn))
136 memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
137 else
138 memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
139
140 p->ainsn.insn[1] = breakpoint2_insn;
141 p->opcode = *p->addr;
142
143out:
144 return ret;
145}
146
147void __kprobes arch_arm_kprobe(struct kprobe *p)
148{
149 *p->addr = breakpoint_insn;
150 flush_insn_slot(p);
151}
152
153void __kprobes arch_disarm_kprobe(struct kprobe *p)
154{
155 *p->addr = p->opcode;
156 flush_insn_slot(p);
157}
158
159void __kprobes arch_remove_kprobe(struct kprobe *p)
160{
161 if (p->ainsn.insn) {
162 free_insn_slot(p->ainsn.insn, 0);
163 p->ainsn.insn = NULL;
164 }
165}
166
167static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
168{
169 kcb->prev_kprobe.kp = kprobe_running();
170 kcb->prev_kprobe.status = kcb->kprobe_status;
171 kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
172 kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
173 kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
174}
175
176static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
177{
178 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
179 kcb->kprobe_status = kcb->prev_kprobe.status;
180 kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
181 kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
182 kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
183}
184
185static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
186 struct kprobe_ctlblk *kcb)
187{
188 __this_cpu_write(current_kprobe, p);
189 kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
190 kcb->kprobe_saved_epc = regs->cp0_epc;
191}
192
193/**
194 * evaluate_branch_instrucion -
195 *
196 * Evaluate the branch instruction at probed address during probe hit. The
197 * result of evaluation would be the updated epc. The insturction in delayslot
198 * would actually be single stepped using a normal breakpoint) on SSOL slot.
199 *
200 * The result is also saved in the kprobe control block for later use,
201 * in case we need to execute the delayslot instruction. The latter will be
202 * false for NOP instruction in dealyslot and the branch-likely instructions
203 * when the branch is taken. And for those cases we set a flag as
204 * SKIP_DELAYSLOT in the kprobe control block
205 */
206static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
207 struct kprobe_ctlblk *kcb)
208{
209 union mips_instruction insn = p->opcode;
210 long epc;
211 int ret = 0;
212
213 epc = regs->cp0_epc;
214 if (epc & 3)
215 goto unaligned;
216
217 if (p->ainsn.insn->word == 0)
218 kcb->flags |= SKIP_DELAYSLOT;
219 else
220 kcb->flags &= ~SKIP_DELAYSLOT;
221
222 ret = __compute_return_epc_for_insn(regs, insn);
223 if (ret < 0)
224 return ret;
225
226 if (ret == BRANCH_LIKELY_TAKEN)
227 kcb->flags |= SKIP_DELAYSLOT;
228
229 kcb->target_epc = regs->cp0_epc;
230
231 return 0;
232
233unaligned:
234 pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
235 force_sig(SIGBUS, current);
236 return -EFAULT;
237
238}
239
240static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
241 struct kprobe_ctlblk *kcb)
242{
243 int ret = 0;
244
245 regs->cp0_status &= ~ST0_IE;
246
247 /* single step inline if the instruction is a break */
248 if (p->opcode.word == breakpoint_insn.word ||
249 p->opcode.word == breakpoint2_insn.word)
250 regs->cp0_epc = (unsigned long)p->addr;
251 else if (insn_has_delayslot(p->opcode)) {
252 ret = evaluate_branch_instruction(p, regs, kcb);
253 if (ret < 0) {
254 pr_notice("Kprobes: Error in evaluating branch\n");
255 return;
256 }
257 }
258 regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
259}
260
261/*
262 * Called after single-stepping. p->addr is the address of the
263 * instruction whose first byte has been replaced by the "break 0"
264 * instruction. To avoid the SMP problems that can occur when we
265 * temporarily put back the original opcode to single-step, we
266 * single-stepped a copy of the instruction. The address of this
267 * copy is p->ainsn.insn.
268 *
269 * This function prepares to return from the post-single-step
270 * breakpoint trap. In case of branch instructions, the target
271 * epc to be restored.
272 */
273static void __kprobes resume_execution(struct kprobe *p,
274 struct pt_regs *regs,
275 struct kprobe_ctlblk *kcb)
276{
277 if (insn_has_delayslot(p->opcode))
278 regs->cp0_epc = kcb->target_epc;
279 else {
280 unsigned long orig_epc = kcb->kprobe_saved_epc;
281 regs->cp0_epc = orig_epc + 4;
282 }
283}
284
285static int __kprobes kprobe_handler(struct pt_regs *regs)
286{
287 struct kprobe *p;
288 int ret = 0;
289 kprobe_opcode_t *addr;
290 struct kprobe_ctlblk *kcb;
291
292 addr = (kprobe_opcode_t *) regs->cp0_epc;
293
294 /*
295 * We don't want to be preempted for the entire
296 * duration of kprobe processing
297 */
298 preempt_disable();
299 kcb = get_kprobe_ctlblk();
300
301 /* Check we're not actually recursing */
302 if (kprobe_running()) {
303 p = get_kprobe(addr);
304 if (p) {
305 if (kcb->kprobe_status == KPROBE_HIT_SS &&
306 p->ainsn.insn->word == breakpoint_insn.word) {
307 regs->cp0_status &= ~ST0_IE;
308 regs->cp0_status |= kcb->kprobe_saved_SR;
309 goto no_kprobe;
310 }
311 /*
312 * We have reentered the kprobe_handler(), since
313 * another probe was hit while within the handler.
314 * We here save the original kprobes variables and
315 * just single step on the instruction of the new probe
316 * without calling any user handlers.
317 */
318 save_previous_kprobe(kcb);
319 set_current_kprobe(p, regs, kcb);
320 kprobes_inc_nmissed_count(p);
321 prepare_singlestep(p, regs, kcb);
322 kcb->kprobe_status = KPROBE_REENTER;
323 if (kcb->flags & SKIP_DELAYSLOT) {
324 resume_execution(p, regs, kcb);
325 restore_previous_kprobe(kcb);
326 preempt_enable_no_resched();
327 }
328 return 1;
329 } else {
330 if (addr->word != breakpoint_insn.word) {
331 /*
332 * The breakpoint instruction was removed by
333 * another cpu right after we hit, no further
334 * handling of this interrupt is appropriate
335 */
336 ret = 1;
337 goto no_kprobe;
338 }
339 p = __this_cpu_read(current_kprobe);
340 if (p->break_handler && p->break_handler(p, regs))
341 goto ss_probe;
342 }
343 goto no_kprobe;
344 }
345
346 p = get_kprobe(addr);
347 if (!p) {
348 if (addr->word != breakpoint_insn.word) {
349 /*
350 * The breakpoint instruction was removed right
351 * after we hit it. Another cpu has removed
352 * either a probepoint or a debugger breakpoint
353 * at this address. In either case, no further
354 * handling of this interrupt is appropriate.
355 */
356 ret = 1;
357 }
358 /* Not one of ours: let kernel handle it */
359 goto no_kprobe;
360 }
361
362 set_current_kprobe(p, regs, kcb);
363 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
364
365 if (p->pre_handler && p->pre_handler(p, regs)) {
366 /* handler has already set things up, so skip ss setup */
367 return 1;
368 }
369
370ss_probe:
371 prepare_singlestep(p, regs, kcb);
372 if (kcb->flags & SKIP_DELAYSLOT) {
373 kcb->kprobe_status = KPROBE_HIT_SSDONE;
374 if (p->post_handler)
375 p->post_handler(p, regs, 0);
376 resume_execution(p, regs, kcb);
377 preempt_enable_no_resched();
378 } else
379 kcb->kprobe_status = KPROBE_HIT_SS;
380
381 return 1;
382
383no_kprobe:
384 preempt_enable_no_resched();
385 return ret;
386
387}
388
389static inline int post_kprobe_handler(struct pt_regs *regs)
390{
391 struct kprobe *cur = kprobe_running();
392 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
393
394 if (!cur)
395 return 0;
396
397 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
398 kcb->kprobe_status = KPROBE_HIT_SSDONE;
399 cur->post_handler(cur, regs, 0);
400 }
401
402 resume_execution(cur, regs, kcb);
403
404 regs->cp0_status |= kcb->kprobe_saved_SR;
405
406 /* Restore back the original saved kprobes variables and continue. */
407 if (kcb->kprobe_status == KPROBE_REENTER) {
408 restore_previous_kprobe(kcb);
409 goto out;
410 }
411 reset_current_kprobe();
412out:
413 preempt_enable_no_resched();
414
415 return 1;
416}
417
418static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
419{
420 struct kprobe *cur = kprobe_running();
421 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
422
423 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
424 return 1;
425
426 if (kcb->kprobe_status & KPROBE_HIT_SS) {
427 resume_execution(cur, regs, kcb);
428 regs->cp0_status |= kcb->kprobe_old_SR;
429
430 reset_current_kprobe();
431 preempt_enable_no_resched();
432 }
433 return 0;
434}
435
436/*
437 * Wrapper routine for handling exceptions.
438 */
439int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
440 unsigned long val, void *data)
441{
442
443 struct die_args *args = (struct die_args *)data;
444 int ret = NOTIFY_DONE;
445
446 switch (val) {
447 case DIE_BREAK:
448 if (kprobe_handler(args->regs))
449 ret = NOTIFY_STOP;
450 break;
451 case DIE_SSTEPBP:
452 if (post_kprobe_handler(args->regs))
453 ret = NOTIFY_STOP;
454 break;
455
456 case DIE_PAGE_FAULT:
457 /* kprobe_running() needs smp_processor_id() */
458 preempt_disable();
459
460 if (kprobe_running()
461 && kprobe_fault_handler(args->regs, args->trapnr))
462 ret = NOTIFY_STOP;
463 preempt_enable();
464 break;
465 default:
466 break;
467 }
468 return ret;
469}
470
471int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
472{
473 struct jprobe *jp = container_of(p, struct jprobe, kp);
474 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
475
476 kcb->jprobe_saved_regs = *regs;
477 kcb->jprobe_saved_sp = regs->regs[29];
478
479 memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
480 MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
481
482 regs->cp0_epc = (unsigned long)(jp->entry);
483
484 return 1;
485}
486
487/* Defined in the inline asm below. */
488void jprobe_return_end(void);
489
490void __kprobes jprobe_return(void)
491{
492 /* Assembler quirk necessitates this '0,code' business. */
493 asm volatile(
494 "break 0,%0\n\t"
495 ".globl jprobe_return_end\n"
496 "jprobe_return_end:\n"
497 : : "n" (BRK_KPROBE_BP) : "memory");
498}
499
500int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
501{
502 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
503
504 if (regs->cp0_epc >= (unsigned long)jprobe_return &&
505 regs->cp0_epc <= (unsigned long)jprobe_return_end) {
506 *regs = kcb->jprobe_saved_regs;
507 memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
508 MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
509 preempt_enable_no_resched();
510
511 return 1;
512 }
513 return 0;
514}
515
516/*
517 * Function return probe trampoline:
518 * - init_kprobes() establishes a probepoint here
519 * - When the probed function returns, this probe causes the
520 * handlers to fire
521 */
522static void __used kretprobe_trampoline_holder(void)
523{
524 asm volatile(
525 ".set push\n\t"
526 /* Keep the assembler from reordering and placing JR here. */
527 ".set noreorder\n\t"
528 "nop\n\t"
529 ".global kretprobe_trampoline\n"
530 "kretprobe_trampoline:\n\t"
531 "nop\n\t"
532 ".set pop"
533 : : : "memory");
534}
535
536void kretprobe_trampoline(void);
537
538void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
539 struct pt_regs *regs)
540{
541 ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
542
543 /* Replace the return addr with trampoline addr */
544 regs->regs[31] = (unsigned long)kretprobe_trampoline;
545}
546
547/*
548 * Called when the probe at kretprobe trampoline is hit
549 */
550static int __kprobes trampoline_probe_handler(struct kprobe *p,
551 struct pt_regs *regs)
552{
553 struct kretprobe_instance *ri = NULL;
554 struct hlist_head *head, empty_rp;
555 struct hlist_node *tmp;
556 unsigned long flags, orig_ret_address = 0;
557 unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
558
559 INIT_HLIST_HEAD(&empty_rp);
560 kretprobe_hash_lock(current, &head, &flags);
561
562 /*
563 * It is possible to have multiple instances associated with a given
564 * task either because an multiple functions in the call path
565 * have a return probe installed on them, and/or more than one return
566 * return probe was registered for a target function.
567 *
568 * We can handle this because:
569 * - instances are always inserted at the head of the list
570 * - when multiple return probes are registered for the same
571 * function, the first instance's ret_addr will point to the
572 * real return address, and all the rest will point to
573 * kretprobe_trampoline
574 */
575 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
576 if (ri->task != current)
577 /* another task is sharing our hash bucket */
578 continue;
579
580 if (ri->rp && ri->rp->handler)
581 ri->rp->handler(ri, regs);
582
583 orig_ret_address = (unsigned long)ri->ret_addr;
584 recycle_rp_inst(ri, &empty_rp);
585
586 if (orig_ret_address != trampoline_address)
587 /*
588 * This is the real return address. Any other
589 * instances associated with this task are for
590 * other calls deeper on the call stack
591 */
592 break;
593 }
594
595 kretprobe_assert(ri, orig_ret_address, trampoline_address);
596 instruction_pointer(regs) = orig_ret_address;
597
598 reset_current_kprobe();
599 kretprobe_hash_unlock(current, &flags);
600 preempt_enable_no_resched();
601
602 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
603 hlist_del(&ri->hlist);
604 kfree(ri);
605 }
606 /*
607 * By returning a non-zero value, we are telling
608 * kprobe_handler() that we don't want the post_handler
609 * to run (and have re-enabled preemption)
610 */
611 return 1;
612}
613
614int __kprobes arch_trampoline_kprobe(struct kprobe *p)
615{
616 if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
617 return 1;
618
619 return 0;
620}
621
622static struct kprobe trampoline_p = {
623 .addr = (kprobe_opcode_t *)kretprobe_trampoline,
624 .pre_handler = trampoline_probe_handler
625};
626
627int __init arch_init_kprobes(void)
628{
629 return register_kprobe(&trampoline_p);
630}