Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * builtin-timechart.c - make an svg timechart of system activity
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 *
   6 * Authors:
   7 *     Arjan van de Ven <arjan@linux.intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
 
 
  15#include "builtin.h"
  16
  17#include "util/util.h"
  18
  19#include "util/color.h"
  20#include <linux/list.h>
  21#include "util/cache.h"
 
  22#include "util/evsel.h"
  23#include <linux/rbtree.h>
 
  24#include "util/symbol.h"
  25#include "util/callchain.h"
  26#include "util/strlist.h"
  27
  28#include "perf.h"
  29#include "util/header.h"
  30#include "util/parse-options.h"
  31#include "util/parse-events.h"
  32#include "util/event.h"
  33#include "util/session.h"
  34#include "util/svghelper.h"
  35#include "util/tool.h"
 
 
  36
  37#define SUPPORT_OLD_POWER_EVENTS 1
  38#define PWR_EVENT_EXIT -1
  39
  40
  41static const char	*input_name;
  42static const char	*output_name = "output.svg";
  43
  44static unsigned int	numcpus;
  45static u64		min_freq;	/* Lowest CPU frequency seen */
  46static u64		max_freq;	/* Highest CPU frequency seen */
  47static u64		turbo_frequency;
  48
  49static u64		first_time, last_time;
  50
  51static bool		power_only;
  52
  53
  54struct per_pid;
  55struct per_pidcomm;
  56
  57struct cpu_sample;
  58struct power_event;
  59struct wake_event;
  60
  61struct sample_wrapper;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62
  63/*
  64 * Datastructure layout:
  65 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  66 * Each "pid" entry, has a list of "comm"s.
  67 *	this is because we want to track different programs different, while
  68 *	exec will reuse the original pid (by design).
  69 * Each comm has a list of samples that will be used to draw
  70 * final graph.
  71 */
  72
  73struct per_pid {
  74	struct per_pid *next;
  75
  76	int		pid;
  77	int		ppid;
  78
  79	u64		start_time;
  80	u64		end_time;
  81	u64		total_time;
 
  82	int		display;
  83
  84	struct per_pidcomm *all;
  85	struct per_pidcomm *current;
  86};
  87
  88
  89struct per_pidcomm {
  90	struct per_pidcomm *next;
  91
  92	u64		start_time;
  93	u64		end_time;
  94	u64		total_time;
 
 
  95
  96	int		Y;
  97	int		display;
  98
  99	long		state;
 100	u64		state_since;
 101
 102	char		*comm;
 103
 104	struct cpu_sample *samples;
 
 105};
 106
 107struct sample_wrapper {
 108	struct sample_wrapper *next;
 109
 110	u64		timestamp;
 111	unsigned char	data[0];
 112};
 113
 114#define TYPE_NONE	0
 115#define TYPE_RUNNING	1
 116#define TYPE_WAITING	2
 117#define TYPE_BLOCKED	3
 118
 119struct cpu_sample {
 120	struct cpu_sample *next;
 121
 122	u64 start_time;
 123	u64 end_time;
 124	int type;
 125	int cpu;
 
 126};
 127
 128static struct per_pid *all_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 129
 130#define CSTATE 1
 131#define PSTATE 2
 132
 133struct power_event {
 134	struct power_event *next;
 135	int type;
 136	int state;
 137	u64 start_time;
 138	u64 end_time;
 139	int cpu;
 140};
 141
 142struct wake_event {
 143	struct wake_event *next;
 144	int waker;
 145	int wakee;
 146	u64 time;
 
 147};
 148
 149static struct power_event    *power_events;
 150static struct wake_event     *wake_events;
 151
 152struct process_filter;
 153struct process_filter {
 154	char			*name;
 155	int			pid;
 156	struct process_filter	*next;
 157};
 158
 159static struct process_filter *process_filter;
 160
 161
 162static struct per_pid *find_create_pid(int pid)
 163{
 164	struct per_pid *cursor = all_data;
 165
 166	while (cursor) {
 167		if (cursor->pid == pid)
 168			return cursor;
 169		cursor = cursor->next;
 170	}
 171	cursor = malloc(sizeof(struct per_pid));
 172	assert(cursor != NULL);
 173	memset(cursor, 0, sizeof(struct per_pid));
 174	cursor->pid = pid;
 175	cursor->next = all_data;
 176	all_data = cursor;
 177	return cursor;
 178}
 179
 180static void pid_set_comm(int pid, char *comm)
 181{
 182	struct per_pid *p;
 183	struct per_pidcomm *c;
 184	p = find_create_pid(pid);
 185	c = p->all;
 186	while (c) {
 187		if (c->comm && strcmp(c->comm, comm) == 0) {
 188			p->current = c;
 189			return;
 190		}
 191		if (!c->comm) {
 192			c->comm = strdup(comm);
 193			p->current = c;
 194			return;
 195		}
 196		c = c->next;
 197	}
 198	c = malloc(sizeof(struct per_pidcomm));
 199	assert(c != NULL);
 200	memset(c, 0, sizeof(struct per_pidcomm));
 201	c->comm = strdup(comm);
 202	p->current = c;
 203	c->next = p->all;
 204	p->all = c;
 205}
 206
 207static void pid_fork(int pid, int ppid, u64 timestamp)
 208{
 209	struct per_pid *p, *pp;
 210	p = find_create_pid(pid);
 211	pp = find_create_pid(ppid);
 212	p->ppid = ppid;
 213	if (pp->current && pp->current->comm && !p->current)
 214		pid_set_comm(pid, pp->current->comm);
 215
 216	p->start_time = timestamp;
 217	if (p->current) {
 218		p->current->start_time = timestamp;
 219		p->current->state_since = timestamp;
 220	}
 221}
 222
 223static void pid_exit(int pid, u64 timestamp)
 224{
 225	struct per_pid *p;
 226	p = find_create_pid(pid);
 227	p->end_time = timestamp;
 228	if (p->current)
 229		p->current->end_time = timestamp;
 230}
 231
 232static void
 233pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
 
 234{
 235	struct per_pid *p;
 236	struct per_pidcomm *c;
 237	struct cpu_sample *sample;
 238
 239	p = find_create_pid(pid);
 240	c = p->current;
 241	if (!c) {
 242		c = malloc(sizeof(struct per_pidcomm));
 243		assert(c != NULL);
 244		memset(c, 0, sizeof(struct per_pidcomm));
 245		p->current = c;
 246		c->next = p->all;
 247		p->all = c;
 248	}
 249
 250	sample = malloc(sizeof(struct cpu_sample));
 251	assert(sample != NULL);
 252	memset(sample, 0, sizeof(struct cpu_sample));
 253	sample->start_time = start;
 254	sample->end_time = end;
 255	sample->type = type;
 256	sample->next = c->samples;
 257	sample->cpu = cpu;
 
 258	c->samples = sample;
 259
 260	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 261		c->total_time += (end-start);
 262		p->total_time += (end-start);
 263	}
 264
 265	if (c->start_time == 0 || c->start_time > start)
 266		c->start_time = start;
 267	if (p->start_time == 0 || p->start_time > start)
 268		p->start_time = start;
 269}
 270
 271#define MAX_CPUS 4096
 272
 273static u64 cpus_cstate_start_times[MAX_CPUS];
 274static int cpus_cstate_state[MAX_CPUS];
 275static u64 cpus_pstate_start_times[MAX_CPUS];
 276static u64 cpus_pstate_state[MAX_CPUS];
 277
 278static int process_comm_event(struct perf_tool *tool __used,
 279			      union perf_event *event,
 280			      struct perf_sample *sample __used,
 281			      struct machine *machine __used)
 282{
 283	pid_set_comm(event->comm.tid, event->comm.comm);
 
 284	return 0;
 285}
 286
 287static int process_fork_event(struct perf_tool *tool __used,
 288			      union perf_event *event,
 289			      struct perf_sample *sample __used,
 290			      struct machine *machine __used)
 291{
 292	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
 
 293	return 0;
 294}
 295
 296static int process_exit_event(struct perf_tool *tool __used,
 297			      union perf_event *event,
 298			      struct perf_sample *sample __used,
 299			      struct machine *machine __used)
 300{
 301	pid_exit(event->fork.pid, event->fork.time);
 
 302	return 0;
 303}
 304
 305struct trace_entry {
 306	unsigned short		type;
 307	unsigned char		flags;
 308	unsigned char		preempt_count;
 309	int			pid;
 310	int			lock_depth;
 311};
 312
 313#ifdef SUPPORT_OLD_POWER_EVENTS
 314static int use_old_power_events;
 315struct power_entry_old {
 316	struct trace_entry te;
 317	u64	type;
 318	u64	value;
 319	u64	cpu_id;
 320};
 321#endif
 322
 323struct power_processor_entry {
 324	struct trace_entry te;
 325	u32	state;
 326	u32	cpu_id;
 327};
 328
 329#define TASK_COMM_LEN 16
 330struct wakeup_entry {
 331	struct trace_entry te;
 332	char comm[TASK_COMM_LEN];
 333	int   pid;
 334	int   prio;
 335	int   success;
 336};
 337
 338/*
 339 * trace_flag_type is an enumeration that holds different
 340 * states when a trace occurs. These are:
 341 *  IRQS_OFF            - interrupts were disabled
 342 *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
 343 *  NEED_RESCED         - reschedule is requested
 344 *  HARDIRQ             - inside an interrupt handler
 345 *  SOFTIRQ             - inside a softirq handler
 346 */
 347enum trace_flag_type {
 348	TRACE_FLAG_IRQS_OFF		= 0x01,
 349	TRACE_FLAG_IRQS_NOSUPPORT	= 0x02,
 350	TRACE_FLAG_NEED_RESCHED		= 0x04,
 351	TRACE_FLAG_HARDIRQ		= 0x08,
 352	TRACE_FLAG_SOFTIRQ		= 0x10,
 353};
 354
 355
 356
 357struct sched_switch {
 358	struct trace_entry te;
 359	char prev_comm[TASK_COMM_LEN];
 360	int  prev_pid;
 361	int  prev_prio;
 362	long prev_state; /* Arjan weeps. */
 363	char next_comm[TASK_COMM_LEN];
 364	int  next_pid;
 365	int  next_prio;
 366};
 367
 368static void c_state_start(int cpu, u64 timestamp, int state)
 369{
 370	cpus_cstate_start_times[cpu] = timestamp;
 371	cpus_cstate_state[cpu] = state;
 372}
 373
 374static void c_state_end(int cpu, u64 timestamp)
 375{
 376	struct power_event *pwr;
 377	pwr = malloc(sizeof(struct power_event));
 378	if (!pwr)
 379		return;
 380	memset(pwr, 0, sizeof(struct power_event));
 381
 382	pwr->state = cpus_cstate_state[cpu];
 383	pwr->start_time = cpus_cstate_start_times[cpu];
 384	pwr->end_time = timestamp;
 385	pwr->cpu = cpu;
 386	pwr->type = CSTATE;
 387	pwr->next = power_events;
 388
 389	power_events = pwr;
 390}
 391
 392static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
 393{
 394	struct power_event *pwr;
 395	pwr = malloc(sizeof(struct power_event));
 396
 397	if (new_freq > 8000000) /* detect invalid data */
 398		return;
 399
 
 400	if (!pwr)
 401		return;
 402	memset(pwr, 0, sizeof(struct power_event));
 403
 404	pwr->state = cpus_pstate_state[cpu];
 405	pwr->start_time = cpus_pstate_start_times[cpu];
 406	pwr->end_time = timestamp;
 407	pwr->cpu = cpu;
 408	pwr->type = PSTATE;
 409	pwr->next = power_events;
 410
 411	if (!pwr->start_time)
 412		pwr->start_time = first_time;
 413
 414	power_events = pwr;
 415
 416	cpus_pstate_state[cpu] = new_freq;
 417	cpus_pstate_start_times[cpu] = timestamp;
 418
 419	if ((u64)new_freq > max_freq)
 420		max_freq = new_freq;
 421
 422	if (new_freq < min_freq || min_freq == 0)
 423		min_freq = new_freq;
 424
 425	if (new_freq == max_freq - 1000)
 426			turbo_frequency = max_freq;
 427}
 428
 429static void
 430sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
 431{
 432	struct wake_event *we;
 433	struct per_pid *p;
 434	struct wakeup_entry *wake = (void *)te;
 435
 436	we = malloc(sizeof(struct wake_event));
 437	if (!we)
 438		return;
 439
 440	memset(we, 0, sizeof(struct wake_event));
 441	we->time = timestamp;
 442	we->waker = pid;
 
 443
 444	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
 445		we->waker = -1;
 446
 447	we->wakee = wake->pid;
 448	we->next = wake_events;
 449	wake_events = we;
 450	p = find_create_pid(we->wakee);
 451
 452	if (p && p->current && p->current->state == TYPE_NONE) {
 453		p->current->state_since = timestamp;
 454		p->current->state = TYPE_WAITING;
 455	}
 456	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 457		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
 
 458		p->current->state_since = timestamp;
 459		p->current->state = TYPE_WAITING;
 460	}
 461}
 462
 463static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
 
 
 464{
 465	struct per_pid *p = NULL, *prev_p;
 466	struct sched_switch *sw = (void *)te;
 467
 
 468
 469	prev_p = find_create_pid(sw->prev_pid);
 470
 471	p = find_create_pid(sw->next_pid);
 472
 473	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 474		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
 
 
 475	if (p && p->current) {
 476		if (p->current->state != TYPE_NONE)
 477			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
 
 
 478
 479		p->current->state_since = timestamp;
 480		p->current->state = TYPE_RUNNING;
 481	}
 482
 483	if (prev_p->current) {
 484		prev_p->current->state = TYPE_NONE;
 485		prev_p->current->state_since = timestamp;
 486		if (sw->prev_state & 2)
 487			prev_p->current->state = TYPE_BLOCKED;
 488		if (sw->prev_state == 0)
 489			prev_p->current->state = TYPE_WAITING;
 490	}
 491}
 492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 493
 494static int process_sample_event(struct perf_tool *tool __used,
 495				union perf_event *event __used,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496				struct perf_sample *sample,
 497				struct perf_evsel *evsel,
 498				struct machine *machine __used)
 499{
 500	struct trace_entry *te;
 501
 502	if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
 503		if (!first_time || first_time > sample->time)
 504			first_time = sample->time;
 505		if (last_time < sample->time)
 506			last_time = sample->time;
 507	}
 508
 509	te = (void *)sample->raw_data;
 510	if ((evsel->attr.sample_type & PERF_SAMPLE_RAW) && sample->raw_size > 0) {
 511		char *event_str;
 512#ifdef SUPPORT_OLD_POWER_EVENTS
 513		struct power_entry_old *peo;
 514		peo = (void *)te;
 515#endif
 516		/*
 517		 * FIXME: use evsel, its already mapped from id to perf_evsel,
 518		 * remove perf_header__find_event infrastructure bits.
 519		 * Mapping all these "power:cpu_idle" strings to the tracepoint
 520		 * ID and then just comparing against evsel->attr.config.
 521		 *
 522		 * e.g.:
 523		 *
 524		 * if (evsel->attr.config == power_cpu_idle_id)
 525		 */
 526		event_str = perf_header__find_event(te->type);
 527
 528		if (!event_str)
 529			return 0;
 530
 531		if (sample->cpu > numcpus)
 532			numcpus = sample->cpu;
 533
 534		if (strcmp(event_str, "power:cpu_idle") == 0) {
 535			struct power_processor_entry *ppe = (void *)te;
 536			if (ppe->state == (u32)PWR_EVENT_EXIT)
 537				c_state_end(ppe->cpu_id, sample->time);
 538			else
 539				c_state_start(ppe->cpu_id, sample->time,
 540					      ppe->state);
 541		}
 542		else if (strcmp(event_str, "power:cpu_frequency") == 0) {
 543			struct power_processor_entry *ppe = (void *)te;
 544			p_state_change(ppe->cpu_id, sample->time, ppe->state);
 545		}
 546
 547		else if (strcmp(event_str, "sched:sched_wakeup") == 0)
 548			sched_wakeup(sample->cpu, sample->time, sample->pid, te);
 
 
 
 
 
 
 
 
 
 
 
 
 
 549
 550		else if (strcmp(event_str, "sched:sched_switch") == 0)
 551			sched_switch(sample->cpu, sample->time, te);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552
 553#ifdef SUPPORT_OLD_POWER_EVENTS
 554		if (use_old_power_events) {
 555			if (strcmp(event_str, "power:power_start") == 0)
 556				c_state_start(peo->cpu_id, sample->time,
 557					      peo->value);
 558
 559			else if (strcmp(event_str, "power:power_end") == 0)
 560				c_state_end(sample->cpu, sample->time);
 561
 562			else if (strcmp(event_str,
 563					"power:power_frequency") == 0)
 564				p_state_change(peo->cpu_id, sample->time,
 565					       peo->value);
 566		}
 567#endif
 568	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569	return 0;
 570}
 
 571
 572/*
 573 * After the last sample we need to wrap up the current C/P state
 574 * and close out each CPU for these.
 575 */
 576static void end_sample_processing(void)
 577{
 578	u64 cpu;
 579	struct power_event *pwr;
 580
 581	for (cpu = 0; cpu <= numcpus; cpu++) {
 582		pwr = malloc(sizeof(struct power_event));
 
 
 583		if (!pwr)
 584			return;
 585		memset(pwr, 0, sizeof(struct power_event));
 586
 587		/* C state */
 588#if 0
 589		pwr->state = cpus_cstate_state[cpu];
 590		pwr->start_time = cpus_cstate_start_times[cpu];
 591		pwr->end_time = last_time;
 592		pwr->cpu = cpu;
 593		pwr->type = CSTATE;
 594		pwr->next = power_events;
 595
 596		power_events = pwr;
 597#endif
 598		/* P state */
 599
 600		pwr = malloc(sizeof(struct power_event));
 601		if (!pwr)
 602			return;
 603		memset(pwr, 0, sizeof(struct power_event));
 604
 605		pwr->state = cpus_pstate_state[cpu];
 606		pwr->start_time = cpus_pstate_start_times[cpu];
 607		pwr->end_time = last_time;
 608		pwr->cpu = cpu;
 609		pwr->type = PSTATE;
 610		pwr->next = power_events;
 611
 612		if (!pwr->start_time)
 613			pwr->start_time = first_time;
 614		if (!pwr->state)
 615			pwr->state = min_freq;
 616		power_events = pwr;
 617	}
 618}
 619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620/*
 621 * Sort the pid datastructure
 622 */
 623static void sort_pids(void)
 624{
 625	struct per_pid *new_list, *p, *cursor, *prev;
 626	/* sort by ppid first, then by pid, lowest to highest */
 627
 628	new_list = NULL;
 629
 630	while (all_data) {
 631		p = all_data;
 632		all_data = p->next;
 633		p->next = NULL;
 634
 635		if (new_list == NULL) {
 636			new_list = p;
 637			p->next = NULL;
 638			continue;
 639		}
 640		prev = NULL;
 641		cursor = new_list;
 642		while (cursor) {
 643			if (cursor->ppid > p->ppid ||
 644				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 645				/* must insert before */
 646				if (prev) {
 647					p->next = prev->next;
 648					prev->next = p;
 649					cursor = NULL;
 650					continue;
 651				} else {
 652					p->next = new_list;
 653					new_list = p;
 654					cursor = NULL;
 655					continue;
 656				}
 657			}
 658
 659			prev = cursor;
 660			cursor = cursor->next;
 661			if (!cursor)
 662				prev->next = p;
 663		}
 664	}
 665	all_data = new_list;
 666}
 667
 668
 669static void draw_c_p_states(void)
 670{
 671	struct power_event *pwr;
 672	pwr = power_events;
 673
 674	/*
 675	 * two pass drawing so that the P state bars are on top of the C state blocks
 676	 */
 677	while (pwr) {
 678		if (pwr->type == CSTATE)
 679			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 680		pwr = pwr->next;
 681	}
 682
 683	pwr = power_events;
 684	while (pwr) {
 685		if (pwr->type == PSTATE) {
 686			if (!pwr->state)
 687				pwr->state = min_freq;
 688			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 689		}
 690		pwr = pwr->next;
 691	}
 692}
 693
 694static void draw_wakeups(void)
 695{
 696	struct wake_event *we;
 697	struct per_pid *p;
 698	struct per_pidcomm *c;
 699
 700	we = wake_events;
 701	while (we) {
 702		int from = 0, to = 0;
 703		char *task_from = NULL, *task_to = NULL;
 704
 705		/* locate the column of the waker and wakee */
 706		p = all_data;
 707		while (p) {
 708			if (p->pid == we->waker || p->pid == we->wakee) {
 709				c = p->all;
 710				while (c) {
 711					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
 712						if (p->pid == we->waker && !from) {
 713							from = c->Y;
 714							task_from = strdup(c->comm);
 715						}
 716						if (p->pid == we->wakee && !to) {
 717							to = c->Y;
 718							task_to = strdup(c->comm);
 719						}
 720					}
 721					c = c->next;
 722				}
 723				c = p->all;
 724				while (c) {
 725					if (p->pid == we->waker && !from) {
 726						from = c->Y;
 727						task_from = strdup(c->comm);
 728					}
 729					if (p->pid == we->wakee && !to) {
 730						to = c->Y;
 731						task_to = strdup(c->comm);
 732					}
 733					c = c->next;
 734				}
 735			}
 736			p = p->next;
 737		}
 738
 739		if (!task_from) {
 740			task_from = malloc(40);
 741			sprintf(task_from, "[%i]", we->waker);
 742		}
 743		if (!task_to) {
 744			task_to = malloc(40);
 745			sprintf(task_to, "[%i]", we->wakee);
 746		}
 747
 748		if (we->waker == -1)
 749			svg_interrupt(we->time, to);
 750		else if (from && to && abs(from - to) == 1)
 751			svg_wakeline(we->time, from, to);
 752		else
 753			svg_partial_wakeline(we->time, from, task_from, to, task_to);
 
 754		we = we->next;
 755
 756		free(task_from);
 757		free(task_to);
 758	}
 759}
 760
 761static void draw_cpu_usage(void)
 762{
 763	struct per_pid *p;
 764	struct per_pidcomm *c;
 765	struct cpu_sample *sample;
 766	p = all_data;
 767	while (p) {
 768		c = p->all;
 769		while (c) {
 770			sample = c->samples;
 771			while (sample) {
 772				if (sample->type == TYPE_RUNNING)
 773					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
 
 
 
 
 
 
 774
 775				sample = sample->next;
 776			}
 777			c = c->next;
 778		}
 779		p = p->next;
 780	}
 781}
 782
 783static void draw_process_bars(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784{
 785	struct per_pid *p;
 786	struct per_pidcomm *c;
 787	struct cpu_sample *sample;
 788	int Y = 0;
 789
 790	Y = 2 * numcpus + 2;
 791
 792	p = all_data;
 793	while (p) {
 794		c = p->all;
 795		while (c) {
 796			if (!c->display) {
 797				c->Y = 0;
 798				c = c->next;
 799				continue;
 800			}
 801
 802			svg_box(Y, c->start_time, c->end_time, "process");
 803			sample = c->samples;
 804			while (sample) {
 805				if (sample->type == TYPE_RUNNING)
 806					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
 
 
 
 807				if (sample->type == TYPE_BLOCKED)
 808					svg_box(Y, sample->start_time, sample->end_time, "blocked");
 
 
 
 809				if (sample->type == TYPE_WAITING)
 810					svg_waiting(Y, sample->start_time, sample->end_time);
 
 
 
 811				sample = sample->next;
 812			}
 813
 814			if (c->comm) {
 815				char comm[256];
 816				if (c->total_time > 5000000000) /* 5 seconds */
 817					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
 818				else
 819					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
 820
 821				svg_text(Y, c->start_time, comm);
 822			}
 823			c->Y = Y;
 824			Y++;
 825			c = c->next;
 826		}
 827		p = p->next;
 828	}
 829}
 830
 831static void add_process_filter(const char *string)
 832{
 833	struct process_filter *filt;
 834	int pid;
 835
 836	pid = strtoull(string, NULL, 10);
 837	filt = malloc(sizeof(struct process_filter));
 838	if (!filt)
 839		return;
 840
 841	filt->name = strdup(string);
 842	filt->pid  = pid;
 843	filt->next = process_filter;
 844
 845	process_filter = filt;
 846}
 847
 848static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
 849{
 850	struct process_filter *filt;
 851	if (!process_filter)
 852		return 1;
 853
 854	filt = process_filter;
 855	while (filt) {
 856		if (filt->pid && p->pid == filt->pid)
 857			return 1;
 858		if (strcmp(filt->name, c->comm) == 0)
 859			return 1;
 860		filt = filt->next;
 861	}
 862	return 0;
 863}
 864
 865static int determine_display_tasks_filtered(void)
 866{
 867	struct per_pid *p;
 868	struct per_pidcomm *c;
 869	int count = 0;
 870
 871	p = all_data;
 872	while (p) {
 873		p->display = 0;
 874		if (p->start_time == 1)
 875			p->start_time = first_time;
 876
 877		/* no exit marker, task kept running to the end */
 878		if (p->end_time == 0)
 879			p->end_time = last_time;
 880
 881		c = p->all;
 882
 883		while (c) {
 884			c->display = 0;
 885
 886			if (c->start_time == 1)
 887				c->start_time = first_time;
 888
 889			if (passes_filter(p, c)) {
 890				c->display = 1;
 891				p->display = 1;
 892				count++;
 893			}
 894
 895			if (c->end_time == 0)
 896				c->end_time = last_time;
 897
 898			c = c->next;
 899		}
 900		p = p->next;
 901	}
 902	return count;
 903}
 904
 905static int determine_display_tasks(u64 threshold)
 906{
 907	struct per_pid *p;
 908	struct per_pidcomm *c;
 909	int count = 0;
 910
 911	if (process_filter)
 912		return determine_display_tasks_filtered();
 913
 914	p = all_data;
 915	while (p) {
 916		p->display = 0;
 917		if (p->start_time == 1)
 918			p->start_time = first_time;
 919
 920		/* no exit marker, task kept running to the end */
 921		if (p->end_time == 0)
 922			p->end_time = last_time;
 923		if (p->total_time >= threshold && !power_only)
 924			p->display = 1;
 925
 926		c = p->all;
 927
 928		while (c) {
 929			c->display = 0;
 930
 931			if (c->start_time == 1)
 932				c->start_time = first_time;
 933
 934			if (c->total_time >= threshold && !power_only) {
 935				c->display = 1;
 936				count++;
 937			}
 938
 939			if (c->end_time == 0)
 940				c->end_time = last_time;
 941
 942			c = c->next;
 943		}
 944		p = p->next;
 945	}
 946	return count;
 947}
 948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 949
 
 
 
 
 
 
 
 950
 
 
 
 
 
 
 
 
 951#define TIME_THRESH 10000000
 952
 953static void write_svg_file(const char *filename)
 954{
 955	u64 i;
 956	int count;
 
 957
 958	numcpus++;
 
 959
 
 
 
 
 
 
 
 
 
 
 
 960
 961	count = determine_display_tasks(TIME_THRESH);
 
 962
 963	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
 964	if (count < 15)
 965		count = determine_display_tasks(TIME_THRESH / 10);
 966
 967	open_svg(filename, numcpus, count, first_time, last_time);
 
 968
 969	svg_time_grid();
 970	svg_legenda();
 
 971
 972	for (i = 0; i < numcpus; i++)
 973		svg_cpu_box(i, max_freq, turbo_frequency);
 974
 975	draw_cpu_usage();
 976	draw_process_bars();
 977	draw_c_p_states();
 978	draw_wakeups();
 
 
 
 
 
 
 
 
 
 979
 980	svg_close();
 981}
 982
 983static struct perf_tool perf_timechart = {
 984	.comm			= process_comm_event,
 985	.fork			= process_fork_event,
 986	.exit			= process_exit_event,
 987	.sample			= process_sample_event,
 988	.ordered_samples	= true,
 989};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 990
 991static int __cmd_timechart(void)
 
 
 
 992{
 993	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
 994							 0, false, &perf_timechart);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995	int ret = -EINVAL;
 996
 997	if (session == NULL)
 998		return -ENOMEM;
 
 
 
 
 
 
 
 999
1000	if (!perf_session__has_traces(session, "timechart record"))
1001		goto out_delete;
1002
1003	ret = perf_session__process_events(session, &perf_timechart);
 
 
 
 
 
 
1004	if (ret)
1005		goto out_delete;
1006
1007	end_sample_processing();
1008
1009	sort_pids();
1010
1011	write_svg_file(output_name);
1012
1013	pr_info("Written %2.1f seconds of trace to %s.\n",
1014		(last_time - first_time) / 1000000000.0, output_name);
1015out_delete:
1016	perf_session__delete(session);
1017	return ret;
1018}
1019
1020static const char * const timechart_usage[] = {
1021	"perf timechart [<options>] {record}",
1022	NULL
1023};
 
 
1024
1025#ifdef SUPPORT_OLD_POWER_EVENTS
1026static const char * const record_old_args[] = {
1027	"record",
1028	"-a",
1029	"-R",
1030	"-f",
1031	"-c", "1",
1032	"-e", "power:power_start",
1033	"-e", "power:power_end",
1034	"-e", "power:power_frequency",
1035	"-e", "sched:sched_wakeup",
1036	"-e", "sched:sched_switch",
1037};
1038#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039
1040static const char * const record_new_args[] = {
1041	"record",
1042	"-a",
1043	"-R",
1044	"-f",
1045	"-c", "1",
1046	"-e", "power:cpu_frequency",
1047	"-e", "power:cpu_idle",
1048	"-e", "sched:sched_wakeup",
1049	"-e", "sched:sched_switch",
1050};
1051
1052static int __cmd_record(int argc, const char **argv)
1053{
1054	unsigned int rec_argc, i, j;
1055	const char **rec_argv;
1056	const char * const *record_args = record_new_args;
1057	unsigned int record_elems = ARRAY_SIZE(record_new_args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1058
1059#ifdef SUPPORT_OLD_POWER_EVENTS
1060	if (!is_valid_tracepoint("power:cpu_idle") &&
1061	    is_valid_tracepoint("power:power_start")) {
1062		use_old_power_events = 1;
1063		record_args = record_old_args;
1064		record_elems = ARRAY_SIZE(record_old_args);
 
1065	}
1066#endif
1067
1068	rec_argc = record_elems + argc - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1070
1071	if (rec_argv == NULL)
1072		return -ENOMEM;
1073
1074	for (i = 0; i < record_elems; i++)
1075		rec_argv[i] = strdup(record_args[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
1076
1077	for (j = 1; j < (unsigned int)argc; j++, i++)
1078		rec_argv[i] = argv[j];
1079
1080	return cmd_record(i, rec_argv, NULL);
1081}
1082
1083static int
1084parse_process(const struct option *opt __used, const char *arg, int __used unset)
 
1085{
1086	if (arg)
1087		add_process_filter(arg);
1088	return 0;
1089}
1090
1091static const struct option options[] = {
1092	OPT_STRING('i', "input", &input_name, "file",
1093		    "input file name"),
1094	OPT_STRING('o', "output", &output_name, "file",
1095		    "output file name"),
1096	OPT_INTEGER('w', "width", &svg_page_width,
1097		    "page width"),
1098	OPT_BOOLEAN('P', "power-only", &power_only,
1099		    "output power data only"),
1100	OPT_CALLBACK('p', "process", NULL, "process",
1101		      "process selector. Pass a pid or process name.",
1102		       parse_process),
1103	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1104		    "Look for files with symbols relative to this directory"),
1105	OPT_END()
1106};
1107
 
 
 
 
 
 
 
1108
1109int cmd_timechart(int argc, const char **argv, const char *prefix __used)
 
1110{
1111	argc = parse_options(argc, argv, options, timechart_usage,
1112			PARSE_OPT_STOP_AT_NON_OPTION);
1113
1114	symbol__init();
 
 
 
 
 
 
 
 
 
 
 
 
 
1115
1116	if (argc && !strncmp(argv[0], "rec", 3))
1117		return __cmd_record(argc, argv);
1118	else if (argc)
1119		usage_with_options(timechart_usage, options);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120
1121	setup_pager();
1122
1123	return __cmd_timechart();
1124}
v4.10.11
   1/*
   2 * builtin-timechart.c - make an svg timechart of system activity
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 *
   6 * Authors:
   7 *     Arjan van de Ven <arjan@linux.intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
  15#include <traceevent/event-parse.h>
  16
  17#include "builtin.h"
  18
  19#include "util/util.h"
  20
  21#include "util/color.h"
  22#include <linux/list.h>
  23#include "util/cache.h"
  24#include "util/evlist.h"
  25#include "util/evsel.h"
  26#include <linux/rbtree.h>
  27#include <linux/time64.h>
  28#include "util/symbol.h"
  29#include "util/callchain.h"
  30#include "util/strlist.h"
  31
  32#include "perf.h"
  33#include "util/header.h"
  34#include <subcmd/parse-options.h>
  35#include "util/parse-events.h"
  36#include "util/event.h"
  37#include "util/session.h"
  38#include "util/svghelper.h"
  39#include "util/tool.h"
  40#include "util/data.h"
  41#include "util/debug.h"
  42
  43#define SUPPORT_OLD_POWER_EVENTS 1
  44#define PWR_EVENT_EXIT -1
  45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46struct per_pid;
 
 
 
  47struct power_event;
  48struct wake_event;
  49
  50struct timechart {
  51	struct perf_tool	tool;
  52	struct per_pid		*all_data;
  53	struct power_event	*power_events;
  54	struct wake_event	*wake_events;
  55	int			proc_num;
  56	unsigned int		numcpus;
  57	u64			min_freq,	/* Lowest CPU frequency seen */
  58				max_freq,	/* Highest CPU frequency seen */
  59				turbo_frequency,
  60				first_time, last_time;
  61	bool			power_only,
  62				tasks_only,
  63				with_backtrace,
  64				topology;
  65	bool			force;
  66	/* IO related settings */
  67	bool			io_only,
  68				skip_eagain;
  69	u64			io_events;
  70	u64			min_time,
  71				merge_dist;
  72};
  73
  74struct per_pidcomm;
  75struct cpu_sample;
  76struct io_sample;
  77
  78/*
  79 * Datastructure layout:
  80 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  81 * Each "pid" entry, has a list of "comm"s.
  82 *	this is because we want to track different programs different, while
  83 *	exec will reuse the original pid (by design).
  84 * Each comm has a list of samples that will be used to draw
  85 * final graph.
  86 */
  87
  88struct per_pid {
  89	struct per_pid *next;
  90
  91	int		pid;
  92	int		ppid;
  93
  94	u64		start_time;
  95	u64		end_time;
  96	u64		total_time;
  97	u64		total_bytes;
  98	int		display;
  99
 100	struct per_pidcomm *all;
 101	struct per_pidcomm *current;
 102};
 103
 104
 105struct per_pidcomm {
 106	struct per_pidcomm *next;
 107
 108	u64		start_time;
 109	u64		end_time;
 110	u64		total_time;
 111	u64		max_bytes;
 112	u64		total_bytes;
 113
 114	int		Y;
 115	int		display;
 116
 117	long		state;
 118	u64		state_since;
 119
 120	char		*comm;
 121
 122	struct cpu_sample *samples;
 123	struct io_sample  *io_samples;
 124};
 125
 126struct sample_wrapper {
 127	struct sample_wrapper *next;
 128
 129	u64		timestamp;
 130	unsigned char	data[0];
 131};
 132
 133#define TYPE_NONE	0
 134#define TYPE_RUNNING	1
 135#define TYPE_WAITING	2
 136#define TYPE_BLOCKED	3
 137
 138struct cpu_sample {
 139	struct cpu_sample *next;
 140
 141	u64 start_time;
 142	u64 end_time;
 143	int type;
 144	int cpu;
 145	const char *backtrace;
 146};
 147
 148enum {
 149	IOTYPE_READ,
 150	IOTYPE_WRITE,
 151	IOTYPE_SYNC,
 152	IOTYPE_TX,
 153	IOTYPE_RX,
 154	IOTYPE_POLL,
 155};
 156
 157struct io_sample {
 158	struct io_sample *next;
 159
 160	u64 start_time;
 161	u64 end_time;
 162	u64 bytes;
 163	int type;
 164	int fd;
 165	int err;
 166	int merges;
 167};
 168
 169#define CSTATE 1
 170#define PSTATE 2
 171
 172struct power_event {
 173	struct power_event *next;
 174	int type;
 175	int state;
 176	u64 start_time;
 177	u64 end_time;
 178	int cpu;
 179};
 180
 181struct wake_event {
 182	struct wake_event *next;
 183	int waker;
 184	int wakee;
 185	u64 time;
 186	const char *backtrace;
 187};
 188
 
 
 
 
 189struct process_filter {
 190	char			*name;
 191	int			pid;
 192	struct process_filter	*next;
 193};
 194
 195static struct process_filter *process_filter;
 196
 197
 198static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
 199{
 200	struct per_pid *cursor = tchart->all_data;
 201
 202	while (cursor) {
 203		if (cursor->pid == pid)
 204			return cursor;
 205		cursor = cursor->next;
 206	}
 207	cursor = zalloc(sizeof(*cursor));
 208	assert(cursor != NULL);
 
 209	cursor->pid = pid;
 210	cursor->next = tchart->all_data;
 211	tchart->all_data = cursor;
 212	return cursor;
 213}
 214
 215static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
 216{
 217	struct per_pid *p;
 218	struct per_pidcomm *c;
 219	p = find_create_pid(tchart, pid);
 220	c = p->all;
 221	while (c) {
 222		if (c->comm && strcmp(c->comm, comm) == 0) {
 223			p->current = c;
 224			return;
 225		}
 226		if (!c->comm) {
 227			c->comm = strdup(comm);
 228			p->current = c;
 229			return;
 230		}
 231		c = c->next;
 232	}
 233	c = zalloc(sizeof(*c));
 234	assert(c != NULL);
 
 235	c->comm = strdup(comm);
 236	p->current = c;
 237	c->next = p->all;
 238	p->all = c;
 239}
 240
 241static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
 242{
 243	struct per_pid *p, *pp;
 244	p = find_create_pid(tchart, pid);
 245	pp = find_create_pid(tchart, ppid);
 246	p->ppid = ppid;
 247	if (pp->current && pp->current->comm && !p->current)
 248		pid_set_comm(tchart, pid, pp->current->comm);
 249
 250	p->start_time = timestamp;
 251	if (p->current && !p->current->start_time) {
 252		p->current->start_time = timestamp;
 253		p->current->state_since = timestamp;
 254	}
 255}
 256
 257static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
 258{
 259	struct per_pid *p;
 260	p = find_create_pid(tchart, pid);
 261	p->end_time = timestamp;
 262	if (p->current)
 263		p->current->end_time = timestamp;
 264}
 265
 266static void pid_put_sample(struct timechart *tchart, int pid, int type,
 267			   unsigned int cpu, u64 start, u64 end,
 268			   const char *backtrace)
 269{
 270	struct per_pid *p;
 271	struct per_pidcomm *c;
 272	struct cpu_sample *sample;
 273
 274	p = find_create_pid(tchart, pid);
 275	c = p->current;
 276	if (!c) {
 277		c = zalloc(sizeof(*c));
 278		assert(c != NULL);
 
 279		p->current = c;
 280		c->next = p->all;
 281		p->all = c;
 282	}
 283
 284	sample = zalloc(sizeof(*sample));
 285	assert(sample != NULL);
 
 286	sample->start_time = start;
 287	sample->end_time = end;
 288	sample->type = type;
 289	sample->next = c->samples;
 290	sample->cpu = cpu;
 291	sample->backtrace = backtrace;
 292	c->samples = sample;
 293
 294	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 295		c->total_time += (end-start);
 296		p->total_time += (end-start);
 297	}
 298
 299	if (c->start_time == 0 || c->start_time > start)
 300		c->start_time = start;
 301	if (p->start_time == 0 || p->start_time > start)
 302		p->start_time = start;
 303}
 304
 305#define MAX_CPUS 4096
 306
 307static u64 cpus_cstate_start_times[MAX_CPUS];
 308static int cpus_cstate_state[MAX_CPUS];
 309static u64 cpus_pstate_start_times[MAX_CPUS];
 310static u64 cpus_pstate_state[MAX_CPUS];
 311
 312static int process_comm_event(struct perf_tool *tool,
 313			      union perf_event *event,
 314			      struct perf_sample *sample __maybe_unused,
 315			      struct machine *machine __maybe_unused)
 316{
 317	struct timechart *tchart = container_of(tool, struct timechart, tool);
 318	pid_set_comm(tchart, event->comm.tid, event->comm.comm);
 319	return 0;
 320}
 321
 322static int process_fork_event(struct perf_tool *tool,
 323			      union perf_event *event,
 324			      struct perf_sample *sample __maybe_unused,
 325			      struct machine *machine __maybe_unused)
 326{
 327	struct timechart *tchart = container_of(tool, struct timechart, tool);
 328	pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
 329	return 0;
 330}
 331
 332static int process_exit_event(struct perf_tool *tool,
 333			      union perf_event *event,
 334			      struct perf_sample *sample __maybe_unused,
 335			      struct machine *machine __maybe_unused)
 336{
 337	struct timechart *tchart = container_of(tool, struct timechart, tool);
 338	pid_exit(tchart, event->fork.pid, event->fork.time);
 339	return 0;
 340}
 341
 
 
 
 
 
 
 
 
 342#ifdef SUPPORT_OLD_POWER_EVENTS
 343static int use_old_power_events;
 
 
 
 
 
 
 344#endif
 345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 346static void c_state_start(int cpu, u64 timestamp, int state)
 347{
 348	cpus_cstate_start_times[cpu] = timestamp;
 349	cpus_cstate_state[cpu] = state;
 350}
 351
 352static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
 353{
 354	struct power_event *pwr = zalloc(sizeof(*pwr));
 355
 356	if (!pwr)
 357		return;
 
 358
 359	pwr->state = cpus_cstate_state[cpu];
 360	pwr->start_time = cpus_cstate_start_times[cpu];
 361	pwr->end_time = timestamp;
 362	pwr->cpu = cpu;
 363	pwr->type = CSTATE;
 364	pwr->next = tchart->power_events;
 365
 366	tchart->power_events = pwr;
 367}
 368
 369static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
 370{
 371	struct power_event *pwr;
 
 372
 373	if (new_freq > 8000000) /* detect invalid data */
 374		return;
 375
 376	pwr = zalloc(sizeof(*pwr));
 377	if (!pwr)
 378		return;
 
 379
 380	pwr->state = cpus_pstate_state[cpu];
 381	pwr->start_time = cpus_pstate_start_times[cpu];
 382	pwr->end_time = timestamp;
 383	pwr->cpu = cpu;
 384	pwr->type = PSTATE;
 385	pwr->next = tchart->power_events;
 386
 387	if (!pwr->start_time)
 388		pwr->start_time = tchart->first_time;
 389
 390	tchart->power_events = pwr;
 391
 392	cpus_pstate_state[cpu] = new_freq;
 393	cpus_pstate_start_times[cpu] = timestamp;
 394
 395	if ((u64)new_freq > tchart->max_freq)
 396		tchart->max_freq = new_freq;
 397
 398	if (new_freq < tchart->min_freq || tchart->min_freq == 0)
 399		tchart->min_freq = new_freq;
 400
 401	if (new_freq == tchart->max_freq - 1000)
 402		tchart->turbo_frequency = tchart->max_freq;
 403}
 404
 405static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
 406			 int waker, int wakee, u8 flags, const char *backtrace)
 407{
 
 408	struct per_pid *p;
 409	struct wake_event *we = zalloc(sizeof(*we));
 410
 
 411	if (!we)
 412		return;
 413
 
 414	we->time = timestamp;
 415	we->waker = waker;
 416	we->backtrace = backtrace;
 417
 418	if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
 419		we->waker = -1;
 420
 421	we->wakee = wakee;
 422	we->next = tchart->wake_events;
 423	tchart->wake_events = we;
 424	p = find_create_pid(tchart, we->wakee);
 425
 426	if (p && p->current && p->current->state == TYPE_NONE) {
 427		p->current->state_since = timestamp;
 428		p->current->state = TYPE_WAITING;
 429	}
 430	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 431		pid_put_sample(tchart, p->pid, p->current->state, cpu,
 432			       p->current->state_since, timestamp, NULL);
 433		p->current->state_since = timestamp;
 434		p->current->state = TYPE_WAITING;
 435	}
 436}
 437
 438static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
 439			 int prev_pid, int next_pid, u64 prev_state,
 440			 const char *backtrace)
 441{
 442	struct per_pid *p = NULL, *prev_p;
 
 443
 444	prev_p = find_create_pid(tchart, prev_pid);
 445
 446	p = find_create_pid(tchart, next_pid);
 
 
 447
 448	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 449		pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
 450			       prev_p->current->state_since, timestamp,
 451			       backtrace);
 452	if (p && p->current) {
 453		if (p->current->state != TYPE_NONE)
 454			pid_put_sample(tchart, next_pid, p->current->state, cpu,
 455				       p->current->state_since, timestamp,
 456				       backtrace);
 457
 458		p->current->state_since = timestamp;
 459		p->current->state = TYPE_RUNNING;
 460	}
 461
 462	if (prev_p->current) {
 463		prev_p->current->state = TYPE_NONE;
 464		prev_p->current->state_since = timestamp;
 465		if (prev_state & 2)
 466			prev_p->current->state = TYPE_BLOCKED;
 467		if (prev_state == 0)
 468			prev_p->current->state = TYPE_WAITING;
 469	}
 470}
 471
 472static const char *cat_backtrace(union perf_event *event,
 473				 struct perf_sample *sample,
 474				 struct machine *machine)
 475{
 476	struct addr_location al;
 477	unsigned int i;
 478	char *p = NULL;
 479	size_t p_len;
 480	u8 cpumode = PERF_RECORD_MISC_USER;
 481	struct addr_location tal;
 482	struct ip_callchain *chain = sample->callchain;
 483	FILE *f = open_memstream(&p, &p_len);
 484
 485	if (!f) {
 486		perror("open_memstream error");
 487		return NULL;
 488	}
 489
 490	if (!chain)
 491		goto exit;
 492
 493	if (machine__resolve(machine, &al, sample) < 0) {
 494		fprintf(stderr, "problem processing %d event, skipping it.\n",
 495			event->header.type);
 496		goto exit;
 497	}
 498
 499	for (i = 0; i < chain->nr; i++) {
 500		u64 ip;
 501
 502		if (callchain_param.order == ORDER_CALLEE)
 503			ip = chain->ips[i];
 504		else
 505			ip = chain->ips[chain->nr - i - 1];
 506
 507		if (ip >= PERF_CONTEXT_MAX) {
 508			switch (ip) {
 509			case PERF_CONTEXT_HV:
 510				cpumode = PERF_RECORD_MISC_HYPERVISOR;
 511				break;
 512			case PERF_CONTEXT_KERNEL:
 513				cpumode = PERF_RECORD_MISC_KERNEL;
 514				break;
 515			case PERF_CONTEXT_USER:
 516				cpumode = PERF_RECORD_MISC_USER;
 517				break;
 518			default:
 519				pr_debug("invalid callchain context: "
 520					 "%"PRId64"\n", (s64) ip);
 521
 522				/*
 523				 * It seems the callchain is corrupted.
 524				 * Discard all.
 525				 */
 526				zfree(&p);
 527				goto exit_put;
 528			}
 529			continue;
 530		}
 531
 532		tal.filtered = 0;
 533		thread__find_addr_location(al.thread, cpumode,
 534					   MAP__FUNCTION, ip, &tal);
 535
 536		if (tal.sym)
 537			fprintf(f, "..... %016" PRIx64 " %s\n", ip,
 538				tal.sym->name);
 539		else
 540			fprintf(f, "..... %016" PRIx64 "\n", ip);
 541	}
 542exit_put:
 543	addr_location__put(&al);
 544exit:
 545	fclose(f);
 546
 547	return p;
 548}
 549
 550typedef int (*tracepoint_handler)(struct timechart *tchart,
 551				  struct perf_evsel *evsel,
 552				  struct perf_sample *sample,
 553				  const char *backtrace);
 554
 555static int process_sample_event(struct perf_tool *tool,
 556				union perf_event *event,
 557				struct perf_sample *sample,
 558				struct perf_evsel *evsel,
 559				struct machine *machine)
 560{
 561	struct timechart *tchart = container_of(tool, struct timechart, tool);
 562
 563	if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
 564		if (!tchart->first_time || tchart->first_time > sample->time)
 565			tchart->first_time = sample->time;
 566		if (tchart->last_time < sample->time)
 567			tchart->last_time = sample->time;
 568	}
 569
 570	if (evsel->handler != NULL) {
 571		tracepoint_handler f = evsel->handler;
 572		return f(tchart, evsel, sample,
 573			 cat_backtrace(event, sample, machine));
 574	}
 575
 576	return 0;
 577}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578
 579static int
 580process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
 581			struct perf_evsel *evsel,
 582			struct perf_sample *sample,
 583			const char *backtrace __maybe_unused)
 584{
 585	u32 state = perf_evsel__intval(evsel, sample, "state");
 586	u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 587
 588	if (state == (u32)PWR_EVENT_EXIT)
 589		c_state_end(tchart, cpu_id, sample->time);
 590	else
 591		c_state_start(cpu_id, sample->time, state);
 592	return 0;
 593}
 594
 595static int
 596process_sample_cpu_frequency(struct timechart *tchart,
 597			     struct perf_evsel *evsel,
 598			     struct perf_sample *sample,
 599			     const char *backtrace __maybe_unused)
 600{
 601	u32 state = perf_evsel__intval(evsel, sample, "state");
 602	u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 603
 604	p_state_change(tchart, cpu_id, sample->time, state);
 605	return 0;
 606}
 607
 608static int
 609process_sample_sched_wakeup(struct timechart *tchart,
 610			    struct perf_evsel *evsel,
 611			    struct perf_sample *sample,
 612			    const char *backtrace)
 613{
 614	u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
 615	int waker = perf_evsel__intval(evsel, sample, "common_pid");
 616	int wakee = perf_evsel__intval(evsel, sample, "pid");
 617
 618	sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
 619	return 0;
 620}
 621
 622static int
 623process_sample_sched_switch(struct timechart *tchart,
 624			    struct perf_evsel *evsel,
 625			    struct perf_sample *sample,
 626			    const char *backtrace)
 627{
 628	int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
 629	int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 630	u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 631
 632	sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
 633		     prev_state, backtrace);
 634	return 0;
 635}
 636
 637#ifdef SUPPORT_OLD_POWER_EVENTS
 638static int
 639process_sample_power_start(struct timechart *tchart __maybe_unused,
 640			   struct perf_evsel *evsel,
 641			   struct perf_sample *sample,
 642			   const char *backtrace __maybe_unused)
 643{
 644	u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 645	u64 value = perf_evsel__intval(evsel, sample, "value");
 646
 647	c_state_start(cpu_id, sample->time, value);
 648	return 0;
 649}
 650
 651static int
 652process_sample_power_end(struct timechart *tchart,
 653			 struct perf_evsel *evsel __maybe_unused,
 654			 struct perf_sample *sample,
 655			 const char *backtrace __maybe_unused)
 656{
 657	c_state_end(tchart, sample->cpu, sample->time);
 658	return 0;
 659}
 660
 661static int
 662process_sample_power_frequency(struct timechart *tchart,
 663			       struct perf_evsel *evsel,
 664			       struct perf_sample *sample,
 665			       const char *backtrace __maybe_unused)
 666{
 667	u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 668	u64 value = perf_evsel__intval(evsel, sample, "value");
 669
 670	p_state_change(tchart, cpu_id, sample->time, value);
 671	return 0;
 672}
 673#endif /* SUPPORT_OLD_POWER_EVENTS */
 674
 675/*
 676 * After the last sample we need to wrap up the current C/P state
 677 * and close out each CPU for these.
 678 */
 679static void end_sample_processing(struct timechart *tchart)
 680{
 681	u64 cpu;
 682	struct power_event *pwr;
 683
 684	for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
 685		/* C state */
 686#if 0
 687		pwr = zalloc(sizeof(*pwr));
 688		if (!pwr)
 689			return;
 
 690
 
 
 691		pwr->state = cpus_cstate_state[cpu];
 692		pwr->start_time = cpus_cstate_start_times[cpu];
 693		pwr->end_time = tchart->last_time;
 694		pwr->cpu = cpu;
 695		pwr->type = CSTATE;
 696		pwr->next = tchart->power_events;
 697
 698		tchart->power_events = pwr;
 699#endif
 700		/* P state */
 701
 702		pwr = zalloc(sizeof(*pwr));
 703		if (!pwr)
 704			return;
 
 705
 706		pwr->state = cpus_pstate_state[cpu];
 707		pwr->start_time = cpus_pstate_start_times[cpu];
 708		pwr->end_time = tchart->last_time;
 709		pwr->cpu = cpu;
 710		pwr->type = PSTATE;
 711		pwr->next = tchart->power_events;
 712
 713		if (!pwr->start_time)
 714			pwr->start_time = tchart->first_time;
 715		if (!pwr->state)
 716			pwr->state = tchart->min_freq;
 717		tchart->power_events = pwr;
 718	}
 719}
 720
 721static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
 722			       u64 start, int fd)
 723{
 724	struct per_pid *p = find_create_pid(tchart, pid);
 725	struct per_pidcomm *c = p->current;
 726	struct io_sample *sample;
 727	struct io_sample *prev;
 728
 729	if (!c) {
 730		c = zalloc(sizeof(*c));
 731		if (!c)
 732			return -ENOMEM;
 733		p->current = c;
 734		c->next = p->all;
 735		p->all = c;
 736	}
 737
 738	prev = c->io_samples;
 739
 740	if (prev && prev->start_time && !prev->end_time) {
 741		pr_warning("Skip invalid start event: "
 742			   "previous event already started!\n");
 743
 744		/* remove previous event that has been started,
 745		 * we are not sure we will ever get an end for it */
 746		c->io_samples = prev->next;
 747		free(prev);
 748		return 0;
 749	}
 750
 751	sample = zalloc(sizeof(*sample));
 752	if (!sample)
 753		return -ENOMEM;
 754	sample->start_time = start;
 755	sample->type = type;
 756	sample->fd = fd;
 757	sample->next = c->io_samples;
 758	c->io_samples = sample;
 759
 760	if (c->start_time == 0 || c->start_time > start)
 761		c->start_time = start;
 762
 763	return 0;
 764}
 765
 766static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
 767			     u64 end, long ret)
 768{
 769	struct per_pid *p = find_create_pid(tchart, pid);
 770	struct per_pidcomm *c = p->current;
 771	struct io_sample *sample, *prev;
 772
 773	if (!c) {
 774		pr_warning("Invalid pidcomm!\n");
 775		return -1;
 776	}
 777
 778	sample = c->io_samples;
 779
 780	if (!sample) /* skip partially captured events */
 781		return 0;
 782
 783	if (sample->end_time) {
 784		pr_warning("Skip invalid end event: "
 785			   "previous event already ended!\n");
 786		return 0;
 787	}
 788
 789	if (sample->type != type) {
 790		pr_warning("Skip invalid end event: invalid event type!\n");
 791		return 0;
 792	}
 793
 794	sample->end_time = end;
 795	prev = sample->next;
 796
 797	/* we want to be able to see small and fast transfers, so make them
 798	 * at least min_time long, but don't overlap them */
 799	if (sample->end_time - sample->start_time < tchart->min_time)
 800		sample->end_time = sample->start_time + tchart->min_time;
 801	if (prev && sample->start_time < prev->end_time) {
 802		if (prev->err) /* try to make errors more visible */
 803			sample->start_time = prev->end_time;
 804		else
 805			prev->end_time = sample->start_time;
 806	}
 807
 808	if (ret < 0) {
 809		sample->err = ret;
 810	} else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
 811		   type == IOTYPE_TX || type == IOTYPE_RX) {
 812
 813		if ((u64)ret > c->max_bytes)
 814			c->max_bytes = ret;
 815
 816		c->total_bytes += ret;
 817		p->total_bytes += ret;
 818		sample->bytes = ret;
 819	}
 820
 821	/* merge two requests to make svg smaller and render-friendly */
 822	if (prev &&
 823	    prev->type == sample->type &&
 824	    prev->err == sample->err &&
 825	    prev->fd == sample->fd &&
 826	    prev->end_time + tchart->merge_dist >= sample->start_time) {
 827
 828		sample->bytes += prev->bytes;
 829		sample->merges += prev->merges + 1;
 830
 831		sample->start_time = prev->start_time;
 832		sample->next = prev->next;
 833		free(prev);
 834
 835		if (!sample->err && sample->bytes > c->max_bytes)
 836			c->max_bytes = sample->bytes;
 837	}
 838
 839	tchart->io_events++;
 840
 841	return 0;
 842}
 843
 844static int
 845process_enter_read(struct timechart *tchart,
 846		   struct perf_evsel *evsel,
 847		   struct perf_sample *sample)
 848{
 849	long fd = perf_evsel__intval(evsel, sample, "fd");
 850	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
 851				   sample->time, fd);
 852}
 853
 854static int
 855process_exit_read(struct timechart *tchart,
 856		  struct perf_evsel *evsel,
 857		  struct perf_sample *sample)
 858{
 859	long ret = perf_evsel__intval(evsel, sample, "ret");
 860	return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
 861				 sample->time, ret);
 862}
 863
 864static int
 865process_enter_write(struct timechart *tchart,
 866		    struct perf_evsel *evsel,
 867		    struct perf_sample *sample)
 868{
 869	long fd = perf_evsel__intval(evsel, sample, "fd");
 870	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 871				   sample->time, fd);
 872}
 873
 874static int
 875process_exit_write(struct timechart *tchart,
 876		   struct perf_evsel *evsel,
 877		   struct perf_sample *sample)
 878{
 879	long ret = perf_evsel__intval(evsel, sample, "ret");
 880	return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 881				 sample->time, ret);
 882}
 883
 884static int
 885process_enter_sync(struct timechart *tchart,
 886		   struct perf_evsel *evsel,
 887		   struct perf_sample *sample)
 888{
 889	long fd = perf_evsel__intval(evsel, sample, "fd");
 890	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 891				   sample->time, fd);
 892}
 893
 894static int
 895process_exit_sync(struct timechart *tchart,
 896		  struct perf_evsel *evsel,
 897		  struct perf_sample *sample)
 898{
 899	long ret = perf_evsel__intval(evsel, sample, "ret");
 900	return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 901				 sample->time, ret);
 902}
 903
 904static int
 905process_enter_tx(struct timechart *tchart,
 906		 struct perf_evsel *evsel,
 907		 struct perf_sample *sample)
 908{
 909	long fd = perf_evsel__intval(evsel, sample, "fd");
 910	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
 911				   sample->time, fd);
 912}
 913
 914static int
 915process_exit_tx(struct timechart *tchart,
 916		struct perf_evsel *evsel,
 917		struct perf_sample *sample)
 918{
 919	long ret = perf_evsel__intval(evsel, sample, "ret");
 920	return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
 921				 sample->time, ret);
 922}
 923
 924static int
 925process_enter_rx(struct timechart *tchart,
 926		 struct perf_evsel *evsel,
 927		 struct perf_sample *sample)
 928{
 929	long fd = perf_evsel__intval(evsel, sample, "fd");
 930	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
 931				   sample->time, fd);
 932}
 933
 934static int
 935process_exit_rx(struct timechart *tchart,
 936		struct perf_evsel *evsel,
 937		struct perf_sample *sample)
 938{
 939	long ret = perf_evsel__intval(evsel, sample, "ret");
 940	return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
 941				 sample->time, ret);
 942}
 943
 944static int
 945process_enter_poll(struct timechart *tchart,
 946		   struct perf_evsel *evsel,
 947		   struct perf_sample *sample)
 948{
 949	long fd = perf_evsel__intval(evsel, sample, "fd");
 950	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
 951				   sample->time, fd);
 952}
 953
 954static int
 955process_exit_poll(struct timechart *tchart,
 956		  struct perf_evsel *evsel,
 957		  struct perf_sample *sample)
 958{
 959	long ret = perf_evsel__intval(evsel, sample, "ret");
 960	return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
 961				 sample->time, ret);
 962}
 963
 964/*
 965 * Sort the pid datastructure
 966 */
 967static void sort_pids(struct timechart *tchart)
 968{
 969	struct per_pid *new_list, *p, *cursor, *prev;
 970	/* sort by ppid first, then by pid, lowest to highest */
 971
 972	new_list = NULL;
 973
 974	while (tchart->all_data) {
 975		p = tchart->all_data;
 976		tchart->all_data = p->next;
 977		p->next = NULL;
 978
 979		if (new_list == NULL) {
 980			new_list = p;
 981			p->next = NULL;
 982			continue;
 983		}
 984		prev = NULL;
 985		cursor = new_list;
 986		while (cursor) {
 987			if (cursor->ppid > p->ppid ||
 988				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 989				/* must insert before */
 990				if (prev) {
 991					p->next = prev->next;
 992					prev->next = p;
 993					cursor = NULL;
 994					continue;
 995				} else {
 996					p->next = new_list;
 997					new_list = p;
 998					cursor = NULL;
 999					continue;
1000				}
1001			}
1002
1003			prev = cursor;
1004			cursor = cursor->next;
1005			if (!cursor)
1006				prev->next = p;
1007		}
1008	}
1009	tchart->all_data = new_list;
1010}
1011
1012
1013static void draw_c_p_states(struct timechart *tchart)
1014{
1015	struct power_event *pwr;
1016	pwr = tchart->power_events;
1017
1018	/*
1019	 * two pass drawing so that the P state bars are on top of the C state blocks
1020	 */
1021	while (pwr) {
1022		if (pwr->type == CSTATE)
1023			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1024		pwr = pwr->next;
1025	}
1026
1027	pwr = tchart->power_events;
1028	while (pwr) {
1029		if (pwr->type == PSTATE) {
1030			if (!pwr->state)
1031				pwr->state = tchart->min_freq;
1032			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1033		}
1034		pwr = pwr->next;
1035	}
1036}
1037
1038static void draw_wakeups(struct timechart *tchart)
1039{
1040	struct wake_event *we;
1041	struct per_pid *p;
1042	struct per_pidcomm *c;
1043
1044	we = tchart->wake_events;
1045	while (we) {
1046		int from = 0, to = 0;
1047		char *task_from = NULL, *task_to = NULL;
1048
1049		/* locate the column of the waker and wakee */
1050		p = tchart->all_data;
1051		while (p) {
1052			if (p->pid == we->waker || p->pid == we->wakee) {
1053				c = p->all;
1054				while (c) {
1055					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1056						if (p->pid == we->waker && !from) {
1057							from = c->Y;
1058							task_from = strdup(c->comm);
1059						}
1060						if (p->pid == we->wakee && !to) {
1061							to = c->Y;
1062							task_to = strdup(c->comm);
1063						}
1064					}
1065					c = c->next;
1066				}
1067				c = p->all;
1068				while (c) {
1069					if (p->pid == we->waker && !from) {
1070						from = c->Y;
1071						task_from = strdup(c->comm);
1072					}
1073					if (p->pid == we->wakee && !to) {
1074						to = c->Y;
1075						task_to = strdup(c->comm);
1076					}
1077					c = c->next;
1078				}
1079			}
1080			p = p->next;
1081		}
1082
1083		if (!task_from) {
1084			task_from = malloc(40);
1085			sprintf(task_from, "[%i]", we->waker);
1086		}
1087		if (!task_to) {
1088			task_to = malloc(40);
1089			sprintf(task_to, "[%i]", we->wakee);
1090		}
1091
1092		if (we->waker == -1)
1093			svg_interrupt(we->time, to, we->backtrace);
1094		else if (from && to && abs(from - to) == 1)
1095			svg_wakeline(we->time, from, to, we->backtrace);
1096		else
1097			svg_partial_wakeline(we->time, from, task_from, to,
1098					     task_to, we->backtrace);
1099		we = we->next;
1100
1101		free(task_from);
1102		free(task_to);
1103	}
1104}
1105
1106static void draw_cpu_usage(struct timechart *tchart)
1107{
1108	struct per_pid *p;
1109	struct per_pidcomm *c;
1110	struct cpu_sample *sample;
1111	p = tchart->all_data;
1112	while (p) {
1113		c = p->all;
1114		while (c) {
1115			sample = c->samples;
1116			while (sample) {
1117				if (sample->type == TYPE_RUNNING) {
1118					svg_process(sample->cpu,
1119						    sample->start_time,
1120						    sample->end_time,
1121						    p->pid,
1122						    c->comm,
1123						    sample->backtrace);
1124				}
1125
1126				sample = sample->next;
1127			}
1128			c = c->next;
1129		}
1130		p = p->next;
1131	}
1132}
1133
1134static void draw_io_bars(struct timechart *tchart)
1135{
1136	const char *suf;
1137	double bytes;
1138	char comm[256];
1139	struct per_pid *p;
1140	struct per_pidcomm *c;
1141	struct io_sample *sample;
1142	int Y = 1;
1143
1144	p = tchart->all_data;
1145	while (p) {
1146		c = p->all;
1147		while (c) {
1148			if (!c->display) {
1149				c->Y = 0;
1150				c = c->next;
1151				continue;
1152			}
1153
1154			svg_box(Y, c->start_time, c->end_time, "process3");
1155			sample = c->io_samples;
1156			for (sample = c->io_samples; sample; sample = sample->next) {
1157				double h = (double)sample->bytes / c->max_bytes;
1158
1159				if (tchart->skip_eagain &&
1160				    sample->err == -EAGAIN)
1161					continue;
1162
1163				if (sample->err)
1164					h = 1;
1165
1166				if (sample->type == IOTYPE_SYNC)
1167					svg_fbox(Y,
1168						sample->start_time,
1169						sample->end_time,
1170						1,
1171						sample->err ? "error" : "sync",
1172						sample->fd,
1173						sample->err,
1174						sample->merges);
1175				else if (sample->type == IOTYPE_POLL)
1176					svg_fbox(Y,
1177						sample->start_time,
1178						sample->end_time,
1179						1,
1180						sample->err ? "error" : "poll",
1181						sample->fd,
1182						sample->err,
1183						sample->merges);
1184				else if (sample->type == IOTYPE_READ)
1185					svg_ubox(Y,
1186						sample->start_time,
1187						sample->end_time,
1188						h,
1189						sample->err ? "error" : "disk",
1190						sample->fd,
1191						sample->err,
1192						sample->merges);
1193				else if (sample->type == IOTYPE_WRITE)
1194					svg_lbox(Y,
1195						sample->start_time,
1196						sample->end_time,
1197						h,
1198						sample->err ? "error" : "disk",
1199						sample->fd,
1200						sample->err,
1201						sample->merges);
1202				else if (sample->type == IOTYPE_RX)
1203					svg_ubox(Y,
1204						sample->start_time,
1205						sample->end_time,
1206						h,
1207						sample->err ? "error" : "net",
1208						sample->fd,
1209						sample->err,
1210						sample->merges);
1211				else if (sample->type == IOTYPE_TX)
1212					svg_lbox(Y,
1213						sample->start_time,
1214						sample->end_time,
1215						h,
1216						sample->err ? "error" : "net",
1217						sample->fd,
1218						sample->err,
1219						sample->merges);
1220			}
1221
1222			suf = "";
1223			bytes = c->total_bytes;
1224			if (bytes > 1024) {
1225				bytes = bytes / 1024;
1226				suf = "K";
1227			}
1228			if (bytes > 1024) {
1229				bytes = bytes / 1024;
1230				suf = "M";
1231			}
1232			if (bytes > 1024) {
1233				bytes = bytes / 1024;
1234				suf = "G";
1235			}
1236
1237
1238			sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1239			svg_text(Y, c->start_time, comm);
1240
1241			c->Y = Y;
1242			Y++;
1243			c = c->next;
1244		}
1245		p = p->next;
1246	}
1247}
1248
1249static void draw_process_bars(struct timechart *tchart)
1250{
1251	struct per_pid *p;
1252	struct per_pidcomm *c;
1253	struct cpu_sample *sample;
1254	int Y = 0;
1255
1256	Y = 2 * tchart->numcpus + 2;
1257
1258	p = tchart->all_data;
1259	while (p) {
1260		c = p->all;
1261		while (c) {
1262			if (!c->display) {
1263				c->Y = 0;
1264				c = c->next;
1265				continue;
1266			}
1267
1268			svg_box(Y, c->start_time, c->end_time, "process");
1269			sample = c->samples;
1270			while (sample) {
1271				if (sample->type == TYPE_RUNNING)
1272					svg_running(Y, sample->cpu,
1273						    sample->start_time,
1274						    sample->end_time,
1275						    sample->backtrace);
1276				if (sample->type == TYPE_BLOCKED)
1277					svg_blocked(Y, sample->cpu,
1278						    sample->start_time,
1279						    sample->end_time,
1280						    sample->backtrace);
1281				if (sample->type == TYPE_WAITING)
1282					svg_waiting(Y, sample->cpu,
1283						    sample->start_time,
1284						    sample->end_time,
1285						    sample->backtrace);
1286				sample = sample->next;
1287			}
1288
1289			if (c->comm) {
1290				char comm[256];
1291				if (c->total_time > 5000000000) /* 5 seconds */
1292					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1293				else
1294					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1295
1296				svg_text(Y, c->start_time, comm);
1297			}
1298			c->Y = Y;
1299			Y++;
1300			c = c->next;
1301		}
1302		p = p->next;
1303	}
1304}
1305
1306static void add_process_filter(const char *string)
1307{
1308	int pid = strtoull(string, NULL, 10);
1309	struct process_filter *filt = malloc(sizeof(*filt));
1310
 
 
1311	if (!filt)
1312		return;
1313
1314	filt->name = strdup(string);
1315	filt->pid  = pid;
1316	filt->next = process_filter;
1317
1318	process_filter = filt;
1319}
1320
1321static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1322{
1323	struct process_filter *filt;
1324	if (!process_filter)
1325		return 1;
1326
1327	filt = process_filter;
1328	while (filt) {
1329		if (filt->pid && p->pid == filt->pid)
1330			return 1;
1331		if (strcmp(filt->name, c->comm) == 0)
1332			return 1;
1333		filt = filt->next;
1334	}
1335	return 0;
1336}
1337
1338static int determine_display_tasks_filtered(struct timechart *tchart)
1339{
1340	struct per_pid *p;
1341	struct per_pidcomm *c;
1342	int count = 0;
1343
1344	p = tchart->all_data;
1345	while (p) {
1346		p->display = 0;
1347		if (p->start_time == 1)
1348			p->start_time = tchart->first_time;
1349
1350		/* no exit marker, task kept running to the end */
1351		if (p->end_time == 0)
1352			p->end_time = tchart->last_time;
1353
1354		c = p->all;
1355
1356		while (c) {
1357			c->display = 0;
1358
1359			if (c->start_time == 1)
1360				c->start_time = tchart->first_time;
1361
1362			if (passes_filter(p, c)) {
1363				c->display = 1;
1364				p->display = 1;
1365				count++;
1366			}
1367
1368			if (c->end_time == 0)
1369				c->end_time = tchart->last_time;
1370
1371			c = c->next;
1372		}
1373		p = p->next;
1374	}
1375	return count;
1376}
1377
1378static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1379{
1380	struct per_pid *p;
1381	struct per_pidcomm *c;
1382	int count = 0;
1383
1384	p = tchart->all_data;
 
 
 
1385	while (p) {
1386		p->display = 0;
1387		if (p->start_time == 1)
1388			p->start_time = tchart->first_time;
1389
1390		/* no exit marker, task kept running to the end */
1391		if (p->end_time == 0)
1392			p->end_time = tchart->last_time;
1393		if (p->total_time >= threshold)
1394			p->display = 1;
1395
1396		c = p->all;
1397
1398		while (c) {
1399			c->display = 0;
1400
1401			if (c->start_time == 1)
1402				c->start_time = tchart->first_time;
1403
1404			if (c->total_time >= threshold) {
1405				c->display = 1;
1406				count++;
1407			}
1408
1409			if (c->end_time == 0)
1410				c->end_time = tchart->last_time;
1411
1412			c = c->next;
1413		}
1414		p = p->next;
1415	}
1416	return count;
1417}
1418
1419static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1420{
1421	struct per_pid *p;
1422	struct per_pidcomm *c;
1423	int count = 0;
1424
1425	p = timechart->all_data;
1426	while (p) {
1427		/* no exit marker, task kept running to the end */
1428		if (p->end_time == 0)
1429			p->end_time = timechart->last_time;
1430
1431		c = p->all;
1432
1433		while (c) {
1434			c->display = 0;
1435
1436			if (c->total_bytes >= threshold) {
1437				c->display = 1;
1438				count++;
1439			}
1440
1441			if (c->end_time == 0)
1442				c->end_time = timechart->last_time;
1443
1444			c = c->next;
1445		}
1446		p = p->next;
1447	}
1448	return count;
1449}
1450
1451#define BYTES_THRESH (1 * 1024 * 1024)
1452#define TIME_THRESH 10000000
1453
1454static void write_svg_file(struct timechart *tchart, const char *filename)
1455{
1456	u64 i;
1457	int count;
1458	int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1459
1460	if (tchart->power_only)
1461		tchart->proc_num = 0;
1462
1463	/* We'd like to show at least proc_num tasks;
1464	 * be less picky if we have fewer */
1465	do {
1466		if (process_filter)
1467			count = determine_display_tasks_filtered(tchart);
1468		else if (tchart->io_events)
1469			count = determine_display_io_tasks(tchart, thresh);
1470		else
1471			count = determine_display_tasks(tchart, thresh);
1472		thresh /= 10;
1473	} while (!process_filter && thresh && count < tchart->proc_num);
1474
1475	if (!tchart->proc_num)
1476		count = 0;
1477
1478	if (tchart->io_events) {
1479		open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
 
1480
1481		svg_time_grid(0.5);
1482		svg_io_legenda();
1483
1484		draw_io_bars(tchart);
1485	} else {
1486		open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1487
1488		svg_time_grid(0);
 
1489
1490		svg_legenda();
1491
1492		for (i = 0; i < tchart->numcpus; i++)
1493			svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1494
1495		draw_cpu_usage(tchart);
1496		if (tchart->proc_num)
1497			draw_process_bars(tchart);
1498		if (!tchart->tasks_only)
1499			draw_c_p_states(tchart);
1500		if (tchart->proc_num)
1501			draw_wakeups(tchart);
1502	}
1503
1504	svg_close();
1505}
1506
1507static int process_header(struct perf_file_section *section __maybe_unused,
1508			  struct perf_header *ph,
1509			  int feat,
1510			  int fd __maybe_unused,
1511			  void *data)
1512{
1513	struct timechart *tchart = data;
1514
1515	switch (feat) {
1516	case HEADER_NRCPUS:
1517		tchart->numcpus = ph->env.nr_cpus_avail;
1518		break;
1519
1520	case HEADER_CPU_TOPOLOGY:
1521		if (!tchart->topology)
1522			break;
1523
1524		if (svg_build_topology_map(ph->env.sibling_cores,
1525					   ph->env.nr_sibling_cores,
1526					   ph->env.sibling_threads,
1527					   ph->env.nr_sibling_threads))
1528			fprintf(stderr, "problem building topology\n");
1529		break;
1530
1531	default:
1532		break;
1533	}
1534
1535	return 0;
1536}
1537
1538static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1539{
1540	const struct perf_evsel_str_handler power_tracepoints[] = {
1541		{ "power:cpu_idle",		process_sample_cpu_idle },
1542		{ "power:cpu_frequency",	process_sample_cpu_frequency },
1543		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
1544		{ "sched:sched_switch",		process_sample_sched_switch },
1545#ifdef SUPPORT_OLD_POWER_EVENTS
1546		{ "power:power_start",		process_sample_power_start },
1547		{ "power:power_end",		process_sample_power_end },
1548		{ "power:power_frequency",	process_sample_power_frequency },
1549#endif
1550
1551		{ "syscalls:sys_enter_read",		process_enter_read },
1552		{ "syscalls:sys_enter_pread64",		process_enter_read },
1553		{ "syscalls:sys_enter_readv",		process_enter_read },
1554		{ "syscalls:sys_enter_preadv",		process_enter_read },
1555		{ "syscalls:sys_enter_write",		process_enter_write },
1556		{ "syscalls:sys_enter_pwrite64",	process_enter_write },
1557		{ "syscalls:sys_enter_writev",		process_enter_write },
1558		{ "syscalls:sys_enter_pwritev",		process_enter_write },
1559		{ "syscalls:sys_enter_sync",		process_enter_sync },
1560		{ "syscalls:sys_enter_sync_file_range",	process_enter_sync },
1561		{ "syscalls:sys_enter_fsync",		process_enter_sync },
1562		{ "syscalls:sys_enter_msync",		process_enter_sync },
1563		{ "syscalls:sys_enter_recvfrom",	process_enter_rx },
1564		{ "syscalls:sys_enter_recvmmsg",	process_enter_rx },
1565		{ "syscalls:sys_enter_recvmsg",		process_enter_rx },
1566		{ "syscalls:sys_enter_sendto",		process_enter_tx },
1567		{ "syscalls:sys_enter_sendmsg",		process_enter_tx },
1568		{ "syscalls:sys_enter_sendmmsg",	process_enter_tx },
1569		{ "syscalls:sys_enter_epoll_pwait",	process_enter_poll },
1570		{ "syscalls:sys_enter_epoll_wait",	process_enter_poll },
1571		{ "syscalls:sys_enter_poll",		process_enter_poll },
1572		{ "syscalls:sys_enter_ppoll",		process_enter_poll },
1573		{ "syscalls:sys_enter_pselect6",	process_enter_poll },
1574		{ "syscalls:sys_enter_select",		process_enter_poll },
1575
1576		{ "syscalls:sys_exit_read",		process_exit_read },
1577		{ "syscalls:sys_exit_pread64",		process_exit_read },
1578		{ "syscalls:sys_exit_readv",		process_exit_read },
1579		{ "syscalls:sys_exit_preadv",		process_exit_read },
1580		{ "syscalls:sys_exit_write",		process_exit_write },
1581		{ "syscalls:sys_exit_pwrite64",		process_exit_write },
1582		{ "syscalls:sys_exit_writev",		process_exit_write },
1583		{ "syscalls:sys_exit_pwritev",		process_exit_write },
1584		{ "syscalls:sys_exit_sync",		process_exit_sync },
1585		{ "syscalls:sys_exit_sync_file_range",	process_exit_sync },
1586		{ "syscalls:sys_exit_fsync",		process_exit_sync },
1587		{ "syscalls:sys_exit_msync",		process_exit_sync },
1588		{ "syscalls:sys_exit_recvfrom",		process_exit_rx },
1589		{ "syscalls:sys_exit_recvmmsg",		process_exit_rx },
1590		{ "syscalls:sys_exit_recvmsg",		process_exit_rx },
1591		{ "syscalls:sys_exit_sendto",		process_exit_tx },
1592		{ "syscalls:sys_exit_sendmsg",		process_exit_tx },
1593		{ "syscalls:sys_exit_sendmmsg",		process_exit_tx },
1594		{ "syscalls:sys_exit_epoll_pwait",	process_exit_poll },
1595		{ "syscalls:sys_exit_epoll_wait",	process_exit_poll },
1596		{ "syscalls:sys_exit_poll",		process_exit_poll },
1597		{ "syscalls:sys_exit_ppoll",		process_exit_poll },
1598		{ "syscalls:sys_exit_pselect6",		process_exit_poll },
1599		{ "syscalls:sys_exit_select",		process_exit_poll },
1600	};
1601	struct perf_data_file file = {
1602		.path = input_name,
1603		.mode = PERF_DATA_MODE_READ,
1604		.force = tchart->force,
1605	};
1606
1607	struct perf_session *session = perf_session__new(&file, false,
1608							 &tchart->tool);
1609	int ret = -EINVAL;
1610
1611	if (session == NULL)
1612		return -1;
1613
1614	symbol__init(&session->header.env);
1615
1616	(void)perf_header__process_sections(&session->header,
1617					    perf_data_file__fd(session->file),
1618					    tchart,
1619					    process_header);
1620
1621	if (!perf_session__has_traces(session, "timechart record"))
1622		goto out_delete;
1623
1624	if (perf_session__set_tracepoints_handlers(session,
1625						   power_tracepoints)) {
1626		pr_err("Initializing session tracepoint handlers failed\n");
1627		goto out_delete;
1628	}
1629
1630	ret = perf_session__process_events(session);
1631	if (ret)
1632		goto out_delete;
1633
1634	end_sample_processing(tchart);
1635
1636	sort_pids(tchart);
1637
1638	write_svg_file(tchart, output_name);
1639
1640	pr_info("Written %2.1f seconds of trace to %s.\n",
1641		(tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1642out_delete:
1643	perf_session__delete(session);
1644	return ret;
1645}
1646
1647static int timechart__io_record(int argc, const char **argv)
1648{
1649	unsigned int rec_argc, i;
1650	const char **rec_argv;
1651	const char **p;
1652	char *filter = NULL;
1653
1654	const char * const common_args[] = {
1655		"record", "-a", "-R", "-c", "1",
1656	};
1657	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1658
1659	const char * const disk_events[] = {
1660		"syscalls:sys_enter_read",
1661		"syscalls:sys_enter_pread64",
1662		"syscalls:sys_enter_readv",
1663		"syscalls:sys_enter_preadv",
1664		"syscalls:sys_enter_write",
1665		"syscalls:sys_enter_pwrite64",
1666		"syscalls:sys_enter_writev",
1667		"syscalls:sys_enter_pwritev",
1668		"syscalls:sys_enter_sync",
1669		"syscalls:sys_enter_sync_file_range",
1670		"syscalls:sys_enter_fsync",
1671		"syscalls:sys_enter_msync",
1672
1673		"syscalls:sys_exit_read",
1674		"syscalls:sys_exit_pread64",
1675		"syscalls:sys_exit_readv",
1676		"syscalls:sys_exit_preadv",
1677		"syscalls:sys_exit_write",
1678		"syscalls:sys_exit_pwrite64",
1679		"syscalls:sys_exit_writev",
1680		"syscalls:sys_exit_pwritev",
1681		"syscalls:sys_exit_sync",
1682		"syscalls:sys_exit_sync_file_range",
1683		"syscalls:sys_exit_fsync",
1684		"syscalls:sys_exit_msync",
1685	};
1686	unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1687
1688	const char * const net_events[] = {
1689		"syscalls:sys_enter_recvfrom",
1690		"syscalls:sys_enter_recvmmsg",
1691		"syscalls:sys_enter_recvmsg",
1692		"syscalls:sys_enter_sendto",
1693		"syscalls:sys_enter_sendmsg",
1694		"syscalls:sys_enter_sendmmsg",
1695
1696		"syscalls:sys_exit_recvfrom",
1697		"syscalls:sys_exit_recvmmsg",
1698		"syscalls:sys_exit_recvmsg",
1699		"syscalls:sys_exit_sendto",
1700		"syscalls:sys_exit_sendmsg",
1701		"syscalls:sys_exit_sendmmsg",
1702	};
1703	unsigned int net_events_nr = ARRAY_SIZE(net_events);
1704
1705	const char * const poll_events[] = {
1706		"syscalls:sys_enter_epoll_pwait",
1707		"syscalls:sys_enter_epoll_wait",
1708		"syscalls:sys_enter_poll",
1709		"syscalls:sys_enter_ppoll",
1710		"syscalls:sys_enter_pselect6",
1711		"syscalls:sys_enter_select",
1712
1713		"syscalls:sys_exit_epoll_pwait",
1714		"syscalls:sys_exit_epoll_wait",
1715		"syscalls:sys_exit_poll",
1716		"syscalls:sys_exit_ppoll",
1717		"syscalls:sys_exit_pselect6",
1718		"syscalls:sys_exit_select",
1719	};
1720	unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1721
1722	rec_argc = common_args_nr +
1723		disk_events_nr * 4 +
1724		net_events_nr * 4 +
1725		poll_events_nr * 4 +
1726		argc;
1727	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1728
1729	if (rec_argv == NULL)
1730		return -ENOMEM;
1731
1732	if (asprintf(&filter, "common_pid != %d", getpid()) < 0)
1733		return -ENOMEM;
1734
1735	p = rec_argv;
1736	for (i = 0; i < common_args_nr; i++)
1737		*p++ = strdup(common_args[i]);
1738
1739	for (i = 0; i < disk_events_nr; i++) {
1740		if (!is_valid_tracepoint(disk_events[i])) {
1741			rec_argc -= 4;
1742			continue;
1743		}
1744
1745		*p++ = "-e";
1746		*p++ = strdup(disk_events[i]);
1747		*p++ = "--filter";
1748		*p++ = filter;
1749	}
1750	for (i = 0; i < net_events_nr; i++) {
1751		if (!is_valid_tracepoint(net_events[i])) {
1752			rec_argc -= 4;
1753			continue;
1754		}
1755
1756		*p++ = "-e";
1757		*p++ = strdup(net_events[i]);
1758		*p++ = "--filter";
1759		*p++ = filter;
1760	}
1761	for (i = 0; i < poll_events_nr; i++) {
1762		if (!is_valid_tracepoint(poll_events[i])) {
1763			rec_argc -= 4;
1764			continue;
1765		}
1766
1767		*p++ = "-e";
1768		*p++ = strdup(poll_events[i]);
1769		*p++ = "--filter";
1770		*p++ = filter;
1771	}
1772
1773	for (i = 0; i < (unsigned int)argc; i++)
1774		*p++ = argv[i];
1775
1776	return cmd_record(rec_argc, rec_argv, NULL);
1777}
1778
 
 
 
 
 
 
 
 
 
 
 
1779
1780static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1781{
1782	unsigned int rec_argc, i, j;
1783	const char **rec_argv;
1784	const char **p;
1785	unsigned int record_elems;
1786
1787	const char * const common_args[] = {
1788		"record", "-a", "-R", "-c", "1",
1789	};
1790	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1791
1792	const char * const backtrace_args[] = {
1793		"-g",
1794	};
1795	unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1796
1797	const char * const power_args[] = {
1798		"-e", "power:cpu_frequency",
1799		"-e", "power:cpu_idle",
1800	};
1801	unsigned int power_args_nr = ARRAY_SIZE(power_args);
1802
1803	const char * const old_power_args[] = {
1804#ifdef SUPPORT_OLD_POWER_EVENTS
1805		"-e", "power:power_start",
1806		"-e", "power:power_end",
1807		"-e", "power:power_frequency",
1808#endif
1809	};
1810	unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1811
1812	const char * const tasks_args[] = {
1813		"-e", "sched:sched_wakeup",
1814		"-e", "sched:sched_switch",
1815	};
1816	unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1817
1818#ifdef SUPPORT_OLD_POWER_EVENTS
1819	if (!is_valid_tracepoint("power:cpu_idle") &&
1820	    is_valid_tracepoint("power:power_start")) {
1821		use_old_power_events = 1;
1822		power_args_nr = 0;
1823	} else {
1824		old_power_args_nr = 0;
1825	}
1826#endif
1827
1828	if (tchart->power_only)
1829		tasks_args_nr = 0;
1830
1831	if (tchart->tasks_only) {
1832		power_args_nr = 0;
1833		old_power_args_nr = 0;
1834	}
1835
1836	if (!tchart->with_backtrace)
1837		backtrace_args_no = 0;
1838
1839	record_elems = common_args_nr + tasks_args_nr +
1840		power_args_nr + old_power_args_nr + backtrace_args_no;
1841
1842	rec_argc = record_elems + argc;
1843	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1844
1845	if (rec_argv == NULL)
1846		return -ENOMEM;
1847
1848	p = rec_argv;
1849	for (i = 0; i < common_args_nr; i++)
1850		*p++ = strdup(common_args[i]);
1851
1852	for (i = 0; i < backtrace_args_no; i++)
1853		*p++ = strdup(backtrace_args[i]);
1854
1855	for (i = 0; i < tasks_args_nr; i++)
1856		*p++ = strdup(tasks_args[i]);
1857
1858	for (i = 0; i < power_args_nr; i++)
1859		*p++ = strdup(power_args[i]);
1860
1861	for (i = 0; i < old_power_args_nr; i++)
1862		*p++ = strdup(old_power_args[i]);
1863
1864	for (j = 0; j < (unsigned int)argc; j++)
1865		*p++ = argv[j];
1866
1867	return cmd_record(rec_argc, rec_argv, NULL);
1868}
1869
1870static int
1871parse_process(const struct option *opt __maybe_unused, const char *arg,
1872	      int __maybe_unused unset)
1873{
1874	if (arg)
1875		add_process_filter(arg);
1876	return 0;
1877}
1878
1879static int
1880parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1881		int __maybe_unused unset)
1882{
1883	unsigned long duration = strtoul(arg, NULL, 0);
1884
1885	if (svg_highlight || svg_highlight_name)
1886		return -1;
 
 
 
 
 
 
 
 
1887
1888	if (duration)
1889		svg_highlight = duration;
1890	else
1891		svg_highlight_name = strdup(arg);
1892
1893	return 0;
1894}
1895
1896static int
1897parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1898{
1899	char unit = 'n';
1900	u64 *value = opt->value;
1901
1902	if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1903		switch (unit) {
1904		case 'm':
1905			*value *= NSEC_PER_MSEC;
1906			break;
1907		case 'u':
1908			*value *= NSEC_PER_USEC;
1909			break;
1910		case 'n':
1911			break;
1912		default:
1913			return -1;
1914		}
1915	}
1916
1917	return 0;
1918}
1919
1920int cmd_timechart(int argc, const char **argv,
1921		  const char *prefix __maybe_unused)
1922{
1923	struct timechart tchart = {
1924		.tool = {
1925			.comm		 = process_comm_event,
1926			.fork		 = process_fork_event,
1927			.exit		 = process_exit_event,
1928			.sample		 = process_sample_event,
1929			.ordered_events	 = true,
1930		},
1931		.proc_num = 15,
1932		.min_time = NSEC_PER_MSEC,
1933		.merge_dist = 1000,
1934	};
1935	const char *output_name = "output.svg";
1936	const struct option timechart_options[] = {
1937	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1938	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1939	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1940	OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1941		      "highlight tasks. Pass duration in ns or process name.",
1942		       parse_highlight),
1943	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1944	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1945		    "output processes data only"),
1946	OPT_CALLBACK('p', "process", NULL, "process",
1947		      "process selector. Pass a pid or process name.",
1948		       parse_process),
1949	OPT_CALLBACK(0, "symfs", NULL, "directory",
1950		     "Look for files with symbols relative to this directory",
1951		     symbol__config_symfs),
1952	OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1953		    "min. number of tasks to print"),
1954	OPT_BOOLEAN('t', "topology", &tchart.topology,
1955		    "sort CPUs according to topology"),
1956	OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1957		    "skip EAGAIN errors"),
1958	OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1959		     "all IO faster than min-time will visually appear longer",
1960		     parse_time),
1961	OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1962		     "merge events that are merge-dist us apart",
1963		     parse_time),
1964	OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1965	OPT_END()
1966	};
1967	const char * const timechart_subcommands[] = { "record", NULL };
1968	const char *timechart_usage[] = {
1969		"perf timechart [<options>] {record}",
1970		NULL
1971	};
1972
1973	const struct option timechart_record_options[] = {
1974	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1975	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1976		    "output processes data only"),
1977	OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1978		    "record only IO data"),
1979	OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1980	OPT_END()
1981	};
1982	const char * const timechart_record_usage[] = {
1983		"perf timechart record [<options>]",
1984		NULL
1985	};
1986	argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1987			timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1988
1989	if (tchart.power_only && tchart.tasks_only) {
1990		pr_err("-P and -T options cannot be used at the same time.\n");
1991		return -1;
1992	}
1993
1994	if (argc && !strncmp(argv[0], "rec", 3)) {
1995		argc = parse_options(argc, argv, timechart_record_options,
1996				     timechart_record_usage,
1997				     PARSE_OPT_STOP_AT_NON_OPTION);
1998
1999		if (tchart.power_only && tchart.tasks_only) {
2000			pr_err("-P and -T options cannot be used at the same time.\n");
2001			return -1;
2002		}
2003
2004		if (tchart.io_only)
2005			return timechart__io_record(argc, argv);
2006		else
2007			return timechart__record(&tchart, argc, argv);
2008	} else if (argc)
2009		usage_with_options(timechart_usage, timechart_options);
2010
2011	setup_pager();
2012
2013	return __cmd_timechart(&tchart, output_name);
2014}