Loading...
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include "builtin.h"
16
17#include "util/util.h"
18
19#include "util/color.h"
20#include <linux/list.h>
21#include "util/cache.h"
22#include "util/evsel.h"
23#include <linux/rbtree.h>
24#include "util/symbol.h"
25#include "util/callchain.h"
26#include "util/strlist.h"
27
28#include "perf.h"
29#include "util/header.h"
30#include "util/parse-options.h"
31#include "util/parse-events.h"
32#include "util/event.h"
33#include "util/session.h"
34#include "util/svghelper.h"
35#include "util/tool.h"
36
37#define SUPPORT_OLD_POWER_EVENTS 1
38#define PWR_EVENT_EXIT -1
39
40
41static const char *input_name;
42static const char *output_name = "output.svg";
43
44static unsigned int numcpus;
45static u64 min_freq; /* Lowest CPU frequency seen */
46static u64 max_freq; /* Highest CPU frequency seen */
47static u64 turbo_frequency;
48
49static u64 first_time, last_time;
50
51static bool power_only;
52
53
54struct per_pid;
55struct per_pidcomm;
56
57struct cpu_sample;
58struct power_event;
59struct wake_event;
60
61struct sample_wrapper;
62
63/*
64 * Datastructure layout:
65 * We keep an list of "pid"s, matching the kernels notion of a task struct.
66 * Each "pid" entry, has a list of "comm"s.
67 * this is because we want to track different programs different, while
68 * exec will reuse the original pid (by design).
69 * Each comm has a list of samples that will be used to draw
70 * final graph.
71 */
72
73struct per_pid {
74 struct per_pid *next;
75
76 int pid;
77 int ppid;
78
79 u64 start_time;
80 u64 end_time;
81 u64 total_time;
82 int display;
83
84 struct per_pidcomm *all;
85 struct per_pidcomm *current;
86};
87
88
89struct per_pidcomm {
90 struct per_pidcomm *next;
91
92 u64 start_time;
93 u64 end_time;
94 u64 total_time;
95
96 int Y;
97 int display;
98
99 long state;
100 u64 state_since;
101
102 char *comm;
103
104 struct cpu_sample *samples;
105};
106
107struct sample_wrapper {
108 struct sample_wrapper *next;
109
110 u64 timestamp;
111 unsigned char data[0];
112};
113
114#define TYPE_NONE 0
115#define TYPE_RUNNING 1
116#define TYPE_WAITING 2
117#define TYPE_BLOCKED 3
118
119struct cpu_sample {
120 struct cpu_sample *next;
121
122 u64 start_time;
123 u64 end_time;
124 int type;
125 int cpu;
126};
127
128static struct per_pid *all_data;
129
130#define CSTATE 1
131#define PSTATE 2
132
133struct power_event {
134 struct power_event *next;
135 int type;
136 int state;
137 u64 start_time;
138 u64 end_time;
139 int cpu;
140};
141
142struct wake_event {
143 struct wake_event *next;
144 int waker;
145 int wakee;
146 u64 time;
147};
148
149static struct power_event *power_events;
150static struct wake_event *wake_events;
151
152struct process_filter;
153struct process_filter {
154 char *name;
155 int pid;
156 struct process_filter *next;
157};
158
159static struct process_filter *process_filter;
160
161
162static struct per_pid *find_create_pid(int pid)
163{
164 struct per_pid *cursor = all_data;
165
166 while (cursor) {
167 if (cursor->pid == pid)
168 return cursor;
169 cursor = cursor->next;
170 }
171 cursor = malloc(sizeof(struct per_pid));
172 assert(cursor != NULL);
173 memset(cursor, 0, sizeof(struct per_pid));
174 cursor->pid = pid;
175 cursor->next = all_data;
176 all_data = cursor;
177 return cursor;
178}
179
180static void pid_set_comm(int pid, char *comm)
181{
182 struct per_pid *p;
183 struct per_pidcomm *c;
184 p = find_create_pid(pid);
185 c = p->all;
186 while (c) {
187 if (c->comm && strcmp(c->comm, comm) == 0) {
188 p->current = c;
189 return;
190 }
191 if (!c->comm) {
192 c->comm = strdup(comm);
193 p->current = c;
194 return;
195 }
196 c = c->next;
197 }
198 c = malloc(sizeof(struct per_pidcomm));
199 assert(c != NULL);
200 memset(c, 0, sizeof(struct per_pidcomm));
201 c->comm = strdup(comm);
202 p->current = c;
203 c->next = p->all;
204 p->all = c;
205}
206
207static void pid_fork(int pid, int ppid, u64 timestamp)
208{
209 struct per_pid *p, *pp;
210 p = find_create_pid(pid);
211 pp = find_create_pid(ppid);
212 p->ppid = ppid;
213 if (pp->current && pp->current->comm && !p->current)
214 pid_set_comm(pid, pp->current->comm);
215
216 p->start_time = timestamp;
217 if (p->current) {
218 p->current->start_time = timestamp;
219 p->current->state_since = timestamp;
220 }
221}
222
223static void pid_exit(int pid, u64 timestamp)
224{
225 struct per_pid *p;
226 p = find_create_pid(pid);
227 p->end_time = timestamp;
228 if (p->current)
229 p->current->end_time = timestamp;
230}
231
232static void
233pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
234{
235 struct per_pid *p;
236 struct per_pidcomm *c;
237 struct cpu_sample *sample;
238
239 p = find_create_pid(pid);
240 c = p->current;
241 if (!c) {
242 c = malloc(sizeof(struct per_pidcomm));
243 assert(c != NULL);
244 memset(c, 0, sizeof(struct per_pidcomm));
245 p->current = c;
246 c->next = p->all;
247 p->all = c;
248 }
249
250 sample = malloc(sizeof(struct cpu_sample));
251 assert(sample != NULL);
252 memset(sample, 0, sizeof(struct cpu_sample));
253 sample->start_time = start;
254 sample->end_time = end;
255 sample->type = type;
256 sample->next = c->samples;
257 sample->cpu = cpu;
258 c->samples = sample;
259
260 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
261 c->total_time += (end-start);
262 p->total_time += (end-start);
263 }
264
265 if (c->start_time == 0 || c->start_time > start)
266 c->start_time = start;
267 if (p->start_time == 0 || p->start_time > start)
268 p->start_time = start;
269}
270
271#define MAX_CPUS 4096
272
273static u64 cpus_cstate_start_times[MAX_CPUS];
274static int cpus_cstate_state[MAX_CPUS];
275static u64 cpus_pstate_start_times[MAX_CPUS];
276static u64 cpus_pstate_state[MAX_CPUS];
277
278static int process_comm_event(struct perf_tool *tool __used,
279 union perf_event *event,
280 struct perf_sample *sample __used,
281 struct machine *machine __used)
282{
283 pid_set_comm(event->comm.tid, event->comm.comm);
284 return 0;
285}
286
287static int process_fork_event(struct perf_tool *tool __used,
288 union perf_event *event,
289 struct perf_sample *sample __used,
290 struct machine *machine __used)
291{
292 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
293 return 0;
294}
295
296static int process_exit_event(struct perf_tool *tool __used,
297 union perf_event *event,
298 struct perf_sample *sample __used,
299 struct machine *machine __used)
300{
301 pid_exit(event->fork.pid, event->fork.time);
302 return 0;
303}
304
305struct trace_entry {
306 unsigned short type;
307 unsigned char flags;
308 unsigned char preempt_count;
309 int pid;
310 int lock_depth;
311};
312
313#ifdef SUPPORT_OLD_POWER_EVENTS
314static int use_old_power_events;
315struct power_entry_old {
316 struct trace_entry te;
317 u64 type;
318 u64 value;
319 u64 cpu_id;
320};
321#endif
322
323struct power_processor_entry {
324 struct trace_entry te;
325 u32 state;
326 u32 cpu_id;
327};
328
329#define TASK_COMM_LEN 16
330struct wakeup_entry {
331 struct trace_entry te;
332 char comm[TASK_COMM_LEN];
333 int pid;
334 int prio;
335 int success;
336};
337
338/*
339 * trace_flag_type is an enumeration that holds different
340 * states when a trace occurs. These are:
341 * IRQS_OFF - interrupts were disabled
342 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
343 * NEED_RESCED - reschedule is requested
344 * HARDIRQ - inside an interrupt handler
345 * SOFTIRQ - inside a softirq handler
346 */
347enum trace_flag_type {
348 TRACE_FLAG_IRQS_OFF = 0x01,
349 TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
350 TRACE_FLAG_NEED_RESCHED = 0x04,
351 TRACE_FLAG_HARDIRQ = 0x08,
352 TRACE_FLAG_SOFTIRQ = 0x10,
353};
354
355
356
357struct sched_switch {
358 struct trace_entry te;
359 char prev_comm[TASK_COMM_LEN];
360 int prev_pid;
361 int prev_prio;
362 long prev_state; /* Arjan weeps. */
363 char next_comm[TASK_COMM_LEN];
364 int next_pid;
365 int next_prio;
366};
367
368static void c_state_start(int cpu, u64 timestamp, int state)
369{
370 cpus_cstate_start_times[cpu] = timestamp;
371 cpus_cstate_state[cpu] = state;
372}
373
374static void c_state_end(int cpu, u64 timestamp)
375{
376 struct power_event *pwr;
377 pwr = malloc(sizeof(struct power_event));
378 if (!pwr)
379 return;
380 memset(pwr, 0, sizeof(struct power_event));
381
382 pwr->state = cpus_cstate_state[cpu];
383 pwr->start_time = cpus_cstate_start_times[cpu];
384 pwr->end_time = timestamp;
385 pwr->cpu = cpu;
386 pwr->type = CSTATE;
387 pwr->next = power_events;
388
389 power_events = pwr;
390}
391
392static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
393{
394 struct power_event *pwr;
395 pwr = malloc(sizeof(struct power_event));
396
397 if (new_freq > 8000000) /* detect invalid data */
398 return;
399
400 if (!pwr)
401 return;
402 memset(pwr, 0, sizeof(struct power_event));
403
404 pwr->state = cpus_pstate_state[cpu];
405 pwr->start_time = cpus_pstate_start_times[cpu];
406 pwr->end_time = timestamp;
407 pwr->cpu = cpu;
408 pwr->type = PSTATE;
409 pwr->next = power_events;
410
411 if (!pwr->start_time)
412 pwr->start_time = first_time;
413
414 power_events = pwr;
415
416 cpus_pstate_state[cpu] = new_freq;
417 cpus_pstate_start_times[cpu] = timestamp;
418
419 if ((u64)new_freq > max_freq)
420 max_freq = new_freq;
421
422 if (new_freq < min_freq || min_freq == 0)
423 min_freq = new_freq;
424
425 if (new_freq == max_freq - 1000)
426 turbo_frequency = max_freq;
427}
428
429static void
430sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
431{
432 struct wake_event *we;
433 struct per_pid *p;
434 struct wakeup_entry *wake = (void *)te;
435
436 we = malloc(sizeof(struct wake_event));
437 if (!we)
438 return;
439
440 memset(we, 0, sizeof(struct wake_event));
441 we->time = timestamp;
442 we->waker = pid;
443
444 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
445 we->waker = -1;
446
447 we->wakee = wake->pid;
448 we->next = wake_events;
449 wake_events = we;
450 p = find_create_pid(we->wakee);
451
452 if (p && p->current && p->current->state == TYPE_NONE) {
453 p->current->state_since = timestamp;
454 p->current->state = TYPE_WAITING;
455 }
456 if (p && p->current && p->current->state == TYPE_BLOCKED) {
457 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
458 p->current->state_since = timestamp;
459 p->current->state = TYPE_WAITING;
460 }
461}
462
463static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
464{
465 struct per_pid *p = NULL, *prev_p;
466 struct sched_switch *sw = (void *)te;
467
468
469 prev_p = find_create_pid(sw->prev_pid);
470
471 p = find_create_pid(sw->next_pid);
472
473 if (prev_p->current && prev_p->current->state != TYPE_NONE)
474 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
475 if (p && p->current) {
476 if (p->current->state != TYPE_NONE)
477 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
478
479 p->current->state_since = timestamp;
480 p->current->state = TYPE_RUNNING;
481 }
482
483 if (prev_p->current) {
484 prev_p->current->state = TYPE_NONE;
485 prev_p->current->state_since = timestamp;
486 if (sw->prev_state & 2)
487 prev_p->current->state = TYPE_BLOCKED;
488 if (sw->prev_state == 0)
489 prev_p->current->state = TYPE_WAITING;
490 }
491}
492
493
494static int process_sample_event(struct perf_tool *tool __used,
495 union perf_event *event __used,
496 struct perf_sample *sample,
497 struct perf_evsel *evsel,
498 struct machine *machine __used)
499{
500 struct trace_entry *te;
501
502 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
503 if (!first_time || first_time > sample->time)
504 first_time = sample->time;
505 if (last_time < sample->time)
506 last_time = sample->time;
507 }
508
509 te = (void *)sample->raw_data;
510 if ((evsel->attr.sample_type & PERF_SAMPLE_RAW) && sample->raw_size > 0) {
511 char *event_str;
512#ifdef SUPPORT_OLD_POWER_EVENTS
513 struct power_entry_old *peo;
514 peo = (void *)te;
515#endif
516 /*
517 * FIXME: use evsel, its already mapped from id to perf_evsel,
518 * remove perf_header__find_event infrastructure bits.
519 * Mapping all these "power:cpu_idle" strings to the tracepoint
520 * ID and then just comparing against evsel->attr.config.
521 *
522 * e.g.:
523 *
524 * if (evsel->attr.config == power_cpu_idle_id)
525 */
526 event_str = perf_header__find_event(te->type);
527
528 if (!event_str)
529 return 0;
530
531 if (sample->cpu > numcpus)
532 numcpus = sample->cpu;
533
534 if (strcmp(event_str, "power:cpu_idle") == 0) {
535 struct power_processor_entry *ppe = (void *)te;
536 if (ppe->state == (u32)PWR_EVENT_EXIT)
537 c_state_end(ppe->cpu_id, sample->time);
538 else
539 c_state_start(ppe->cpu_id, sample->time,
540 ppe->state);
541 }
542 else if (strcmp(event_str, "power:cpu_frequency") == 0) {
543 struct power_processor_entry *ppe = (void *)te;
544 p_state_change(ppe->cpu_id, sample->time, ppe->state);
545 }
546
547 else if (strcmp(event_str, "sched:sched_wakeup") == 0)
548 sched_wakeup(sample->cpu, sample->time, sample->pid, te);
549
550 else if (strcmp(event_str, "sched:sched_switch") == 0)
551 sched_switch(sample->cpu, sample->time, te);
552
553#ifdef SUPPORT_OLD_POWER_EVENTS
554 if (use_old_power_events) {
555 if (strcmp(event_str, "power:power_start") == 0)
556 c_state_start(peo->cpu_id, sample->time,
557 peo->value);
558
559 else if (strcmp(event_str, "power:power_end") == 0)
560 c_state_end(sample->cpu, sample->time);
561
562 else if (strcmp(event_str,
563 "power:power_frequency") == 0)
564 p_state_change(peo->cpu_id, sample->time,
565 peo->value);
566 }
567#endif
568 }
569 return 0;
570}
571
572/*
573 * After the last sample we need to wrap up the current C/P state
574 * and close out each CPU for these.
575 */
576static void end_sample_processing(void)
577{
578 u64 cpu;
579 struct power_event *pwr;
580
581 for (cpu = 0; cpu <= numcpus; cpu++) {
582 pwr = malloc(sizeof(struct power_event));
583 if (!pwr)
584 return;
585 memset(pwr, 0, sizeof(struct power_event));
586
587 /* C state */
588#if 0
589 pwr->state = cpus_cstate_state[cpu];
590 pwr->start_time = cpus_cstate_start_times[cpu];
591 pwr->end_time = last_time;
592 pwr->cpu = cpu;
593 pwr->type = CSTATE;
594 pwr->next = power_events;
595
596 power_events = pwr;
597#endif
598 /* P state */
599
600 pwr = malloc(sizeof(struct power_event));
601 if (!pwr)
602 return;
603 memset(pwr, 0, sizeof(struct power_event));
604
605 pwr->state = cpus_pstate_state[cpu];
606 pwr->start_time = cpus_pstate_start_times[cpu];
607 pwr->end_time = last_time;
608 pwr->cpu = cpu;
609 pwr->type = PSTATE;
610 pwr->next = power_events;
611
612 if (!pwr->start_time)
613 pwr->start_time = first_time;
614 if (!pwr->state)
615 pwr->state = min_freq;
616 power_events = pwr;
617 }
618}
619
620/*
621 * Sort the pid datastructure
622 */
623static void sort_pids(void)
624{
625 struct per_pid *new_list, *p, *cursor, *prev;
626 /* sort by ppid first, then by pid, lowest to highest */
627
628 new_list = NULL;
629
630 while (all_data) {
631 p = all_data;
632 all_data = p->next;
633 p->next = NULL;
634
635 if (new_list == NULL) {
636 new_list = p;
637 p->next = NULL;
638 continue;
639 }
640 prev = NULL;
641 cursor = new_list;
642 while (cursor) {
643 if (cursor->ppid > p->ppid ||
644 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
645 /* must insert before */
646 if (prev) {
647 p->next = prev->next;
648 prev->next = p;
649 cursor = NULL;
650 continue;
651 } else {
652 p->next = new_list;
653 new_list = p;
654 cursor = NULL;
655 continue;
656 }
657 }
658
659 prev = cursor;
660 cursor = cursor->next;
661 if (!cursor)
662 prev->next = p;
663 }
664 }
665 all_data = new_list;
666}
667
668
669static void draw_c_p_states(void)
670{
671 struct power_event *pwr;
672 pwr = power_events;
673
674 /*
675 * two pass drawing so that the P state bars are on top of the C state blocks
676 */
677 while (pwr) {
678 if (pwr->type == CSTATE)
679 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
680 pwr = pwr->next;
681 }
682
683 pwr = power_events;
684 while (pwr) {
685 if (pwr->type == PSTATE) {
686 if (!pwr->state)
687 pwr->state = min_freq;
688 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
689 }
690 pwr = pwr->next;
691 }
692}
693
694static void draw_wakeups(void)
695{
696 struct wake_event *we;
697 struct per_pid *p;
698 struct per_pidcomm *c;
699
700 we = wake_events;
701 while (we) {
702 int from = 0, to = 0;
703 char *task_from = NULL, *task_to = NULL;
704
705 /* locate the column of the waker and wakee */
706 p = all_data;
707 while (p) {
708 if (p->pid == we->waker || p->pid == we->wakee) {
709 c = p->all;
710 while (c) {
711 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
712 if (p->pid == we->waker && !from) {
713 from = c->Y;
714 task_from = strdup(c->comm);
715 }
716 if (p->pid == we->wakee && !to) {
717 to = c->Y;
718 task_to = strdup(c->comm);
719 }
720 }
721 c = c->next;
722 }
723 c = p->all;
724 while (c) {
725 if (p->pid == we->waker && !from) {
726 from = c->Y;
727 task_from = strdup(c->comm);
728 }
729 if (p->pid == we->wakee && !to) {
730 to = c->Y;
731 task_to = strdup(c->comm);
732 }
733 c = c->next;
734 }
735 }
736 p = p->next;
737 }
738
739 if (!task_from) {
740 task_from = malloc(40);
741 sprintf(task_from, "[%i]", we->waker);
742 }
743 if (!task_to) {
744 task_to = malloc(40);
745 sprintf(task_to, "[%i]", we->wakee);
746 }
747
748 if (we->waker == -1)
749 svg_interrupt(we->time, to);
750 else if (from && to && abs(from - to) == 1)
751 svg_wakeline(we->time, from, to);
752 else
753 svg_partial_wakeline(we->time, from, task_from, to, task_to);
754 we = we->next;
755
756 free(task_from);
757 free(task_to);
758 }
759}
760
761static void draw_cpu_usage(void)
762{
763 struct per_pid *p;
764 struct per_pidcomm *c;
765 struct cpu_sample *sample;
766 p = all_data;
767 while (p) {
768 c = p->all;
769 while (c) {
770 sample = c->samples;
771 while (sample) {
772 if (sample->type == TYPE_RUNNING)
773 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
774
775 sample = sample->next;
776 }
777 c = c->next;
778 }
779 p = p->next;
780 }
781}
782
783static void draw_process_bars(void)
784{
785 struct per_pid *p;
786 struct per_pidcomm *c;
787 struct cpu_sample *sample;
788 int Y = 0;
789
790 Y = 2 * numcpus + 2;
791
792 p = all_data;
793 while (p) {
794 c = p->all;
795 while (c) {
796 if (!c->display) {
797 c->Y = 0;
798 c = c->next;
799 continue;
800 }
801
802 svg_box(Y, c->start_time, c->end_time, "process");
803 sample = c->samples;
804 while (sample) {
805 if (sample->type == TYPE_RUNNING)
806 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
807 if (sample->type == TYPE_BLOCKED)
808 svg_box(Y, sample->start_time, sample->end_time, "blocked");
809 if (sample->type == TYPE_WAITING)
810 svg_waiting(Y, sample->start_time, sample->end_time);
811 sample = sample->next;
812 }
813
814 if (c->comm) {
815 char comm[256];
816 if (c->total_time > 5000000000) /* 5 seconds */
817 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
818 else
819 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
820
821 svg_text(Y, c->start_time, comm);
822 }
823 c->Y = Y;
824 Y++;
825 c = c->next;
826 }
827 p = p->next;
828 }
829}
830
831static void add_process_filter(const char *string)
832{
833 struct process_filter *filt;
834 int pid;
835
836 pid = strtoull(string, NULL, 10);
837 filt = malloc(sizeof(struct process_filter));
838 if (!filt)
839 return;
840
841 filt->name = strdup(string);
842 filt->pid = pid;
843 filt->next = process_filter;
844
845 process_filter = filt;
846}
847
848static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
849{
850 struct process_filter *filt;
851 if (!process_filter)
852 return 1;
853
854 filt = process_filter;
855 while (filt) {
856 if (filt->pid && p->pid == filt->pid)
857 return 1;
858 if (strcmp(filt->name, c->comm) == 0)
859 return 1;
860 filt = filt->next;
861 }
862 return 0;
863}
864
865static int determine_display_tasks_filtered(void)
866{
867 struct per_pid *p;
868 struct per_pidcomm *c;
869 int count = 0;
870
871 p = all_data;
872 while (p) {
873 p->display = 0;
874 if (p->start_time == 1)
875 p->start_time = first_time;
876
877 /* no exit marker, task kept running to the end */
878 if (p->end_time == 0)
879 p->end_time = last_time;
880
881 c = p->all;
882
883 while (c) {
884 c->display = 0;
885
886 if (c->start_time == 1)
887 c->start_time = first_time;
888
889 if (passes_filter(p, c)) {
890 c->display = 1;
891 p->display = 1;
892 count++;
893 }
894
895 if (c->end_time == 0)
896 c->end_time = last_time;
897
898 c = c->next;
899 }
900 p = p->next;
901 }
902 return count;
903}
904
905static int determine_display_tasks(u64 threshold)
906{
907 struct per_pid *p;
908 struct per_pidcomm *c;
909 int count = 0;
910
911 if (process_filter)
912 return determine_display_tasks_filtered();
913
914 p = all_data;
915 while (p) {
916 p->display = 0;
917 if (p->start_time == 1)
918 p->start_time = first_time;
919
920 /* no exit marker, task kept running to the end */
921 if (p->end_time == 0)
922 p->end_time = last_time;
923 if (p->total_time >= threshold && !power_only)
924 p->display = 1;
925
926 c = p->all;
927
928 while (c) {
929 c->display = 0;
930
931 if (c->start_time == 1)
932 c->start_time = first_time;
933
934 if (c->total_time >= threshold && !power_only) {
935 c->display = 1;
936 count++;
937 }
938
939 if (c->end_time == 0)
940 c->end_time = last_time;
941
942 c = c->next;
943 }
944 p = p->next;
945 }
946 return count;
947}
948
949
950
951#define TIME_THRESH 10000000
952
953static void write_svg_file(const char *filename)
954{
955 u64 i;
956 int count;
957
958 numcpus++;
959
960
961 count = determine_display_tasks(TIME_THRESH);
962
963 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
964 if (count < 15)
965 count = determine_display_tasks(TIME_THRESH / 10);
966
967 open_svg(filename, numcpus, count, first_time, last_time);
968
969 svg_time_grid();
970 svg_legenda();
971
972 for (i = 0; i < numcpus; i++)
973 svg_cpu_box(i, max_freq, turbo_frequency);
974
975 draw_cpu_usage();
976 draw_process_bars();
977 draw_c_p_states();
978 draw_wakeups();
979
980 svg_close();
981}
982
983static struct perf_tool perf_timechart = {
984 .comm = process_comm_event,
985 .fork = process_fork_event,
986 .exit = process_exit_event,
987 .sample = process_sample_event,
988 .ordered_samples = true,
989};
990
991static int __cmd_timechart(void)
992{
993 struct perf_session *session = perf_session__new(input_name, O_RDONLY,
994 0, false, &perf_timechart);
995 int ret = -EINVAL;
996
997 if (session == NULL)
998 return -ENOMEM;
999
1000 if (!perf_session__has_traces(session, "timechart record"))
1001 goto out_delete;
1002
1003 ret = perf_session__process_events(session, &perf_timechart);
1004 if (ret)
1005 goto out_delete;
1006
1007 end_sample_processing();
1008
1009 sort_pids();
1010
1011 write_svg_file(output_name);
1012
1013 pr_info("Written %2.1f seconds of trace to %s.\n",
1014 (last_time - first_time) / 1000000000.0, output_name);
1015out_delete:
1016 perf_session__delete(session);
1017 return ret;
1018}
1019
1020static const char * const timechart_usage[] = {
1021 "perf timechart [<options>] {record}",
1022 NULL
1023};
1024
1025#ifdef SUPPORT_OLD_POWER_EVENTS
1026static const char * const record_old_args[] = {
1027 "record",
1028 "-a",
1029 "-R",
1030 "-f",
1031 "-c", "1",
1032 "-e", "power:power_start",
1033 "-e", "power:power_end",
1034 "-e", "power:power_frequency",
1035 "-e", "sched:sched_wakeup",
1036 "-e", "sched:sched_switch",
1037};
1038#endif
1039
1040static const char * const record_new_args[] = {
1041 "record",
1042 "-a",
1043 "-R",
1044 "-f",
1045 "-c", "1",
1046 "-e", "power:cpu_frequency",
1047 "-e", "power:cpu_idle",
1048 "-e", "sched:sched_wakeup",
1049 "-e", "sched:sched_switch",
1050};
1051
1052static int __cmd_record(int argc, const char **argv)
1053{
1054 unsigned int rec_argc, i, j;
1055 const char **rec_argv;
1056 const char * const *record_args = record_new_args;
1057 unsigned int record_elems = ARRAY_SIZE(record_new_args);
1058
1059#ifdef SUPPORT_OLD_POWER_EVENTS
1060 if (!is_valid_tracepoint("power:cpu_idle") &&
1061 is_valid_tracepoint("power:power_start")) {
1062 use_old_power_events = 1;
1063 record_args = record_old_args;
1064 record_elems = ARRAY_SIZE(record_old_args);
1065 }
1066#endif
1067
1068 rec_argc = record_elems + argc - 1;
1069 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1070
1071 if (rec_argv == NULL)
1072 return -ENOMEM;
1073
1074 for (i = 0; i < record_elems; i++)
1075 rec_argv[i] = strdup(record_args[i]);
1076
1077 for (j = 1; j < (unsigned int)argc; j++, i++)
1078 rec_argv[i] = argv[j];
1079
1080 return cmd_record(i, rec_argv, NULL);
1081}
1082
1083static int
1084parse_process(const struct option *opt __used, const char *arg, int __used unset)
1085{
1086 if (arg)
1087 add_process_filter(arg);
1088 return 0;
1089}
1090
1091static const struct option options[] = {
1092 OPT_STRING('i', "input", &input_name, "file",
1093 "input file name"),
1094 OPT_STRING('o', "output", &output_name, "file",
1095 "output file name"),
1096 OPT_INTEGER('w', "width", &svg_page_width,
1097 "page width"),
1098 OPT_BOOLEAN('P', "power-only", &power_only,
1099 "output power data only"),
1100 OPT_CALLBACK('p', "process", NULL, "process",
1101 "process selector. Pass a pid or process name.",
1102 parse_process),
1103 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1104 "Look for files with symbols relative to this directory"),
1105 OPT_END()
1106};
1107
1108
1109int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1110{
1111 argc = parse_options(argc, argv, options, timechart_usage,
1112 PARSE_OPT_STOP_AT_NON_OPTION);
1113
1114 symbol__init();
1115
1116 if (argc && !strncmp(argv[0], "rec", 3))
1117 return __cmd_record(argc, argv);
1118 else if (argc)
1119 usage_with_options(timechart_usage, options);
1120
1121 setup_pager();
1122
1123 return __cmd_timechart();
1124}
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include <traceevent/event-parse.h>
16
17#include "builtin.h"
18
19#include "util/util.h"
20
21#include "util/color.h"
22#include <linux/list.h>
23#include "util/cache.h"
24#include "util/evlist.h"
25#include "util/evsel.h"
26#include <linux/rbtree.h>
27#include <linux/time64.h>
28#include "util/symbol.h"
29#include "util/callchain.h"
30#include "util/strlist.h"
31
32#include "perf.h"
33#include "util/header.h"
34#include <subcmd/parse-options.h>
35#include "util/parse-events.h"
36#include "util/event.h"
37#include "util/session.h"
38#include "util/svghelper.h"
39#include "util/tool.h"
40#include "util/data.h"
41#include "util/debug.h"
42
43#define SUPPORT_OLD_POWER_EVENTS 1
44#define PWR_EVENT_EXIT -1
45
46struct per_pid;
47struct power_event;
48struct wake_event;
49
50struct timechart {
51 struct perf_tool tool;
52 struct per_pid *all_data;
53 struct power_event *power_events;
54 struct wake_event *wake_events;
55 int proc_num;
56 unsigned int numcpus;
57 u64 min_freq, /* Lowest CPU frequency seen */
58 max_freq, /* Highest CPU frequency seen */
59 turbo_frequency,
60 first_time, last_time;
61 bool power_only,
62 tasks_only,
63 with_backtrace,
64 topology;
65 bool force;
66 /* IO related settings */
67 bool io_only,
68 skip_eagain;
69 u64 io_events;
70 u64 min_time,
71 merge_dist;
72};
73
74struct per_pidcomm;
75struct cpu_sample;
76struct io_sample;
77
78/*
79 * Datastructure layout:
80 * We keep an list of "pid"s, matching the kernels notion of a task struct.
81 * Each "pid" entry, has a list of "comm"s.
82 * this is because we want to track different programs different, while
83 * exec will reuse the original pid (by design).
84 * Each comm has a list of samples that will be used to draw
85 * final graph.
86 */
87
88struct per_pid {
89 struct per_pid *next;
90
91 int pid;
92 int ppid;
93
94 u64 start_time;
95 u64 end_time;
96 u64 total_time;
97 u64 total_bytes;
98 int display;
99
100 struct per_pidcomm *all;
101 struct per_pidcomm *current;
102};
103
104
105struct per_pidcomm {
106 struct per_pidcomm *next;
107
108 u64 start_time;
109 u64 end_time;
110 u64 total_time;
111 u64 max_bytes;
112 u64 total_bytes;
113
114 int Y;
115 int display;
116
117 long state;
118 u64 state_since;
119
120 char *comm;
121
122 struct cpu_sample *samples;
123 struct io_sample *io_samples;
124};
125
126struct sample_wrapper {
127 struct sample_wrapper *next;
128
129 u64 timestamp;
130 unsigned char data[0];
131};
132
133#define TYPE_NONE 0
134#define TYPE_RUNNING 1
135#define TYPE_WAITING 2
136#define TYPE_BLOCKED 3
137
138struct cpu_sample {
139 struct cpu_sample *next;
140
141 u64 start_time;
142 u64 end_time;
143 int type;
144 int cpu;
145 const char *backtrace;
146};
147
148enum {
149 IOTYPE_READ,
150 IOTYPE_WRITE,
151 IOTYPE_SYNC,
152 IOTYPE_TX,
153 IOTYPE_RX,
154 IOTYPE_POLL,
155};
156
157struct io_sample {
158 struct io_sample *next;
159
160 u64 start_time;
161 u64 end_time;
162 u64 bytes;
163 int type;
164 int fd;
165 int err;
166 int merges;
167};
168
169#define CSTATE 1
170#define PSTATE 2
171
172struct power_event {
173 struct power_event *next;
174 int type;
175 int state;
176 u64 start_time;
177 u64 end_time;
178 int cpu;
179};
180
181struct wake_event {
182 struct wake_event *next;
183 int waker;
184 int wakee;
185 u64 time;
186 const char *backtrace;
187};
188
189struct process_filter {
190 char *name;
191 int pid;
192 struct process_filter *next;
193};
194
195static struct process_filter *process_filter;
196
197
198static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
199{
200 struct per_pid *cursor = tchart->all_data;
201
202 while (cursor) {
203 if (cursor->pid == pid)
204 return cursor;
205 cursor = cursor->next;
206 }
207 cursor = zalloc(sizeof(*cursor));
208 assert(cursor != NULL);
209 cursor->pid = pid;
210 cursor->next = tchart->all_data;
211 tchart->all_data = cursor;
212 return cursor;
213}
214
215static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
216{
217 struct per_pid *p;
218 struct per_pidcomm *c;
219 p = find_create_pid(tchart, pid);
220 c = p->all;
221 while (c) {
222 if (c->comm && strcmp(c->comm, comm) == 0) {
223 p->current = c;
224 return;
225 }
226 if (!c->comm) {
227 c->comm = strdup(comm);
228 p->current = c;
229 return;
230 }
231 c = c->next;
232 }
233 c = zalloc(sizeof(*c));
234 assert(c != NULL);
235 c->comm = strdup(comm);
236 p->current = c;
237 c->next = p->all;
238 p->all = c;
239}
240
241static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
242{
243 struct per_pid *p, *pp;
244 p = find_create_pid(tchart, pid);
245 pp = find_create_pid(tchart, ppid);
246 p->ppid = ppid;
247 if (pp->current && pp->current->comm && !p->current)
248 pid_set_comm(tchart, pid, pp->current->comm);
249
250 p->start_time = timestamp;
251 if (p->current && !p->current->start_time) {
252 p->current->start_time = timestamp;
253 p->current->state_since = timestamp;
254 }
255}
256
257static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
258{
259 struct per_pid *p;
260 p = find_create_pid(tchart, pid);
261 p->end_time = timestamp;
262 if (p->current)
263 p->current->end_time = timestamp;
264}
265
266static void pid_put_sample(struct timechart *tchart, int pid, int type,
267 unsigned int cpu, u64 start, u64 end,
268 const char *backtrace)
269{
270 struct per_pid *p;
271 struct per_pidcomm *c;
272 struct cpu_sample *sample;
273
274 p = find_create_pid(tchart, pid);
275 c = p->current;
276 if (!c) {
277 c = zalloc(sizeof(*c));
278 assert(c != NULL);
279 p->current = c;
280 c->next = p->all;
281 p->all = c;
282 }
283
284 sample = zalloc(sizeof(*sample));
285 assert(sample != NULL);
286 sample->start_time = start;
287 sample->end_time = end;
288 sample->type = type;
289 sample->next = c->samples;
290 sample->cpu = cpu;
291 sample->backtrace = backtrace;
292 c->samples = sample;
293
294 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
295 c->total_time += (end-start);
296 p->total_time += (end-start);
297 }
298
299 if (c->start_time == 0 || c->start_time > start)
300 c->start_time = start;
301 if (p->start_time == 0 || p->start_time > start)
302 p->start_time = start;
303}
304
305#define MAX_CPUS 4096
306
307static u64 cpus_cstate_start_times[MAX_CPUS];
308static int cpus_cstate_state[MAX_CPUS];
309static u64 cpus_pstate_start_times[MAX_CPUS];
310static u64 cpus_pstate_state[MAX_CPUS];
311
312static int process_comm_event(struct perf_tool *tool,
313 union perf_event *event,
314 struct perf_sample *sample __maybe_unused,
315 struct machine *machine __maybe_unused)
316{
317 struct timechart *tchart = container_of(tool, struct timechart, tool);
318 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
319 return 0;
320}
321
322static int process_fork_event(struct perf_tool *tool,
323 union perf_event *event,
324 struct perf_sample *sample __maybe_unused,
325 struct machine *machine __maybe_unused)
326{
327 struct timechart *tchart = container_of(tool, struct timechart, tool);
328 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
329 return 0;
330}
331
332static int process_exit_event(struct perf_tool *tool,
333 union perf_event *event,
334 struct perf_sample *sample __maybe_unused,
335 struct machine *machine __maybe_unused)
336{
337 struct timechart *tchart = container_of(tool, struct timechart, tool);
338 pid_exit(tchart, event->fork.pid, event->fork.time);
339 return 0;
340}
341
342#ifdef SUPPORT_OLD_POWER_EVENTS
343static int use_old_power_events;
344#endif
345
346static void c_state_start(int cpu, u64 timestamp, int state)
347{
348 cpus_cstate_start_times[cpu] = timestamp;
349 cpus_cstate_state[cpu] = state;
350}
351
352static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
353{
354 struct power_event *pwr = zalloc(sizeof(*pwr));
355
356 if (!pwr)
357 return;
358
359 pwr->state = cpus_cstate_state[cpu];
360 pwr->start_time = cpus_cstate_start_times[cpu];
361 pwr->end_time = timestamp;
362 pwr->cpu = cpu;
363 pwr->type = CSTATE;
364 pwr->next = tchart->power_events;
365
366 tchart->power_events = pwr;
367}
368
369static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
370{
371 struct power_event *pwr;
372
373 if (new_freq > 8000000) /* detect invalid data */
374 return;
375
376 pwr = zalloc(sizeof(*pwr));
377 if (!pwr)
378 return;
379
380 pwr->state = cpus_pstate_state[cpu];
381 pwr->start_time = cpus_pstate_start_times[cpu];
382 pwr->end_time = timestamp;
383 pwr->cpu = cpu;
384 pwr->type = PSTATE;
385 pwr->next = tchart->power_events;
386
387 if (!pwr->start_time)
388 pwr->start_time = tchart->first_time;
389
390 tchart->power_events = pwr;
391
392 cpus_pstate_state[cpu] = new_freq;
393 cpus_pstate_start_times[cpu] = timestamp;
394
395 if ((u64)new_freq > tchart->max_freq)
396 tchart->max_freq = new_freq;
397
398 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
399 tchart->min_freq = new_freq;
400
401 if (new_freq == tchart->max_freq - 1000)
402 tchart->turbo_frequency = tchart->max_freq;
403}
404
405static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
406 int waker, int wakee, u8 flags, const char *backtrace)
407{
408 struct per_pid *p;
409 struct wake_event *we = zalloc(sizeof(*we));
410
411 if (!we)
412 return;
413
414 we->time = timestamp;
415 we->waker = waker;
416 we->backtrace = backtrace;
417
418 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
419 we->waker = -1;
420
421 we->wakee = wakee;
422 we->next = tchart->wake_events;
423 tchart->wake_events = we;
424 p = find_create_pid(tchart, we->wakee);
425
426 if (p && p->current && p->current->state == TYPE_NONE) {
427 p->current->state_since = timestamp;
428 p->current->state = TYPE_WAITING;
429 }
430 if (p && p->current && p->current->state == TYPE_BLOCKED) {
431 pid_put_sample(tchart, p->pid, p->current->state, cpu,
432 p->current->state_since, timestamp, NULL);
433 p->current->state_since = timestamp;
434 p->current->state = TYPE_WAITING;
435 }
436}
437
438static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
439 int prev_pid, int next_pid, u64 prev_state,
440 const char *backtrace)
441{
442 struct per_pid *p = NULL, *prev_p;
443
444 prev_p = find_create_pid(tchart, prev_pid);
445
446 p = find_create_pid(tchart, next_pid);
447
448 if (prev_p->current && prev_p->current->state != TYPE_NONE)
449 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
450 prev_p->current->state_since, timestamp,
451 backtrace);
452 if (p && p->current) {
453 if (p->current->state != TYPE_NONE)
454 pid_put_sample(tchart, next_pid, p->current->state, cpu,
455 p->current->state_since, timestamp,
456 backtrace);
457
458 p->current->state_since = timestamp;
459 p->current->state = TYPE_RUNNING;
460 }
461
462 if (prev_p->current) {
463 prev_p->current->state = TYPE_NONE;
464 prev_p->current->state_since = timestamp;
465 if (prev_state & 2)
466 prev_p->current->state = TYPE_BLOCKED;
467 if (prev_state == 0)
468 prev_p->current->state = TYPE_WAITING;
469 }
470}
471
472static const char *cat_backtrace(union perf_event *event,
473 struct perf_sample *sample,
474 struct machine *machine)
475{
476 struct addr_location al;
477 unsigned int i;
478 char *p = NULL;
479 size_t p_len;
480 u8 cpumode = PERF_RECORD_MISC_USER;
481 struct addr_location tal;
482 struct ip_callchain *chain = sample->callchain;
483 FILE *f = open_memstream(&p, &p_len);
484
485 if (!f) {
486 perror("open_memstream error");
487 return NULL;
488 }
489
490 if (!chain)
491 goto exit;
492
493 if (machine__resolve(machine, &al, sample) < 0) {
494 fprintf(stderr, "problem processing %d event, skipping it.\n",
495 event->header.type);
496 goto exit;
497 }
498
499 for (i = 0; i < chain->nr; i++) {
500 u64 ip;
501
502 if (callchain_param.order == ORDER_CALLEE)
503 ip = chain->ips[i];
504 else
505 ip = chain->ips[chain->nr - i - 1];
506
507 if (ip >= PERF_CONTEXT_MAX) {
508 switch (ip) {
509 case PERF_CONTEXT_HV:
510 cpumode = PERF_RECORD_MISC_HYPERVISOR;
511 break;
512 case PERF_CONTEXT_KERNEL:
513 cpumode = PERF_RECORD_MISC_KERNEL;
514 break;
515 case PERF_CONTEXT_USER:
516 cpumode = PERF_RECORD_MISC_USER;
517 break;
518 default:
519 pr_debug("invalid callchain context: "
520 "%"PRId64"\n", (s64) ip);
521
522 /*
523 * It seems the callchain is corrupted.
524 * Discard all.
525 */
526 zfree(&p);
527 goto exit_put;
528 }
529 continue;
530 }
531
532 tal.filtered = 0;
533 thread__find_addr_location(al.thread, cpumode,
534 MAP__FUNCTION, ip, &tal);
535
536 if (tal.sym)
537 fprintf(f, "..... %016" PRIx64 " %s\n", ip,
538 tal.sym->name);
539 else
540 fprintf(f, "..... %016" PRIx64 "\n", ip);
541 }
542exit_put:
543 addr_location__put(&al);
544exit:
545 fclose(f);
546
547 return p;
548}
549
550typedef int (*tracepoint_handler)(struct timechart *tchart,
551 struct perf_evsel *evsel,
552 struct perf_sample *sample,
553 const char *backtrace);
554
555static int process_sample_event(struct perf_tool *tool,
556 union perf_event *event,
557 struct perf_sample *sample,
558 struct perf_evsel *evsel,
559 struct machine *machine)
560{
561 struct timechart *tchart = container_of(tool, struct timechart, tool);
562
563 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
564 if (!tchart->first_time || tchart->first_time > sample->time)
565 tchart->first_time = sample->time;
566 if (tchart->last_time < sample->time)
567 tchart->last_time = sample->time;
568 }
569
570 if (evsel->handler != NULL) {
571 tracepoint_handler f = evsel->handler;
572 return f(tchart, evsel, sample,
573 cat_backtrace(event, sample, machine));
574 }
575
576 return 0;
577}
578
579static int
580process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
581 struct perf_evsel *evsel,
582 struct perf_sample *sample,
583 const char *backtrace __maybe_unused)
584{
585 u32 state = perf_evsel__intval(evsel, sample, "state");
586 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
587
588 if (state == (u32)PWR_EVENT_EXIT)
589 c_state_end(tchart, cpu_id, sample->time);
590 else
591 c_state_start(cpu_id, sample->time, state);
592 return 0;
593}
594
595static int
596process_sample_cpu_frequency(struct timechart *tchart,
597 struct perf_evsel *evsel,
598 struct perf_sample *sample,
599 const char *backtrace __maybe_unused)
600{
601 u32 state = perf_evsel__intval(evsel, sample, "state");
602 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
603
604 p_state_change(tchart, cpu_id, sample->time, state);
605 return 0;
606}
607
608static int
609process_sample_sched_wakeup(struct timechart *tchart,
610 struct perf_evsel *evsel,
611 struct perf_sample *sample,
612 const char *backtrace)
613{
614 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
615 int waker = perf_evsel__intval(evsel, sample, "common_pid");
616 int wakee = perf_evsel__intval(evsel, sample, "pid");
617
618 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
619 return 0;
620}
621
622static int
623process_sample_sched_switch(struct timechart *tchart,
624 struct perf_evsel *evsel,
625 struct perf_sample *sample,
626 const char *backtrace)
627{
628 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
629 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
630 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
631
632 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
633 prev_state, backtrace);
634 return 0;
635}
636
637#ifdef SUPPORT_OLD_POWER_EVENTS
638static int
639process_sample_power_start(struct timechart *tchart __maybe_unused,
640 struct perf_evsel *evsel,
641 struct perf_sample *sample,
642 const char *backtrace __maybe_unused)
643{
644 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
645 u64 value = perf_evsel__intval(evsel, sample, "value");
646
647 c_state_start(cpu_id, sample->time, value);
648 return 0;
649}
650
651static int
652process_sample_power_end(struct timechart *tchart,
653 struct perf_evsel *evsel __maybe_unused,
654 struct perf_sample *sample,
655 const char *backtrace __maybe_unused)
656{
657 c_state_end(tchart, sample->cpu, sample->time);
658 return 0;
659}
660
661static int
662process_sample_power_frequency(struct timechart *tchart,
663 struct perf_evsel *evsel,
664 struct perf_sample *sample,
665 const char *backtrace __maybe_unused)
666{
667 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
668 u64 value = perf_evsel__intval(evsel, sample, "value");
669
670 p_state_change(tchart, cpu_id, sample->time, value);
671 return 0;
672}
673#endif /* SUPPORT_OLD_POWER_EVENTS */
674
675/*
676 * After the last sample we need to wrap up the current C/P state
677 * and close out each CPU for these.
678 */
679static void end_sample_processing(struct timechart *tchart)
680{
681 u64 cpu;
682 struct power_event *pwr;
683
684 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
685 /* C state */
686#if 0
687 pwr = zalloc(sizeof(*pwr));
688 if (!pwr)
689 return;
690
691 pwr->state = cpus_cstate_state[cpu];
692 pwr->start_time = cpus_cstate_start_times[cpu];
693 pwr->end_time = tchart->last_time;
694 pwr->cpu = cpu;
695 pwr->type = CSTATE;
696 pwr->next = tchart->power_events;
697
698 tchart->power_events = pwr;
699#endif
700 /* P state */
701
702 pwr = zalloc(sizeof(*pwr));
703 if (!pwr)
704 return;
705
706 pwr->state = cpus_pstate_state[cpu];
707 pwr->start_time = cpus_pstate_start_times[cpu];
708 pwr->end_time = tchart->last_time;
709 pwr->cpu = cpu;
710 pwr->type = PSTATE;
711 pwr->next = tchart->power_events;
712
713 if (!pwr->start_time)
714 pwr->start_time = tchart->first_time;
715 if (!pwr->state)
716 pwr->state = tchart->min_freq;
717 tchart->power_events = pwr;
718 }
719}
720
721static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
722 u64 start, int fd)
723{
724 struct per_pid *p = find_create_pid(tchart, pid);
725 struct per_pidcomm *c = p->current;
726 struct io_sample *sample;
727 struct io_sample *prev;
728
729 if (!c) {
730 c = zalloc(sizeof(*c));
731 if (!c)
732 return -ENOMEM;
733 p->current = c;
734 c->next = p->all;
735 p->all = c;
736 }
737
738 prev = c->io_samples;
739
740 if (prev && prev->start_time && !prev->end_time) {
741 pr_warning("Skip invalid start event: "
742 "previous event already started!\n");
743
744 /* remove previous event that has been started,
745 * we are not sure we will ever get an end for it */
746 c->io_samples = prev->next;
747 free(prev);
748 return 0;
749 }
750
751 sample = zalloc(sizeof(*sample));
752 if (!sample)
753 return -ENOMEM;
754 sample->start_time = start;
755 sample->type = type;
756 sample->fd = fd;
757 sample->next = c->io_samples;
758 c->io_samples = sample;
759
760 if (c->start_time == 0 || c->start_time > start)
761 c->start_time = start;
762
763 return 0;
764}
765
766static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
767 u64 end, long ret)
768{
769 struct per_pid *p = find_create_pid(tchart, pid);
770 struct per_pidcomm *c = p->current;
771 struct io_sample *sample, *prev;
772
773 if (!c) {
774 pr_warning("Invalid pidcomm!\n");
775 return -1;
776 }
777
778 sample = c->io_samples;
779
780 if (!sample) /* skip partially captured events */
781 return 0;
782
783 if (sample->end_time) {
784 pr_warning("Skip invalid end event: "
785 "previous event already ended!\n");
786 return 0;
787 }
788
789 if (sample->type != type) {
790 pr_warning("Skip invalid end event: invalid event type!\n");
791 return 0;
792 }
793
794 sample->end_time = end;
795 prev = sample->next;
796
797 /* we want to be able to see small and fast transfers, so make them
798 * at least min_time long, but don't overlap them */
799 if (sample->end_time - sample->start_time < tchart->min_time)
800 sample->end_time = sample->start_time + tchart->min_time;
801 if (prev && sample->start_time < prev->end_time) {
802 if (prev->err) /* try to make errors more visible */
803 sample->start_time = prev->end_time;
804 else
805 prev->end_time = sample->start_time;
806 }
807
808 if (ret < 0) {
809 sample->err = ret;
810 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
811 type == IOTYPE_TX || type == IOTYPE_RX) {
812
813 if ((u64)ret > c->max_bytes)
814 c->max_bytes = ret;
815
816 c->total_bytes += ret;
817 p->total_bytes += ret;
818 sample->bytes = ret;
819 }
820
821 /* merge two requests to make svg smaller and render-friendly */
822 if (prev &&
823 prev->type == sample->type &&
824 prev->err == sample->err &&
825 prev->fd == sample->fd &&
826 prev->end_time + tchart->merge_dist >= sample->start_time) {
827
828 sample->bytes += prev->bytes;
829 sample->merges += prev->merges + 1;
830
831 sample->start_time = prev->start_time;
832 sample->next = prev->next;
833 free(prev);
834
835 if (!sample->err && sample->bytes > c->max_bytes)
836 c->max_bytes = sample->bytes;
837 }
838
839 tchart->io_events++;
840
841 return 0;
842}
843
844static int
845process_enter_read(struct timechart *tchart,
846 struct perf_evsel *evsel,
847 struct perf_sample *sample)
848{
849 long fd = perf_evsel__intval(evsel, sample, "fd");
850 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
851 sample->time, fd);
852}
853
854static int
855process_exit_read(struct timechart *tchart,
856 struct perf_evsel *evsel,
857 struct perf_sample *sample)
858{
859 long ret = perf_evsel__intval(evsel, sample, "ret");
860 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
861 sample->time, ret);
862}
863
864static int
865process_enter_write(struct timechart *tchart,
866 struct perf_evsel *evsel,
867 struct perf_sample *sample)
868{
869 long fd = perf_evsel__intval(evsel, sample, "fd");
870 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
871 sample->time, fd);
872}
873
874static int
875process_exit_write(struct timechart *tchart,
876 struct perf_evsel *evsel,
877 struct perf_sample *sample)
878{
879 long ret = perf_evsel__intval(evsel, sample, "ret");
880 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
881 sample->time, ret);
882}
883
884static int
885process_enter_sync(struct timechart *tchart,
886 struct perf_evsel *evsel,
887 struct perf_sample *sample)
888{
889 long fd = perf_evsel__intval(evsel, sample, "fd");
890 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
891 sample->time, fd);
892}
893
894static int
895process_exit_sync(struct timechart *tchart,
896 struct perf_evsel *evsel,
897 struct perf_sample *sample)
898{
899 long ret = perf_evsel__intval(evsel, sample, "ret");
900 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
901 sample->time, ret);
902}
903
904static int
905process_enter_tx(struct timechart *tchart,
906 struct perf_evsel *evsel,
907 struct perf_sample *sample)
908{
909 long fd = perf_evsel__intval(evsel, sample, "fd");
910 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
911 sample->time, fd);
912}
913
914static int
915process_exit_tx(struct timechart *tchart,
916 struct perf_evsel *evsel,
917 struct perf_sample *sample)
918{
919 long ret = perf_evsel__intval(evsel, sample, "ret");
920 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
921 sample->time, ret);
922}
923
924static int
925process_enter_rx(struct timechart *tchart,
926 struct perf_evsel *evsel,
927 struct perf_sample *sample)
928{
929 long fd = perf_evsel__intval(evsel, sample, "fd");
930 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
931 sample->time, fd);
932}
933
934static int
935process_exit_rx(struct timechart *tchart,
936 struct perf_evsel *evsel,
937 struct perf_sample *sample)
938{
939 long ret = perf_evsel__intval(evsel, sample, "ret");
940 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
941 sample->time, ret);
942}
943
944static int
945process_enter_poll(struct timechart *tchart,
946 struct perf_evsel *evsel,
947 struct perf_sample *sample)
948{
949 long fd = perf_evsel__intval(evsel, sample, "fd");
950 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
951 sample->time, fd);
952}
953
954static int
955process_exit_poll(struct timechart *tchart,
956 struct perf_evsel *evsel,
957 struct perf_sample *sample)
958{
959 long ret = perf_evsel__intval(evsel, sample, "ret");
960 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
961 sample->time, ret);
962}
963
964/*
965 * Sort the pid datastructure
966 */
967static void sort_pids(struct timechart *tchart)
968{
969 struct per_pid *new_list, *p, *cursor, *prev;
970 /* sort by ppid first, then by pid, lowest to highest */
971
972 new_list = NULL;
973
974 while (tchart->all_data) {
975 p = tchart->all_data;
976 tchart->all_data = p->next;
977 p->next = NULL;
978
979 if (new_list == NULL) {
980 new_list = p;
981 p->next = NULL;
982 continue;
983 }
984 prev = NULL;
985 cursor = new_list;
986 while (cursor) {
987 if (cursor->ppid > p->ppid ||
988 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
989 /* must insert before */
990 if (prev) {
991 p->next = prev->next;
992 prev->next = p;
993 cursor = NULL;
994 continue;
995 } else {
996 p->next = new_list;
997 new_list = p;
998 cursor = NULL;
999 continue;
1000 }
1001 }
1002
1003 prev = cursor;
1004 cursor = cursor->next;
1005 if (!cursor)
1006 prev->next = p;
1007 }
1008 }
1009 tchart->all_data = new_list;
1010}
1011
1012
1013static void draw_c_p_states(struct timechart *tchart)
1014{
1015 struct power_event *pwr;
1016 pwr = tchart->power_events;
1017
1018 /*
1019 * two pass drawing so that the P state bars are on top of the C state blocks
1020 */
1021 while (pwr) {
1022 if (pwr->type == CSTATE)
1023 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1024 pwr = pwr->next;
1025 }
1026
1027 pwr = tchart->power_events;
1028 while (pwr) {
1029 if (pwr->type == PSTATE) {
1030 if (!pwr->state)
1031 pwr->state = tchart->min_freq;
1032 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1033 }
1034 pwr = pwr->next;
1035 }
1036}
1037
1038static void draw_wakeups(struct timechart *tchart)
1039{
1040 struct wake_event *we;
1041 struct per_pid *p;
1042 struct per_pidcomm *c;
1043
1044 we = tchart->wake_events;
1045 while (we) {
1046 int from = 0, to = 0;
1047 char *task_from = NULL, *task_to = NULL;
1048
1049 /* locate the column of the waker and wakee */
1050 p = tchart->all_data;
1051 while (p) {
1052 if (p->pid == we->waker || p->pid == we->wakee) {
1053 c = p->all;
1054 while (c) {
1055 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1056 if (p->pid == we->waker && !from) {
1057 from = c->Y;
1058 task_from = strdup(c->comm);
1059 }
1060 if (p->pid == we->wakee && !to) {
1061 to = c->Y;
1062 task_to = strdup(c->comm);
1063 }
1064 }
1065 c = c->next;
1066 }
1067 c = p->all;
1068 while (c) {
1069 if (p->pid == we->waker && !from) {
1070 from = c->Y;
1071 task_from = strdup(c->comm);
1072 }
1073 if (p->pid == we->wakee && !to) {
1074 to = c->Y;
1075 task_to = strdup(c->comm);
1076 }
1077 c = c->next;
1078 }
1079 }
1080 p = p->next;
1081 }
1082
1083 if (!task_from) {
1084 task_from = malloc(40);
1085 sprintf(task_from, "[%i]", we->waker);
1086 }
1087 if (!task_to) {
1088 task_to = malloc(40);
1089 sprintf(task_to, "[%i]", we->wakee);
1090 }
1091
1092 if (we->waker == -1)
1093 svg_interrupt(we->time, to, we->backtrace);
1094 else if (from && to && abs(from - to) == 1)
1095 svg_wakeline(we->time, from, to, we->backtrace);
1096 else
1097 svg_partial_wakeline(we->time, from, task_from, to,
1098 task_to, we->backtrace);
1099 we = we->next;
1100
1101 free(task_from);
1102 free(task_to);
1103 }
1104}
1105
1106static void draw_cpu_usage(struct timechart *tchart)
1107{
1108 struct per_pid *p;
1109 struct per_pidcomm *c;
1110 struct cpu_sample *sample;
1111 p = tchart->all_data;
1112 while (p) {
1113 c = p->all;
1114 while (c) {
1115 sample = c->samples;
1116 while (sample) {
1117 if (sample->type == TYPE_RUNNING) {
1118 svg_process(sample->cpu,
1119 sample->start_time,
1120 sample->end_time,
1121 p->pid,
1122 c->comm,
1123 sample->backtrace);
1124 }
1125
1126 sample = sample->next;
1127 }
1128 c = c->next;
1129 }
1130 p = p->next;
1131 }
1132}
1133
1134static void draw_io_bars(struct timechart *tchart)
1135{
1136 const char *suf;
1137 double bytes;
1138 char comm[256];
1139 struct per_pid *p;
1140 struct per_pidcomm *c;
1141 struct io_sample *sample;
1142 int Y = 1;
1143
1144 p = tchart->all_data;
1145 while (p) {
1146 c = p->all;
1147 while (c) {
1148 if (!c->display) {
1149 c->Y = 0;
1150 c = c->next;
1151 continue;
1152 }
1153
1154 svg_box(Y, c->start_time, c->end_time, "process3");
1155 sample = c->io_samples;
1156 for (sample = c->io_samples; sample; sample = sample->next) {
1157 double h = (double)sample->bytes / c->max_bytes;
1158
1159 if (tchart->skip_eagain &&
1160 sample->err == -EAGAIN)
1161 continue;
1162
1163 if (sample->err)
1164 h = 1;
1165
1166 if (sample->type == IOTYPE_SYNC)
1167 svg_fbox(Y,
1168 sample->start_time,
1169 sample->end_time,
1170 1,
1171 sample->err ? "error" : "sync",
1172 sample->fd,
1173 sample->err,
1174 sample->merges);
1175 else if (sample->type == IOTYPE_POLL)
1176 svg_fbox(Y,
1177 sample->start_time,
1178 sample->end_time,
1179 1,
1180 sample->err ? "error" : "poll",
1181 sample->fd,
1182 sample->err,
1183 sample->merges);
1184 else if (sample->type == IOTYPE_READ)
1185 svg_ubox(Y,
1186 sample->start_time,
1187 sample->end_time,
1188 h,
1189 sample->err ? "error" : "disk",
1190 sample->fd,
1191 sample->err,
1192 sample->merges);
1193 else if (sample->type == IOTYPE_WRITE)
1194 svg_lbox(Y,
1195 sample->start_time,
1196 sample->end_time,
1197 h,
1198 sample->err ? "error" : "disk",
1199 sample->fd,
1200 sample->err,
1201 sample->merges);
1202 else if (sample->type == IOTYPE_RX)
1203 svg_ubox(Y,
1204 sample->start_time,
1205 sample->end_time,
1206 h,
1207 sample->err ? "error" : "net",
1208 sample->fd,
1209 sample->err,
1210 sample->merges);
1211 else if (sample->type == IOTYPE_TX)
1212 svg_lbox(Y,
1213 sample->start_time,
1214 sample->end_time,
1215 h,
1216 sample->err ? "error" : "net",
1217 sample->fd,
1218 sample->err,
1219 sample->merges);
1220 }
1221
1222 suf = "";
1223 bytes = c->total_bytes;
1224 if (bytes > 1024) {
1225 bytes = bytes / 1024;
1226 suf = "K";
1227 }
1228 if (bytes > 1024) {
1229 bytes = bytes / 1024;
1230 suf = "M";
1231 }
1232 if (bytes > 1024) {
1233 bytes = bytes / 1024;
1234 suf = "G";
1235 }
1236
1237
1238 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1239 svg_text(Y, c->start_time, comm);
1240
1241 c->Y = Y;
1242 Y++;
1243 c = c->next;
1244 }
1245 p = p->next;
1246 }
1247}
1248
1249static void draw_process_bars(struct timechart *tchart)
1250{
1251 struct per_pid *p;
1252 struct per_pidcomm *c;
1253 struct cpu_sample *sample;
1254 int Y = 0;
1255
1256 Y = 2 * tchart->numcpus + 2;
1257
1258 p = tchart->all_data;
1259 while (p) {
1260 c = p->all;
1261 while (c) {
1262 if (!c->display) {
1263 c->Y = 0;
1264 c = c->next;
1265 continue;
1266 }
1267
1268 svg_box(Y, c->start_time, c->end_time, "process");
1269 sample = c->samples;
1270 while (sample) {
1271 if (sample->type == TYPE_RUNNING)
1272 svg_running(Y, sample->cpu,
1273 sample->start_time,
1274 sample->end_time,
1275 sample->backtrace);
1276 if (sample->type == TYPE_BLOCKED)
1277 svg_blocked(Y, sample->cpu,
1278 sample->start_time,
1279 sample->end_time,
1280 sample->backtrace);
1281 if (sample->type == TYPE_WAITING)
1282 svg_waiting(Y, sample->cpu,
1283 sample->start_time,
1284 sample->end_time,
1285 sample->backtrace);
1286 sample = sample->next;
1287 }
1288
1289 if (c->comm) {
1290 char comm[256];
1291 if (c->total_time > 5000000000) /* 5 seconds */
1292 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1293 else
1294 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1295
1296 svg_text(Y, c->start_time, comm);
1297 }
1298 c->Y = Y;
1299 Y++;
1300 c = c->next;
1301 }
1302 p = p->next;
1303 }
1304}
1305
1306static void add_process_filter(const char *string)
1307{
1308 int pid = strtoull(string, NULL, 10);
1309 struct process_filter *filt = malloc(sizeof(*filt));
1310
1311 if (!filt)
1312 return;
1313
1314 filt->name = strdup(string);
1315 filt->pid = pid;
1316 filt->next = process_filter;
1317
1318 process_filter = filt;
1319}
1320
1321static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1322{
1323 struct process_filter *filt;
1324 if (!process_filter)
1325 return 1;
1326
1327 filt = process_filter;
1328 while (filt) {
1329 if (filt->pid && p->pid == filt->pid)
1330 return 1;
1331 if (strcmp(filt->name, c->comm) == 0)
1332 return 1;
1333 filt = filt->next;
1334 }
1335 return 0;
1336}
1337
1338static int determine_display_tasks_filtered(struct timechart *tchart)
1339{
1340 struct per_pid *p;
1341 struct per_pidcomm *c;
1342 int count = 0;
1343
1344 p = tchart->all_data;
1345 while (p) {
1346 p->display = 0;
1347 if (p->start_time == 1)
1348 p->start_time = tchart->first_time;
1349
1350 /* no exit marker, task kept running to the end */
1351 if (p->end_time == 0)
1352 p->end_time = tchart->last_time;
1353
1354 c = p->all;
1355
1356 while (c) {
1357 c->display = 0;
1358
1359 if (c->start_time == 1)
1360 c->start_time = tchart->first_time;
1361
1362 if (passes_filter(p, c)) {
1363 c->display = 1;
1364 p->display = 1;
1365 count++;
1366 }
1367
1368 if (c->end_time == 0)
1369 c->end_time = tchart->last_time;
1370
1371 c = c->next;
1372 }
1373 p = p->next;
1374 }
1375 return count;
1376}
1377
1378static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1379{
1380 struct per_pid *p;
1381 struct per_pidcomm *c;
1382 int count = 0;
1383
1384 p = tchart->all_data;
1385 while (p) {
1386 p->display = 0;
1387 if (p->start_time == 1)
1388 p->start_time = tchart->first_time;
1389
1390 /* no exit marker, task kept running to the end */
1391 if (p->end_time == 0)
1392 p->end_time = tchart->last_time;
1393 if (p->total_time >= threshold)
1394 p->display = 1;
1395
1396 c = p->all;
1397
1398 while (c) {
1399 c->display = 0;
1400
1401 if (c->start_time == 1)
1402 c->start_time = tchart->first_time;
1403
1404 if (c->total_time >= threshold) {
1405 c->display = 1;
1406 count++;
1407 }
1408
1409 if (c->end_time == 0)
1410 c->end_time = tchart->last_time;
1411
1412 c = c->next;
1413 }
1414 p = p->next;
1415 }
1416 return count;
1417}
1418
1419static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1420{
1421 struct per_pid *p;
1422 struct per_pidcomm *c;
1423 int count = 0;
1424
1425 p = timechart->all_data;
1426 while (p) {
1427 /* no exit marker, task kept running to the end */
1428 if (p->end_time == 0)
1429 p->end_time = timechart->last_time;
1430
1431 c = p->all;
1432
1433 while (c) {
1434 c->display = 0;
1435
1436 if (c->total_bytes >= threshold) {
1437 c->display = 1;
1438 count++;
1439 }
1440
1441 if (c->end_time == 0)
1442 c->end_time = timechart->last_time;
1443
1444 c = c->next;
1445 }
1446 p = p->next;
1447 }
1448 return count;
1449}
1450
1451#define BYTES_THRESH (1 * 1024 * 1024)
1452#define TIME_THRESH 10000000
1453
1454static void write_svg_file(struct timechart *tchart, const char *filename)
1455{
1456 u64 i;
1457 int count;
1458 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1459
1460 if (tchart->power_only)
1461 tchart->proc_num = 0;
1462
1463 /* We'd like to show at least proc_num tasks;
1464 * be less picky if we have fewer */
1465 do {
1466 if (process_filter)
1467 count = determine_display_tasks_filtered(tchart);
1468 else if (tchart->io_events)
1469 count = determine_display_io_tasks(tchart, thresh);
1470 else
1471 count = determine_display_tasks(tchart, thresh);
1472 thresh /= 10;
1473 } while (!process_filter && thresh && count < tchart->proc_num);
1474
1475 if (!tchart->proc_num)
1476 count = 0;
1477
1478 if (tchart->io_events) {
1479 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1480
1481 svg_time_grid(0.5);
1482 svg_io_legenda();
1483
1484 draw_io_bars(tchart);
1485 } else {
1486 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1487
1488 svg_time_grid(0);
1489
1490 svg_legenda();
1491
1492 for (i = 0; i < tchart->numcpus; i++)
1493 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1494
1495 draw_cpu_usage(tchart);
1496 if (tchart->proc_num)
1497 draw_process_bars(tchart);
1498 if (!tchart->tasks_only)
1499 draw_c_p_states(tchart);
1500 if (tchart->proc_num)
1501 draw_wakeups(tchart);
1502 }
1503
1504 svg_close();
1505}
1506
1507static int process_header(struct perf_file_section *section __maybe_unused,
1508 struct perf_header *ph,
1509 int feat,
1510 int fd __maybe_unused,
1511 void *data)
1512{
1513 struct timechart *tchart = data;
1514
1515 switch (feat) {
1516 case HEADER_NRCPUS:
1517 tchart->numcpus = ph->env.nr_cpus_avail;
1518 break;
1519
1520 case HEADER_CPU_TOPOLOGY:
1521 if (!tchart->topology)
1522 break;
1523
1524 if (svg_build_topology_map(ph->env.sibling_cores,
1525 ph->env.nr_sibling_cores,
1526 ph->env.sibling_threads,
1527 ph->env.nr_sibling_threads))
1528 fprintf(stderr, "problem building topology\n");
1529 break;
1530
1531 default:
1532 break;
1533 }
1534
1535 return 0;
1536}
1537
1538static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1539{
1540 const struct perf_evsel_str_handler power_tracepoints[] = {
1541 { "power:cpu_idle", process_sample_cpu_idle },
1542 { "power:cpu_frequency", process_sample_cpu_frequency },
1543 { "sched:sched_wakeup", process_sample_sched_wakeup },
1544 { "sched:sched_switch", process_sample_sched_switch },
1545#ifdef SUPPORT_OLD_POWER_EVENTS
1546 { "power:power_start", process_sample_power_start },
1547 { "power:power_end", process_sample_power_end },
1548 { "power:power_frequency", process_sample_power_frequency },
1549#endif
1550
1551 { "syscalls:sys_enter_read", process_enter_read },
1552 { "syscalls:sys_enter_pread64", process_enter_read },
1553 { "syscalls:sys_enter_readv", process_enter_read },
1554 { "syscalls:sys_enter_preadv", process_enter_read },
1555 { "syscalls:sys_enter_write", process_enter_write },
1556 { "syscalls:sys_enter_pwrite64", process_enter_write },
1557 { "syscalls:sys_enter_writev", process_enter_write },
1558 { "syscalls:sys_enter_pwritev", process_enter_write },
1559 { "syscalls:sys_enter_sync", process_enter_sync },
1560 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1561 { "syscalls:sys_enter_fsync", process_enter_sync },
1562 { "syscalls:sys_enter_msync", process_enter_sync },
1563 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1564 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1565 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1566 { "syscalls:sys_enter_sendto", process_enter_tx },
1567 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1568 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1569 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1570 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1571 { "syscalls:sys_enter_poll", process_enter_poll },
1572 { "syscalls:sys_enter_ppoll", process_enter_poll },
1573 { "syscalls:sys_enter_pselect6", process_enter_poll },
1574 { "syscalls:sys_enter_select", process_enter_poll },
1575
1576 { "syscalls:sys_exit_read", process_exit_read },
1577 { "syscalls:sys_exit_pread64", process_exit_read },
1578 { "syscalls:sys_exit_readv", process_exit_read },
1579 { "syscalls:sys_exit_preadv", process_exit_read },
1580 { "syscalls:sys_exit_write", process_exit_write },
1581 { "syscalls:sys_exit_pwrite64", process_exit_write },
1582 { "syscalls:sys_exit_writev", process_exit_write },
1583 { "syscalls:sys_exit_pwritev", process_exit_write },
1584 { "syscalls:sys_exit_sync", process_exit_sync },
1585 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1586 { "syscalls:sys_exit_fsync", process_exit_sync },
1587 { "syscalls:sys_exit_msync", process_exit_sync },
1588 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1589 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1590 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1591 { "syscalls:sys_exit_sendto", process_exit_tx },
1592 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1593 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1594 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1595 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1596 { "syscalls:sys_exit_poll", process_exit_poll },
1597 { "syscalls:sys_exit_ppoll", process_exit_poll },
1598 { "syscalls:sys_exit_pselect6", process_exit_poll },
1599 { "syscalls:sys_exit_select", process_exit_poll },
1600 };
1601 struct perf_data_file file = {
1602 .path = input_name,
1603 .mode = PERF_DATA_MODE_READ,
1604 .force = tchart->force,
1605 };
1606
1607 struct perf_session *session = perf_session__new(&file, false,
1608 &tchart->tool);
1609 int ret = -EINVAL;
1610
1611 if (session == NULL)
1612 return -1;
1613
1614 symbol__init(&session->header.env);
1615
1616 (void)perf_header__process_sections(&session->header,
1617 perf_data_file__fd(session->file),
1618 tchart,
1619 process_header);
1620
1621 if (!perf_session__has_traces(session, "timechart record"))
1622 goto out_delete;
1623
1624 if (perf_session__set_tracepoints_handlers(session,
1625 power_tracepoints)) {
1626 pr_err("Initializing session tracepoint handlers failed\n");
1627 goto out_delete;
1628 }
1629
1630 ret = perf_session__process_events(session);
1631 if (ret)
1632 goto out_delete;
1633
1634 end_sample_processing(tchart);
1635
1636 sort_pids(tchart);
1637
1638 write_svg_file(tchart, output_name);
1639
1640 pr_info("Written %2.1f seconds of trace to %s.\n",
1641 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1642out_delete:
1643 perf_session__delete(session);
1644 return ret;
1645}
1646
1647static int timechart__io_record(int argc, const char **argv)
1648{
1649 unsigned int rec_argc, i;
1650 const char **rec_argv;
1651 const char **p;
1652 char *filter = NULL;
1653
1654 const char * const common_args[] = {
1655 "record", "-a", "-R", "-c", "1",
1656 };
1657 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1658
1659 const char * const disk_events[] = {
1660 "syscalls:sys_enter_read",
1661 "syscalls:sys_enter_pread64",
1662 "syscalls:sys_enter_readv",
1663 "syscalls:sys_enter_preadv",
1664 "syscalls:sys_enter_write",
1665 "syscalls:sys_enter_pwrite64",
1666 "syscalls:sys_enter_writev",
1667 "syscalls:sys_enter_pwritev",
1668 "syscalls:sys_enter_sync",
1669 "syscalls:sys_enter_sync_file_range",
1670 "syscalls:sys_enter_fsync",
1671 "syscalls:sys_enter_msync",
1672
1673 "syscalls:sys_exit_read",
1674 "syscalls:sys_exit_pread64",
1675 "syscalls:sys_exit_readv",
1676 "syscalls:sys_exit_preadv",
1677 "syscalls:sys_exit_write",
1678 "syscalls:sys_exit_pwrite64",
1679 "syscalls:sys_exit_writev",
1680 "syscalls:sys_exit_pwritev",
1681 "syscalls:sys_exit_sync",
1682 "syscalls:sys_exit_sync_file_range",
1683 "syscalls:sys_exit_fsync",
1684 "syscalls:sys_exit_msync",
1685 };
1686 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1687
1688 const char * const net_events[] = {
1689 "syscalls:sys_enter_recvfrom",
1690 "syscalls:sys_enter_recvmmsg",
1691 "syscalls:sys_enter_recvmsg",
1692 "syscalls:sys_enter_sendto",
1693 "syscalls:sys_enter_sendmsg",
1694 "syscalls:sys_enter_sendmmsg",
1695
1696 "syscalls:sys_exit_recvfrom",
1697 "syscalls:sys_exit_recvmmsg",
1698 "syscalls:sys_exit_recvmsg",
1699 "syscalls:sys_exit_sendto",
1700 "syscalls:sys_exit_sendmsg",
1701 "syscalls:sys_exit_sendmmsg",
1702 };
1703 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1704
1705 const char * const poll_events[] = {
1706 "syscalls:sys_enter_epoll_pwait",
1707 "syscalls:sys_enter_epoll_wait",
1708 "syscalls:sys_enter_poll",
1709 "syscalls:sys_enter_ppoll",
1710 "syscalls:sys_enter_pselect6",
1711 "syscalls:sys_enter_select",
1712
1713 "syscalls:sys_exit_epoll_pwait",
1714 "syscalls:sys_exit_epoll_wait",
1715 "syscalls:sys_exit_poll",
1716 "syscalls:sys_exit_ppoll",
1717 "syscalls:sys_exit_pselect6",
1718 "syscalls:sys_exit_select",
1719 };
1720 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1721
1722 rec_argc = common_args_nr +
1723 disk_events_nr * 4 +
1724 net_events_nr * 4 +
1725 poll_events_nr * 4 +
1726 argc;
1727 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1728
1729 if (rec_argv == NULL)
1730 return -ENOMEM;
1731
1732 if (asprintf(&filter, "common_pid != %d", getpid()) < 0)
1733 return -ENOMEM;
1734
1735 p = rec_argv;
1736 for (i = 0; i < common_args_nr; i++)
1737 *p++ = strdup(common_args[i]);
1738
1739 for (i = 0; i < disk_events_nr; i++) {
1740 if (!is_valid_tracepoint(disk_events[i])) {
1741 rec_argc -= 4;
1742 continue;
1743 }
1744
1745 *p++ = "-e";
1746 *p++ = strdup(disk_events[i]);
1747 *p++ = "--filter";
1748 *p++ = filter;
1749 }
1750 for (i = 0; i < net_events_nr; i++) {
1751 if (!is_valid_tracepoint(net_events[i])) {
1752 rec_argc -= 4;
1753 continue;
1754 }
1755
1756 *p++ = "-e";
1757 *p++ = strdup(net_events[i]);
1758 *p++ = "--filter";
1759 *p++ = filter;
1760 }
1761 for (i = 0; i < poll_events_nr; i++) {
1762 if (!is_valid_tracepoint(poll_events[i])) {
1763 rec_argc -= 4;
1764 continue;
1765 }
1766
1767 *p++ = "-e";
1768 *p++ = strdup(poll_events[i]);
1769 *p++ = "--filter";
1770 *p++ = filter;
1771 }
1772
1773 for (i = 0; i < (unsigned int)argc; i++)
1774 *p++ = argv[i];
1775
1776 return cmd_record(rec_argc, rec_argv, NULL);
1777}
1778
1779
1780static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1781{
1782 unsigned int rec_argc, i, j;
1783 const char **rec_argv;
1784 const char **p;
1785 unsigned int record_elems;
1786
1787 const char * const common_args[] = {
1788 "record", "-a", "-R", "-c", "1",
1789 };
1790 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1791
1792 const char * const backtrace_args[] = {
1793 "-g",
1794 };
1795 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1796
1797 const char * const power_args[] = {
1798 "-e", "power:cpu_frequency",
1799 "-e", "power:cpu_idle",
1800 };
1801 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1802
1803 const char * const old_power_args[] = {
1804#ifdef SUPPORT_OLD_POWER_EVENTS
1805 "-e", "power:power_start",
1806 "-e", "power:power_end",
1807 "-e", "power:power_frequency",
1808#endif
1809 };
1810 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1811
1812 const char * const tasks_args[] = {
1813 "-e", "sched:sched_wakeup",
1814 "-e", "sched:sched_switch",
1815 };
1816 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1817
1818#ifdef SUPPORT_OLD_POWER_EVENTS
1819 if (!is_valid_tracepoint("power:cpu_idle") &&
1820 is_valid_tracepoint("power:power_start")) {
1821 use_old_power_events = 1;
1822 power_args_nr = 0;
1823 } else {
1824 old_power_args_nr = 0;
1825 }
1826#endif
1827
1828 if (tchart->power_only)
1829 tasks_args_nr = 0;
1830
1831 if (tchart->tasks_only) {
1832 power_args_nr = 0;
1833 old_power_args_nr = 0;
1834 }
1835
1836 if (!tchart->with_backtrace)
1837 backtrace_args_no = 0;
1838
1839 record_elems = common_args_nr + tasks_args_nr +
1840 power_args_nr + old_power_args_nr + backtrace_args_no;
1841
1842 rec_argc = record_elems + argc;
1843 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1844
1845 if (rec_argv == NULL)
1846 return -ENOMEM;
1847
1848 p = rec_argv;
1849 for (i = 0; i < common_args_nr; i++)
1850 *p++ = strdup(common_args[i]);
1851
1852 for (i = 0; i < backtrace_args_no; i++)
1853 *p++ = strdup(backtrace_args[i]);
1854
1855 for (i = 0; i < tasks_args_nr; i++)
1856 *p++ = strdup(tasks_args[i]);
1857
1858 for (i = 0; i < power_args_nr; i++)
1859 *p++ = strdup(power_args[i]);
1860
1861 for (i = 0; i < old_power_args_nr; i++)
1862 *p++ = strdup(old_power_args[i]);
1863
1864 for (j = 0; j < (unsigned int)argc; j++)
1865 *p++ = argv[j];
1866
1867 return cmd_record(rec_argc, rec_argv, NULL);
1868}
1869
1870static int
1871parse_process(const struct option *opt __maybe_unused, const char *arg,
1872 int __maybe_unused unset)
1873{
1874 if (arg)
1875 add_process_filter(arg);
1876 return 0;
1877}
1878
1879static int
1880parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1881 int __maybe_unused unset)
1882{
1883 unsigned long duration = strtoul(arg, NULL, 0);
1884
1885 if (svg_highlight || svg_highlight_name)
1886 return -1;
1887
1888 if (duration)
1889 svg_highlight = duration;
1890 else
1891 svg_highlight_name = strdup(arg);
1892
1893 return 0;
1894}
1895
1896static int
1897parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1898{
1899 char unit = 'n';
1900 u64 *value = opt->value;
1901
1902 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1903 switch (unit) {
1904 case 'm':
1905 *value *= NSEC_PER_MSEC;
1906 break;
1907 case 'u':
1908 *value *= NSEC_PER_USEC;
1909 break;
1910 case 'n':
1911 break;
1912 default:
1913 return -1;
1914 }
1915 }
1916
1917 return 0;
1918}
1919
1920int cmd_timechart(int argc, const char **argv,
1921 const char *prefix __maybe_unused)
1922{
1923 struct timechart tchart = {
1924 .tool = {
1925 .comm = process_comm_event,
1926 .fork = process_fork_event,
1927 .exit = process_exit_event,
1928 .sample = process_sample_event,
1929 .ordered_events = true,
1930 },
1931 .proc_num = 15,
1932 .min_time = NSEC_PER_MSEC,
1933 .merge_dist = 1000,
1934 };
1935 const char *output_name = "output.svg";
1936 const struct option timechart_options[] = {
1937 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1938 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1939 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1940 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1941 "highlight tasks. Pass duration in ns or process name.",
1942 parse_highlight),
1943 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1944 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1945 "output processes data only"),
1946 OPT_CALLBACK('p', "process", NULL, "process",
1947 "process selector. Pass a pid or process name.",
1948 parse_process),
1949 OPT_CALLBACK(0, "symfs", NULL, "directory",
1950 "Look for files with symbols relative to this directory",
1951 symbol__config_symfs),
1952 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1953 "min. number of tasks to print"),
1954 OPT_BOOLEAN('t', "topology", &tchart.topology,
1955 "sort CPUs according to topology"),
1956 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1957 "skip EAGAIN errors"),
1958 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1959 "all IO faster than min-time will visually appear longer",
1960 parse_time),
1961 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1962 "merge events that are merge-dist us apart",
1963 parse_time),
1964 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1965 OPT_END()
1966 };
1967 const char * const timechart_subcommands[] = { "record", NULL };
1968 const char *timechart_usage[] = {
1969 "perf timechart [<options>] {record}",
1970 NULL
1971 };
1972
1973 const struct option timechart_record_options[] = {
1974 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1975 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1976 "output processes data only"),
1977 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1978 "record only IO data"),
1979 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1980 OPT_END()
1981 };
1982 const char * const timechart_record_usage[] = {
1983 "perf timechart record [<options>]",
1984 NULL
1985 };
1986 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1987 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1988
1989 if (tchart.power_only && tchart.tasks_only) {
1990 pr_err("-P and -T options cannot be used at the same time.\n");
1991 return -1;
1992 }
1993
1994 if (argc && !strncmp(argv[0], "rec", 3)) {
1995 argc = parse_options(argc, argv, timechart_record_options,
1996 timechart_record_usage,
1997 PARSE_OPT_STOP_AT_NON_OPTION);
1998
1999 if (tchart.power_only && tchart.tasks_only) {
2000 pr_err("-P and -T options cannot be used at the same time.\n");
2001 return -1;
2002 }
2003
2004 if (tchart.io_only)
2005 return timechart__io_record(argc, argv);
2006 else
2007 return timechart__record(&tchart, argc, argv);
2008 } else if (argc)
2009 usage_with_options(timechart_usage, timechart_options);
2010
2011 setup_pager();
2012
2013 return __cmd_timechart(&tchart, output_name);
2014}