Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 *	IP multicast routing support for mrouted 3.6/3.8
   3 *
   4 *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   5 *	  Linux Consultancy and Custom Driver Development
   6 *
   7 *	This program is free software; you can redistribute it and/or
   8 *	modify it under the terms of the GNU General Public License
   9 *	as published by the Free Software Foundation; either version
  10 *	2 of the License, or (at your option) any later version.
  11 *
  12 *	Fixes:
  13 *	Michael Chastain	:	Incorrect size of copying.
  14 *	Alan Cox		:	Added the cache manager code
  15 *	Alan Cox		:	Fixed the clone/copy bug and device race.
  16 *	Mike McLagan		:	Routing by source
  17 *	Malcolm Beattie		:	Buffer handling fixes.
  18 *	Alexey Kuznetsov	:	Double buffer free and other fixes.
  19 *	SVR Anand		:	Fixed several multicast bugs and problems.
  20 *	Alexey Kuznetsov	:	Status, optimisations and more.
  21 *	Brad Parker		:	Better behaviour on mrouted upcall
  22 *					overflow.
  23 *      Carlos Picoto           :       PIMv1 Support
  24 *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
  25 *					Relax this requirement to work with older peers.
  26 *
  27 */
  28
  29#include <asm/uaccess.h>
  30#include <linux/types.h>
  31#include <linux/capability.h>
  32#include <linux/errno.h>
  33#include <linux/timer.h>
  34#include <linux/mm.h>
  35#include <linux/kernel.h>
  36#include <linux/fcntl.h>
  37#include <linux/stat.h>
  38#include <linux/socket.h>
  39#include <linux/in.h>
  40#include <linux/inet.h>
  41#include <linux/netdevice.h>
  42#include <linux/inetdevice.h>
  43#include <linux/igmp.h>
  44#include <linux/proc_fs.h>
  45#include <linux/seq_file.h>
  46#include <linux/mroute.h>
  47#include <linux/init.h>
  48#include <linux/if_ether.h>
  49#include <linux/slab.h>
  50#include <net/net_namespace.h>
  51#include <net/ip.h>
  52#include <net/protocol.h>
  53#include <linux/skbuff.h>
  54#include <net/route.h>
  55#include <net/sock.h>
  56#include <net/icmp.h>
  57#include <net/udp.h>
  58#include <net/raw.h>
  59#include <linux/notifier.h>
  60#include <linux/if_arp.h>
  61#include <linux/netfilter_ipv4.h>
  62#include <linux/compat.h>
  63#include <linux/export.h>
  64#include <net/ipip.h>
  65#include <net/checksum.h>
  66#include <net/netlink.h>
  67#include <net/fib_rules.h>
  68
  69#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  70#define CONFIG_IP_PIMSM	1
  71#endif
  72
  73struct mr_table {
  74	struct list_head	list;
  75#ifdef CONFIG_NET_NS
  76	struct net		*net;
  77#endif
  78	u32			id;
  79	struct sock __rcu	*mroute_sk;
  80	struct timer_list	ipmr_expire_timer;
  81	struct list_head	mfc_unres_queue;
  82	struct list_head	mfc_cache_array[MFC_LINES];
  83	struct vif_device	vif_table[MAXVIFS];
  84	int			maxvif;
  85	atomic_t		cache_resolve_queue_len;
  86	int			mroute_do_assert;
  87	int			mroute_do_pim;
  88#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  89	int			mroute_reg_vif_num;
  90#endif
  91};
  92
  93struct ipmr_rule {
  94	struct fib_rule		common;
  95};
  96
  97struct ipmr_result {
  98	struct mr_table		*mrt;
  99};
 100
 101/* Big lock, protecting vif table, mrt cache and mroute socket state.
 102 * Note that the changes are semaphored via rtnl_lock.
 103 */
 104
 105static DEFINE_RWLOCK(mrt_lock);
 106
 107/*
 108 *	Multicast router control variables
 109 */
 110
 111#define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
 112
 113/* Special spinlock for queue of unresolved entries */
 114static DEFINE_SPINLOCK(mfc_unres_lock);
 115
 116/* We return to original Alan's scheme. Hash table of resolved
 117 * entries is changed only in process context and protected
 118 * with weak lock mrt_lock. Queue of unresolved entries is protected
 119 * with strong spinlock mfc_unres_lock.
 120 *
 121 * In this case data path is free of exclusive locks at all.
 122 */
 123
 124static struct kmem_cache *mrt_cachep __read_mostly;
 125
 126static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 127static void ipmr_free_table(struct mr_table *mrt);
 128
 129static int ip_mr_forward(struct net *net, struct mr_table *mrt,
 130			 struct sk_buff *skb, struct mfc_cache *cache,
 131			 int local);
 132static int ipmr_cache_report(struct mr_table *mrt,
 133			     struct sk_buff *pkt, vifi_t vifi, int assert);
 134static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
 135			      struct mfc_cache *c, struct rtmsg *rtm);
 136static void mroute_clean_tables(struct mr_table *mrt);
 
 
 137static void ipmr_expire_process(unsigned long arg);
 138
 139#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 140#define ipmr_for_each_table(mrt, net) \
 141	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
 142
 143static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 144{
 145	struct mr_table *mrt;
 146
 147	ipmr_for_each_table(mrt, net) {
 148		if (mrt->id == id)
 149			return mrt;
 150	}
 151	return NULL;
 152}
 153
 154static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 155			   struct mr_table **mrt)
 156{
 157	struct ipmr_result res;
 158	struct fib_lookup_arg arg = { .result = &res, };
 159	int err;
 
 
 
 
 
 
 
 
 160
 161	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 162			       flowi4_to_flowi(flp4), 0, &arg);
 163	if (err < 0)
 164		return err;
 165	*mrt = res.mrt;
 166	return 0;
 167}
 168
 169static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 170			    int flags, struct fib_lookup_arg *arg)
 171{
 172	struct ipmr_result *res = arg->result;
 173	struct mr_table *mrt;
 174
 175	switch (rule->action) {
 176	case FR_ACT_TO_TBL:
 177		break;
 178	case FR_ACT_UNREACHABLE:
 179		return -ENETUNREACH;
 180	case FR_ACT_PROHIBIT:
 181		return -EACCES;
 182	case FR_ACT_BLACKHOLE:
 183	default:
 184		return -EINVAL;
 185	}
 186
 187	mrt = ipmr_get_table(rule->fr_net, rule->table);
 188	if (mrt == NULL)
 
 
 189		return -EAGAIN;
 190	res->mrt = mrt;
 191	return 0;
 192}
 193
 194static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 195{
 196	return 1;
 197}
 198
 199static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
 200	FRA_GENERIC_POLICY,
 201};
 202
 203static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 204			       struct fib_rule_hdr *frh, struct nlattr **tb)
 205{
 206	return 0;
 207}
 208
 209static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 210			     struct nlattr **tb)
 211{
 212	return 1;
 213}
 214
 215static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 216			  struct fib_rule_hdr *frh)
 217{
 218	frh->dst_len = 0;
 219	frh->src_len = 0;
 220	frh->tos     = 0;
 221	return 0;
 222}
 223
 224static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
 225	.family		= RTNL_FAMILY_IPMR,
 226	.rule_size	= sizeof(struct ipmr_rule),
 227	.addr_size	= sizeof(u32),
 228	.action		= ipmr_rule_action,
 229	.match		= ipmr_rule_match,
 230	.configure	= ipmr_rule_configure,
 231	.compare	= ipmr_rule_compare,
 232	.default_pref	= fib_default_rule_pref,
 233	.fill		= ipmr_rule_fill,
 234	.nlgroup	= RTNLGRP_IPV4_RULE,
 235	.policy		= ipmr_rule_policy,
 236	.owner		= THIS_MODULE,
 237};
 238
 239static int __net_init ipmr_rules_init(struct net *net)
 240{
 241	struct fib_rules_ops *ops;
 242	struct mr_table *mrt;
 243	int err;
 244
 245	ops = fib_rules_register(&ipmr_rules_ops_template, net);
 246	if (IS_ERR(ops))
 247		return PTR_ERR(ops);
 248
 249	INIT_LIST_HEAD(&net->ipv4.mr_tables);
 250
 251	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 252	if (mrt == NULL) {
 253		err = -ENOMEM;
 254		goto err1;
 255	}
 256
 257	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
 258	if (err < 0)
 259		goto err2;
 260
 261	net->ipv4.mr_rules_ops = ops;
 262	return 0;
 263
 264err2:
 265	kfree(mrt);
 266err1:
 267	fib_rules_unregister(ops);
 268	return err;
 269}
 270
 271static void __net_exit ipmr_rules_exit(struct net *net)
 272{
 273	struct mr_table *mrt, *next;
 274
 
 275	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 276		list_del(&mrt->list);
 277		ipmr_free_table(mrt);
 278	}
 279	fib_rules_unregister(net->ipv4.mr_rules_ops);
 
 280}
 281#else
 282#define ipmr_for_each_table(mrt, net) \
 283	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 284
 285static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 286{
 287	return net->ipv4.mrt;
 288}
 289
 290static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 291			   struct mr_table **mrt)
 292{
 293	*mrt = net->ipv4.mrt;
 294	return 0;
 295}
 296
 297static int __net_init ipmr_rules_init(struct net *net)
 298{
 299	net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 300	return net->ipv4.mrt ? 0 : -ENOMEM;
 
 
 
 
 
 301}
 302
 303static void __net_exit ipmr_rules_exit(struct net *net)
 304{
 
 305	ipmr_free_table(net->ipv4.mrt);
 
 
 306}
 307#endif
 308
 309static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 310{
 311	struct mr_table *mrt;
 312	unsigned int i;
 313
 
 
 
 
 314	mrt = ipmr_get_table(net, id);
 315	if (mrt != NULL)
 316		return mrt;
 317
 318	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
 319	if (mrt == NULL)
 320		return NULL;
 321	write_pnet(&mrt->net, net);
 322	mrt->id = id;
 323
 324	/* Forwarding cache */
 325	for (i = 0; i < MFC_LINES; i++)
 326		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
 327
 328	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
 329
 330	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
 331		    (unsigned long)mrt);
 332
 333#ifdef CONFIG_IP_PIMSM
 334	mrt->mroute_reg_vif_num = -1;
 335#endif
 336#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 337	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 338#endif
 339	return mrt;
 340}
 341
 342static void ipmr_free_table(struct mr_table *mrt)
 343{
 344	del_timer_sync(&mrt->ipmr_expire_timer);
 345	mroute_clean_tables(mrt);
 346	kfree(mrt);
 347}
 348
 349/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 350
 351static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
 352{
 353	struct net *net = dev_net(dev);
 354
 355	dev_close(dev);
 356
 357	dev = __dev_get_by_name(net, "tunl0");
 358	if (dev) {
 359		const struct net_device_ops *ops = dev->netdev_ops;
 360		struct ifreq ifr;
 361		struct ip_tunnel_parm p;
 362
 363		memset(&p, 0, sizeof(p));
 364		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 365		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 366		p.iph.version = 4;
 367		p.iph.ihl = 5;
 368		p.iph.protocol = IPPROTO_IPIP;
 369		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 370		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 371
 372		if (ops->ndo_do_ioctl) {
 373			mm_segment_t oldfs = get_fs();
 374
 375			set_fs(KERNEL_DS);
 376			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
 377			set_fs(oldfs);
 378		}
 379	}
 380}
 381
 382static
 383struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384{
 385	struct net_device  *dev;
 386
 387	dev = __dev_get_by_name(net, "tunl0");
 388
 389	if (dev) {
 390		const struct net_device_ops *ops = dev->netdev_ops;
 391		int err;
 392		struct ifreq ifr;
 393		struct ip_tunnel_parm p;
 394		struct in_device  *in_dev;
 395
 396		memset(&p, 0, sizeof(p));
 397		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 398		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 399		p.iph.version = 4;
 400		p.iph.ihl = 5;
 401		p.iph.protocol = IPPROTO_IPIP;
 402		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 403		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 404
 405		if (ops->ndo_do_ioctl) {
 406			mm_segment_t oldfs = get_fs();
 407
 408			set_fs(KERNEL_DS);
 409			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
 410			set_fs(oldfs);
 411		} else {
 412			err = -EOPNOTSUPP;
 413		}
 414		dev = NULL;
 415
 416		if (err == 0 &&
 417		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
 418			dev->flags |= IFF_MULTICAST;
 419
 420			in_dev = __in_dev_get_rtnl(dev);
 421			if (in_dev == NULL)
 422				goto failure;
 423
 424			ipv4_devconf_setall(in_dev);
 425			IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 426
 427			if (dev_open(dev))
 428				goto failure;
 429			dev_hold(dev);
 430		}
 431	}
 432	return dev;
 433
 434failure:
 435	/* allow the register to be completed before unregistering. */
 436	rtnl_unlock();
 437	rtnl_lock();
 438
 439	unregister_netdevice(dev);
 440	return NULL;
 441}
 442
 443#ifdef CONFIG_IP_PIMSM
 444
 445static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 446{
 447	struct net *net = dev_net(dev);
 448	struct mr_table *mrt;
 449	struct flowi4 fl4 = {
 450		.flowi4_oif	= dev->ifindex,
 451		.flowi4_iif	= skb->skb_iif,
 452		.flowi4_mark	= skb->mark,
 453	};
 454	int err;
 455
 456	err = ipmr_fib_lookup(net, &fl4, &mrt);
 457	if (err < 0) {
 458		kfree_skb(skb);
 459		return err;
 460	}
 461
 462	read_lock(&mrt_lock);
 463	dev->stats.tx_bytes += skb->len;
 464	dev->stats.tx_packets++;
 465	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
 466	read_unlock(&mrt_lock);
 467	kfree_skb(skb);
 468	return NETDEV_TX_OK;
 469}
 470
 
 
 
 
 
 471static const struct net_device_ops reg_vif_netdev_ops = {
 472	.ndo_start_xmit	= reg_vif_xmit,
 
 473};
 474
 475static void reg_vif_setup(struct net_device *dev)
 476{
 477	dev->type		= ARPHRD_PIMREG;
 478	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 479	dev->flags		= IFF_NOARP;
 480	dev->netdev_ops		= &reg_vif_netdev_ops,
 481	dev->destructor		= free_netdev;
 482	dev->features		|= NETIF_F_NETNS_LOCAL;
 483}
 484
 485static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 486{
 487	struct net_device *dev;
 488	struct in_device *in_dev;
 489	char name[IFNAMSIZ];
 490
 491	if (mrt->id == RT_TABLE_DEFAULT)
 492		sprintf(name, "pimreg");
 493	else
 494		sprintf(name, "pimreg%u", mrt->id);
 495
 496	dev = alloc_netdev(0, name, reg_vif_setup);
 497
 498	if (dev == NULL)
 499		return NULL;
 500
 501	dev_net_set(dev, net);
 502
 503	if (register_netdevice(dev)) {
 504		free_netdev(dev);
 505		return NULL;
 506	}
 507	dev->iflink = 0;
 508
 509	rcu_read_lock();
 510	in_dev = __in_dev_get_rcu(dev);
 511	if (!in_dev) {
 512		rcu_read_unlock();
 513		goto failure;
 514	}
 515
 516	ipv4_devconf_setall(in_dev);
 517	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 518	rcu_read_unlock();
 519
 520	if (dev_open(dev))
 521		goto failure;
 522
 523	dev_hold(dev);
 524
 525	return dev;
 526
 527failure:
 528	/* allow the register to be completed before unregistering. */
 529	rtnl_unlock();
 530	rtnl_lock();
 531
 532	unregister_netdevice(dev);
 533	return NULL;
 534}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 535#endif
 536
 537/*
 538 *	Delete a VIF entry
 539 *	@notify: Set to 1, if the caller is a notifier_call
 540 */
 541
 542static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 543		      struct list_head *head)
 544{
 545	struct vif_device *v;
 546	struct net_device *dev;
 547	struct in_device *in_dev;
 548
 549	if (vifi < 0 || vifi >= mrt->maxvif)
 550		return -EADDRNOTAVAIL;
 551
 552	v = &mrt->vif_table[vifi];
 553
 554	write_lock_bh(&mrt_lock);
 555	dev = v->dev;
 556	v->dev = NULL;
 557
 558	if (!dev) {
 559		write_unlock_bh(&mrt_lock);
 560		return -EADDRNOTAVAIL;
 561	}
 562
 563#ifdef CONFIG_IP_PIMSM
 564	if (vifi == mrt->mroute_reg_vif_num)
 565		mrt->mroute_reg_vif_num = -1;
 566#endif
 567
 568	if (vifi + 1 == mrt->maxvif) {
 569		int tmp;
 570
 571		for (tmp = vifi - 1; tmp >= 0; tmp--) {
 572			if (VIF_EXISTS(mrt, tmp))
 573				break;
 574		}
 575		mrt->maxvif = tmp+1;
 576	}
 577
 578	write_unlock_bh(&mrt_lock);
 579
 580	dev_set_allmulti(dev, -1);
 581
 582	in_dev = __in_dev_get_rtnl(dev);
 583	if (in_dev) {
 584		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 
 
 
 585		ip_rt_multicast_event(in_dev);
 586	}
 587
 588	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 589		unregister_netdevice_queue(dev, head);
 590
 591	dev_put(dev);
 592	return 0;
 593}
 594
 595static void ipmr_cache_free_rcu(struct rcu_head *head)
 596{
 597	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
 598
 599	kmem_cache_free(mrt_cachep, c);
 600}
 601
 602static inline void ipmr_cache_free(struct mfc_cache *c)
 603{
 604	call_rcu(&c->rcu, ipmr_cache_free_rcu);
 605}
 606
 607/* Destroy an unresolved cache entry, killing queued skbs
 608 * and reporting error to netlink readers.
 609 */
 610
 611static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 612{
 613	struct net *net = read_pnet(&mrt->net);
 614	struct sk_buff *skb;
 615	struct nlmsgerr *e;
 616
 617	atomic_dec(&mrt->cache_resolve_queue_len);
 618
 619	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
 620		if (ip_hdr(skb)->version == 0) {
 621			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 622			nlh->nlmsg_type = NLMSG_ERROR;
 623			nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
 624			skb_trim(skb, nlh->nlmsg_len);
 625			e = NLMSG_DATA(nlh);
 626			e->error = -ETIMEDOUT;
 627			memset(&e->msg, 0, sizeof(e->msg));
 628
 629			rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
 630		} else {
 631			kfree_skb(skb);
 632		}
 633	}
 634
 635	ipmr_cache_free(c);
 636}
 637
 638
 639/* Timer process for the unresolved queue. */
 640
 641static void ipmr_expire_process(unsigned long arg)
 642{
 643	struct mr_table *mrt = (struct mr_table *)arg;
 644	unsigned long now;
 645	unsigned long expires;
 646	struct mfc_cache *c, *next;
 647
 648	if (!spin_trylock(&mfc_unres_lock)) {
 649		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 650		return;
 651	}
 652
 653	if (list_empty(&mrt->mfc_unres_queue))
 654		goto out;
 655
 656	now = jiffies;
 657	expires = 10*HZ;
 658
 659	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 660		if (time_after(c->mfc_un.unres.expires, now)) {
 661			unsigned long interval = c->mfc_un.unres.expires - now;
 662			if (interval < expires)
 663				expires = interval;
 664			continue;
 665		}
 666
 667		list_del(&c->list);
 
 668		ipmr_destroy_unres(mrt, c);
 669	}
 670
 671	if (!list_empty(&mrt->mfc_unres_queue))
 672		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 673
 674out:
 675	spin_unlock(&mfc_unres_lock);
 676}
 677
 678/* Fill oifs list. It is called under write locked mrt_lock. */
 679
 680static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
 681				   unsigned char *ttls)
 682{
 683	int vifi;
 684
 685	cache->mfc_un.res.minvif = MAXVIFS;
 686	cache->mfc_un.res.maxvif = 0;
 687	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 688
 689	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 690		if (VIF_EXISTS(mrt, vifi) &&
 691		    ttls[vifi] && ttls[vifi] < 255) {
 692			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 693			if (cache->mfc_un.res.minvif > vifi)
 694				cache->mfc_un.res.minvif = vifi;
 695			if (cache->mfc_un.res.maxvif <= vifi)
 696				cache->mfc_un.res.maxvif = vifi + 1;
 697		}
 698	}
 
 699}
 700
 701static int vif_add(struct net *net, struct mr_table *mrt,
 702		   struct vifctl *vifc, int mrtsock)
 703{
 704	int vifi = vifc->vifc_vifi;
 705	struct vif_device *v = &mrt->vif_table[vifi];
 706	struct net_device *dev;
 707	struct in_device *in_dev;
 708	int err;
 709
 710	/* Is vif busy ? */
 711	if (VIF_EXISTS(mrt, vifi))
 712		return -EADDRINUSE;
 713
 714	switch (vifc->vifc_flags) {
 715#ifdef CONFIG_IP_PIMSM
 716	case VIFF_REGISTER:
 717		/*
 718		 * Special Purpose VIF in PIM
 
 719		 * All the packets will be sent to the daemon
 720		 */
 721		if (mrt->mroute_reg_vif_num >= 0)
 722			return -EADDRINUSE;
 723		dev = ipmr_reg_vif(net, mrt);
 724		if (!dev)
 725			return -ENOBUFS;
 726		err = dev_set_allmulti(dev, 1);
 727		if (err) {
 728			unregister_netdevice(dev);
 729			dev_put(dev);
 730			return err;
 731		}
 732		break;
 733#endif
 734	case VIFF_TUNNEL:
 735		dev = ipmr_new_tunnel(net, vifc);
 736		if (!dev)
 737			return -ENOBUFS;
 738		err = dev_set_allmulti(dev, 1);
 739		if (err) {
 740			ipmr_del_tunnel(dev, vifc);
 741			dev_put(dev);
 742			return err;
 743		}
 744		break;
 745
 746	case VIFF_USE_IFINDEX:
 747	case 0:
 748		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 749			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 750			if (dev && __in_dev_get_rtnl(dev) == NULL) {
 751				dev_put(dev);
 752				return -EADDRNOTAVAIL;
 753			}
 754		} else {
 755			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 756		}
 757		if (!dev)
 758			return -EADDRNOTAVAIL;
 759		err = dev_set_allmulti(dev, 1);
 760		if (err) {
 761			dev_put(dev);
 762			return err;
 763		}
 764		break;
 765	default:
 766		return -EINVAL;
 767	}
 768
 769	in_dev = __in_dev_get_rtnl(dev);
 770	if (!in_dev) {
 771		dev_put(dev);
 772		return -EADDRNOTAVAIL;
 773	}
 774	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 
 
 775	ip_rt_multicast_event(in_dev);
 776
 777	/* Fill in the VIF structures */
 778
 779	v->rate_limit = vifc->vifc_rate_limit;
 780	v->local = vifc->vifc_lcl_addr.s_addr;
 781	v->remote = vifc->vifc_rmt_addr.s_addr;
 782	v->flags = vifc->vifc_flags;
 783	if (!mrtsock)
 784		v->flags |= VIFF_STATIC;
 785	v->threshold = vifc->vifc_threshold;
 786	v->bytes_in = 0;
 787	v->bytes_out = 0;
 788	v->pkt_in = 0;
 789	v->pkt_out = 0;
 790	v->link = dev->ifindex;
 791	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
 792		v->link = dev->iflink;
 793
 794	/* And finish update writing critical data */
 795	write_lock_bh(&mrt_lock);
 796	v->dev = dev;
 797#ifdef CONFIG_IP_PIMSM
 798	if (v->flags & VIFF_REGISTER)
 799		mrt->mroute_reg_vif_num = vifi;
 800#endif
 801	if (vifi+1 > mrt->maxvif)
 802		mrt->maxvif = vifi+1;
 803	write_unlock_bh(&mrt_lock);
 804	return 0;
 805}
 806
 807/* called with rcu_read_lock() */
 808static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 809					 __be32 origin,
 810					 __be32 mcastgrp)
 811{
 812	int line = MFC_HASH(mcastgrp, origin);
 813	struct mfc_cache *c;
 814
 815	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
 816		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
 817			return c;
 818	}
 819	return NULL;
 820}
 821
 822/*
 823 *	Allocate a multicast cache entry
 824 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825static struct mfc_cache *ipmr_cache_alloc(void)
 826{
 827	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 828
 829	if (c)
 
 830		c->mfc_un.res.minvif = MAXVIFS;
 
 831	return c;
 832}
 833
 834static struct mfc_cache *ipmr_cache_alloc_unres(void)
 835{
 836	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 837
 838	if (c) {
 839		skb_queue_head_init(&c->mfc_un.unres.unresolved);
 840		c->mfc_un.unres.expires = jiffies + 10*HZ;
 841	}
 842	return c;
 843}
 844
 845/*
 846 *	A cache entry has gone into a resolved state from queued
 847 */
 848
 849static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 850			       struct mfc_cache *uc, struct mfc_cache *c)
 851{
 852	struct sk_buff *skb;
 853	struct nlmsgerr *e;
 854
 855	/* Play the pending entries through our router */
 856
 857	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
 858		if (ip_hdr(skb)->version == 0) {
 859			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 860
 861			if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
 862				nlh->nlmsg_len = skb_tail_pointer(skb) -
 863						 (u8 *)nlh;
 864			} else {
 865				nlh->nlmsg_type = NLMSG_ERROR;
 866				nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
 867				skb_trim(skb, nlh->nlmsg_len);
 868				e = NLMSG_DATA(nlh);
 869				e->error = -EMSGSIZE;
 870				memset(&e->msg, 0, sizeof(e->msg));
 871			}
 872
 873			rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
 874		} else {
 875			ip_mr_forward(net, mrt, skb, c, 0);
 876		}
 877	}
 878}
 879
 880/*
 881 *	Bounce a cache query up to mrouted. We could use netlink for this but mrouted
 882 *	expects the following bizarre scheme.
 883 *
 884 *	Called under mrt_lock.
 885 */
 886
 887static int ipmr_cache_report(struct mr_table *mrt,
 888			     struct sk_buff *pkt, vifi_t vifi, int assert)
 889{
 890	struct sk_buff *skb;
 891	const int ihl = ip_hdrlen(pkt);
 
 892	struct igmphdr *igmp;
 893	struct igmpmsg *msg;
 894	struct sock *mroute_sk;
 895	int ret;
 896
 897#ifdef CONFIG_IP_PIMSM
 898	if (assert == IGMPMSG_WHOLEPKT)
 899		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
 900	else
 901#endif
 902		skb = alloc_skb(128, GFP_ATOMIC);
 903
 904	if (!skb)
 905		return -ENOBUFS;
 906
 907#ifdef CONFIG_IP_PIMSM
 908	if (assert == IGMPMSG_WHOLEPKT) {
 909		/* Ugly, but we have no choice with this interface.
 910		 * Duplicate old header, fix ihl, length etc.
 911		 * And all this only to mangle msg->im_msgtype and
 912		 * to set msg->im_mbz to "mbz" :-)
 913		 */
 914		skb_push(skb, sizeof(struct iphdr));
 915		skb_reset_network_header(skb);
 916		skb_reset_transport_header(skb);
 917		msg = (struct igmpmsg *)skb_network_header(skb);
 918		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
 919		msg->im_msgtype = IGMPMSG_WHOLEPKT;
 920		msg->im_mbz = 0;
 921		msg->im_vif = mrt->mroute_reg_vif_num;
 922		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
 923		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
 924					     sizeof(struct iphdr));
 925	} else
 926#endif
 927	{
 928
 929	/* Copy the IP header */
 930
 931	skb->network_header = skb->tail;
 932	skb_put(skb, ihl);
 933	skb_copy_to_linear_data(skb, pkt->data, ihl);
 934	ip_hdr(skb)->protocol = 0;	/* Flag to the kernel this is a route add */
 935	msg = (struct igmpmsg *)skb_network_header(skb);
 936	msg->im_vif = vifi;
 937	skb_dst_set(skb, dst_clone(skb_dst(pkt)));
 938
 939	/* Add our header */
 940
 941	igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
 942	igmp->type	=
 943	msg->im_msgtype = assert;
 944	igmp->code	= 0;
 945	ip_hdr(skb)->tot_len = htons(skb->len);		/* Fix the length */
 946	skb->transport_header = skb->network_header;
 947	}
 948
 949	rcu_read_lock();
 950	mroute_sk = rcu_dereference(mrt->mroute_sk);
 951	if (mroute_sk == NULL) {
 952		rcu_read_unlock();
 953		kfree_skb(skb);
 954		return -EINVAL;
 955	}
 956
 957	/* Deliver to mrouted */
 958
 959	ret = sock_queue_rcv_skb(mroute_sk, skb);
 960	rcu_read_unlock();
 961	if (ret < 0) {
 962		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
 963		kfree_skb(skb);
 964	}
 965
 966	return ret;
 967}
 968
 969/*
 970 *	Queue a packet for resolution. It gets locked cache entry!
 971 */
 972
 973static int
 974ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
 975{
 976	bool found = false;
 977	int err;
 978	struct mfc_cache *c;
 979	const struct iphdr *iph = ip_hdr(skb);
 980
 981	spin_lock_bh(&mfc_unres_lock);
 982	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
 983		if (c->mfc_mcastgrp == iph->daddr &&
 984		    c->mfc_origin == iph->saddr) {
 985			found = true;
 986			break;
 987		}
 988	}
 989
 990	if (!found) {
 991		/* Create a new entry if allowable */
 992
 993		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
 994		    (c = ipmr_cache_alloc_unres()) == NULL) {
 995			spin_unlock_bh(&mfc_unres_lock);
 996
 997			kfree_skb(skb);
 998			return -ENOBUFS;
 999		}
1000
1001		/* Fill in the new cache entry */
1002
1003		c->mfc_parent	= -1;
1004		c->mfc_origin	= iph->saddr;
1005		c->mfc_mcastgrp	= iph->daddr;
1006
1007		/* Reflect first query at mrouted. */
1008
1009		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1010		if (err < 0) {
1011			/* If the report failed throw the cache entry
1012			   out - Brad Parker
1013			 */
1014			spin_unlock_bh(&mfc_unres_lock);
1015
1016			ipmr_cache_free(c);
1017			kfree_skb(skb);
1018			return err;
1019		}
1020
1021		atomic_inc(&mrt->cache_resolve_queue_len);
1022		list_add(&c->list, &mrt->mfc_unres_queue);
 
1023
1024		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1025			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1026	}
1027
1028	/* See if we can append the packet */
1029
1030	if (c->mfc_un.unres.unresolved.qlen > 3) {
1031		kfree_skb(skb);
1032		err = -ENOBUFS;
1033	} else {
1034		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1035		err = 0;
1036	}
1037
1038	spin_unlock_bh(&mfc_unres_lock);
1039	return err;
1040}
1041
1042/*
1043 *	MFC cache manipulation by user space mroute daemon
1044 */
1045
1046static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1047{
1048	int line;
1049	struct mfc_cache *c, *next;
1050
1051	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1052
1053	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1054		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1055		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
 
1056			list_del_rcu(&c->list);
1057
1058			ipmr_cache_free(c);
1059			return 0;
1060		}
1061	}
1062	return -ENOENT;
1063}
1064
1065static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1066			struct mfcctl *mfc, int mrtsock)
1067{
1068	bool found = false;
1069	int line;
1070	struct mfc_cache *uc, *c;
1071
1072	if (mfc->mfcc_parent >= MAXVIFS)
1073		return -ENFILE;
1074
1075	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1076
1077	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1078		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1079		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
 
1080			found = true;
1081			break;
1082		}
1083	}
1084
1085	if (found) {
1086		write_lock_bh(&mrt_lock);
1087		c->mfc_parent = mfc->mfcc_parent;
1088		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1089		if (!mrtsock)
1090			c->mfc_flags |= MFC_STATIC;
1091		write_unlock_bh(&mrt_lock);
 
1092		return 0;
1093	}
1094
1095	if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
 
1096		return -EINVAL;
1097
1098	c = ipmr_cache_alloc();
1099	if (c == NULL)
1100		return -ENOMEM;
1101
1102	c->mfc_origin = mfc->mfcc_origin.s_addr;
1103	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1104	c->mfc_parent = mfc->mfcc_parent;
1105	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1106	if (!mrtsock)
1107		c->mfc_flags |= MFC_STATIC;
1108
1109	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1110
1111	/*
1112	 *	Check to see if we resolved a queued list. If so we
1113	 *	need to send on the frames and tidy up.
1114	 */
1115	found = false;
1116	spin_lock_bh(&mfc_unres_lock);
1117	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1118		if (uc->mfc_origin == c->mfc_origin &&
1119		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1120			list_del(&uc->list);
1121			atomic_dec(&mrt->cache_resolve_queue_len);
1122			found = true;
1123			break;
1124		}
1125	}
1126	if (list_empty(&mrt->mfc_unres_queue))
1127		del_timer(&mrt->ipmr_expire_timer);
1128	spin_unlock_bh(&mfc_unres_lock);
1129
1130	if (found) {
1131		ipmr_cache_resolve(net, mrt, uc, c);
1132		ipmr_cache_free(uc);
1133	}
 
1134	return 0;
1135}
1136
1137/*
1138 *	Close the multicast socket, and clear the vif tables etc
1139 */
1140
1141static void mroute_clean_tables(struct mr_table *mrt)
1142{
1143	int i;
1144	LIST_HEAD(list);
1145	struct mfc_cache *c, *next;
1146
1147	/* Shut down all active vif entries */
1148
1149	for (i = 0; i < mrt->maxvif; i++) {
1150		if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1151			vif_delete(mrt, i, 0, &list);
 
1152	}
1153	unregister_netdevice_many(&list);
1154
1155	/* Wipe the cache */
1156
1157	for (i = 0; i < MFC_LINES; i++) {
1158		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1159			if (c->mfc_flags & MFC_STATIC)
1160				continue;
1161			list_del_rcu(&c->list);
 
1162			ipmr_cache_free(c);
1163		}
1164	}
1165
1166	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1167		spin_lock_bh(&mfc_unres_lock);
1168		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1169			list_del(&c->list);
 
1170			ipmr_destroy_unres(mrt, c);
1171		}
1172		spin_unlock_bh(&mfc_unres_lock);
1173	}
1174}
1175
1176/* called from ip_ra_control(), before an RCU grace period,
1177 * we dont need to call synchronize_rcu() here
1178 */
1179static void mrtsock_destruct(struct sock *sk)
1180{
1181	struct net *net = sock_net(sk);
1182	struct mr_table *mrt;
1183
1184	rtnl_lock();
1185	ipmr_for_each_table(mrt, net) {
1186		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1187			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
 
 
 
1188			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1189			mroute_clean_tables(mrt);
1190		}
1191	}
1192	rtnl_unlock();
1193}
1194
1195/*
1196 *	Socket options and virtual interface manipulation. The whole
1197 *	virtual interface system is a complete heap, but unfortunately
1198 *	that's how BSD mrouted happens to think. Maybe one day with a proper
1199 *	MOSPF/PIM router set up we can clean this up.
1200 */
1201
1202int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
 
1203{
1204	int ret;
1205	struct vifctl vif;
1206	struct mfcctl mfc;
1207	struct net *net = sock_net(sk);
 
1208	struct mr_table *mrt;
 
 
 
1209
1210	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1211	if (mrt == NULL)
1212		return -ENOENT;
 
 
 
 
1213
 
 
 
 
 
1214	if (optname != MRT_INIT) {
1215		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1216		    !capable(CAP_NET_ADMIN))
1217			return -EACCES;
 
 
1218	}
1219
1220	switch (optname) {
1221	case MRT_INIT:
1222		if (sk->sk_type != SOCK_RAW ||
1223		    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1224			return -EOPNOTSUPP;
1225		if (optlen != sizeof(int))
1226			return -ENOPROTOOPT;
1227
1228		rtnl_lock();
1229		if (rtnl_dereference(mrt->mroute_sk)) {
1230			rtnl_unlock();
1231			return -EADDRINUSE;
1232		}
1233
1234		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1235		if (ret == 0) {
1236			rcu_assign_pointer(mrt->mroute_sk, sk);
1237			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
 
 
 
1238		}
1239		rtnl_unlock();
1240		return ret;
1241	case MRT_DONE:
1242		if (sk != rcu_access_pointer(mrt->mroute_sk))
1243			return -EACCES;
1244		return ip_ra_control(sk, 0, NULL);
 
 
 
 
 
 
 
 
 
1245	case MRT_ADD_VIF:
1246	case MRT_DEL_VIF:
1247		if (optlen != sizeof(vif))
1248			return -EINVAL;
1249		if (copy_from_user(&vif, optval, sizeof(vif)))
1250			return -EFAULT;
1251		if (vif.vifc_vifi >= MAXVIFS)
1252			return -ENFILE;
1253		rtnl_lock();
 
 
 
 
 
1254		if (optname == MRT_ADD_VIF) {
1255			ret = vif_add(net, mrt, &vif,
1256				      sk == rtnl_dereference(mrt->mroute_sk));
1257		} else {
1258			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1259		}
1260		rtnl_unlock();
1261		return ret;
1262
1263		/*
1264		 *	Manipulate the forwarding caches. These live
1265		 *	in a sort of kernel/user symbiosis.
1266		 */
1267	case MRT_ADD_MFC:
1268	case MRT_DEL_MFC:
1269		if (optlen != sizeof(mfc))
1270			return -EINVAL;
1271		if (copy_from_user(&mfc, optval, sizeof(mfc)))
1272			return -EFAULT;
1273		rtnl_lock();
1274		if (optname == MRT_DEL_MFC)
1275			ret = ipmr_mfc_delete(mrt, &mfc);
 
 
 
 
 
 
 
 
1276		else
1277			ret = ipmr_mfc_add(net, mrt, &mfc,
1278					   sk == rtnl_dereference(mrt->mroute_sk));
1279		rtnl_unlock();
1280		return ret;
1281		/*
1282		 *	Control PIM assert.
1283		 */
1284	case MRT_ASSERT:
1285	{
1286		int v;
1287		if (get_user(v, (int __user *)optval))
1288			return -EFAULT;
1289		mrt->mroute_do_assert = (v) ? 1 : 0;
1290		return 0;
1291	}
1292#ifdef CONFIG_IP_PIMSM
 
 
1293	case MRT_PIM:
1294	{
1295		int v;
1296
1297		if (get_user(v, (int __user *)optval))
1298			return -EFAULT;
1299		v = (v) ? 1 : 0;
 
 
 
 
 
 
1300
1301		rtnl_lock();
1302		ret = 0;
1303		if (v != mrt->mroute_do_pim) {
1304			mrt->mroute_do_pim = v;
1305			mrt->mroute_do_assert = v;
1306		}
1307		rtnl_unlock();
1308		return ret;
1309	}
1310#endif
1311#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1312	case MRT_TABLE:
1313	{
1314		u32 v;
1315
1316		if (optlen != sizeof(u32))
1317			return -EINVAL;
1318		if (get_user(v, (u32 __user *)optval))
1319			return -EFAULT;
 
 
 
 
 
1320
1321		rtnl_lock();
1322		ret = 0;
1323		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1324			ret = -EBUSY;
1325		} else {
1326			if (!ipmr_new_table(net, v))
1327				ret = -ENOMEM;
1328			raw_sk(sk)->ipmr_table = v;
 
 
1329		}
1330		rtnl_unlock();
1331		return ret;
1332	}
1333#endif
1334	/*
1335	 *	Spurious command, or MRT_VERSION which you cannot
1336	 *	set.
1337	 */
1338	default:
1339		return -ENOPROTOOPT;
1340	}
 
 
 
 
1341}
1342
1343/*
1344 *	Getsock opt support for the multicast routing system.
1345 */
1346
1347int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1348{
1349	int olr;
1350	int val;
1351	struct net *net = sock_net(sk);
1352	struct mr_table *mrt;
1353
 
 
 
 
1354	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1355	if (mrt == NULL)
1356		return -ENOENT;
1357
1358	if (optname != MRT_VERSION &&
1359#ifdef CONFIG_IP_PIMSM
1360	   optname != MRT_PIM &&
1361#endif
1362	   optname != MRT_ASSERT)
 
 
 
 
 
 
 
 
1363		return -ENOPROTOOPT;
 
1364
1365	if (get_user(olr, optlen))
1366		return -EFAULT;
1367
1368	olr = min_t(unsigned int, olr, sizeof(int));
1369	if (olr < 0)
1370		return -EINVAL;
1371
1372	if (put_user(olr, optlen))
1373		return -EFAULT;
1374	if (optname == MRT_VERSION)
1375		val = 0x0305;
1376#ifdef CONFIG_IP_PIMSM
1377	else if (optname == MRT_PIM)
1378		val = mrt->mroute_do_pim;
1379#endif
1380	else
1381		val = mrt->mroute_do_assert;
1382	if (copy_to_user(optval, &val, olr))
1383		return -EFAULT;
1384	return 0;
1385}
1386
1387/*
1388 *	The IP multicast ioctl support routines.
1389 */
1390
1391int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1392{
1393	struct sioc_sg_req sr;
1394	struct sioc_vif_req vr;
1395	struct vif_device *vif;
1396	struct mfc_cache *c;
1397	struct net *net = sock_net(sk);
1398	struct mr_table *mrt;
1399
1400	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1401	if (mrt == NULL)
1402		return -ENOENT;
1403
1404	switch (cmd) {
1405	case SIOCGETVIFCNT:
1406		if (copy_from_user(&vr, arg, sizeof(vr)))
1407			return -EFAULT;
1408		if (vr.vifi >= mrt->maxvif)
1409			return -EINVAL;
1410		read_lock(&mrt_lock);
1411		vif = &mrt->vif_table[vr.vifi];
1412		if (VIF_EXISTS(mrt, vr.vifi)) {
1413			vr.icount = vif->pkt_in;
1414			vr.ocount = vif->pkt_out;
1415			vr.ibytes = vif->bytes_in;
1416			vr.obytes = vif->bytes_out;
1417			read_unlock(&mrt_lock);
1418
1419			if (copy_to_user(arg, &vr, sizeof(vr)))
1420				return -EFAULT;
1421			return 0;
1422		}
1423		read_unlock(&mrt_lock);
1424		return -EADDRNOTAVAIL;
1425	case SIOCGETSGCNT:
1426		if (copy_from_user(&sr, arg, sizeof(sr)))
1427			return -EFAULT;
1428
1429		rcu_read_lock();
1430		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1431		if (c) {
1432			sr.pktcnt = c->mfc_un.res.pkt;
1433			sr.bytecnt = c->mfc_un.res.bytes;
1434			sr.wrong_if = c->mfc_un.res.wrong_if;
1435			rcu_read_unlock();
1436
1437			if (copy_to_user(arg, &sr, sizeof(sr)))
1438				return -EFAULT;
1439			return 0;
1440		}
1441		rcu_read_unlock();
1442		return -EADDRNOTAVAIL;
1443	default:
1444		return -ENOIOCTLCMD;
1445	}
1446}
1447
1448#ifdef CONFIG_COMPAT
1449struct compat_sioc_sg_req {
1450	struct in_addr src;
1451	struct in_addr grp;
1452	compat_ulong_t pktcnt;
1453	compat_ulong_t bytecnt;
1454	compat_ulong_t wrong_if;
1455};
1456
1457struct compat_sioc_vif_req {
1458	vifi_t	vifi;		/* Which iface */
1459	compat_ulong_t icount;
1460	compat_ulong_t ocount;
1461	compat_ulong_t ibytes;
1462	compat_ulong_t obytes;
1463};
1464
1465int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1466{
1467	struct compat_sioc_sg_req sr;
1468	struct compat_sioc_vif_req vr;
1469	struct vif_device *vif;
1470	struct mfc_cache *c;
1471	struct net *net = sock_net(sk);
1472	struct mr_table *mrt;
1473
1474	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1475	if (mrt == NULL)
1476		return -ENOENT;
1477
1478	switch (cmd) {
1479	case SIOCGETVIFCNT:
1480		if (copy_from_user(&vr, arg, sizeof(vr)))
1481			return -EFAULT;
1482		if (vr.vifi >= mrt->maxvif)
1483			return -EINVAL;
1484		read_lock(&mrt_lock);
1485		vif = &mrt->vif_table[vr.vifi];
1486		if (VIF_EXISTS(mrt, vr.vifi)) {
1487			vr.icount = vif->pkt_in;
1488			vr.ocount = vif->pkt_out;
1489			vr.ibytes = vif->bytes_in;
1490			vr.obytes = vif->bytes_out;
1491			read_unlock(&mrt_lock);
1492
1493			if (copy_to_user(arg, &vr, sizeof(vr)))
1494				return -EFAULT;
1495			return 0;
1496		}
1497		read_unlock(&mrt_lock);
1498		return -EADDRNOTAVAIL;
1499	case SIOCGETSGCNT:
1500		if (copy_from_user(&sr, arg, sizeof(sr)))
1501			return -EFAULT;
1502
1503		rcu_read_lock();
1504		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1505		if (c) {
1506			sr.pktcnt = c->mfc_un.res.pkt;
1507			sr.bytecnt = c->mfc_un.res.bytes;
1508			sr.wrong_if = c->mfc_un.res.wrong_if;
1509			rcu_read_unlock();
1510
1511			if (copy_to_user(arg, &sr, sizeof(sr)))
1512				return -EFAULT;
1513			return 0;
1514		}
1515		rcu_read_unlock();
1516		return -EADDRNOTAVAIL;
1517	default:
1518		return -ENOIOCTLCMD;
1519	}
1520}
1521#endif
1522
1523
1524static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1525{
1526	struct net_device *dev = ptr;
1527	struct net *net = dev_net(dev);
1528	struct mr_table *mrt;
1529	struct vif_device *v;
1530	int ct;
1531
1532	if (event != NETDEV_UNREGISTER)
1533		return NOTIFY_DONE;
1534
1535	ipmr_for_each_table(mrt, net) {
1536		v = &mrt->vif_table[0];
1537		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1538			if (v->dev == dev)
1539				vif_delete(mrt, ct, 1, NULL);
1540		}
1541	}
1542	return NOTIFY_DONE;
1543}
1544
1545
1546static struct notifier_block ip_mr_notifier = {
1547	.notifier_call = ipmr_device_event,
1548};
1549
1550/*
1551 *	Encapsulate a packet by attaching a valid IPIP header to it.
1552 *	This avoids tunnel drivers and other mess and gives us the speed so
1553 *	important for multicast video.
1554 */
1555
1556static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1557{
1558	struct iphdr *iph;
1559	const struct iphdr *old_iph = ip_hdr(skb);
1560
1561	skb_push(skb, sizeof(struct iphdr));
1562	skb->transport_header = skb->network_header;
1563	skb_reset_network_header(skb);
1564	iph = ip_hdr(skb);
1565
1566	iph->version	=	4;
1567	iph->tos	=	old_iph->tos;
1568	iph->ttl	=	old_iph->ttl;
1569	iph->frag_off	=	0;
1570	iph->daddr	=	daddr;
1571	iph->saddr	=	saddr;
1572	iph->protocol	=	IPPROTO_IPIP;
1573	iph->ihl	=	5;
1574	iph->tot_len	=	htons(skb->len);
1575	ip_select_ident(iph, skb_dst(skb), NULL);
1576	ip_send_check(iph);
1577
1578	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1579	nf_reset(skb);
1580}
1581
1582static inline int ipmr_forward_finish(struct sk_buff *skb)
 
1583{
1584	struct ip_options *opt = &(IPCB(skb)->opt);
1585
1586	IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1587	IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1588
1589	if (unlikely(opt->optlen))
1590		ip_forward_options(skb);
1591
1592	return dst_output(skb);
1593}
1594
1595/*
1596 *	Processing handlers for ipmr_forward
1597 */
1598
1599static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1600			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1601{
1602	const struct iphdr *iph = ip_hdr(skb);
1603	struct vif_device *vif = &mrt->vif_table[vifi];
1604	struct net_device *dev;
1605	struct rtable *rt;
1606	struct flowi4 fl4;
1607	int    encap = 0;
1608
1609	if (vif->dev == NULL)
1610		goto out_free;
1611
1612#ifdef CONFIG_IP_PIMSM
1613	if (vif->flags & VIFF_REGISTER) {
1614		vif->pkt_out++;
1615		vif->bytes_out += skb->len;
1616		vif->dev->stats.tx_bytes += skb->len;
1617		vif->dev->stats.tx_packets++;
1618		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1619		goto out_free;
1620	}
1621#endif
1622
1623	if (vif->flags & VIFF_TUNNEL) {
1624		rt = ip_route_output_ports(net, &fl4, NULL,
1625					   vif->remote, vif->local,
1626					   0, 0,
1627					   IPPROTO_IPIP,
1628					   RT_TOS(iph->tos), vif->link);
1629		if (IS_ERR(rt))
1630			goto out_free;
1631		encap = sizeof(struct iphdr);
1632	} else {
1633		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1634					   0, 0,
1635					   IPPROTO_IPIP,
1636					   RT_TOS(iph->tos), vif->link);
1637		if (IS_ERR(rt))
1638			goto out_free;
1639	}
1640
1641	dev = rt->dst.dev;
1642
1643	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1644		/* Do not fragment multicasts. Alas, IPv4 does not
1645		 * allow to send ICMP, so that packets will disappear
1646		 * to blackhole.
1647		 */
1648
1649		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1650		ip_rt_put(rt);
1651		goto out_free;
1652	}
1653
1654	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1655
1656	if (skb_cow(skb, encap)) {
1657		ip_rt_put(rt);
1658		goto out_free;
1659	}
1660
1661	vif->pkt_out++;
1662	vif->bytes_out += skb->len;
1663
1664	skb_dst_drop(skb);
1665	skb_dst_set(skb, &rt->dst);
1666	ip_decrease_ttl(ip_hdr(skb));
1667
1668	/* FIXME: forward and output firewalls used to be called here.
1669	 * What do we do with netfilter? -- RR
1670	 */
1671	if (vif->flags & VIFF_TUNNEL) {
1672		ip_encap(skb, vif->local, vif->remote);
1673		/* FIXME: extra output firewall step used to be here. --RR */
1674		vif->dev->stats.tx_packets++;
1675		vif->dev->stats.tx_bytes += skb->len;
1676	}
1677
1678	IPCB(skb)->flags |= IPSKB_FORWARDED;
1679
1680	/*
1681	 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1682	 * not only before forwarding, but after forwarding on all output
1683	 * interfaces. It is clear, if mrouter runs a multicasting
1684	 * program, it should receive packets not depending to what interface
1685	 * program is joined.
1686	 * If we will not make it, the program will have to join on all
1687	 * interfaces. On the other hand, multihoming host (or router, but
1688	 * not mrouter) cannot join to more than one interface - it will
1689	 * result in receiving multiple packets.
1690	 */
1691	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
 
1692		ipmr_forward_finish);
1693	return;
1694
1695out_free:
1696	kfree_skb(skb);
1697}
1698
1699static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1700{
1701	int ct;
1702
1703	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1704		if (mrt->vif_table[ct].dev == dev)
1705			break;
1706	}
1707	return ct;
1708}
1709
1710/* "local" means that we should preserve one skb (for local delivery) */
1711
1712static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1713			 struct sk_buff *skb, struct mfc_cache *cache,
1714			 int local)
1715{
1716	int psend = -1;
1717	int vif, ct;
 
1718
1719	vif = cache->mfc_parent;
1720	cache->mfc_un.res.pkt++;
1721	cache->mfc_un.res.bytes += skb->len;
 
1722
1723	/*
1724	 * Wrong interface: drop packet and (maybe) send PIM assert.
1725	 */
 
 
 
 
 
 
 
 
 
 
1726	if (mrt->vif_table[vif].dev != skb->dev) {
1727		int true_vifi;
 
 
 
 
1728
1729		if (rt_is_output_route(skb_rtable(skb))) {
1730			/* It is our own packet, looped back.
1731			 * Very complicated situation...
1732			 *
1733			 * The best workaround until routing daemons will be
1734			 * fixed is not to redistribute packet, if it was
1735			 * send through wrong interface. It means, that
1736			 * multicast applications WILL NOT work for
1737			 * (S,G), which have default multicast route pointing
1738			 * to wrong oif. In any case, it is not a good
1739			 * idea to use multicasting applications on router.
1740			 */
1741			goto dont_forward;
1742		}
1743
1744		cache->mfc_un.res.wrong_if++;
1745		true_vifi = ipmr_find_vif(mrt, skb->dev);
1746
1747		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1748		    /* pimsm uses asserts, when switching from RPT to SPT,
1749		     * so that we cannot check that packet arrived on an oif.
1750		     * It is bad, but otherwise we would need to move pretty
1751		     * large chunk of pimd to kernel. Ough... --ANK
1752		     */
1753		    (mrt->mroute_do_pim ||
1754		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1755		    time_after(jiffies,
1756			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1757			cache->mfc_un.res.last_assert = jiffies;
1758			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1759		}
1760		goto dont_forward;
1761	}
1762
 
1763	mrt->vif_table[vif].pkt_in++;
1764	mrt->vif_table[vif].bytes_in += skb->len;
1765
1766	/*
1767	 *	Forward the frame
1768	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
1769	for (ct = cache->mfc_un.res.maxvif - 1;
1770	     ct >= cache->mfc_un.res.minvif; ct--) {
1771		if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
 
 
 
1772			if (psend != -1) {
1773				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1774
1775				if (skb2)
1776					ipmr_queue_xmit(net, mrt, skb2, cache,
1777							psend);
1778			}
1779			psend = ct;
1780		}
1781	}
 
1782	if (psend != -1) {
1783		if (local) {
1784			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1785
1786			if (skb2)
1787				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1788		} else {
1789			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1790			return 0;
1791		}
1792	}
1793
1794dont_forward:
1795	if (!local)
1796		kfree_skb(skb);
1797	return 0;
1798}
1799
1800static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1801{
1802	struct rtable *rt = skb_rtable(skb);
1803	struct iphdr *iph = ip_hdr(skb);
1804	struct flowi4 fl4 = {
1805		.daddr = iph->daddr,
1806		.saddr = iph->saddr,
1807		.flowi4_tos = RT_TOS(iph->tos),
1808		.flowi4_oif = rt->rt_oif,
1809		.flowi4_iif = rt->rt_iif,
1810		.flowi4_mark = rt->rt_mark,
 
 
 
1811	};
1812	struct mr_table *mrt;
1813	int err;
1814
1815	err = ipmr_fib_lookup(net, &fl4, &mrt);
1816	if (err)
1817		return ERR_PTR(err);
1818	return mrt;
1819}
1820
1821/*
1822 *	Multicast packets for forwarding arrive here
1823 *	Called with rcu_read_lock();
1824 */
1825
1826int ip_mr_input(struct sk_buff *skb)
1827{
1828	struct mfc_cache *cache;
1829	struct net *net = dev_net(skb->dev);
1830	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1831	struct mr_table *mrt;
1832
1833	/* Packet is looped back after forward, it should not be
1834	 * forwarded second time, but still can be delivered locally.
1835	 */
1836	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1837		goto dont_forward;
1838
1839	mrt = ipmr_rt_fib_lookup(net, skb);
1840	if (IS_ERR(mrt)) {
1841		kfree_skb(skb);
1842		return PTR_ERR(mrt);
1843	}
1844	if (!local) {
1845		if (IPCB(skb)->opt.router_alert) {
1846			if (ip_call_ra_chain(skb))
1847				return 0;
1848		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1849			/* IGMPv1 (and broken IGMPv2 implementations sort of
1850			 * Cisco IOS <= 11.2(8)) do not put router alert
1851			 * option to IGMP packets destined to routable
1852			 * groups. It is very bad, because it means
1853			 * that we can forward NO IGMP messages.
1854			 */
1855			struct sock *mroute_sk;
1856
1857			mroute_sk = rcu_dereference(mrt->mroute_sk);
1858			if (mroute_sk) {
1859				nf_reset(skb);
1860				raw_rcv(mroute_sk, skb);
1861				return 0;
1862			}
1863		    }
1864	}
1865
1866	/* already under rcu_read_lock() */
1867	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
 
 
1868
1869	/*
1870	 *	No usable cache entry
1871	 */
1872	if (cache == NULL) {
 
 
 
1873		int vif;
1874
1875		if (local) {
1876			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1877			ip_local_deliver(skb);
1878			if (skb2 == NULL)
1879				return -ENOBUFS;
1880			skb = skb2;
1881		}
1882
1883		read_lock(&mrt_lock);
1884		vif = ipmr_find_vif(mrt, skb->dev);
1885		if (vif >= 0) {
1886			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1887			read_unlock(&mrt_lock);
1888
1889			return err2;
1890		}
1891		read_unlock(&mrt_lock);
1892		kfree_skb(skb);
1893		return -ENODEV;
1894	}
1895
1896	read_lock(&mrt_lock);
1897	ip_mr_forward(net, mrt, skb, cache, local);
1898	read_unlock(&mrt_lock);
1899
1900	if (local)
1901		return ip_local_deliver(skb);
1902
1903	return 0;
1904
1905dont_forward:
1906	if (local)
1907		return ip_local_deliver(skb);
1908	kfree_skb(skb);
1909	return 0;
1910}
1911
1912#ifdef CONFIG_IP_PIMSM
1913/* called with rcu_read_lock() */
1914static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1915		     unsigned int pimlen)
1916{
1917	struct net_device *reg_dev = NULL;
1918	struct iphdr *encap;
1919
1920	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1921	/*
1922	 * Check that:
1923	 * a. packet is really sent to a multicast group
1924	 * b. packet is not a NULL-REGISTER
1925	 * c. packet is not truncated
1926	 */
1927	if (!ipv4_is_multicast(encap->daddr) ||
1928	    encap->tot_len == 0 ||
1929	    ntohs(encap->tot_len) + pimlen > skb->len)
1930		return 1;
1931
1932	read_lock(&mrt_lock);
1933	if (mrt->mroute_reg_vif_num >= 0)
1934		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1935	read_unlock(&mrt_lock);
1936
1937	if (reg_dev == NULL)
1938		return 1;
1939
1940	skb->mac_header = skb->network_header;
1941	skb_pull(skb, (u8 *)encap - skb->data);
1942	skb_reset_network_header(skb);
1943	skb->protocol = htons(ETH_P_IP);
1944	skb->ip_summed = CHECKSUM_NONE;
1945	skb->pkt_type = PACKET_HOST;
1946
1947	skb_tunnel_rx(skb, reg_dev);
1948
1949	netif_rx(skb);
1950
1951	return NET_RX_SUCCESS;
1952}
1953#endif
1954
1955#ifdef CONFIG_IP_PIMSM_V1
1956/*
1957 * Handle IGMP messages of PIMv1
1958 */
1959
1960int pim_rcv_v1(struct sk_buff *skb)
1961{
1962	struct igmphdr *pim;
1963	struct net *net = dev_net(skb->dev);
1964	struct mr_table *mrt;
1965
1966	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1967		goto drop;
1968
1969	pim = igmp_hdr(skb);
1970
1971	mrt = ipmr_rt_fib_lookup(net, skb);
1972	if (IS_ERR(mrt))
1973		goto drop;
1974	if (!mrt->mroute_do_pim ||
1975	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1976		goto drop;
1977
1978	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1979drop:
1980		kfree_skb(skb);
1981	}
1982	return 0;
1983}
1984#endif
1985
1986#ifdef CONFIG_IP_PIMSM_V2
1987static int pim_rcv(struct sk_buff *skb)
1988{
1989	struct pimreghdr *pim;
1990	struct net *net = dev_net(skb->dev);
1991	struct mr_table *mrt;
1992
1993	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1994		goto drop;
1995
1996	pim = (struct pimreghdr *)skb_transport_header(skb);
1997	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1998	    (pim->flags & PIM_NULL_REGISTER) ||
1999	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2000	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2001		goto drop;
2002
2003	mrt = ipmr_rt_fib_lookup(net, skb);
2004	if (IS_ERR(mrt))
2005		goto drop;
2006	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2007drop:
2008		kfree_skb(skb);
2009	}
2010	return 0;
2011}
2012#endif
2013
2014static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2015			      struct mfc_cache *c, struct rtmsg *rtm)
2016{
2017	int ct;
 
2018	struct rtnexthop *nhp;
2019	u8 *b = skb_tail_pointer(skb);
2020	struct rtattr *mp_head;
2021
2022	/* If cache is unresolved, don't try to parse IIF and OIF */
2023	if (c->mfc_parent >= MAXVIFS)
2024		return -ENOENT;
2025
2026	if (VIF_EXISTS(mrt, c->mfc_parent))
2027		RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
 
2028
2029	mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
 
2030
2031	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2032		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2033			if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2034				goto rtattr_failure;
2035			nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
 
 
2036			nhp->rtnh_flags = 0;
2037			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2038			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2039			nhp->rtnh_len = sizeof(*nhp);
2040		}
2041	}
2042	mp_head->rta_type = RTA_MULTIPATH;
2043	mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
 
 
 
 
 
 
 
 
 
 
 
 
2044	rtm->rtm_type = RTN_MULTICAST;
2045	return 1;
2046
2047rtattr_failure:
2048	nlmsg_trim(skb, b);
2049	return -EMSGSIZE;
2050}
2051
2052int ipmr_get_route(struct net *net, struct sk_buff *skb,
2053		   __be32 saddr, __be32 daddr,
2054		   struct rtmsg *rtm, int nowait)
2055{
2056	struct mfc_cache *cache;
2057	struct mr_table *mrt;
2058	int err;
2059
2060	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2061	if (mrt == NULL)
2062		return -ENOENT;
2063
2064	rcu_read_lock();
2065	cache = ipmr_cache_find(mrt, saddr, daddr);
 
 
2066
2067	if (cache == NULL) {
 
 
 
2068		struct sk_buff *skb2;
2069		struct iphdr *iph;
2070		struct net_device *dev;
2071		int vif = -1;
2072
2073		if (nowait) {
2074			rcu_read_unlock();
2075			return -EAGAIN;
2076		}
2077
2078		dev = skb->dev;
2079		read_lock(&mrt_lock);
2080		if (dev)
2081			vif = ipmr_find_vif(mrt, dev);
2082		if (vif < 0) {
2083			read_unlock(&mrt_lock);
2084			rcu_read_unlock();
2085			return -ENODEV;
2086		}
2087		skb2 = skb_clone(skb, GFP_ATOMIC);
2088		if (!skb2) {
2089			read_unlock(&mrt_lock);
2090			rcu_read_unlock();
2091			return -ENOMEM;
2092		}
2093
 
2094		skb_push(skb2, sizeof(struct iphdr));
2095		skb_reset_network_header(skb2);
2096		iph = ip_hdr(skb2);
2097		iph->ihl = sizeof(struct iphdr) >> 2;
2098		iph->saddr = saddr;
2099		iph->daddr = daddr;
2100		iph->version = 0;
2101		err = ipmr_cache_unresolved(mrt, vif, skb2);
2102		read_unlock(&mrt_lock);
2103		rcu_read_unlock();
2104		return err;
2105	}
2106
2107	read_lock(&mrt_lock);
2108	if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2109		cache->mfc_flags |= MFC_NOTIFY;
2110	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2111	read_unlock(&mrt_lock);
2112	rcu_read_unlock();
2113	return err;
2114}
2115
2116static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2117			    u32 pid, u32 seq, struct mfc_cache *c)
 
2118{
2119	struct nlmsghdr *nlh;
2120	struct rtmsg *rtm;
 
2121
2122	nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2123	if (nlh == NULL)
2124		return -EMSGSIZE;
2125
2126	rtm = nlmsg_data(nlh);
2127	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2128	rtm->rtm_dst_len  = 32;
2129	rtm->rtm_src_len  = 32;
2130	rtm->rtm_tos      = 0;
2131	rtm->rtm_table    = mrt->id;
2132	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2133		goto nla_put_failure;
2134	rtm->rtm_type     = RTN_MULTICAST;
2135	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2136	rtm->rtm_protocol = RTPROT_UNSPEC;
 
 
 
2137	rtm->rtm_flags    = 0;
2138
2139	if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2140	    nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2141		goto nla_put_failure;
2142	if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
 
 
2143		goto nla_put_failure;
2144
2145	return nlmsg_end(skb, nlh);
 
2146
2147nla_put_failure:
2148	nlmsg_cancel(skb, nlh);
2149	return -EMSGSIZE;
2150}
2151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2152static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2153{
2154	struct net *net = sock_net(skb->sk);
2155	struct mr_table *mrt;
2156	struct mfc_cache *mfc;
2157	unsigned int t = 0, s_t;
2158	unsigned int h = 0, s_h;
2159	unsigned int e = 0, s_e;
2160
2161	s_t = cb->args[0];
2162	s_h = cb->args[1];
2163	s_e = cb->args[2];
2164
2165	rcu_read_lock();
2166	ipmr_for_each_table(mrt, net) {
2167		if (t < s_t)
2168			goto next_table;
2169		if (t > s_t)
2170			s_h = 0;
2171		for (h = s_h; h < MFC_LINES; h++) {
2172			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2173				if (e < s_e)
2174					goto next_entry;
2175				if (ipmr_fill_mroute(mrt, skb,
2176						     NETLINK_CB(cb->skb).pid,
2177						     cb->nlh->nlmsg_seq,
2178						     mfc) < 0)
 
2179					goto done;
2180next_entry:
2181				e++;
2182			}
2183			e = s_e = 0;
2184		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2185		s_h = 0;
2186next_table:
2187		t++;
2188	}
2189done:
2190	rcu_read_unlock();
2191
2192	cb->args[2] = e;
2193	cb->args[1] = h;
2194	cb->args[0] = t;
2195
2196	return skb->len;
2197}
2198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2199#ifdef CONFIG_PROC_FS
2200/*
2201 *	The /proc interfaces to multicast routing :
2202 *	/proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2203 */
2204struct ipmr_vif_iter {
2205	struct seq_net_private p;
2206	struct mr_table *mrt;
2207	int ct;
2208};
2209
2210static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2211					   struct ipmr_vif_iter *iter,
2212					   loff_t pos)
2213{
2214	struct mr_table *mrt = iter->mrt;
2215
2216	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2217		if (!VIF_EXISTS(mrt, iter->ct))
2218			continue;
2219		if (pos-- == 0)
2220			return &mrt->vif_table[iter->ct];
2221	}
2222	return NULL;
2223}
2224
2225static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2226	__acquires(mrt_lock)
2227{
2228	struct ipmr_vif_iter *iter = seq->private;
2229	struct net *net = seq_file_net(seq);
2230	struct mr_table *mrt;
2231
2232	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2233	if (mrt == NULL)
2234		return ERR_PTR(-ENOENT);
2235
2236	iter->mrt = mrt;
2237
2238	read_lock(&mrt_lock);
2239	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2240		: SEQ_START_TOKEN;
2241}
2242
2243static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2244{
2245	struct ipmr_vif_iter *iter = seq->private;
2246	struct net *net = seq_file_net(seq);
2247	struct mr_table *mrt = iter->mrt;
2248
2249	++*pos;
2250	if (v == SEQ_START_TOKEN)
2251		return ipmr_vif_seq_idx(net, iter, 0);
2252
2253	while (++iter->ct < mrt->maxvif) {
2254		if (!VIF_EXISTS(mrt, iter->ct))
2255			continue;
2256		return &mrt->vif_table[iter->ct];
2257	}
2258	return NULL;
2259}
2260
2261static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2262	__releases(mrt_lock)
2263{
2264	read_unlock(&mrt_lock);
2265}
2266
2267static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2268{
2269	struct ipmr_vif_iter *iter = seq->private;
2270	struct mr_table *mrt = iter->mrt;
2271
2272	if (v == SEQ_START_TOKEN) {
2273		seq_puts(seq,
2274			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2275	} else {
2276		const struct vif_device *vif = v;
2277		const char *name =  vif->dev ? vif->dev->name : "none";
2278
2279		seq_printf(seq,
2280			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2281			   vif - mrt->vif_table,
2282			   name, vif->bytes_in, vif->pkt_in,
2283			   vif->bytes_out, vif->pkt_out,
2284			   vif->flags, vif->local, vif->remote);
2285	}
2286	return 0;
2287}
2288
2289static const struct seq_operations ipmr_vif_seq_ops = {
2290	.start = ipmr_vif_seq_start,
2291	.next  = ipmr_vif_seq_next,
2292	.stop  = ipmr_vif_seq_stop,
2293	.show  = ipmr_vif_seq_show,
2294};
2295
2296static int ipmr_vif_open(struct inode *inode, struct file *file)
2297{
2298	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2299			    sizeof(struct ipmr_vif_iter));
2300}
2301
2302static const struct file_operations ipmr_vif_fops = {
2303	.owner	 = THIS_MODULE,
2304	.open    = ipmr_vif_open,
2305	.read    = seq_read,
2306	.llseek  = seq_lseek,
2307	.release = seq_release_net,
2308};
2309
2310struct ipmr_mfc_iter {
2311	struct seq_net_private p;
2312	struct mr_table *mrt;
2313	struct list_head *cache;
2314	int ct;
2315};
2316
2317
2318static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2319					  struct ipmr_mfc_iter *it, loff_t pos)
2320{
2321	struct mr_table *mrt = it->mrt;
2322	struct mfc_cache *mfc;
2323
2324	rcu_read_lock();
2325	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2326		it->cache = &mrt->mfc_cache_array[it->ct];
2327		list_for_each_entry_rcu(mfc, it->cache, list)
2328			if (pos-- == 0)
2329				return mfc;
2330	}
2331	rcu_read_unlock();
2332
2333	spin_lock_bh(&mfc_unres_lock);
2334	it->cache = &mrt->mfc_unres_queue;
2335	list_for_each_entry(mfc, it->cache, list)
2336		if (pos-- == 0)
2337			return mfc;
2338	spin_unlock_bh(&mfc_unres_lock);
2339
2340	it->cache = NULL;
2341	return NULL;
2342}
2343
2344
2345static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2346{
2347	struct ipmr_mfc_iter *it = seq->private;
2348	struct net *net = seq_file_net(seq);
2349	struct mr_table *mrt;
2350
2351	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2352	if (mrt == NULL)
2353		return ERR_PTR(-ENOENT);
2354
2355	it->mrt = mrt;
2356	it->cache = NULL;
2357	it->ct = 0;
2358	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2359		: SEQ_START_TOKEN;
2360}
2361
2362static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2363{
2364	struct mfc_cache *mfc = v;
2365	struct ipmr_mfc_iter *it = seq->private;
2366	struct net *net = seq_file_net(seq);
2367	struct mr_table *mrt = it->mrt;
2368
2369	++*pos;
2370
2371	if (v == SEQ_START_TOKEN)
2372		return ipmr_mfc_seq_idx(net, seq->private, 0);
2373
2374	if (mfc->list.next != it->cache)
2375		return list_entry(mfc->list.next, struct mfc_cache, list);
2376
2377	if (it->cache == &mrt->mfc_unres_queue)
2378		goto end_of_list;
2379
2380	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2381
2382	while (++it->ct < MFC_LINES) {
2383		it->cache = &mrt->mfc_cache_array[it->ct];
2384		if (list_empty(it->cache))
2385			continue;
2386		return list_first_entry(it->cache, struct mfc_cache, list);
2387	}
2388
2389	/* exhausted cache_array, show unresolved */
2390	rcu_read_unlock();
2391	it->cache = &mrt->mfc_unres_queue;
2392	it->ct = 0;
2393
2394	spin_lock_bh(&mfc_unres_lock);
2395	if (!list_empty(it->cache))
2396		return list_first_entry(it->cache, struct mfc_cache, list);
2397
2398end_of_list:
2399	spin_unlock_bh(&mfc_unres_lock);
2400	it->cache = NULL;
2401
2402	return NULL;
2403}
2404
2405static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2406{
2407	struct ipmr_mfc_iter *it = seq->private;
2408	struct mr_table *mrt = it->mrt;
2409
2410	if (it->cache == &mrt->mfc_unres_queue)
2411		spin_unlock_bh(&mfc_unres_lock);
2412	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2413		rcu_read_unlock();
2414}
2415
2416static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2417{
2418	int n;
2419
2420	if (v == SEQ_START_TOKEN) {
2421		seq_puts(seq,
2422		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2423	} else {
2424		const struct mfc_cache *mfc = v;
2425		const struct ipmr_mfc_iter *it = seq->private;
2426		const struct mr_table *mrt = it->mrt;
2427
2428		seq_printf(seq, "%08X %08X %-3hd",
2429			   (__force u32) mfc->mfc_mcastgrp,
2430			   (__force u32) mfc->mfc_origin,
2431			   mfc->mfc_parent);
2432
2433		if (it->cache != &mrt->mfc_unres_queue) {
2434			seq_printf(seq, " %8lu %8lu %8lu",
2435				   mfc->mfc_un.res.pkt,
2436				   mfc->mfc_un.res.bytes,
2437				   mfc->mfc_un.res.wrong_if);
2438			for (n = mfc->mfc_un.res.minvif;
2439			     n < mfc->mfc_un.res.maxvif; n++) {
2440				if (VIF_EXISTS(mrt, n) &&
2441				    mfc->mfc_un.res.ttls[n] < 255)
2442					seq_printf(seq,
2443					   " %2d:%-3d",
2444					   n, mfc->mfc_un.res.ttls[n]);
2445			}
2446		} else {
2447			/* unresolved mfc_caches don't contain
2448			 * pkt, bytes and wrong_if values
2449			 */
2450			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2451		}
2452		seq_putc(seq, '\n');
2453	}
2454	return 0;
2455}
2456
2457static const struct seq_operations ipmr_mfc_seq_ops = {
2458	.start = ipmr_mfc_seq_start,
2459	.next  = ipmr_mfc_seq_next,
2460	.stop  = ipmr_mfc_seq_stop,
2461	.show  = ipmr_mfc_seq_show,
2462};
2463
2464static int ipmr_mfc_open(struct inode *inode, struct file *file)
2465{
2466	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2467			    sizeof(struct ipmr_mfc_iter));
2468}
2469
2470static const struct file_operations ipmr_mfc_fops = {
2471	.owner	 = THIS_MODULE,
2472	.open    = ipmr_mfc_open,
2473	.read    = seq_read,
2474	.llseek  = seq_lseek,
2475	.release = seq_release_net,
2476};
2477#endif
2478
2479#ifdef CONFIG_IP_PIMSM_V2
2480static const struct net_protocol pim_protocol = {
2481	.handler	=	pim_rcv,
2482	.netns_ok	=	1,
2483};
2484#endif
2485
2486
2487/*
2488 *	Setup for IP multicast routing
2489 */
2490static int __net_init ipmr_net_init(struct net *net)
2491{
2492	int err;
2493
2494	err = ipmr_rules_init(net);
2495	if (err < 0)
2496		goto fail;
2497
2498#ifdef CONFIG_PROC_FS
2499	err = -ENOMEM;
2500	if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2501		goto proc_vif_fail;
2502	if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2503		goto proc_cache_fail;
2504#endif
2505	return 0;
2506
2507#ifdef CONFIG_PROC_FS
2508proc_cache_fail:
2509	proc_net_remove(net, "ip_mr_vif");
2510proc_vif_fail:
2511	ipmr_rules_exit(net);
2512#endif
2513fail:
2514	return err;
2515}
2516
2517static void __net_exit ipmr_net_exit(struct net *net)
2518{
2519#ifdef CONFIG_PROC_FS
2520	proc_net_remove(net, "ip_mr_cache");
2521	proc_net_remove(net, "ip_mr_vif");
2522#endif
2523	ipmr_rules_exit(net);
2524}
2525
2526static struct pernet_operations ipmr_net_ops = {
2527	.init = ipmr_net_init,
2528	.exit = ipmr_net_exit,
2529};
2530
2531int __init ip_mr_init(void)
2532{
2533	int err;
2534
2535	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2536				       sizeof(struct mfc_cache),
2537				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2538				       NULL);
2539	if (!mrt_cachep)
2540		return -ENOMEM;
2541
2542	err = register_pernet_subsys(&ipmr_net_ops);
2543	if (err)
2544		goto reg_pernet_fail;
2545
2546	err = register_netdevice_notifier(&ip_mr_notifier);
2547	if (err)
2548		goto reg_notif_fail;
2549#ifdef CONFIG_IP_PIMSM_V2
2550	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2551		pr_err("%s: can't add PIM protocol\n", __func__);
2552		err = -EAGAIN;
2553		goto add_proto_fail;
2554	}
2555#endif
2556	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2557		      NULL, ipmr_rtm_dumproute, NULL);
 
 
 
 
2558	return 0;
2559
2560#ifdef CONFIG_IP_PIMSM_V2
2561add_proto_fail:
2562	unregister_netdevice_notifier(&ip_mr_notifier);
2563#endif
2564reg_notif_fail:
2565	unregister_pernet_subsys(&ipmr_net_ops);
2566reg_pernet_fail:
2567	kmem_cache_destroy(mrt_cachep);
2568	return err;
2569}
v4.10.11
   1/*
   2 *	IP multicast routing support for mrouted 3.6/3.8
   3 *
   4 *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   5 *	  Linux Consultancy and Custom Driver Development
   6 *
   7 *	This program is free software; you can redistribute it and/or
   8 *	modify it under the terms of the GNU General Public License
   9 *	as published by the Free Software Foundation; either version
  10 *	2 of the License, or (at your option) any later version.
  11 *
  12 *	Fixes:
  13 *	Michael Chastain	:	Incorrect size of copying.
  14 *	Alan Cox		:	Added the cache manager code
  15 *	Alan Cox		:	Fixed the clone/copy bug and device race.
  16 *	Mike McLagan		:	Routing by source
  17 *	Malcolm Beattie		:	Buffer handling fixes.
  18 *	Alexey Kuznetsov	:	Double buffer free and other fixes.
  19 *	SVR Anand		:	Fixed several multicast bugs and problems.
  20 *	Alexey Kuznetsov	:	Status, optimisations and more.
  21 *	Brad Parker		:	Better behaviour on mrouted upcall
  22 *					overflow.
  23 *      Carlos Picoto           :       PIMv1 Support
  24 *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
  25 *					Relax this requirement to work with older peers.
  26 *
  27 */
  28
  29#include <linux/uaccess.h>
  30#include <linux/types.h>
  31#include <linux/capability.h>
  32#include <linux/errno.h>
  33#include <linux/timer.h>
  34#include <linux/mm.h>
  35#include <linux/kernel.h>
  36#include <linux/fcntl.h>
  37#include <linux/stat.h>
  38#include <linux/socket.h>
  39#include <linux/in.h>
  40#include <linux/inet.h>
  41#include <linux/netdevice.h>
  42#include <linux/inetdevice.h>
  43#include <linux/igmp.h>
  44#include <linux/proc_fs.h>
  45#include <linux/seq_file.h>
  46#include <linux/mroute.h>
  47#include <linux/init.h>
  48#include <linux/if_ether.h>
  49#include <linux/slab.h>
  50#include <net/net_namespace.h>
  51#include <net/ip.h>
  52#include <net/protocol.h>
  53#include <linux/skbuff.h>
  54#include <net/route.h>
  55#include <net/sock.h>
  56#include <net/icmp.h>
  57#include <net/udp.h>
  58#include <net/raw.h>
  59#include <linux/notifier.h>
  60#include <linux/if_arp.h>
  61#include <linux/netfilter_ipv4.h>
  62#include <linux/compat.h>
  63#include <linux/export.h>
  64#include <net/ip_tunnels.h>
  65#include <net/checksum.h>
  66#include <net/netlink.h>
  67#include <net/fib_rules.h>
  68#include <linux/netconf.h>
  69#include <net/nexthop.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70
  71struct ipmr_rule {
  72	struct fib_rule		common;
  73};
  74
  75struct ipmr_result {
  76	struct mr_table		*mrt;
  77};
  78
  79/* Big lock, protecting vif table, mrt cache and mroute socket state.
  80 * Note that the changes are semaphored via rtnl_lock.
  81 */
  82
  83static DEFINE_RWLOCK(mrt_lock);
  84
  85/* Multicast router control variables */
 
 
 
 
  86
  87/* Special spinlock for queue of unresolved entries */
  88static DEFINE_SPINLOCK(mfc_unres_lock);
  89
  90/* We return to original Alan's scheme. Hash table of resolved
  91 * entries is changed only in process context and protected
  92 * with weak lock mrt_lock. Queue of unresolved entries is protected
  93 * with strong spinlock mfc_unres_lock.
  94 *
  95 * In this case data path is free of exclusive locks at all.
  96 */
  97
  98static struct kmem_cache *mrt_cachep __read_mostly;
  99
 100static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 101static void ipmr_free_table(struct mr_table *mrt);
 102
 103static void ip_mr_forward(struct net *net, struct mr_table *mrt,
 104			  struct sk_buff *skb, struct mfc_cache *cache,
 105			  int local);
 106static int ipmr_cache_report(struct mr_table *mrt,
 107			     struct sk_buff *pkt, vifi_t vifi, int assert);
 108static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
 109			      struct mfc_cache *c, struct rtmsg *rtm);
 110static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
 111				 int cmd);
 112static void mroute_clean_tables(struct mr_table *mrt, bool all);
 113static void ipmr_expire_process(unsigned long arg);
 114
 115#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 116#define ipmr_for_each_table(mrt, net) \
 117	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
 118
 119static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 120{
 121	struct mr_table *mrt;
 122
 123	ipmr_for_each_table(mrt, net) {
 124		if (mrt->id == id)
 125			return mrt;
 126	}
 127	return NULL;
 128}
 129
 130static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 131			   struct mr_table **mrt)
 132{
 
 
 133	int err;
 134	struct ipmr_result res;
 135	struct fib_lookup_arg arg = {
 136		.result = &res,
 137		.flags = FIB_LOOKUP_NOREF,
 138	};
 139
 140	/* update flow if oif or iif point to device enslaved to l3mdev */
 141	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
 142
 143	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 144			       flowi4_to_flowi(flp4), 0, &arg);
 145	if (err < 0)
 146		return err;
 147	*mrt = res.mrt;
 148	return 0;
 149}
 150
 151static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 152			    int flags, struct fib_lookup_arg *arg)
 153{
 154	struct ipmr_result *res = arg->result;
 155	struct mr_table *mrt;
 156
 157	switch (rule->action) {
 158	case FR_ACT_TO_TBL:
 159		break;
 160	case FR_ACT_UNREACHABLE:
 161		return -ENETUNREACH;
 162	case FR_ACT_PROHIBIT:
 163		return -EACCES;
 164	case FR_ACT_BLACKHOLE:
 165	default:
 166		return -EINVAL;
 167	}
 168
 169	arg->table = fib_rule_get_table(rule, arg);
 170
 171	mrt = ipmr_get_table(rule->fr_net, arg->table);
 172	if (!mrt)
 173		return -EAGAIN;
 174	res->mrt = mrt;
 175	return 0;
 176}
 177
 178static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 179{
 180	return 1;
 181}
 182
 183static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
 184	FRA_GENERIC_POLICY,
 185};
 186
 187static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 188			       struct fib_rule_hdr *frh, struct nlattr **tb)
 189{
 190	return 0;
 191}
 192
 193static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 194			     struct nlattr **tb)
 195{
 196	return 1;
 197}
 198
 199static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 200			  struct fib_rule_hdr *frh)
 201{
 202	frh->dst_len = 0;
 203	frh->src_len = 0;
 204	frh->tos     = 0;
 205	return 0;
 206}
 207
 208static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
 209	.family		= RTNL_FAMILY_IPMR,
 210	.rule_size	= sizeof(struct ipmr_rule),
 211	.addr_size	= sizeof(u32),
 212	.action		= ipmr_rule_action,
 213	.match		= ipmr_rule_match,
 214	.configure	= ipmr_rule_configure,
 215	.compare	= ipmr_rule_compare,
 
 216	.fill		= ipmr_rule_fill,
 217	.nlgroup	= RTNLGRP_IPV4_RULE,
 218	.policy		= ipmr_rule_policy,
 219	.owner		= THIS_MODULE,
 220};
 221
 222static int __net_init ipmr_rules_init(struct net *net)
 223{
 224	struct fib_rules_ops *ops;
 225	struct mr_table *mrt;
 226	int err;
 227
 228	ops = fib_rules_register(&ipmr_rules_ops_template, net);
 229	if (IS_ERR(ops))
 230		return PTR_ERR(ops);
 231
 232	INIT_LIST_HEAD(&net->ipv4.mr_tables);
 233
 234	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 235	if (IS_ERR(mrt)) {
 236		err = PTR_ERR(mrt);
 237		goto err1;
 238	}
 239
 240	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
 241	if (err < 0)
 242		goto err2;
 243
 244	net->ipv4.mr_rules_ops = ops;
 245	return 0;
 246
 247err2:
 248	ipmr_free_table(mrt);
 249err1:
 250	fib_rules_unregister(ops);
 251	return err;
 252}
 253
 254static void __net_exit ipmr_rules_exit(struct net *net)
 255{
 256	struct mr_table *mrt, *next;
 257
 258	rtnl_lock();
 259	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 260		list_del(&mrt->list);
 261		ipmr_free_table(mrt);
 262	}
 263	fib_rules_unregister(net->ipv4.mr_rules_ops);
 264	rtnl_unlock();
 265}
 266#else
 267#define ipmr_for_each_table(mrt, net) \
 268	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 269
 270static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 271{
 272	return net->ipv4.mrt;
 273}
 274
 275static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 276			   struct mr_table **mrt)
 277{
 278	*mrt = net->ipv4.mrt;
 279	return 0;
 280}
 281
 282static int __net_init ipmr_rules_init(struct net *net)
 283{
 284	struct mr_table *mrt;
 285
 286	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 287	if (IS_ERR(mrt))
 288		return PTR_ERR(mrt);
 289	net->ipv4.mrt = mrt;
 290	return 0;
 291}
 292
 293static void __net_exit ipmr_rules_exit(struct net *net)
 294{
 295	rtnl_lock();
 296	ipmr_free_table(net->ipv4.mrt);
 297	net->ipv4.mrt = NULL;
 298	rtnl_unlock();
 299}
 300#endif
 301
 302static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 303{
 304	struct mr_table *mrt;
 305	unsigned int i;
 306
 307	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
 308	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
 309		return ERR_PTR(-EINVAL);
 310
 311	mrt = ipmr_get_table(net, id);
 312	if (mrt)
 313		return mrt;
 314
 315	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
 316	if (!mrt)
 317		return ERR_PTR(-ENOMEM);
 318	write_pnet(&mrt->net, net);
 319	mrt->id = id;
 320
 321	/* Forwarding cache */
 322	for (i = 0; i < MFC_LINES; i++)
 323		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
 324
 325	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
 326
 327	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
 328		    (unsigned long)mrt);
 329
 
 330	mrt->mroute_reg_vif_num = -1;
 
 331#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 332	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 333#endif
 334	return mrt;
 335}
 336
 337static void ipmr_free_table(struct mr_table *mrt)
 338{
 339	del_timer_sync(&mrt->ipmr_expire_timer);
 340	mroute_clean_tables(mrt, true);
 341	kfree(mrt);
 342}
 343
 344/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 345
 346static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
 347{
 348	struct net *net = dev_net(dev);
 349
 350	dev_close(dev);
 351
 352	dev = __dev_get_by_name(net, "tunl0");
 353	if (dev) {
 354		const struct net_device_ops *ops = dev->netdev_ops;
 355		struct ifreq ifr;
 356		struct ip_tunnel_parm p;
 357
 358		memset(&p, 0, sizeof(p));
 359		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 360		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 361		p.iph.version = 4;
 362		p.iph.ihl = 5;
 363		p.iph.protocol = IPPROTO_IPIP;
 364		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 365		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 366
 367		if (ops->ndo_do_ioctl) {
 368			mm_segment_t oldfs = get_fs();
 369
 370			set_fs(KERNEL_DS);
 371			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
 372			set_fs(oldfs);
 373		}
 374	}
 375}
 376
 377/* Initialize ipmr pimreg/tunnel in_device */
 378static bool ipmr_init_vif_indev(const struct net_device *dev)
 379{
 380	struct in_device *in_dev;
 381
 382	ASSERT_RTNL();
 383
 384	in_dev = __in_dev_get_rtnl(dev);
 385	if (!in_dev)
 386		return false;
 387	ipv4_devconf_setall(in_dev);
 388	neigh_parms_data_state_setall(in_dev->arp_parms);
 389	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 390
 391	return true;
 392}
 393
 394static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 395{
 396	struct net_device  *dev;
 397
 398	dev = __dev_get_by_name(net, "tunl0");
 399
 400	if (dev) {
 401		const struct net_device_ops *ops = dev->netdev_ops;
 402		int err;
 403		struct ifreq ifr;
 404		struct ip_tunnel_parm p;
 
 405
 406		memset(&p, 0, sizeof(p));
 407		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 408		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 409		p.iph.version = 4;
 410		p.iph.ihl = 5;
 411		p.iph.protocol = IPPROTO_IPIP;
 412		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 413		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 414
 415		if (ops->ndo_do_ioctl) {
 416			mm_segment_t oldfs = get_fs();
 417
 418			set_fs(KERNEL_DS);
 419			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
 420			set_fs(oldfs);
 421		} else {
 422			err = -EOPNOTSUPP;
 423		}
 424		dev = NULL;
 425
 426		if (err == 0 &&
 427		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
 428			dev->flags |= IFF_MULTICAST;
 429			if (!ipmr_init_vif_indev(dev))
 
 
 430				goto failure;
 
 
 
 
 431			if (dev_open(dev))
 432				goto failure;
 433			dev_hold(dev);
 434		}
 435	}
 436	return dev;
 437
 438failure:
 
 
 
 
 439	unregister_netdevice(dev);
 440	return NULL;
 441}
 442
 443#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
 
 444static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 445{
 446	struct net *net = dev_net(dev);
 447	struct mr_table *mrt;
 448	struct flowi4 fl4 = {
 449		.flowi4_oif	= dev->ifindex,
 450		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
 451		.flowi4_mark	= skb->mark,
 452	};
 453	int err;
 454
 455	err = ipmr_fib_lookup(net, &fl4, &mrt);
 456	if (err < 0) {
 457		kfree_skb(skb);
 458		return err;
 459	}
 460
 461	read_lock(&mrt_lock);
 462	dev->stats.tx_bytes += skb->len;
 463	dev->stats.tx_packets++;
 464	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
 465	read_unlock(&mrt_lock);
 466	kfree_skb(skb);
 467	return NETDEV_TX_OK;
 468}
 469
 470static int reg_vif_get_iflink(const struct net_device *dev)
 471{
 472	return 0;
 473}
 474
 475static const struct net_device_ops reg_vif_netdev_ops = {
 476	.ndo_start_xmit	= reg_vif_xmit,
 477	.ndo_get_iflink = reg_vif_get_iflink,
 478};
 479
 480static void reg_vif_setup(struct net_device *dev)
 481{
 482	dev->type		= ARPHRD_PIMREG;
 483	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 484	dev->flags		= IFF_NOARP;
 485	dev->netdev_ops		= &reg_vif_netdev_ops;
 486	dev->destructor		= free_netdev;
 487	dev->features		|= NETIF_F_NETNS_LOCAL;
 488}
 489
 490static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 491{
 492	struct net_device *dev;
 
 493	char name[IFNAMSIZ];
 494
 495	if (mrt->id == RT_TABLE_DEFAULT)
 496		sprintf(name, "pimreg");
 497	else
 498		sprintf(name, "pimreg%u", mrt->id);
 499
 500	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
 501
 502	if (!dev)
 503		return NULL;
 504
 505	dev_net_set(dev, net);
 506
 507	if (register_netdevice(dev)) {
 508		free_netdev(dev);
 509		return NULL;
 510	}
 
 511
 512	if (!ipmr_init_vif_indev(dev))
 
 
 
 513		goto failure;
 
 
 
 
 
 
 514	if (dev_open(dev))
 515		goto failure;
 516
 517	dev_hold(dev);
 518
 519	return dev;
 520
 521failure:
 
 
 
 
 522	unregister_netdevice(dev);
 523	return NULL;
 524}
 525
 526/* called with rcu_read_lock() */
 527static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
 528		     unsigned int pimlen)
 529{
 530	struct net_device *reg_dev = NULL;
 531	struct iphdr *encap;
 532
 533	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
 534	/* Check that:
 535	 * a. packet is really sent to a multicast group
 536	 * b. packet is not a NULL-REGISTER
 537	 * c. packet is not truncated
 538	 */
 539	if (!ipv4_is_multicast(encap->daddr) ||
 540	    encap->tot_len == 0 ||
 541	    ntohs(encap->tot_len) + pimlen > skb->len)
 542		return 1;
 543
 544	read_lock(&mrt_lock);
 545	if (mrt->mroute_reg_vif_num >= 0)
 546		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
 547	read_unlock(&mrt_lock);
 548
 549	if (!reg_dev)
 550		return 1;
 551
 552	skb->mac_header = skb->network_header;
 553	skb_pull(skb, (u8 *)encap - skb->data);
 554	skb_reset_network_header(skb);
 555	skb->protocol = htons(ETH_P_IP);
 556	skb->ip_summed = CHECKSUM_NONE;
 557
 558	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
 559
 560	netif_rx(skb);
 561
 562	return NET_RX_SUCCESS;
 563}
 564#else
 565static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 566{
 567	return NULL;
 568}
 569#endif
 570
 571/**
 572 *	vif_delete - Delete a VIF entry
 573 *	@notify: Set to 1, if the caller is a notifier_call
 574 */
 
 575static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 576		      struct list_head *head)
 577{
 578	struct vif_device *v;
 579	struct net_device *dev;
 580	struct in_device *in_dev;
 581
 582	if (vifi < 0 || vifi >= mrt->maxvif)
 583		return -EADDRNOTAVAIL;
 584
 585	v = &mrt->vif_table[vifi];
 586
 587	write_lock_bh(&mrt_lock);
 588	dev = v->dev;
 589	v->dev = NULL;
 590
 591	if (!dev) {
 592		write_unlock_bh(&mrt_lock);
 593		return -EADDRNOTAVAIL;
 594	}
 595
 
 596	if (vifi == mrt->mroute_reg_vif_num)
 597		mrt->mroute_reg_vif_num = -1;
 
 598
 599	if (vifi + 1 == mrt->maxvif) {
 600		int tmp;
 601
 602		for (tmp = vifi - 1; tmp >= 0; tmp--) {
 603			if (VIF_EXISTS(mrt, tmp))
 604				break;
 605		}
 606		mrt->maxvif = tmp+1;
 607	}
 608
 609	write_unlock_bh(&mrt_lock);
 610
 611	dev_set_allmulti(dev, -1);
 612
 613	in_dev = __in_dev_get_rtnl(dev);
 614	if (in_dev) {
 615		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 616		inet_netconf_notify_devconf(dev_net(dev),
 617					    NETCONFA_MC_FORWARDING,
 618					    dev->ifindex, &in_dev->cnf);
 619		ip_rt_multicast_event(in_dev);
 620	}
 621
 622	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 623		unregister_netdevice_queue(dev, head);
 624
 625	dev_put(dev);
 626	return 0;
 627}
 628
 629static void ipmr_cache_free_rcu(struct rcu_head *head)
 630{
 631	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
 632
 633	kmem_cache_free(mrt_cachep, c);
 634}
 635
 636static inline void ipmr_cache_free(struct mfc_cache *c)
 637{
 638	call_rcu(&c->rcu, ipmr_cache_free_rcu);
 639}
 640
 641/* Destroy an unresolved cache entry, killing queued skbs
 642 * and reporting error to netlink readers.
 643 */
 
 644static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 645{
 646	struct net *net = read_pnet(&mrt->net);
 647	struct sk_buff *skb;
 648	struct nlmsgerr *e;
 649
 650	atomic_dec(&mrt->cache_resolve_queue_len);
 651
 652	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
 653		if (ip_hdr(skb)->version == 0) {
 654			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 655			nlh->nlmsg_type = NLMSG_ERROR;
 656			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 657			skb_trim(skb, nlh->nlmsg_len);
 658			e = nlmsg_data(nlh);
 659			e->error = -ETIMEDOUT;
 660			memset(&e->msg, 0, sizeof(e->msg));
 661
 662			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 663		} else {
 664			kfree_skb(skb);
 665		}
 666	}
 667
 668	ipmr_cache_free(c);
 669}
 670
 
 671/* Timer process for the unresolved queue. */
 
 672static void ipmr_expire_process(unsigned long arg)
 673{
 674	struct mr_table *mrt = (struct mr_table *)arg;
 675	unsigned long now;
 676	unsigned long expires;
 677	struct mfc_cache *c, *next;
 678
 679	if (!spin_trylock(&mfc_unres_lock)) {
 680		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 681		return;
 682	}
 683
 684	if (list_empty(&mrt->mfc_unres_queue))
 685		goto out;
 686
 687	now = jiffies;
 688	expires = 10*HZ;
 689
 690	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 691		if (time_after(c->mfc_un.unres.expires, now)) {
 692			unsigned long interval = c->mfc_un.unres.expires - now;
 693			if (interval < expires)
 694				expires = interval;
 695			continue;
 696		}
 697
 698		list_del(&c->list);
 699		mroute_netlink_event(mrt, c, RTM_DELROUTE);
 700		ipmr_destroy_unres(mrt, c);
 701	}
 702
 703	if (!list_empty(&mrt->mfc_unres_queue))
 704		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 705
 706out:
 707	spin_unlock(&mfc_unres_lock);
 708}
 709
 710/* Fill oifs list. It is called under write locked mrt_lock. */
 
 711static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
 712				   unsigned char *ttls)
 713{
 714	int vifi;
 715
 716	cache->mfc_un.res.minvif = MAXVIFS;
 717	cache->mfc_un.res.maxvif = 0;
 718	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 719
 720	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 721		if (VIF_EXISTS(mrt, vifi) &&
 722		    ttls[vifi] && ttls[vifi] < 255) {
 723			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 724			if (cache->mfc_un.res.minvif > vifi)
 725				cache->mfc_un.res.minvif = vifi;
 726			if (cache->mfc_un.res.maxvif <= vifi)
 727				cache->mfc_un.res.maxvif = vifi + 1;
 728		}
 729	}
 730	cache->mfc_un.res.lastuse = jiffies;
 731}
 732
 733static int vif_add(struct net *net, struct mr_table *mrt,
 734		   struct vifctl *vifc, int mrtsock)
 735{
 736	int vifi = vifc->vifc_vifi;
 737	struct vif_device *v = &mrt->vif_table[vifi];
 738	struct net_device *dev;
 739	struct in_device *in_dev;
 740	int err;
 741
 742	/* Is vif busy ? */
 743	if (VIF_EXISTS(mrt, vifi))
 744		return -EADDRINUSE;
 745
 746	switch (vifc->vifc_flags) {
 
 747	case VIFF_REGISTER:
 748		if (!ipmr_pimsm_enabled())
 749			return -EINVAL;
 750		/* Special Purpose VIF in PIM
 751		 * All the packets will be sent to the daemon
 752		 */
 753		if (mrt->mroute_reg_vif_num >= 0)
 754			return -EADDRINUSE;
 755		dev = ipmr_reg_vif(net, mrt);
 756		if (!dev)
 757			return -ENOBUFS;
 758		err = dev_set_allmulti(dev, 1);
 759		if (err) {
 760			unregister_netdevice(dev);
 761			dev_put(dev);
 762			return err;
 763		}
 764		break;
 
 765	case VIFF_TUNNEL:
 766		dev = ipmr_new_tunnel(net, vifc);
 767		if (!dev)
 768			return -ENOBUFS;
 769		err = dev_set_allmulti(dev, 1);
 770		if (err) {
 771			ipmr_del_tunnel(dev, vifc);
 772			dev_put(dev);
 773			return err;
 774		}
 775		break;
 
 776	case VIFF_USE_IFINDEX:
 777	case 0:
 778		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 779			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 780			if (dev && !__in_dev_get_rtnl(dev)) {
 781				dev_put(dev);
 782				return -EADDRNOTAVAIL;
 783			}
 784		} else {
 785			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 786		}
 787		if (!dev)
 788			return -EADDRNOTAVAIL;
 789		err = dev_set_allmulti(dev, 1);
 790		if (err) {
 791			dev_put(dev);
 792			return err;
 793		}
 794		break;
 795	default:
 796		return -EINVAL;
 797	}
 798
 799	in_dev = __in_dev_get_rtnl(dev);
 800	if (!in_dev) {
 801		dev_put(dev);
 802		return -EADDRNOTAVAIL;
 803	}
 804	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 805	inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
 806				    &in_dev->cnf);
 807	ip_rt_multicast_event(in_dev);
 808
 809	/* Fill in the VIF structures */
 810
 811	v->rate_limit = vifc->vifc_rate_limit;
 812	v->local = vifc->vifc_lcl_addr.s_addr;
 813	v->remote = vifc->vifc_rmt_addr.s_addr;
 814	v->flags = vifc->vifc_flags;
 815	if (!mrtsock)
 816		v->flags |= VIFF_STATIC;
 817	v->threshold = vifc->vifc_threshold;
 818	v->bytes_in = 0;
 819	v->bytes_out = 0;
 820	v->pkt_in = 0;
 821	v->pkt_out = 0;
 822	v->link = dev->ifindex;
 823	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
 824		v->link = dev_get_iflink(dev);
 825
 826	/* And finish update writing critical data */
 827	write_lock_bh(&mrt_lock);
 828	v->dev = dev;
 
 829	if (v->flags & VIFF_REGISTER)
 830		mrt->mroute_reg_vif_num = vifi;
 
 831	if (vifi+1 > mrt->maxvif)
 832		mrt->maxvif = vifi+1;
 833	write_unlock_bh(&mrt_lock);
 834	return 0;
 835}
 836
 837/* called with rcu_read_lock() */
 838static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 839					 __be32 origin,
 840					 __be32 mcastgrp)
 841{
 842	int line = MFC_HASH(mcastgrp, origin);
 843	struct mfc_cache *c;
 844
 845	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
 846		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
 847			return c;
 848	}
 849	return NULL;
 850}
 851
 852/* Look for a (*,*,oif) entry */
 853static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
 854						    int vifi)
 855{
 856	int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
 857	struct mfc_cache *c;
 858
 859	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
 860		if (c->mfc_origin == htonl(INADDR_ANY) &&
 861		    c->mfc_mcastgrp == htonl(INADDR_ANY) &&
 862		    c->mfc_un.res.ttls[vifi] < 255)
 863			return c;
 864
 865	return NULL;
 866}
 867
 868/* Look for a (*,G) entry */
 869static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
 870					     __be32 mcastgrp, int vifi)
 871{
 872	int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
 873	struct mfc_cache *c, *proxy;
 874
 875	if (mcastgrp == htonl(INADDR_ANY))
 876		goto skip;
 877
 878	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
 879		if (c->mfc_origin == htonl(INADDR_ANY) &&
 880		    c->mfc_mcastgrp == mcastgrp) {
 881			if (c->mfc_un.res.ttls[vifi] < 255)
 882				return c;
 883
 884			/* It's ok if the vifi is part of the static tree */
 885			proxy = ipmr_cache_find_any_parent(mrt,
 886							   c->mfc_parent);
 887			if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
 888				return c;
 889		}
 890
 891skip:
 892	return ipmr_cache_find_any_parent(mrt, vifi);
 893}
 894
 895/* Allocate a multicast cache entry */
 896static struct mfc_cache *ipmr_cache_alloc(void)
 897{
 898	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 899
 900	if (c) {
 901		c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
 902		c->mfc_un.res.minvif = MAXVIFS;
 903	}
 904	return c;
 905}
 906
 907static struct mfc_cache *ipmr_cache_alloc_unres(void)
 908{
 909	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 910
 911	if (c) {
 912		skb_queue_head_init(&c->mfc_un.unres.unresolved);
 913		c->mfc_un.unres.expires = jiffies + 10*HZ;
 914	}
 915	return c;
 916}
 917
 918/* A cache entry has gone into a resolved state from queued */
 
 
 
 919static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 920			       struct mfc_cache *uc, struct mfc_cache *c)
 921{
 922	struct sk_buff *skb;
 923	struct nlmsgerr *e;
 924
 925	/* Play the pending entries through our router */
 
 926	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
 927		if (ip_hdr(skb)->version == 0) {
 928			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 929
 930			if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
 931				nlh->nlmsg_len = skb_tail_pointer(skb) -
 932						 (u8 *)nlh;
 933			} else {
 934				nlh->nlmsg_type = NLMSG_ERROR;
 935				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 936				skb_trim(skb, nlh->nlmsg_len);
 937				e = nlmsg_data(nlh);
 938				e->error = -EMSGSIZE;
 939				memset(&e->msg, 0, sizeof(e->msg));
 940			}
 941
 942			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 943		} else {
 944			ip_mr_forward(net, mrt, skb, c, 0);
 945		}
 946	}
 947}
 948
 949/* Bounce a cache query up to mrouted. We could use netlink for this but mrouted
 950 * expects the following bizarre scheme.
 
 951 *
 952 * Called under mrt_lock.
 953 */
 
 954static int ipmr_cache_report(struct mr_table *mrt,
 955			     struct sk_buff *pkt, vifi_t vifi, int assert)
 956{
 
 957	const int ihl = ip_hdrlen(pkt);
 958	struct sock *mroute_sk;
 959	struct igmphdr *igmp;
 960	struct igmpmsg *msg;
 961	struct sk_buff *skb;
 962	int ret;
 963
 
 964	if (assert == IGMPMSG_WHOLEPKT)
 965		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
 966	else
 
 967		skb = alloc_skb(128, GFP_ATOMIC);
 968
 969	if (!skb)
 970		return -ENOBUFS;
 971
 
 972	if (assert == IGMPMSG_WHOLEPKT) {
 973		/* Ugly, but we have no choice with this interface.
 974		 * Duplicate old header, fix ihl, length etc.
 975		 * And all this only to mangle msg->im_msgtype and
 976		 * to set msg->im_mbz to "mbz" :-)
 977		 */
 978		skb_push(skb, sizeof(struct iphdr));
 979		skb_reset_network_header(skb);
 980		skb_reset_transport_header(skb);
 981		msg = (struct igmpmsg *)skb_network_header(skb);
 982		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
 983		msg->im_msgtype = IGMPMSG_WHOLEPKT;
 984		msg->im_mbz = 0;
 985		msg->im_vif = mrt->mroute_reg_vif_num;
 986		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
 987		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
 988					     sizeof(struct iphdr));
 989	} else {
 990		/* Copy the IP header */
 991		skb_set_network_header(skb, skb->len);
 992		skb_put(skb, ihl);
 993		skb_copy_to_linear_data(skb, pkt->data, ihl);
 994		/* Flag to the kernel this is a route add */
 995		ip_hdr(skb)->protocol = 0;
 996		msg = (struct igmpmsg *)skb_network_header(skb);
 997		msg->im_vif = vifi;
 998		skb_dst_set(skb, dst_clone(skb_dst(pkt)));
 999		/* Add our header */
1000		igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
1001		igmp->type = assert;
1002		msg->im_msgtype = assert;
1003		igmp->code = 0;
1004		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1005		skb->transport_header = skb->network_header;
 
 
 
 
 
1006	}
1007
1008	rcu_read_lock();
1009	mroute_sk = rcu_dereference(mrt->mroute_sk);
1010	if (!mroute_sk) {
1011		rcu_read_unlock();
1012		kfree_skb(skb);
1013		return -EINVAL;
1014	}
1015
1016	/* Deliver to mrouted */
 
1017	ret = sock_queue_rcv_skb(mroute_sk, skb);
1018	rcu_read_unlock();
1019	if (ret < 0) {
1020		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1021		kfree_skb(skb);
1022	}
1023
1024	return ret;
1025}
1026
1027/* Queue a packet for resolution. It gets locked cache entry! */
1028static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1029				 struct sk_buff *skb)
 
 
 
1030{
1031	bool found = false;
1032	int err;
1033	struct mfc_cache *c;
1034	const struct iphdr *iph = ip_hdr(skb);
1035
1036	spin_lock_bh(&mfc_unres_lock);
1037	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1038		if (c->mfc_mcastgrp == iph->daddr &&
1039		    c->mfc_origin == iph->saddr) {
1040			found = true;
1041			break;
1042		}
1043	}
1044
1045	if (!found) {
1046		/* Create a new entry if allowable */
 
1047		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1048		    (c = ipmr_cache_alloc_unres()) == NULL) {
1049			spin_unlock_bh(&mfc_unres_lock);
1050
1051			kfree_skb(skb);
1052			return -ENOBUFS;
1053		}
1054
1055		/* Fill in the new cache entry */
 
1056		c->mfc_parent	= -1;
1057		c->mfc_origin	= iph->saddr;
1058		c->mfc_mcastgrp	= iph->daddr;
1059
1060		/* Reflect first query at mrouted. */
 
1061		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1062		if (err < 0) {
1063			/* If the report failed throw the cache entry
1064			   out - Brad Parker
1065			 */
1066			spin_unlock_bh(&mfc_unres_lock);
1067
1068			ipmr_cache_free(c);
1069			kfree_skb(skb);
1070			return err;
1071		}
1072
1073		atomic_inc(&mrt->cache_resolve_queue_len);
1074		list_add(&c->list, &mrt->mfc_unres_queue);
1075		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1076
1077		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1078			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1079	}
1080
1081	/* See if we can append the packet */
 
1082	if (c->mfc_un.unres.unresolved.qlen > 3) {
1083		kfree_skb(skb);
1084		err = -ENOBUFS;
1085	} else {
1086		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1087		err = 0;
1088	}
1089
1090	spin_unlock_bh(&mfc_unres_lock);
1091	return err;
1092}
1093
1094/* MFC cache manipulation by user space mroute daemon */
 
 
1095
1096static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1097{
1098	int line;
1099	struct mfc_cache *c, *next;
1100
1101	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1102
1103	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1104		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1105		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1106		    (parent == -1 || parent == c->mfc_parent)) {
1107			list_del_rcu(&c->list);
1108			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1109			ipmr_cache_free(c);
1110			return 0;
1111		}
1112	}
1113	return -ENOENT;
1114}
1115
1116static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1117			struct mfcctl *mfc, int mrtsock, int parent)
1118{
1119	bool found = false;
1120	int line;
1121	struct mfc_cache *uc, *c;
1122
1123	if (mfc->mfcc_parent >= MAXVIFS)
1124		return -ENFILE;
1125
1126	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1127
1128	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1129		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1130		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1131		    (parent == -1 || parent == c->mfc_parent)) {
1132			found = true;
1133			break;
1134		}
1135	}
1136
1137	if (found) {
1138		write_lock_bh(&mrt_lock);
1139		c->mfc_parent = mfc->mfcc_parent;
1140		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1141		if (!mrtsock)
1142			c->mfc_flags |= MFC_STATIC;
1143		write_unlock_bh(&mrt_lock);
1144		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1145		return 0;
1146	}
1147
1148	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1149	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1150		return -EINVAL;
1151
1152	c = ipmr_cache_alloc();
1153	if (!c)
1154		return -ENOMEM;
1155
1156	c->mfc_origin = mfc->mfcc_origin.s_addr;
1157	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1158	c->mfc_parent = mfc->mfcc_parent;
1159	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1160	if (!mrtsock)
1161		c->mfc_flags |= MFC_STATIC;
1162
1163	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1164
1165	/* Check to see if we resolved a queued list. If so we
1166	 * need to send on the frames and tidy up.
 
1167	 */
1168	found = false;
1169	spin_lock_bh(&mfc_unres_lock);
1170	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1171		if (uc->mfc_origin == c->mfc_origin &&
1172		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1173			list_del(&uc->list);
1174			atomic_dec(&mrt->cache_resolve_queue_len);
1175			found = true;
1176			break;
1177		}
1178	}
1179	if (list_empty(&mrt->mfc_unres_queue))
1180		del_timer(&mrt->ipmr_expire_timer);
1181	spin_unlock_bh(&mfc_unres_lock);
1182
1183	if (found) {
1184		ipmr_cache_resolve(net, mrt, uc, c);
1185		ipmr_cache_free(uc);
1186	}
1187	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1188	return 0;
1189}
1190
1191/* Close the multicast socket, and clear the vif tables etc */
1192static void mroute_clean_tables(struct mr_table *mrt, bool all)
 
 
 
1193{
1194	int i;
1195	LIST_HEAD(list);
1196	struct mfc_cache *c, *next;
1197
1198	/* Shut down all active vif entries */
 
1199	for (i = 0; i < mrt->maxvif; i++) {
1200		if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1201			continue;
1202		vif_delete(mrt, i, 0, &list);
1203	}
1204	unregister_netdevice_many(&list);
1205
1206	/* Wipe the cache */
 
1207	for (i = 0; i < MFC_LINES; i++) {
1208		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1209			if (!all && (c->mfc_flags & MFC_STATIC))
1210				continue;
1211			list_del_rcu(&c->list);
1212			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1213			ipmr_cache_free(c);
1214		}
1215	}
1216
1217	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1218		spin_lock_bh(&mfc_unres_lock);
1219		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1220			list_del(&c->list);
1221			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1222			ipmr_destroy_unres(mrt, c);
1223		}
1224		spin_unlock_bh(&mfc_unres_lock);
1225	}
1226}
1227
1228/* called from ip_ra_control(), before an RCU grace period,
1229 * we dont need to call synchronize_rcu() here
1230 */
1231static void mrtsock_destruct(struct sock *sk)
1232{
1233	struct net *net = sock_net(sk);
1234	struct mr_table *mrt;
1235
1236	rtnl_lock();
1237	ipmr_for_each_table(mrt, net) {
1238		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1239			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1240			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1241						    NETCONFA_IFINDEX_ALL,
1242						    net->ipv4.devconf_all);
1243			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1244			mroute_clean_tables(mrt, false);
1245		}
1246	}
1247	rtnl_unlock();
1248}
1249
1250/* Socket options and virtual interface manipulation. The whole
1251 * virtual interface system is a complete heap, but unfortunately
1252 * that's how BSD mrouted happens to think. Maybe one day with a proper
1253 * MOSPF/PIM router set up we can clean this up.
 
1254 */
1255
1256int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1257			 unsigned int optlen)
1258{
 
 
 
1259	struct net *net = sock_net(sk);
1260	int val, ret = 0, parent = 0;
1261	struct mr_table *mrt;
1262	struct vifctl vif;
1263	struct mfcctl mfc;
1264	u32 uval;
1265
1266	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1267	rtnl_lock();
1268	if (sk->sk_type != SOCK_RAW ||
1269	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1270		ret = -EOPNOTSUPP;
1271		goto out_unlock;
1272	}
1273
1274	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1275	if (!mrt) {
1276		ret = -ENOENT;
1277		goto out_unlock;
1278	}
1279	if (optname != MRT_INIT) {
1280		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1281		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1282			ret = -EACCES;
1283			goto out_unlock;
1284		}
1285	}
1286
1287	switch (optname) {
1288	case MRT_INIT:
1289		if (optlen != sizeof(int)) {
1290			ret = -EINVAL;
1291			break;
1292		}
 
 
 
1293		if (rtnl_dereference(mrt->mroute_sk)) {
1294			ret = -EADDRINUSE;
1295			break;
1296		}
1297
1298		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1299		if (ret == 0) {
1300			rcu_assign_pointer(mrt->mroute_sk, sk);
1301			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1302			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1303						    NETCONFA_IFINDEX_ALL,
1304						    net->ipv4.devconf_all);
1305		}
1306		break;
 
1307	case MRT_DONE:
1308		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1309			ret = -EACCES;
1310		} else {
1311			/* We need to unlock here because mrtsock_destruct takes
1312			 * care of rtnl itself and we can't change that due to
1313			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1314			 */
1315			rtnl_unlock();
1316			ret = ip_ra_control(sk, 0, NULL);
1317			goto out;
1318		}
1319		break;
1320	case MRT_ADD_VIF:
1321	case MRT_DEL_VIF:
1322		if (optlen != sizeof(vif)) {
1323			ret = -EINVAL;
1324			break;
1325		}
1326		if (copy_from_user(&vif, optval, sizeof(vif))) {
1327			ret = -EFAULT;
1328			break;
1329		}
1330		if (vif.vifc_vifi >= MAXVIFS) {
1331			ret = -ENFILE;
1332			break;
1333		}
1334		if (optname == MRT_ADD_VIF) {
1335			ret = vif_add(net, mrt, &vif,
1336				      sk == rtnl_dereference(mrt->mroute_sk));
1337		} else {
1338			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1339		}
1340		break;
1341	/* Manipulate the forwarding caches. These live
1342	 * in a sort of kernel/user symbiosis.
1343	 */
 
 
 
1344	case MRT_ADD_MFC:
1345	case MRT_DEL_MFC:
1346		parent = -1;
1347	case MRT_ADD_MFC_PROXY:
1348	case MRT_DEL_MFC_PROXY:
1349		if (optlen != sizeof(mfc)) {
1350			ret = -EINVAL;
1351			break;
1352		}
1353		if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1354			ret = -EFAULT;
1355			break;
1356		}
1357		if (parent == 0)
1358			parent = mfc.mfcc_parent;
1359		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1360			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1361		else
1362			ret = ipmr_mfc_add(net, mrt, &mfc,
1363					   sk == rtnl_dereference(mrt->mroute_sk),
1364					   parent);
1365		break;
1366	/* Control PIM assert. */
 
 
1367	case MRT_ASSERT:
1368		if (optlen != sizeof(val)) {
1369			ret = -EINVAL;
1370			break;
1371		}
1372		if (get_user(val, (int __user *)optval)) {
1373			ret = -EFAULT;
1374			break;
1375		}
1376		mrt->mroute_do_assert = val;
1377		break;
1378	case MRT_PIM:
1379		if (!ipmr_pimsm_enabled()) {
1380			ret = -ENOPROTOOPT;
1381			break;
1382		}
1383		if (optlen != sizeof(val)) {
1384			ret = -EINVAL;
1385			break;
1386		}
1387		if (get_user(val, (int __user *)optval)) {
1388			ret = -EFAULT;
1389			break;
1390		}
1391
1392		val = !!val;
1393		if (val != mrt->mroute_do_pim) {
1394			mrt->mroute_do_pim = val;
1395			mrt->mroute_do_assert = val;
 
1396		}
1397		break;
 
 
 
 
1398	case MRT_TABLE:
1399		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1400			ret = -ENOPROTOOPT;
1401			break;
1402		}
1403		if (optlen != sizeof(uval)) {
1404			ret = -EINVAL;
1405			break;
1406		}
1407		if (get_user(uval, (u32 __user *)optval)) {
1408			ret = -EFAULT;
1409			break;
1410		}
1411
 
 
1412		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1413			ret = -EBUSY;
1414		} else {
1415			mrt = ipmr_new_table(net, uval);
1416			if (IS_ERR(mrt))
1417				ret = PTR_ERR(mrt);
1418			else
1419				raw_sk(sk)->ipmr_table = uval;
1420		}
1421		break;
1422	/* Spurious command, or MRT_VERSION which you cannot set. */
 
 
 
 
 
 
1423	default:
1424		ret = -ENOPROTOOPT;
1425	}
1426out_unlock:
1427	rtnl_unlock();
1428out:
1429	return ret;
1430}
1431
1432/* Getsock opt support for the multicast routing system. */
 
 
 
1433int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1434{
1435	int olr;
1436	int val;
1437	struct net *net = sock_net(sk);
1438	struct mr_table *mrt;
1439
1440	if (sk->sk_type != SOCK_RAW ||
1441	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1442		return -EOPNOTSUPP;
1443
1444	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1445	if (!mrt)
1446		return -ENOENT;
1447
1448	switch (optname) {
1449	case MRT_VERSION:
1450		val = 0x0305;
1451		break;
1452	case MRT_PIM:
1453		if (!ipmr_pimsm_enabled())
1454			return -ENOPROTOOPT;
1455		val = mrt->mroute_do_pim;
1456		break;
1457	case MRT_ASSERT:
1458		val = mrt->mroute_do_assert;
1459		break;
1460	default:
1461		return -ENOPROTOOPT;
1462	}
1463
1464	if (get_user(olr, optlen))
1465		return -EFAULT;
 
1466	olr = min_t(unsigned int, olr, sizeof(int));
1467	if (olr < 0)
1468		return -EINVAL;
 
1469	if (put_user(olr, optlen))
1470		return -EFAULT;
 
 
 
 
 
 
 
 
1471	if (copy_to_user(optval, &val, olr))
1472		return -EFAULT;
1473	return 0;
1474}
1475
1476/* The IP multicast ioctl support routines. */
 
 
 
1477int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1478{
1479	struct sioc_sg_req sr;
1480	struct sioc_vif_req vr;
1481	struct vif_device *vif;
1482	struct mfc_cache *c;
1483	struct net *net = sock_net(sk);
1484	struct mr_table *mrt;
1485
1486	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1487	if (!mrt)
1488		return -ENOENT;
1489
1490	switch (cmd) {
1491	case SIOCGETVIFCNT:
1492		if (copy_from_user(&vr, arg, sizeof(vr)))
1493			return -EFAULT;
1494		if (vr.vifi >= mrt->maxvif)
1495			return -EINVAL;
1496		read_lock(&mrt_lock);
1497		vif = &mrt->vif_table[vr.vifi];
1498		if (VIF_EXISTS(mrt, vr.vifi)) {
1499			vr.icount = vif->pkt_in;
1500			vr.ocount = vif->pkt_out;
1501			vr.ibytes = vif->bytes_in;
1502			vr.obytes = vif->bytes_out;
1503			read_unlock(&mrt_lock);
1504
1505			if (copy_to_user(arg, &vr, sizeof(vr)))
1506				return -EFAULT;
1507			return 0;
1508		}
1509		read_unlock(&mrt_lock);
1510		return -EADDRNOTAVAIL;
1511	case SIOCGETSGCNT:
1512		if (copy_from_user(&sr, arg, sizeof(sr)))
1513			return -EFAULT;
1514
1515		rcu_read_lock();
1516		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1517		if (c) {
1518			sr.pktcnt = c->mfc_un.res.pkt;
1519			sr.bytecnt = c->mfc_un.res.bytes;
1520			sr.wrong_if = c->mfc_un.res.wrong_if;
1521			rcu_read_unlock();
1522
1523			if (copy_to_user(arg, &sr, sizeof(sr)))
1524				return -EFAULT;
1525			return 0;
1526		}
1527		rcu_read_unlock();
1528		return -EADDRNOTAVAIL;
1529	default:
1530		return -ENOIOCTLCMD;
1531	}
1532}
1533
1534#ifdef CONFIG_COMPAT
1535struct compat_sioc_sg_req {
1536	struct in_addr src;
1537	struct in_addr grp;
1538	compat_ulong_t pktcnt;
1539	compat_ulong_t bytecnt;
1540	compat_ulong_t wrong_if;
1541};
1542
1543struct compat_sioc_vif_req {
1544	vifi_t	vifi;		/* Which iface */
1545	compat_ulong_t icount;
1546	compat_ulong_t ocount;
1547	compat_ulong_t ibytes;
1548	compat_ulong_t obytes;
1549};
1550
1551int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1552{
1553	struct compat_sioc_sg_req sr;
1554	struct compat_sioc_vif_req vr;
1555	struct vif_device *vif;
1556	struct mfc_cache *c;
1557	struct net *net = sock_net(sk);
1558	struct mr_table *mrt;
1559
1560	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1561	if (!mrt)
1562		return -ENOENT;
1563
1564	switch (cmd) {
1565	case SIOCGETVIFCNT:
1566		if (copy_from_user(&vr, arg, sizeof(vr)))
1567			return -EFAULT;
1568		if (vr.vifi >= mrt->maxvif)
1569			return -EINVAL;
1570		read_lock(&mrt_lock);
1571		vif = &mrt->vif_table[vr.vifi];
1572		if (VIF_EXISTS(mrt, vr.vifi)) {
1573			vr.icount = vif->pkt_in;
1574			vr.ocount = vif->pkt_out;
1575			vr.ibytes = vif->bytes_in;
1576			vr.obytes = vif->bytes_out;
1577			read_unlock(&mrt_lock);
1578
1579			if (copy_to_user(arg, &vr, sizeof(vr)))
1580				return -EFAULT;
1581			return 0;
1582		}
1583		read_unlock(&mrt_lock);
1584		return -EADDRNOTAVAIL;
1585	case SIOCGETSGCNT:
1586		if (copy_from_user(&sr, arg, sizeof(sr)))
1587			return -EFAULT;
1588
1589		rcu_read_lock();
1590		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1591		if (c) {
1592			sr.pktcnt = c->mfc_un.res.pkt;
1593			sr.bytecnt = c->mfc_un.res.bytes;
1594			sr.wrong_if = c->mfc_un.res.wrong_if;
1595			rcu_read_unlock();
1596
1597			if (copy_to_user(arg, &sr, sizeof(sr)))
1598				return -EFAULT;
1599			return 0;
1600		}
1601		rcu_read_unlock();
1602		return -EADDRNOTAVAIL;
1603	default:
1604		return -ENOIOCTLCMD;
1605	}
1606}
1607#endif
1608
 
1609static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1610{
1611	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1612	struct net *net = dev_net(dev);
1613	struct mr_table *mrt;
1614	struct vif_device *v;
1615	int ct;
1616
1617	if (event != NETDEV_UNREGISTER)
1618		return NOTIFY_DONE;
1619
1620	ipmr_for_each_table(mrt, net) {
1621		v = &mrt->vif_table[0];
1622		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1623			if (v->dev == dev)
1624				vif_delete(mrt, ct, 1, NULL);
1625		}
1626	}
1627	return NOTIFY_DONE;
1628}
1629
 
1630static struct notifier_block ip_mr_notifier = {
1631	.notifier_call = ipmr_device_event,
1632};
1633
1634/* Encapsulate a packet by attaching a valid IPIP header to it.
1635 * This avoids tunnel drivers and other mess and gives us the speed so
1636 * important for multicast video.
 
1637 */
1638static void ip_encap(struct net *net, struct sk_buff *skb,
1639		     __be32 saddr, __be32 daddr)
1640{
1641	struct iphdr *iph;
1642	const struct iphdr *old_iph = ip_hdr(skb);
1643
1644	skb_push(skb, sizeof(struct iphdr));
1645	skb->transport_header = skb->network_header;
1646	skb_reset_network_header(skb);
1647	iph = ip_hdr(skb);
1648
1649	iph->version	=	4;
1650	iph->tos	=	old_iph->tos;
1651	iph->ttl	=	old_iph->ttl;
1652	iph->frag_off	=	0;
1653	iph->daddr	=	daddr;
1654	iph->saddr	=	saddr;
1655	iph->protocol	=	IPPROTO_IPIP;
1656	iph->ihl	=	5;
1657	iph->tot_len	=	htons(skb->len);
1658	ip_select_ident(net, skb, NULL);
1659	ip_send_check(iph);
1660
1661	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1662	nf_reset(skb);
1663}
1664
1665static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1666				      struct sk_buff *skb)
1667{
1668	struct ip_options *opt = &(IPCB(skb)->opt);
1669
1670	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1671	IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1672
1673	if (unlikely(opt->optlen))
1674		ip_forward_options(skb);
1675
1676	return dst_output(net, sk, skb);
1677}
1678
1679/* Processing handlers for ipmr_forward */
 
 
1680
1681static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1682			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1683{
1684	const struct iphdr *iph = ip_hdr(skb);
1685	struct vif_device *vif = &mrt->vif_table[vifi];
1686	struct net_device *dev;
1687	struct rtable *rt;
1688	struct flowi4 fl4;
1689	int    encap = 0;
1690
1691	if (!vif->dev)
1692		goto out_free;
1693
 
1694	if (vif->flags & VIFF_REGISTER) {
1695		vif->pkt_out++;
1696		vif->bytes_out += skb->len;
1697		vif->dev->stats.tx_bytes += skb->len;
1698		vif->dev->stats.tx_packets++;
1699		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1700		goto out_free;
1701	}
 
1702
1703	if (vif->flags & VIFF_TUNNEL) {
1704		rt = ip_route_output_ports(net, &fl4, NULL,
1705					   vif->remote, vif->local,
1706					   0, 0,
1707					   IPPROTO_IPIP,
1708					   RT_TOS(iph->tos), vif->link);
1709		if (IS_ERR(rt))
1710			goto out_free;
1711		encap = sizeof(struct iphdr);
1712	} else {
1713		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1714					   0, 0,
1715					   IPPROTO_IPIP,
1716					   RT_TOS(iph->tos), vif->link);
1717		if (IS_ERR(rt))
1718			goto out_free;
1719	}
1720
1721	dev = rt->dst.dev;
1722
1723	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1724		/* Do not fragment multicasts. Alas, IPv4 does not
1725		 * allow to send ICMP, so that packets will disappear
1726		 * to blackhole.
1727		 */
1728		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
 
1729		ip_rt_put(rt);
1730		goto out_free;
1731	}
1732
1733	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1734
1735	if (skb_cow(skb, encap)) {
1736		ip_rt_put(rt);
1737		goto out_free;
1738	}
1739
1740	vif->pkt_out++;
1741	vif->bytes_out += skb->len;
1742
1743	skb_dst_drop(skb);
1744	skb_dst_set(skb, &rt->dst);
1745	ip_decrease_ttl(ip_hdr(skb));
1746
1747	/* FIXME: forward and output firewalls used to be called here.
1748	 * What do we do with netfilter? -- RR
1749	 */
1750	if (vif->flags & VIFF_TUNNEL) {
1751		ip_encap(net, skb, vif->local, vif->remote);
1752		/* FIXME: extra output firewall step used to be here. --RR */
1753		vif->dev->stats.tx_packets++;
1754		vif->dev->stats.tx_bytes += skb->len;
1755	}
1756
1757	IPCB(skb)->flags |= IPSKB_FORWARDED;
1758
1759	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
 
1760	 * not only before forwarding, but after forwarding on all output
1761	 * interfaces. It is clear, if mrouter runs a multicasting
1762	 * program, it should receive packets not depending to what interface
1763	 * program is joined.
1764	 * If we will not make it, the program will have to join on all
1765	 * interfaces. On the other hand, multihoming host (or router, but
1766	 * not mrouter) cannot join to more than one interface - it will
1767	 * result in receiving multiple packets.
1768	 */
1769	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1770		net, NULL, skb, skb->dev, dev,
1771		ipmr_forward_finish);
1772	return;
1773
1774out_free:
1775	kfree_skb(skb);
1776}
1777
1778static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1779{
1780	int ct;
1781
1782	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1783		if (mrt->vif_table[ct].dev == dev)
1784			break;
1785	}
1786	return ct;
1787}
1788
1789/* "local" means that we should preserve one skb (for local delivery) */
1790static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1791			  struct sk_buff *skb, struct mfc_cache *cache,
1792			  int local)
 
1793{
1794	int psend = -1;
1795	int vif, ct;
1796	int true_vifi = ipmr_find_vif(mrt, skb->dev);
1797
1798	vif = cache->mfc_parent;
1799	cache->mfc_un.res.pkt++;
1800	cache->mfc_un.res.bytes += skb->len;
1801	cache->mfc_un.res.lastuse = jiffies;
1802
1803	if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1804		struct mfc_cache *cache_proxy;
1805
1806		/* For an (*,G) entry, we only check that the incomming
1807		 * interface is part of the static tree.
1808		 */
1809		cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1810		if (cache_proxy &&
1811		    cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1812			goto forward;
1813	}
1814
1815	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1816	if (mrt->vif_table[vif].dev != skb->dev) {
1817		struct net_device *mdev;
1818
1819		mdev = l3mdev_master_dev_rcu(mrt->vif_table[vif].dev);
1820		if (mdev == skb->dev)
1821			goto forward;
1822
1823		if (rt_is_output_route(skb_rtable(skb))) {
1824			/* It is our own packet, looped back.
1825			 * Very complicated situation...
1826			 *
1827			 * The best workaround until routing daemons will be
1828			 * fixed is not to redistribute packet, if it was
1829			 * send through wrong interface. It means, that
1830			 * multicast applications WILL NOT work for
1831			 * (S,G), which have default multicast route pointing
1832			 * to wrong oif. In any case, it is not a good
1833			 * idea to use multicasting applications on router.
1834			 */
1835			goto dont_forward;
1836		}
1837
1838		cache->mfc_un.res.wrong_if++;
 
1839
1840		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1841		    /* pimsm uses asserts, when switching from RPT to SPT,
1842		     * so that we cannot check that packet arrived on an oif.
1843		     * It is bad, but otherwise we would need to move pretty
1844		     * large chunk of pimd to kernel. Ough... --ANK
1845		     */
1846		    (mrt->mroute_do_pim ||
1847		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1848		    time_after(jiffies,
1849			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1850			cache->mfc_un.res.last_assert = jiffies;
1851			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1852		}
1853		goto dont_forward;
1854	}
1855
1856forward:
1857	mrt->vif_table[vif].pkt_in++;
1858	mrt->vif_table[vif].bytes_in += skb->len;
1859
1860	/* Forward the frame */
1861	if (cache->mfc_origin == htonl(INADDR_ANY) &&
1862	    cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1863		if (true_vifi >= 0 &&
1864		    true_vifi != cache->mfc_parent &&
1865		    ip_hdr(skb)->ttl >
1866				cache->mfc_un.res.ttls[cache->mfc_parent]) {
1867			/* It's an (*,*) entry and the packet is not coming from
1868			 * the upstream: forward the packet to the upstream
1869			 * only.
1870			 */
1871			psend = cache->mfc_parent;
1872			goto last_forward;
1873		}
1874		goto dont_forward;
1875	}
1876	for (ct = cache->mfc_un.res.maxvif - 1;
1877	     ct >= cache->mfc_un.res.minvif; ct--) {
1878		/* For (*,G) entry, don't forward to the incoming interface */
1879		if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1880		     ct != true_vifi) &&
1881		    ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1882			if (psend != -1) {
1883				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1884
1885				if (skb2)
1886					ipmr_queue_xmit(net, mrt, skb2, cache,
1887							psend);
1888			}
1889			psend = ct;
1890		}
1891	}
1892last_forward:
1893	if (psend != -1) {
1894		if (local) {
1895			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1896
1897			if (skb2)
1898				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1899		} else {
1900			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1901			return;
1902		}
1903	}
1904
1905dont_forward:
1906	if (!local)
1907		kfree_skb(skb);
 
1908}
1909
1910static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1911{
1912	struct rtable *rt = skb_rtable(skb);
1913	struct iphdr *iph = ip_hdr(skb);
1914	struct flowi4 fl4 = {
1915		.daddr = iph->daddr,
1916		.saddr = iph->saddr,
1917		.flowi4_tos = RT_TOS(iph->tos),
1918		.flowi4_oif = (rt_is_output_route(rt) ?
1919			       skb->dev->ifindex : 0),
1920		.flowi4_iif = (rt_is_output_route(rt) ?
1921			       LOOPBACK_IFINDEX :
1922			       skb->dev->ifindex),
1923		.flowi4_mark = skb->mark,
1924	};
1925	struct mr_table *mrt;
1926	int err;
1927
1928	err = ipmr_fib_lookup(net, &fl4, &mrt);
1929	if (err)
1930		return ERR_PTR(err);
1931	return mrt;
1932}
1933
1934/* Multicast packets for forwarding arrive here
1935 * Called with rcu_read_lock();
 
1936 */
 
1937int ip_mr_input(struct sk_buff *skb)
1938{
1939	struct mfc_cache *cache;
1940	struct net *net = dev_net(skb->dev);
1941	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1942	struct mr_table *mrt;
1943
1944	/* Packet is looped back after forward, it should not be
1945	 * forwarded second time, but still can be delivered locally.
1946	 */
1947	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1948		goto dont_forward;
1949
1950	mrt = ipmr_rt_fib_lookup(net, skb);
1951	if (IS_ERR(mrt)) {
1952		kfree_skb(skb);
1953		return PTR_ERR(mrt);
1954	}
1955	if (!local) {
1956		if (IPCB(skb)->opt.router_alert) {
1957			if (ip_call_ra_chain(skb))
1958				return 0;
1959		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1960			/* IGMPv1 (and broken IGMPv2 implementations sort of
1961			 * Cisco IOS <= 11.2(8)) do not put router alert
1962			 * option to IGMP packets destined to routable
1963			 * groups. It is very bad, because it means
1964			 * that we can forward NO IGMP messages.
1965			 */
1966			struct sock *mroute_sk;
1967
1968			mroute_sk = rcu_dereference(mrt->mroute_sk);
1969			if (mroute_sk) {
1970				nf_reset(skb);
1971				raw_rcv(mroute_sk, skb);
1972				return 0;
1973			}
1974		    }
1975	}
1976
1977	/* already under rcu_read_lock() */
1978	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1979	if (!cache) {
1980		int vif = ipmr_find_vif(mrt, skb->dev);
1981
1982		if (vif >= 0)
1983			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1984						    vif);
1985	}
1986
1987	/* No usable cache entry */
1988	if (!cache) {
1989		int vif;
1990
1991		if (local) {
1992			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1993			ip_local_deliver(skb);
1994			if (!skb2)
1995				return -ENOBUFS;
1996			skb = skb2;
1997		}
1998
1999		read_lock(&mrt_lock);
2000		vif = ipmr_find_vif(mrt, skb->dev);
2001		if (vif >= 0) {
2002			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2003			read_unlock(&mrt_lock);
2004
2005			return err2;
2006		}
2007		read_unlock(&mrt_lock);
2008		kfree_skb(skb);
2009		return -ENODEV;
2010	}
2011
2012	read_lock(&mrt_lock);
2013	ip_mr_forward(net, mrt, skb, cache, local);
2014	read_unlock(&mrt_lock);
2015
2016	if (local)
2017		return ip_local_deliver(skb);
2018
2019	return 0;
2020
2021dont_forward:
2022	if (local)
2023		return ip_local_deliver(skb);
2024	kfree_skb(skb);
2025	return 0;
2026}
2027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2028#ifdef CONFIG_IP_PIMSM_V1
2029/* Handle IGMP messages of PIMv1 */
 
 
 
2030int pim_rcv_v1(struct sk_buff *skb)
2031{
2032	struct igmphdr *pim;
2033	struct net *net = dev_net(skb->dev);
2034	struct mr_table *mrt;
2035
2036	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2037		goto drop;
2038
2039	pim = igmp_hdr(skb);
2040
2041	mrt = ipmr_rt_fib_lookup(net, skb);
2042	if (IS_ERR(mrt))
2043		goto drop;
2044	if (!mrt->mroute_do_pim ||
2045	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2046		goto drop;
2047
2048	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2049drop:
2050		kfree_skb(skb);
2051	}
2052	return 0;
2053}
2054#endif
2055
2056#ifdef CONFIG_IP_PIMSM_V2
2057static int pim_rcv(struct sk_buff *skb)
2058{
2059	struct pimreghdr *pim;
2060	struct net *net = dev_net(skb->dev);
2061	struct mr_table *mrt;
2062
2063	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2064		goto drop;
2065
2066	pim = (struct pimreghdr *)skb_transport_header(skb);
2067	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2068	    (pim->flags & PIM_NULL_REGISTER) ||
2069	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2070	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2071		goto drop;
2072
2073	mrt = ipmr_rt_fib_lookup(net, skb);
2074	if (IS_ERR(mrt))
2075		goto drop;
2076	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2077drop:
2078		kfree_skb(skb);
2079	}
2080	return 0;
2081}
2082#endif
2083
2084static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2085			      struct mfc_cache *c, struct rtmsg *rtm)
2086{
2087	struct rta_mfc_stats mfcs;
2088	struct nlattr *mp_attr;
2089	struct rtnexthop *nhp;
2090	unsigned long lastuse;
2091	int ct;
2092
2093	/* If cache is unresolved, don't try to parse IIF and OIF */
2094	if (c->mfc_parent >= MAXVIFS)
2095		return -ENOENT;
2096
2097	if (VIF_EXISTS(mrt, c->mfc_parent) &&
2098	    nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2099		return -EMSGSIZE;
2100
2101	if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2102		return -EMSGSIZE;
2103
2104	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2105		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2106			if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2107				nla_nest_cancel(skb, mp_attr);
2108				return -EMSGSIZE;
2109			}
2110
2111			nhp->rtnh_flags = 0;
2112			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2113			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2114			nhp->rtnh_len = sizeof(*nhp);
2115		}
2116	}
2117
2118	nla_nest_end(skb, mp_attr);
2119
2120	lastuse = READ_ONCE(c->mfc_un.res.lastuse);
2121	lastuse = time_after_eq(jiffies, lastuse) ? jiffies - lastuse : 0;
2122
2123	mfcs.mfcs_packets = c->mfc_un.res.pkt;
2124	mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2125	mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2126	if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) ||
2127	    nla_put_u64_64bit(skb, RTA_EXPIRES, jiffies_to_clock_t(lastuse),
2128			      RTA_PAD))
2129		return -EMSGSIZE;
2130
2131	rtm->rtm_type = RTN_MULTICAST;
2132	return 1;
 
 
 
 
2133}
2134
2135int ipmr_get_route(struct net *net, struct sk_buff *skb,
2136		   __be32 saddr, __be32 daddr,
2137		   struct rtmsg *rtm, int nowait, u32 portid)
2138{
2139	struct mfc_cache *cache;
2140	struct mr_table *mrt;
2141	int err;
2142
2143	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2144	if (!mrt)
2145		return -ENOENT;
2146
2147	rcu_read_lock();
2148	cache = ipmr_cache_find(mrt, saddr, daddr);
2149	if (!cache && skb->dev) {
2150		int vif = ipmr_find_vif(mrt, skb->dev);
2151
2152		if (vif >= 0)
2153			cache = ipmr_cache_find_any(mrt, daddr, vif);
2154	}
2155	if (!cache) {
2156		struct sk_buff *skb2;
2157		struct iphdr *iph;
2158		struct net_device *dev;
2159		int vif = -1;
2160
2161		if (nowait) {
2162			rcu_read_unlock();
2163			return -EAGAIN;
2164		}
2165
2166		dev = skb->dev;
2167		read_lock(&mrt_lock);
2168		if (dev)
2169			vif = ipmr_find_vif(mrt, dev);
2170		if (vif < 0) {
2171			read_unlock(&mrt_lock);
2172			rcu_read_unlock();
2173			return -ENODEV;
2174		}
2175		skb2 = skb_clone(skb, GFP_ATOMIC);
2176		if (!skb2) {
2177			read_unlock(&mrt_lock);
2178			rcu_read_unlock();
2179			return -ENOMEM;
2180		}
2181
2182		NETLINK_CB(skb2).portid = portid;
2183		skb_push(skb2, sizeof(struct iphdr));
2184		skb_reset_network_header(skb2);
2185		iph = ip_hdr(skb2);
2186		iph->ihl = sizeof(struct iphdr) >> 2;
2187		iph->saddr = saddr;
2188		iph->daddr = daddr;
2189		iph->version = 0;
2190		err = ipmr_cache_unresolved(mrt, vif, skb2);
2191		read_unlock(&mrt_lock);
2192		rcu_read_unlock();
2193		return err;
2194	}
2195
2196	read_lock(&mrt_lock);
 
 
2197	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2198	read_unlock(&mrt_lock);
2199	rcu_read_unlock();
2200	return err;
2201}
2202
2203static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2204			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2205			    int flags)
2206{
2207	struct nlmsghdr *nlh;
2208	struct rtmsg *rtm;
2209	int err;
2210
2211	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2212	if (!nlh)
2213		return -EMSGSIZE;
2214
2215	rtm = nlmsg_data(nlh);
2216	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2217	rtm->rtm_dst_len  = 32;
2218	rtm->rtm_src_len  = 32;
2219	rtm->rtm_tos      = 0;
2220	rtm->rtm_table    = mrt->id;
2221	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2222		goto nla_put_failure;
2223	rtm->rtm_type     = RTN_MULTICAST;
2224	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2225	if (c->mfc_flags & MFC_STATIC)
2226		rtm->rtm_protocol = RTPROT_STATIC;
2227	else
2228		rtm->rtm_protocol = RTPROT_MROUTED;
2229	rtm->rtm_flags    = 0;
2230
2231	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2232	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2233		goto nla_put_failure;
2234	err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2235	/* do not break the dump if cache is unresolved */
2236	if (err < 0 && err != -ENOENT)
2237		goto nla_put_failure;
2238
2239	nlmsg_end(skb, nlh);
2240	return 0;
2241
2242nla_put_failure:
2243	nlmsg_cancel(skb, nlh);
2244	return -EMSGSIZE;
2245}
2246
2247static size_t mroute_msgsize(bool unresolved, int maxvif)
2248{
2249	size_t len =
2250		NLMSG_ALIGN(sizeof(struct rtmsg))
2251		+ nla_total_size(4)	/* RTA_TABLE */
2252		+ nla_total_size(4)	/* RTA_SRC */
2253		+ nla_total_size(4)	/* RTA_DST */
2254		;
2255
2256	if (!unresolved)
2257		len = len
2258		      + nla_total_size(4)	/* RTA_IIF */
2259		      + nla_total_size(0)	/* RTA_MULTIPATH */
2260		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2261						/* RTA_MFC_STATS */
2262		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2263		;
2264
2265	return len;
2266}
2267
2268static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2269				 int cmd)
2270{
2271	struct net *net = read_pnet(&mrt->net);
2272	struct sk_buff *skb;
2273	int err = -ENOBUFS;
2274
2275	skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2276			GFP_ATOMIC);
2277	if (!skb)
2278		goto errout;
2279
2280	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2281	if (err < 0)
2282		goto errout;
2283
2284	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2285	return;
2286
2287errout:
2288	kfree_skb(skb);
2289	if (err < 0)
2290		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2291}
2292
2293static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2294{
2295	struct net *net = sock_net(skb->sk);
2296	struct mr_table *mrt;
2297	struct mfc_cache *mfc;
2298	unsigned int t = 0, s_t;
2299	unsigned int h = 0, s_h;
2300	unsigned int e = 0, s_e;
2301
2302	s_t = cb->args[0];
2303	s_h = cb->args[1];
2304	s_e = cb->args[2];
2305
2306	rcu_read_lock();
2307	ipmr_for_each_table(mrt, net) {
2308		if (t < s_t)
2309			goto next_table;
2310		if (t > s_t)
2311			s_h = 0;
2312		for (h = s_h; h < MFC_LINES; h++) {
2313			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2314				if (e < s_e)
2315					goto next_entry;
2316				if (ipmr_fill_mroute(mrt, skb,
2317						     NETLINK_CB(cb->skb).portid,
2318						     cb->nlh->nlmsg_seq,
2319						     mfc, RTM_NEWROUTE,
2320						     NLM_F_MULTI) < 0)
2321					goto done;
2322next_entry:
2323				e++;
2324			}
2325			e = s_e = 0;
2326		}
2327		spin_lock_bh(&mfc_unres_lock);
2328		list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2329			if (e < s_e)
2330				goto next_entry2;
2331			if (ipmr_fill_mroute(mrt, skb,
2332					     NETLINK_CB(cb->skb).portid,
2333					     cb->nlh->nlmsg_seq,
2334					     mfc, RTM_NEWROUTE,
2335					     NLM_F_MULTI) < 0) {
2336				spin_unlock_bh(&mfc_unres_lock);
2337				goto done;
2338			}
2339next_entry2:
2340			e++;
2341		}
2342		spin_unlock_bh(&mfc_unres_lock);
2343		e = s_e = 0;
2344		s_h = 0;
2345next_table:
2346		t++;
2347	}
2348done:
2349	rcu_read_unlock();
2350
2351	cb->args[2] = e;
2352	cb->args[1] = h;
2353	cb->args[0] = t;
2354
2355	return skb->len;
2356}
2357
2358static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2359	[RTA_SRC]	= { .type = NLA_U32 },
2360	[RTA_DST]	= { .type = NLA_U32 },
2361	[RTA_IIF]	= { .type = NLA_U32 },
2362	[RTA_TABLE]	= { .type = NLA_U32 },
2363	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2364};
2365
2366static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2367{
2368	switch (rtm_protocol) {
2369	case RTPROT_STATIC:
2370	case RTPROT_MROUTED:
2371		return true;
2372	}
2373	return false;
2374}
2375
2376static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2377{
2378	struct rtnexthop *rtnh = nla_data(nla);
2379	int remaining = nla_len(nla), vifi = 0;
2380
2381	while (rtnh_ok(rtnh, remaining)) {
2382		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2383		if (++vifi == MAXVIFS)
2384			break;
2385		rtnh = rtnh_next(rtnh, &remaining);
2386	}
2387
2388	return remaining > 0 ? -EINVAL : vifi;
2389}
2390
2391/* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2392static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2393			    struct mfcctl *mfcc, int *mrtsock,
2394			    struct mr_table **mrtret)
2395{
2396	struct net_device *dev = NULL;
2397	u32 tblid = RT_TABLE_DEFAULT;
2398	struct mr_table *mrt;
2399	struct nlattr *attr;
2400	struct rtmsg *rtm;
2401	int ret, rem;
2402
2403	ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy);
2404	if (ret < 0)
2405		goto out;
2406	rtm = nlmsg_data(nlh);
2407
2408	ret = -EINVAL;
2409	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2410	    rtm->rtm_type != RTN_MULTICAST ||
2411	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2412	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2413		goto out;
2414
2415	memset(mfcc, 0, sizeof(*mfcc));
2416	mfcc->mfcc_parent = -1;
2417	ret = 0;
2418	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2419		switch (nla_type(attr)) {
2420		case RTA_SRC:
2421			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2422			break;
2423		case RTA_DST:
2424			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2425			break;
2426		case RTA_IIF:
2427			dev = __dev_get_by_index(net, nla_get_u32(attr));
2428			if (!dev) {
2429				ret = -ENODEV;
2430				goto out;
2431			}
2432			break;
2433		case RTA_MULTIPATH:
2434			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2435				ret = -EINVAL;
2436				goto out;
2437			}
2438			break;
2439		case RTA_PREFSRC:
2440			ret = 1;
2441			break;
2442		case RTA_TABLE:
2443			tblid = nla_get_u32(attr);
2444			break;
2445		}
2446	}
2447	mrt = ipmr_get_table(net, tblid);
2448	if (!mrt) {
2449		ret = -ENOENT;
2450		goto out;
2451	}
2452	*mrtret = mrt;
2453	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2454	if (dev)
2455		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2456
2457out:
2458	return ret;
2459}
2460
2461/* takes care of both newroute and delroute */
2462static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh)
2463{
2464	struct net *net = sock_net(skb->sk);
2465	int ret, mrtsock, parent;
2466	struct mr_table *tbl;
2467	struct mfcctl mfcc;
2468
2469	mrtsock = 0;
2470	tbl = NULL;
2471	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl);
2472	if (ret < 0)
2473		return ret;
2474
2475	parent = ret ? mfcc.mfcc_parent : -1;
2476	if (nlh->nlmsg_type == RTM_NEWROUTE)
2477		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2478	else
2479		return ipmr_mfc_delete(tbl, &mfcc, parent);
2480}
2481
2482#ifdef CONFIG_PROC_FS
2483/* The /proc interfaces to multicast routing :
2484 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
 
2485 */
2486struct ipmr_vif_iter {
2487	struct seq_net_private p;
2488	struct mr_table *mrt;
2489	int ct;
2490};
2491
2492static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2493					   struct ipmr_vif_iter *iter,
2494					   loff_t pos)
2495{
2496	struct mr_table *mrt = iter->mrt;
2497
2498	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2499		if (!VIF_EXISTS(mrt, iter->ct))
2500			continue;
2501		if (pos-- == 0)
2502			return &mrt->vif_table[iter->ct];
2503	}
2504	return NULL;
2505}
2506
2507static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2508	__acquires(mrt_lock)
2509{
2510	struct ipmr_vif_iter *iter = seq->private;
2511	struct net *net = seq_file_net(seq);
2512	struct mr_table *mrt;
2513
2514	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2515	if (!mrt)
2516		return ERR_PTR(-ENOENT);
2517
2518	iter->mrt = mrt;
2519
2520	read_lock(&mrt_lock);
2521	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2522		: SEQ_START_TOKEN;
2523}
2524
2525static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2526{
2527	struct ipmr_vif_iter *iter = seq->private;
2528	struct net *net = seq_file_net(seq);
2529	struct mr_table *mrt = iter->mrt;
2530
2531	++*pos;
2532	if (v == SEQ_START_TOKEN)
2533		return ipmr_vif_seq_idx(net, iter, 0);
2534
2535	while (++iter->ct < mrt->maxvif) {
2536		if (!VIF_EXISTS(mrt, iter->ct))
2537			continue;
2538		return &mrt->vif_table[iter->ct];
2539	}
2540	return NULL;
2541}
2542
2543static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2544	__releases(mrt_lock)
2545{
2546	read_unlock(&mrt_lock);
2547}
2548
2549static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2550{
2551	struct ipmr_vif_iter *iter = seq->private;
2552	struct mr_table *mrt = iter->mrt;
2553
2554	if (v == SEQ_START_TOKEN) {
2555		seq_puts(seq,
2556			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2557	} else {
2558		const struct vif_device *vif = v;
2559		const char *name =  vif->dev ? vif->dev->name : "none";
2560
2561		seq_printf(seq,
2562			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2563			   vif - mrt->vif_table,
2564			   name, vif->bytes_in, vif->pkt_in,
2565			   vif->bytes_out, vif->pkt_out,
2566			   vif->flags, vif->local, vif->remote);
2567	}
2568	return 0;
2569}
2570
2571static const struct seq_operations ipmr_vif_seq_ops = {
2572	.start = ipmr_vif_seq_start,
2573	.next  = ipmr_vif_seq_next,
2574	.stop  = ipmr_vif_seq_stop,
2575	.show  = ipmr_vif_seq_show,
2576};
2577
2578static int ipmr_vif_open(struct inode *inode, struct file *file)
2579{
2580	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2581			    sizeof(struct ipmr_vif_iter));
2582}
2583
2584static const struct file_operations ipmr_vif_fops = {
2585	.owner	 = THIS_MODULE,
2586	.open    = ipmr_vif_open,
2587	.read    = seq_read,
2588	.llseek  = seq_lseek,
2589	.release = seq_release_net,
2590};
2591
2592struct ipmr_mfc_iter {
2593	struct seq_net_private p;
2594	struct mr_table *mrt;
2595	struct list_head *cache;
2596	int ct;
2597};
2598
2599
2600static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2601					  struct ipmr_mfc_iter *it, loff_t pos)
2602{
2603	struct mr_table *mrt = it->mrt;
2604	struct mfc_cache *mfc;
2605
2606	rcu_read_lock();
2607	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2608		it->cache = &mrt->mfc_cache_array[it->ct];
2609		list_for_each_entry_rcu(mfc, it->cache, list)
2610			if (pos-- == 0)
2611				return mfc;
2612	}
2613	rcu_read_unlock();
2614
2615	spin_lock_bh(&mfc_unres_lock);
2616	it->cache = &mrt->mfc_unres_queue;
2617	list_for_each_entry(mfc, it->cache, list)
2618		if (pos-- == 0)
2619			return mfc;
2620	spin_unlock_bh(&mfc_unres_lock);
2621
2622	it->cache = NULL;
2623	return NULL;
2624}
2625
2626
2627static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2628{
2629	struct ipmr_mfc_iter *it = seq->private;
2630	struct net *net = seq_file_net(seq);
2631	struct mr_table *mrt;
2632
2633	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2634	if (!mrt)
2635		return ERR_PTR(-ENOENT);
2636
2637	it->mrt = mrt;
2638	it->cache = NULL;
2639	it->ct = 0;
2640	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2641		: SEQ_START_TOKEN;
2642}
2643
2644static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2645{
2646	struct mfc_cache *mfc = v;
2647	struct ipmr_mfc_iter *it = seq->private;
2648	struct net *net = seq_file_net(seq);
2649	struct mr_table *mrt = it->mrt;
2650
2651	++*pos;
2652
2653	if (v == SEQ_START_TOKEN)
2654		return ipmr_mfc_seq_idx(net, seq->private, 0);
2655
2656	if (mfc->list.next != it->cache)
2657		return list_entry(mfc->list.next, struct mfc_cache, list);
2658
2659	if (it->cache == &mrt->mfc_unres_queue)
2660		goto end_of_list;
2661
2662	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2663
2664	while (++it->ct < MFC_LINES) {
2665		it->cache = &mrt->mfc_cache_array[it->ct];
2666		if (list_empty(it->cache))
2667			continue;
2668		return list_first_entry(it->cache, struct mfc_cache, list);
2669	}
2670
2671	/* exhausted cache_array, show unresolved */
2672	rcu_read_unlock();
2673	it->cache = &mrt->mfc_unres_queue;
2674	it->ct = 0;
2675
2676	spin_lock_bh(&mfc_unres_lock);
2677	if (!list_empty(it->cache))
2678		return list_first_entry(it->cache, struct mfc_cache, list);
2679
2680end_of_list:
2681	spin_unlock_bh(&mfc_unres_lock);
2682	it->cache = NULL;
2683
2684	return NULL;
2685}
2686
2687static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2688{
2689	struct ipmr_mfc_iter *it = seq->private;
2690	struct mr_table *mrt = it->mrt;
2691
2692	if (it->cache == &mrt->mfc_unres_queue)
2693		spin_unlock_bh(&mfc_unres_lock);
2694	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2695		rcu_read_unlock();
2696}
2697
2698static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2699{
2700	int n;
2701
2702	if (v == SEQ_START_TOKEN) {
2703		seq_puts(seq,
2704		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2705	} else {
2706		const struct mfc_cache *mfc = v;
2707		const struct ipmr_mfc_iter *it = seq->private;
2708		const struct mr_table *mrt = it->mrt;
2709
2710		seq_printf(seq, "%08X %08X %-3hd",
2711			   (__force u32) mfc->mfc_mcastgrp,
2712			   (__force u32) mfc->mfc_origin,
2713			   mfc->mfc_parent);
2714
2715		if (it->cache != &mrt->mfc_unres_queue) {
2716			seq_printf(seq, " %8lu %8lu %8lu",
2717				   mfc->mfc_un.res.pkt,
2718				   mfc->mfc_un.res.bytes,
2719				   mfc->mfc_un.res.wrong_if);
2720			for (n = mfc->mfc_un.res.minvif;
2721			     n < mfc->mfc_un.res.maxvif; n++) {
2722				if (VIF_EXISTS(mrt, n) &&
2723				    mfc->mfc_un.res.ttls[n] < 255)
2724					seq_printf(seq,
2725					   " %2d:%-3d",
2726					   n, mfc->mfc_un.res.ttls[n]);
2727			}
2728		} else {
2729			/* unresolved mfc_caches don't contain
2730			 * pkt, bytes and wrong_if values
2731			 */
2732			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2733		}
2734		seq_putc(seq, '\n');
2735	}
2736	return 0;
2737}
2738
2739static const struct seq_operations ipmr_mfc_seq_ops = {
2740	.start = ipmr_mfc_seq_start,
2741	.next  = ipmr_mfc_seq_next,
2742	.stop  = ipmr_mfc_seq_stop,
2743	.show  = ipmr_mfc_seq_show,
2744};
2745
2746static int ipmr_mfc_open(struct inode *inode, struct file *file)
2747{
2748	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2749			    sizeof(struct ipmr_mfc_iter));
2750}
2751
2752static const struct file_operations ipmr_mfc_fops = {
2753	.owner	 = THIS_MODULE,
2754	.open    = ipmr_mfc_open,
2755	.read    = seq_read,
2756	.llseek  = seq_lseek,
2757	.release = seq_release_net,
2758};
2759#endif
2760
2761#ifdef CONFIG_IP_PIMSM_V2
2762static const struct net_protocol pim_protocol = {
2763	.handler	=	pim_rcv,
2764	.netns_ok	=	1,
2765};
2766#endif
2767
2768/* Setup for IP multicast routing */
 
 
 
2769static int __net_init ipmr_net_init(struct net *net)
2770{
2771	int err;
2772
2773	err = ipmr_rules_init(net);
2774	if (err < 0)
2775		goto fail;
2776
2777#ifdef CONFIG_PROC_FS
2778	err = -ENOMEM;
2779	if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2780		goto proc_vif_fail;
2781	if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2782		goto proc_cache_fail;
2783#endif
2784	return 0;
2785
2786#ifdef CONFIG_PROC_FS
2787proc_cache_fail:
2788	remove_proc_entry("ip_mr_vif", net->proc_net);
2789proc_vif_fail:
2790	ipmr_rules_exit(net);
2791#endif
2792fail:
2793	return err;
2794}
2795
2796static void __net_exit ipmr_net_exit(struct net *net)
2797{
2798#ifdef CONFIG_PROC_FS
2799	remove_proc_entry("ip_mr_cache", net->proc_net);
2800	remove_proc_entry("ip_mr_vif", net->proc_net);
2801#endif
2802	ipmr_rules_exit(net);
2803}
2804
2805static struct pernet_operations ipmr_net_ops = {
2806	.init = ipmr_net_init,
2807	.exit = ipmr_net_exit,
2808};
2809
2810int __init ip_mr_init(void)
2811{
2812	int err;
2813
2814	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2815				       sizeof(struct mfc_cache),
2816				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2817				       NULL);
 
 
2818
2819	err = register_pernet_subsys(&ipmr_net_ops);
2820	if (err)
2821		goto reg_pernet_fail;
2822
2823	err = register_netdevice_notifier(&ip_mr_notifier);
2824	if (err)
2825		goto reg_notif_fail;
2826#ifdef CONFIG_IP_PIMSM_V2
2827	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2828		pr_err("%s: can't add PIM protocol\n", __func__);
2829		err = -EAGAIN;
2830		goto add_proto_fail;
2831	}
2832#endif
2833	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2834		      NULL, ipmr_rtm_dumproute, NULL);
2835	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
2836		      ipmr_rtm_route, NULL, NULL);
2837	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
2838		      ipmr_rtm_route, NULL, NULL);
2839	return 0;
2840
2841#ifdef CONFIG_IP_PIMSM_V2
2842add_proto_fail:
2843	unregister_netdevice_notifier(&ip_mr_notifier);
2844#endif
2845reg_notif_fail:
2846	unregister_pernet_subsys(&ipmr_net_ops);
2847reg_pernet_fail:
2848	kmem_cache_destroy(mrt_cachep);
2849	return err;
2850}