Loading...
1/*
2 * arch/arm/include/asm/io.h
3 *
4 * Copyright (C) 1996-2000 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Modifications:
11 * 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both
12 * constant addresses and variable addresses.
13 * 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture
14 * specific IO header files.
15 * 27-Mar-1999 PJB Second parameter of memcpy_toio is const..
16 * 04-Apr-1999 PJB Added check_signature.
17 * 12-Dec-1999 RMK More cleanups
18 * 18-Jun-2000 RMK Removed virt_to_* and friends definitions
19 * 05-Oct-2004 BJD Moved memory string functions to use void __iomem
20 */
21#ifndef __ASM_ARM_IO_H
22#define __ASM_ARM_IO_H
23
24#ifdef __KERNEL__
25
26#include <linux/types.h>
27#include <asm/byteorder.h>
28#include <asm/memory.h>
29#include <asm-generic/pci_iomap.h>
30
31/*
32 * ISA I/O bus memory addresses are 1:1 with the physical address.
33 */
34#define isa_virt_to_bus virt_to_phys
35#define isa_page_to_bus page_to_phys
36#define isa_bus_to_virt phys_to_virt
37
38/*
39 * Generic IO read/write. These perform native-endian accesses. Note
40 * that some architectures will want to re-define __raw_{read,write}w.
41 */
42extern void __raw_writesb(void __iomem *addr, const void *data, int bytelen);
43extern void __raw_writesw(void __iomem *addr, const void *data, int wordlen);
44extern void __raw_writesl(void __iomem *addr, const void *data, int longlen);
45
46extern void __raw_readsb(const void __iomem *addr, void *data, int bytelen);
47extern void __raw_readsw(const void __iomem *addr, void *data, int wordlen);
48extern void __raw_readsl(const void __iomem *addr, void *data, int longlen);
49
50#define __raw_writeb(v,a) ((void)(__chk_io_ptr(a), *(volatile unsigned char __force *)(a) = (v)))
51#define __raw_writew(v,a) ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v)))
52#define __raw_writel(v,a) ((void)(__chk_io_ptr(a), *(volatile unsigned int __force *)(a) = (v)))
53
54#define __raw_readb(a) (__chk_io_ptr(a), *(volatile unsigned char __force *)(a))
55#define __raw_readw(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a))
56#define __raw_readl(a) (__chk_io_ptr(a), *(volatile unsigned int __force *)(a))
57
58/*
59 * Architecture ioremap implementation.
60 */
61#define MT_DEVICE 0
62#define MT_DEVICE_NONSHARED 1
63#define MT_DEVICE_CACHED 2
64#define MT_DEVICE_WC 3
65/*
66 * types 4 onwards can be found in asm/mach/map.h and are undefined
67 * for ioremap
68 */
69
70/*
71 * __arm_ioremap takes CPU physical address.
72 * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page
73 * The _caller variety takes a __builtin_return_address(0) value for
74 * /proc/vmalloc to use - and should only be used in non-inline functions.
75 */
76extern void __iomem *__arm_ioremap_pfn_caller(unsigned long, unsigned long,
77 size_t, unsigned int, void *);
78extern void __iomem *__arm_ioremap_caller(unsigned long, size_t, unsigned int,
79 void *);
80
81extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int);
82extern void __iomem *__arm_ioremap(unsigned long, size_t, unsigned int);
83extern void __iomem *__arm_ioremap_exec(unsigned long, size_t, bool cached);
84extern void __iounmap(volatile void __iomem *addr);
85extern void __arm_iounmap(volatile void __iomem *addr);
86
87extern void __iomem * (*arch_ioremap_caller)(unsigned long, size_t,
88 unsigned int, void *);
89extern void (*arch_iounmap)(volatile void __iomem *);
90
91/*
92 * Bad read/write accesses...
93 */
94extern void __readwrite_bug(const char *fn);
95
96/*
97 * A typesafe __io() helper
98 */
99static inline void __iomem *__typesafe_io(unsigned long addr)
100{
101 return (void __iomem *)addr;
102}
103
104#define IOMEM(x) ((void __force __iomem *)(x))
105
106/* IO barriers */
107#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
108#include <asm/barrier.h>
109#define __iormb() rmb()
110#define __iowmb() wmb()
111#else
112#define __iormb() do { } while (0)
113#define __iowmb() do { } while (0)
114#endif
115
116/*
117 * Now, pick up the machine-defined IO definitions
118 */
119#ifdef CONFIG_NEED_MACH_IO_H
120#include <mach/io.h>
121#else
122#define __io(a) __typesafe_io((a) & IO_SPACE_LIMIT)
123#endif
124
125/*
126 * This is the limit of PC card/PCI/ISA IO space, which is by default
127 * 64K if we have PC card, PCI or ISA support. Otherwise, default to
128 * zero to prevent ISA/PCI drivers claiming IO space (and potentially
129 * oopsing.)
130 *
131 * Only set this larger if you really need inb() et.al. to operate over
132 * a larger address space. Note that SOC_COMMON ioremaps each sockets
133 * IO space area, and so inb() et.al. must be defined to operate as per
134 * readb() et.al. on such platforms.
135 */
136#ifndef IO_SPACE_LIMIT
137#if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE)
138#define IO_SPACE_LIMIT ((resource_size_t)0xffffffff)
139#elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD)
140#define IO_SPACE_LIMIT ((resource_size_t)0xffff)
141#else
142#define IO_SPACE_LIMIT ((resource_size_t)0)
143#endif
144#endif
145
146/*
147 * IO port access primitives
148 * -------------------------
149 *
150 * The ARM doesn't have special IO access instructions; all IO is memory
151 * mapped. Note that these are defined to perform little endian accesses
152 * only. Their primary purpose is to access PCI and ISA peripherals.
153 *
154 * Note that for a big endian machine, this implies that the following
155 * big endian mode connectivity is in place, as described by numerous
156 * ARM documents:
157 *
158 * PCI: D0-D7 D8-D15 D16-D23 D24-D31
159 * ARM: D24-D31 D16-D23 D8-D15 D0-D7
160 *
161 * The machine specific io.h include defines __io to translate an "IO"
162 * address to a memory address.
163 *
164 * Note that we prevent GCC re-ordering or caching values in expressions
165 * by introducing sequence points into the in*() definitions. Note that
166 * __raw_* do not guarantee this behaviour.
167 *
168 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
169 */
170#ifdef __io
171#define outb(v,p) ({ __iowmb(); __raw_writeb(v,__io(p)); })
172#define outw(v,p) ({ __iowmb(); __raw_writew((__force __u16) \
173 cpu_to_le16(v),__io(p)); })
174#define outl(v,p) ({ __iowmb(); __raw_writel((__force __u32) \
175 cpu_to_le32(v),__io(p)); })
176
177#define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; })
178#define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \
179 __raw_readw(__io(p))); __iormb(); __v; })
180#define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \
181 __raw_readl(__io(p))); __iormb(); __v; })
182
183#define outsb(p,d,l) __raw_writesb(__io(p),d,l)
184#define outsw(p,d,l) __raw_writesw(__io(p),d,l)
185#define outsl(p,d,l) __raw_writesl(__io(p),d,l)
186
187#define insb(p,d,l) __raw_readsb(__io(p),d,l)
188#define insw(p,d,l) __raw_readsw(__io(p),d,l)
189#define insl(p,d,l) __raw_readsl(__io(p),d,l)
190#endif
191
192#define outb_p(val,port) outb((val),(port))
193#define outw_p(val,port) outw((val),(port))
194#define outl_p(val,port) outl((val),(port))
195#define inb_p(port) inb((port))
196#define inw_p(port) inw((port))
197#define inl_p(port) inl((port))
198
199#define outsb_p(port,from,len) outsb(port,from,len)
200#define outsw_p(port,from,len) outsw(port,from,len)
201#define outsl_p(port,from,len) outsl(port,from,len)
202#define insb_p(port,to,len) insb(port,to,len)
203#define insw_p(port,to,len) insw(port,to,len)
204#define insl_p(port,to,len) insl(port,to,len)
205
206/*
207 * String version of IO memory access ops:
208 */
209extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t);
210extern void _memcpy_toio(volatile void __iomem *, const void *, size_t);
211extern void _memset_io(volatile void __iomem *, int, size_t);
212
213#define mmiowb()
214
215/*
216 * Memory access primitives
217 * ------------------------
218 *
219 * These perform PCI memory accesses via an ioremap region. They don't
220 * take an address as such, but a cookie.
221 *
222 * Again, this are defined to perform little endian accesses. See the
223 * IO port primitives for more information.
224 */
225#ifndef readl
226#define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; })
227#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
228 __raw_readw(c)); __r; })
229#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
230 __raw_readl(c)); __r; })
231
232#define writeb_relaxed(v,c) __raw_writeb(v,c)
233#define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c)
234#define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c)
235
236#define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
237#define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
238#define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
239
240#define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); })
241#define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); })
242#define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); })
243
244#define readsb(p,d,l) __raw_readsb(p,d,l)
245#define readsw(p,d,l) __raw_readsw(p,d,l)
246#define readsl(p,d,l) __raw_readsl(p,d,l)
247
248#define writesb(p,d,l) __raw_writesb(p,d,l)
249#define writesw(p,d,l) __raw_writesw(p,d,l)
250#define writesl(p,d,l) __raw_writesl(p,d,l)
251
252#define memset_io(c,v,l) _memset_io(c,(v),(l))
253#define memcpy_fromio(a,c,l) _memcpy_fromio((a),c,(l))
254#define memcpy_toio(c,a,l) _memcpy_toio(c,(a),(l))
255
256#endif /* readl */
257
258/*
259 * ioremap and friends.
260 *
261 * ioremap takes a PCI memory address, as specified in
262 * Documentation/io-mapping.txt.
263 *
264 */
265#define ioremap(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE)
266#define ioremap_nocache(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE)
267#define ioremap_cached(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE_CACHED)
268#define ioremap_wc(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE_WC)
269#define iounmap __arm_iounmap
270
271/*
272 * io{read,write}{8,16,32} macros
273 */
274#ifndef ioread8
275#define ioread8(p) ({ unsigned int __v = __raw_readb(p); __iormb(); __v; })
276#define ioread16(p) ({ unsigned int __v = le16_to_cpu((__force __le16)__raw_readw(p)); __iormb(); __v; })
277#define ioread32(p) ({ unsigned int __v = le32_to_cpu((__force __le32)__raw_readl(p)); __iormb(); __v; })
278
279#define ioread16be(p) ({ unsigned int __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; })
280#define ioread32be(p) ({ unsigned int __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; })
281
282#define iowrite8(v,p) ({ __iowmb(); __raw_writeb(v, p); })
283#define iowrite16(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_le16(v), p); })
284#define iowrite32(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_le32(v), p); })
285
286#define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); })
287#define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); })
288
289#define ioread8_rep(p,d,c) __raw_readsb(p,d,c)
290#define ioread16_rep(p,d,c) __raw_readsw(p,d,c)
291#define ioread32_rep(p,d,c) __raw_readsl(p,d,c)
292
293#define iowrite8_rep(p,s,c) __raw_writesb(p,s,c)
294#define iowrite16_rep(p,s,c) __raw_writesw(p,s,c)
295#define iowrite32_rep(p,s,c) __raw_writesl(p,s,c)
296
297extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
298extern void ioport_unmap(void __iomem *addr);
299#endif
300
301struct pci_dev;
302
303extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
304
305/*
306 * can the hardware map this into one segment or not, given no other
307 * constraints.
308 */
309#define BIOVEC_MERGEABLE(vec1, vec2) \
310 ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2)))
311
312#ifdef CONFIG_MMU
313#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
314extern int valid_phys_addr_range(unsigned long addr, size_t size);
315extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
316extern int devmem_is_allowed(unsigned long pfn);
317#endif
318
319/*
320 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
321 * access
322 */
323#define xlate_dev_mem_ptr(p) __va(p)
324
325/*
326 * Convert a virtual cached pointer to an uncached pointer
327 */
328#define xlate_dev_kmem_ptr(p) p
329
330/*
331 * Register ISA memory and port locations for glibc iopl/inb/outb
332 * emulation.
333 */
334extern void register_isa_ports(unsigned int mmio, unsigned int io,
335 unsigned int io_shift);
336
337#endif /* __KERNEL__ */
338#endif /* __ASM_ARM_IO_H */
1/*
2 * arch/arm/include/asm/io.h
3 *
4 * Copyright (C) 1996-2000 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Modifications:
11 * 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both
12 * constant addresses and variable addresses.
13 * 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture
14 * specific IO header files.
15 * 27-Mar-1999 PJB Second parameter of memcpy_toio is const..
16 * 04-Apr-1999 PJB Added check_signature.
17 * 12-Dec-1999 RMK More cleanups
18 * 18-Jun-2000 RMK Removed virt_to_* and friends definitions
19 * 05-Oct-2004 BJD Moved memory string functions to use void __iomem
20 */
21#ifndef __ASM_ARM_IO_H
22#define __ASM_ARM_IO_H
23
24#ifdef __KERNEL__
25
26#include <linux/string.h>
27#include <linux/types.h>
28#include <asm/byteorder.h>
29#include <asm/memory.h>
30#include <asm-generic/pci_iomap.h>
31#include <xen/xen.h>
32
33/*
34 * ISA I/O bus memory addresses are 1:1 with the physical address.
35 */
36#define isa_virt_to_bus virt_to_phys
37#define isa_page_to_bus page_to_phys
38#define isa_bus_to_virt phys_to_virt
39
40/*
41 * Atomic MMIO-wide IO modify
42 */
43extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set);
44extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set);
45
46/*
47 * Generic IO read/write. These perform native-endian accesses. Note
48 * that some architectures will want to re-define __raw_{read,write}w.
49 */
50void __raw_writesb(volatile void __iomem *addr, const void *data, int bytelen);
51void __raw_writesw(volatile void __iomem *addr, const void *data, int wordlen);
52void __raw_writesl(volatile void __iomem *addr, const void *data, int longlen);
53
54void __raw_readsb(const volatile void __iomem *addr, void *data, int bytelen);
55void __raw_readsw(const volatile void __iomem *addr, void *data, int wordlen);
56void __raw_readsl(const volatile void __iomem *addr, void *data, int longlen);
57
58#if __LINUX_ARM_ARCH__ < 6
59/*
60 * Half-word accesses are problematic with RiscPC due to limitations of
61 * the bus. Rather than special-case the machine, just let the compiler
62 * generate the access for CPUs prior to ARMv6.
63 */
64#define __raw_readw(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a))
65#define __raw_writew(v,a) ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v)))
66#else
67/*
68 * When running under a hypervisor, we want to avoid I/O accesses with
69 * writeback addressing modes as these incur a significant performance
70 * overhead (the address generation must be emulated in software).
71 */
72#define __raw_writew __raw_writew
73static inline void __raw_writew(u16 val, volatile void __iomem *addr)
74{
75 asm volatile("strh %1, %0"
76 : : "Q" (*(volatile u16 __force *)addr), "r" (val));
77}
78
79#define __raw_readw __raw_readw
80static inline u16 __raw_readw(const volatile void __iomem *addr)
81{
82 u16 val;
83 asm volatile("ldrh %0, %1"
84 : "=r" (val)
85 : "Q" (*(volatile u16 __force *)addr));
86 return val;
87}
88#endif
89
90#define __raw_writeb __raw_writeb
91static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
92{
93 asm volatile("strb %1, %0"
94 : : "Qo" (*(volatile u8 __force *)addr), "r" (val));
95}
96
97#define __raw_writel __raw_writel
98static inline void __raw_writel(u32 val, volatile void __iomem *addr)
99{
100 asm volatile("str %1, %0"
101 : : "Qo" (*(volatile u32 __force *)addr), "r" (val));
102}
103
104#define __raw_readb __raw_readb
105static inline u8 __raw_readb(const volatile void __iomem *addr)
106{
107 u8 val;
108 asm volatile("ldrb %0, %1"
109 : "=r" (val)
110 : "Qo" (*(volatile u8 __force *)addr));
111 return val;
112}
113
114#define __raw_readl __raw_readl
115static inline u32 __raw_readl(const volatile void __iomem *addr)
116{
117 u32 val;
118 asm volatile("ldr %0, %1"
119 : "=r" (val)
120 : "Qo" (*(volatile u32 __force *)addr));
121 return val;
122}
123
124/*
125 * Architecture ioremap implementation.
126 */
127#define MT_DEVICE 0
128#define MT_DEVICE_NONSHARED 1
129#define MT_DEVICE_CACHED 2
130#define MT_DEVICE_WC 3
131/*
132 * types 4 onwards can be found in asm/mach/map.h and are undefined
133 * for ioremap
134 */
135
136/*
137 * __arm_ioremap takes CPU physical address.
138 * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page
139 * The _caller variety takes a __builtin_return_address(0) value for
140 * /proc/vmalloc to use - and should only be used in non-inline functions.
141 */
142extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int,
143 void *);
144extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int);
145extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached);
146extern void __iounmap(volatile void __iomem *addr);
147
148extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
149 unsigned int, void *);
150extern void (*arch_iounmap)(volatile void __iomem *);
151
152/*
153 * Bad read/write accesses...
154 */
155extern void __readwrite_bug(const char *fn);
156
157/*
158 * A typesafe __io() helper
159 */
160static inline void __iomem *__typesafe_io(unsigned long addr)
161{
162 return (void __iomem *)addr;
163}
164
165#define IOMEM(x) ((void __force __iomem *)(x))
166
167/* IO barriers */
168#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
169#include <asm/barrier.h>
170#define __iormb() rmb()
171#define __iowmb() wmb()
172#else
173#define __iormb() do { } while (0)
174#define __iowmb() do { } while (0)
175#endif
176
177/* PCI fixed i/o mapping */
178#define PCI_IO_VIRT_BASE 0xfee00000
179#define PCI_IOBASE ((void __iomem *)PCI_IO_VIRT_BASE)
180
181#if defined(CONFIG_PCI)
182void pci_ioremap_set_mem_type(int mem_type);
183#else
184static inline void pci_ioremap_set_mem_type(int mem_type) {}
185#endif
186
187extern int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr);
188
189/*
190 * PCI configuration space mapping function.
191 *
192 * The PCI specification does not allow configuration write
193 * transactions to be posted. Add an arch specific
194 * pci_remap_cfgspace() definition that is implemented
195 * through strongly ordered memory mappings.
196 */
197#define pci_remap_cfgspace pci_remap_cfgspace
198void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size);
199/*
200 * Now, pick up the machine-defined IO definitions
201 */
202#ifdef CONFIG_NEED_MACH_IO_H
203#include <mach/io.h>
204#elif defined(CONFIG_PCI)
205#define IO_SPACE_LIMIT ((resource_size_t)0xfffff)
206#define __io(a) __typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT))
207#else
208#define __io(a) __typesafe_io((a) & IO_SPACE_LIMIT)
209#endif
210
211/*
212 * This is the limit of PC card/PCI/ISA IO space, which is by default
213 * 64K if we have PC card, PCI or ISA support. Otherwise, default to
214 * zero to prevent ISA/PCI drivers claiming IO space (and potentially
215 * oopsing.)
216 *
217 * Only set this larger if you really need inb() et.al. to operate over
218 * a larger address space. Note that SOC_COMMON ioremaps each sockets
219 * IO space area, and so inb() et.al. must be defined to operate as per
220 * readb() et.al. on such platforms.
221 */
222#ifndef IO_SPACE_LIMIT
223#if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE)
224#define IO_SPACE_LIMIT ((resource_size_t)0xffffffff)
225#elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD)
226#define IO_SPACE_LIMIT ((resource_size_t)0xffff)
227#else
228#define IO_SPACE_LIMIT ((resource_size_t)0)
229#endif
230#endif
231
232/*
233 * IO port access primitives
234 * -------------------------
235 *
236 * The ARM doesn't have special IO access instructions; all IO is memory
237 * mapped. Note that these are defined to perform little endian accesses
238 * only. Their primary purpose is to access PCI and ISA peripherals.
239 *
240 * Note that for a big endian machine, this implies that the following
241 * big endian mode connectivity is in place, as described by numerous
242 * ARM documents:
243 *
244 * PCI: D0-D7 D8-D15 D16-D23 D24-D31
245 * ARM: D24-D31 D16-D23 D8-D15 D0-D7
246 *
247 * The machine specific io.h include defines __io to translate an "IO"
248 * address to a memory address.
249 *
250 * Note that we prevent GCC re-ordering or caching values in expressions
251 * by introducing sequence points into the in*() definitions. Note that
252 * __raw_* do not guarantee this behaviour.
253 *
254 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
255 */
256#ifdef __io
257#define outb(v,p) ({ __iowmb(); __raw_writeb(v,__io(p)); })
258#define outw(v,p) ({ __iowmb(); __raw_writew((__force __u16) \
259 cpu_to_le16(v),__io(p)); })
260#define outl(v,p) ({ __iowmb(); __raw_writel((__force __u32) \
261 cpu_to_le32(v),__io(p)); })
262
263#define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; })
264#define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \
265 __raw_readw(__io(p))); __iormb(); __v; })
266#define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \
267 __raw_readl(__io(p))); __iormb(); __v; })
268
269#define outsb(p,d,l) __raw_writesb(__io(p),d,l)
270#define outsw(p,d,l) __raw_writesw(__io(p),d,l)
271#define outsl(p,d,l) __raw_writesl(__io(p),d,l)
272
273#define insb(p,d,l) __raw_readsb(__io(p),d,l)
274#define insw(p,d,l) __raw_readsw(__io(p),d,l)
275#define insl(p,d,l) __raw_readsl(__io(p),d,l)
276#endif
277
278/*
279 * String version of IO memory access ops:
280 */
281extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t);
282extern void _memcpy_toio(volatile void __iomem *, const void *, size_t);
283extern void _memset_io(volatile void __iomem *, int, size_t);
284
285#define mmiowb()
286
287/*
288 * Memory access primitives
289 * ------------------------
290 *
291 * These perform PCI memory accesses via an ioremap region. They don't
292 * take an address as such, but a cookie.
293 *
294 * Again, these are defined to perform little endian accesses. See the
295 * IO port primitives for more information.
296 */
297#ifndef readl
298#define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; })
299#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
300 __raw_readw(c)); __r; })
301#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
302 __raw_readl(c)); __r; })
303
304#define writeb_relaxed(v,c) __raw_writeb(v,c)
305#define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c)
306#define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c)
307
308#define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
309#define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
310#define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
311
312#define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); })
313#define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); })
314#define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); })
315
316#define readsb(p,d,l) __raw_readsb(p,d,l)
317#define readsw(p,d,l) __raw_readsw(p,d,l)
318#define readsl(p,d,l) __raw_readsl(p,d,l)
319
320#define writesb(p,d,l) __raw_writesb(p,d,l)
321#define writesw(p,d,l) __raw_writesw(p,d,l)
322#define writesl(p,d,l) __raw_writesl(p,d,l)
323
324#ifndef __ARMBE__
325static inline void memset_io(volatile void __iomem *dst, unsigned c,
326 size_t count)
327{
328 extern void mmioset(void *, unsigned int, size_t);
329 mmioset((void __force *)dst, c, count);
330}
331#define memset_io(dst,c,count) memset_io(dst,c,count)
332
333static inline void memcpy_fromio(void *to, const volatile void __iomem *from,
334 size_t count)
335{
336 extern void mmiocpy(void *, const void *, size_t);
337 mmiocpy(to, (const void __force *)from, count);
338}
339#define memcpy_fromio(to,from,count) memcpy_fromio(to,from,count)
340
341static inline void memcpy_toio(volatile void __iomem *to, const void *from,
342 size_t count)
343{
344 extern void mmiocpy(void *, const void *, size_t);
345 mmiocpy((void __force *)to, from, count);
346}
347#define memcpy_toio(to,from,count) memcpy_toio(to,from,count)
348
349#else
350#define memset_io(c,v,l) _memset_io(c,(v),(l))
351#define memcpy_fromio(a,c,l) _memcpy_fromio((a),c,(l))
352#define memcpy_toio(c,a,l) _memcpy_toio(c,(a),(l))
353#endif
354
355#endif /* readl */
356
357/*
358 * ioremap() and friends.
359 *
360 * ioremap() takes a resource address, and size. Due to the ARM memory
361 * types, it is important to use the correct ioremap() function as each
362 * mapping has specific properties.
363 *
364 * Function Memory type Cacheability Cache hint
365 * ioremap() Device n/a n/a
366 * ioremap_nocache() Device n/a n/a
367 * ioremap_cache() Normal Writeback Read allocate
368 * ioremap_wc() Normal Non-cacheable n/a
369 * ioremap_wt() Normal Non-cacheable n/a
370 *
371 * All device mappings have the following properties:
372 * - no access speculation
373 * - no repetition (eg, on return from an exception)
374 * - number, order and size of accesses are maintained
375 * - unaligned accesses are "unpredictable"
376 * - writes may be delayed before they hit the endpoint device
377 *
378 * ioremap_nocache() is the same as ioremap() as there are too many device
379 * drivers using this for device registers, and documentation which tells
380 * people to use it for such for this to be any different. This is not a
381 * safe fallback for memory-like mappings, or memory regions where the
382 * compiler may generate unaligned accesses - eg, via inlining its own
383 * memcpy.
384 *
385 * All normal memory mappings have the following properties:
386 * - reads can be repeated with no side effects
387 * - repeated reads return the last value written
388 * - reads can fetch additional locations without side effects
389 * - writes can be repeated (in certain cases) with no side effects
390 * - writes can be merged before accessing the target
391 * - unaligned accesses can be supported
392 * - ordering is not guaranteed without explicit dependencies or barrier
393 * instructions
394 * - writes may be delayed before they hit the endpoint memory
395 *
396 * The cache hint is only a performance hint: CPUs may alias these hints.
397 * Eg, a CPU not implementing read allocate but implementing write allocate
398 * will provide a write allocate mapping instead.
399 */
400void __iomem *ioremap(resource_size_t res_cookie, size_t size);
401#define ioremap ioremap
402#define ioremap_nocache ioremap
403
404/*
405 * Do not use ioremap_cache for mapping memory. Use memremap instead.
406 */
407void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size);
408#define ioremap_cache ioremap_cache
409
410/*
411 * Do not use ioremap_cached in new code. Provided for the benefit of
412 * the pxa2xx-flash MTD driver only.
413 */
414void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size);
415
416void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size);
417#define ioremap_wc ioremap_wc
418#define ioremap_wt ioremap_wc
419
420void iounmap(volatile void __iomem *iomem_cookie);
421#define iounmap iounmap
422
423void *arch_memremap_wb(phys_addr_t phys_addr, size_t size);
424#define arch_memremap_wb arch_memremap_wb
425
426/*
427 * io{read,write}{16,32}be() macros
428 */
429#define ioread16be(p) ({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; })
430#define ioread32be(p) ({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; })
431
432#define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); })
433#define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); })
434
435#ifndef ioport_map
436#define ioport_map ioport_map
437extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
438#endif
439#ifndef ioport_unmap
440#define ioport_unmap ioport_unmap
441extern void ioport_unmap(void __iomem *addr);
442#endif
443
444struct pci_dev;
445
446#define pci_iounmap pci_iounmap
447extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
448
449/*
450 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
451 * access
452 */
453#define xlate_dev_mem_ptr(p) __va(p)
454
455/*
456 * Convert a virtual cached pointer to an uncached pointer
457 */
458#define xlate_dev_kmem_ptr(p) p
459
460#include <asm-generic/io.h>
461
462/*
463 * can the hardware map this into one segment or not, given no other
464 * constraints.
465 */
466#define BIOVEC_MERGEABLE(vec1, vec2) \
467 ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2)))
468
469struct bio_vec;
470extern bool xen_biovec_phys_mergeable(const struct bio_vec *vec1,
471 const struct bio_vec *vec2);
472#define BIOVEC_PHYS_MERGEABLE(vec1, vec2) \
473 (__BIOVEC_PHYS_MERGEABLE(vec1, vec2) && \
474 (!xen_domain() || xen_biovec_phys_mergeable(vec1, vec2)))
475
476#ifdef CONFIG_MMU
477#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
478extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
479extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
480extern int devmem_is_allowed(unsigned long pfn);
481#endif
482
483/*
484 * Register ISA memory and port locations for glibc iopl/inb/outb
485 * emulation.
486 */
487extern void register_isa_ports(unsigned int mmio, unsigned int io,
488 unsigned int io_shift);
489
490#endif /* __KERNEL__ */
491#endif /* __ASM_ARM_IO_H */