Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/jiffies.h>
  29#include <linux/module.h>
  30#include <linux/kmod.h>
  31
  32#include <linux/types.h>
  33#include <linux/errno.h>
  34#include <linux/kernel.h>
  35#include <linux/sched.h>
  36#include <linux/slab.h>
  37#include <linux/poll.h>
  38#include <linux/fcntl.h>
  39#include <linux/init.h>
  40#include <linux/skbuff.h>
  41#include <linux/workqueue.h>
  42#include <linux/interrupt.h>
  43#include <linux/rfkill.h>
  44#include <linux/timer.h>
  45#include <linux/crypto.h>
  46#include <net/sock.h>
  47
  48#include <linux/uaccess.h>
  49#include <asm/unaligned.h>
  50
  51#include <net/bluetooth/bluetooth.h>
  52#include <net/bluetooth/hci_core.h>
 
 
  53
  54#define AUTO_OFF_TIMEOUT 2000
 
 
 
  55
  56static void hci_rx_work(struct work_struct *work);
  57static void hci_cmd_work(struct work_struct *work);
  58static void hci_tx_work(struct work_struct *work);
  59
  60/* HCI device list */
  61LIST_HEAD(hci_dev_list);
  62DEFINE_RWLOCK(hci_dev_list_lock);
  63
  64/* HCI callback list */
  65LIST_HEAD(hci_cb_list);
  66DEFINE_RWLOCK(hci_cb_list_lock);
 
 
 
  67
  68/* ---- HCI notifications ---- */
  69
  70static void hci_notify(struct hci_dev *hdev, int event)
 
  71{
  72	hci_sock_dev_event(hdev, event);
  73}
  74
  75/* ---- HCI requests ---- */
 
 
 
 
  76
  77void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
 
  78{
  79	BT_DBG("%s command 0x%04x result 0x%2.2x", hdev->name, cmd, result);
 
 
 
 
  80
  81	/* If this is the init phase check if the completed command matches
  82	 * the last init command, and if not just return.
  83	 */
  84	if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd) {
  85		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
  86		u16 opcode = __le16_to_cpu(sent->opcode);
  87		struct sk_buff *skb;
  88
  89		/* Some CSR based controllers generate a spontaneous
  90		 * reset complete event during init and any pending
  91		 * command will never be completed. In such a case we
  92		 * need to resend whatever was the last sent
  93		 * command.
  94		 */
  95
  96		if (cmd != HCI_OP_RESET || opcode == HCI_OP_RESET)
  97			return;
 
  98
  99		skb = skb_clone(hdev->sent_cmd, GFP_ATOMIC);
 100		if (skb) {
 101			skb_queue_head(&hdev->cmd_q, skb);
 102			queue_work(hdev->workqueue, &hdev->cmd_work);
 103		}
 104
 105		return;
 106	}
 
 
 
 
 
 
 107
 108	if (hdev->req_status == HCI_REQ_PEND) {
 109		hdev->req_result = result;
 110		hdev->req_status = HCI_REQ_DONE;
 111		wake_up_interruptible(&hdev->req_wait_q);
 112	}
 
 
 
 113}
 114
 115static void hci_req_cancel(struct hci_dev *hdev, int err)
 
 
 
 
 
 
 
 
 116{
 117	BT_DBG("%s err 0x%2.2x", hdev->name, err);
 
 118
 119	if (hdev->req_status == HCI_REQ_PEND) {
 120		hdev->req_result = err;
 121		hdev->req_status = HCI_REQ_CANCELED;
 122		wake_up_interruptible(&hdev->req_wait_q);
 123	}
 124}
 125
 126/* Execute request and wait for completion. */
 127static int __hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
 128					unsigned long opt, __u32 timeout)
 129{
 130	DECLARE_WAITQUEUE(wait, current);
 131	int err = 0;
 
 
 
 132
 133	BT_DBG("%s start", hdev->name);
 
 134
 135	hdev->req_status = HCI_REQ_PEND;
 
 
 136
 137	add_wait_queue(&hdev->req_wait_q, &wait);
 138	set_current_state(TASK_INTERRUPTIBLE);
 
 
 
 
 
 
 
 139
 140	req(hdev, opt);
 141	schedule_timeout(timeout);
 
 142
 143	remove_wait_queue(&hdev->req_wait_q, &wait);
 
 144
 145	if (signal_pending(current))
 146		return -EINTR;
 
 
 
 147
 148	switch (hdev->req_status) {
 149	case HCI_REQ_DONE:
 150		err = -bt_to_errno(hdev->req_result);
 151		break;
 152
 153	case HCI_REQ_CANCELED:
 154		err = -hdev->req_result;
 155		break;
 
 
 
 156
 157	default:
 158		err = -ETIMEDOUT;
 159		break;
 160	}
 161
 162	hdev->req_status = hdev->req_result = 0;
 
 
 
 163
 164	BT_DBG("%s end: err %d", hdev->name, err);
 
 
 165
 166	return err;
 
 
 
 167}
 168
 169static inline int hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
 170					unsigned long opt, __u32 timeout)
 171{
 172	int ret;
 173
 174	if (!test_bit(HCI_UP, &hdev->flags))
 175		return -ENETDOWN;
 176
 177	/* Serialize all requests */
 178	hci_req_lock(hdev);
 179	ret = __hci_request(hdev, req, opt, timeout);
 180	hci_req_unlock(hdev);
 181
 182	return ret;
 
 183}
 184
 185static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
 186{
 187	BT_DBG("%s %ld", hdev->name, opt);
 188
 189	/* Reset device */
 190	set_bit(HCI_RESET, &hdev->flags);
 191	hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 192}
 193
 194static void bredr_init(struct hci_dev *hdev)
 195{
 196	struct hci_cp_delete_stored_link_key cp;
 197	__le16 param;
 198	__u8 flt_type;
 
 
 
 199
 200	hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 
 201
 202	/* Mandatory initialization */
 
 
 
 
 203
 204	/* Reset */
 205	if (!test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
 206		set_bit(HCI_RESET, &hdev->flags);
 207		hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 208	}
 209
 210	/* Read Local Supported Features */
 211	hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 212
 213	/* Read Local Version */
 214	hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 
 
 215
 216	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 217	hci_send_cmd(hdev, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 218
 219	/* Read BD Address */
 220	hci_send_cmd(hdev, HCI_OP_READ_BD_ADDR, 0, NULL);
 221
 222	/* Read Class of Device */
 223	hci_send_cmd(hdev, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 224
 225	/* Read Local Name */
 226	hci_send_cmd(hdev, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 227
 228	/* Read Voice Setting */
 229	hci_send_cmd(hdev, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 
 
 
 230
 231	/* Optional initialization */
 
 232
 233	/* Clear Event Filters */
 234	flt_type = HCI_FLT_CLEAR_ALL;
 235	hci_send_cmd(hdev, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 236
 237	/* Connection accept timeout ~20 secs */
 238	param = cpu_to_le16(0x7d00);
 239	hci_send_cmd(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240
 241	bacpy(&cp.bdaddr, BDADDR_ANY);
 242	cp.delete_all = 1;
 243	hci_send_cmd(hdev, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
 244}
 245
 246static void amp_init(struct hci_dev *hdev)
 247{
 248	hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 249
 250	/* Reset */
 251	hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
 
 
 
 252
 253	/* Read Local Version */
 254	hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 
 
 
 255
 256	/* Read Local AMP Info */
 257	hci_send_cmd(hdev, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258}
 259
 260static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
 261{
 262	struct sk_buff *skb;
 263
 264	BT_DBG("%s %ld", hdev->name, opt);
 
 
 
 
 
 
 
 
 
 265
 266	/* Driver initialization */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267
 268	/* Special commands */
 269	while ((skb = skb_dequeue(&hdev->driver_init))) {
 270		bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
 271		skb->dev = (void *) hdev;
 
 
 
 272
 273		skb_queue_tail(&hdev->cmd_q, skb);
 274		queue_work(hdev->workqueue, &hdev->cmd_work);
 
 
 
 275	}
 276	skb_queue_purge(&hdev->driver_init);
 277
 278	switch (hdev->dev_type) {
 279	case HCI_BREDR:
 280		bredr_init(hdev);
 281		break;
 
 
 
 
 
 282
 283	case HCI_AMP:
 284		amp_init(hdev);
 285		break;
 286
 287	default:
 288		BT_ERR("Unknown device type %d", hdev->dev_type);
 289		break;
 
 
 
 
 
 
 
 
 
 
 
 
 290	}
 291
 
 292}
 293
 294static void hci_le_init_req(struct hci_dev *hdev, unsigned long opt)
 295{
 296	BT_DBG("%s", hdev->name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297
 298	/* Read LE buffer size */
 299	hci_send_cmd(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 
 
 300}
 301
 302static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
 303{
 304	__u8 scan = opt;
 305
 306	BT_DBG("%s %x", hdev->name, scan);
 307
 308	/* Inquiry and Page scans */
 309	hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 
 310}
 311
 312static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
 313{
 314	__u8 auth = opt;
 315
 316	BT_DBG("%s %x", hdev->name, auth);
 317
 318	/* Authentication */
 319	hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 
 320}
 321
 322static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
 323{
 324	__u8 encrypt = opt;
 325
 326	BT_DBG("%s %x", hdev->name, encrypt);
 327
 328	/* Encryption */
 329	hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 
 330}
 331
 332static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
 333{
 334	__le16 policy = cpu_to_le16(opt);
 335
 336	BT_DBG("%s %x", hdev->name, policy);
 337
 338	/* Default link policy */
 339	hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 
 340}
 341
 342/* Get HCI device by index.
 343 * Device is held on return. */
 344struct hci_dev *hci_dev_get(int index)
 345{
 346	struct hci_dev *hdev = NULL, *d;
 347
 348	BT_DBG("%d", index);
 349
 350	if (index < 0)
 351		return NULL;
 352
 353	read_lock(&hci_dev_list_lock);
 354	list_for_each_entry(d, &hci_dev_list, list) {
 355		if (d->id == index) {
 356			hdev = hci_dev_hold(d);
 357			break;
 358		}
 359	}
 360	read_unlock(&hci_dev_list_lock);
 361	return hdev;
 362}
 363
 364/* ---- Inquiry support ---- */
 365
 366bool hci_discovery_active(struct hci_dev *hdev)
 367{
 368	struct discovery_state *discov = &hdev->discovery;
 369
 370	switch (discov->state) {
 371	case DISCOVERY_FINDING:
 372	case DISCOVERY_RESOLVING:
 373		return true;
 374
 375	default:
 376		return false;
 377	}
 378}
 379
 380void hci_discovery_set_state(struct hci_dev *hdev, int state)
 381{
 
 
 382	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 383
 384	if (hdev->discovery.state == state)
 385		return;
 386
 
 
 387	switch (state) {
 388	case DISCOVERY_STOPPED:
 389		if (hdev->discovery.state != DISCOVERY_STARTING)
 
 
 390			mgmt_discovering(hdev, 0);
 391		break;
 392	case DISCOVERY_STARTING:
 393		break;
 394	case DISCOVERY_FINDING:
 395		mgmt_discovering(hdev, 1);
 396		break;
 397	case DISCOVERY_RESOLVING:
 398		break;
 399	case DISCOVERY_STOPPING:
 400		break;
 401	}
 402
 403	hdev->discovery.state = state;
 404}
 405
 406static void inquiry_cache_flush(struct hci_dev *hdev)
 407{
 408	struct discovery_state *cache = &hdev->discovery;
 409	struct inquiry_entry *p, *n;
 410
 411	list_for_each_entry_safe(p, n, &cache->all, all) {
 412		list_del(&p->all);
 413		kfree(p);
 414	}
 415
 416	INIT_LIST_HEAD(&cache->unknown);
 417	INIT_LIST_HEAD(&cache->resolve);
 418}
 419
 420struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
 
 421{
 422	struct discovery_state *cache = &hdev->discovery;
 423	struct inquiry_entry *e;
 424
 425	BT_DBG("cache %p, %s", cache, batostr(bdaddr));
 426
 427	list_for_each_entry(e, &cache->all, all) {
 428		if (!bacmp(&e->data.bdaddr, bdaddr))
 429			return e;
 430	}
 431
 432	return NULL;
 433}
 434
 435struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
 436						       bdaddr_t *bdaddr)
 437{
 438	struct discovery_state *cache = &hdev->discovery;
 439	struct inquiry_entry *e;
 440
 441	BT_DBG("cache %p, %s", cache, batostr(bdaddr));
 442
 443	list_for_each_entry(e, &cache->unknown, list) {
 444		if (!bacmp(&e->data.bdaddr, bdaddr))
 445			return e;
 446	}
 447
 448	return NULL;
 449}
 450
 451struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
 452						       bdaddr_t *bdaddr,
 453						       int state)
 454{
 455	struct discovery_state *cache = &hdev->discovery;
 456	struct inquiry_entry *e;
 457
 458	BT_DBG("cache %p bdaddr %s state %d", cache, batostr(bdaddr), state);
 459
 460	list_for_each_entry(e, &cache->resolve, list) {
 461		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
 462			return e;
 463		if (!bacmp(&e->data.bdaddr, bdaddr))
 464			return e;
 465	}
 466
 467	return NULL;
 468}
 469
 470void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
 471				      struct inquiry_entry *ie)
 472{
 473	struct discovery_state *cache = &hdev->discovery;
 474	struct list_head *pos = &cache->resolve;
 475	struct inquiry_entry *p;
 476
 477	list_del(&ie->list);
 478
 479	list_for_each_entry(p, &cache->resolve, list) {
 480		if (p->name_state != NAME_PENDING &&
 481				abs(p->data.rssi) >= abs(ie->data.rssi))
 482			break;
 483		pos = &p->list;
 484	}
 485
 486	list_add(&ie->list, pos);
 487}
 488
 489bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
 490			      bool name_known, bool *ssp)
 491{
 492	struct discovery_state *cache = &hdev->discovery;
 493	struct inquiry_entry *ie;
 
 494
 495	BT_DBG("cache %p, %s", cache, batostr(&data->bdaddr));
 496
 497	if (ssp)
 498		*ssp = data->ssp_mode;
 
 
 499
 500	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
 501	if (ie) {
 502		if (ie->data.ssp_mode && ssp)
 503			*ssp = true;
 504
 505		if (ie->name_state == NAME_NEEDED &&
 506						data->rssi != ie->data.rssi) {
 507			ie->data.rssi = data->rssi;
 508			hci_inquiry_cache_update_resolve(hdev, ie);
 509		}
 510
 511		goto update;
 512	}
 513
 514	/* Entry not in the cache. Add new one. */
 515	ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
 516	if (!ie)
 517		return false;
 
 
 518
 519	list_add(&ie->all, &cache->all);
 520
 521	if (name_known) {
 522		ie->name_state = NAME_KNOWN;
 523	} else {
 524		ie->name_state = NAME_NOT_KNOWN;
 525		list_add(&ie->list, &cache->unknown);
 526	}
 527
 528update:
 529	if (name_known && ie->name_state != NAME_KNOWN &&
 530					ie->name_state != NAME_PENDING) {
 531		ie->name_state = NAME_KNOWN;
 532		list_del(&ie->list);
 533	}
 534
 535	memcpy(&ie->data, data, sizeof(*data));
 536	ie->timestamp = jiffies;
 537	cache->timestamp = jiffies;
 538
 539	if (ie->name_state == NAME_NOT_KNOWN)
 540		return false;
 541
 542	return true;
 
 543}
 544
 545static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
 546{
 547	struct discovery_state *cache = &hdev->discovery;
 548	struct inquiry_info *info = (struct inquiry_info *) buf;
 549	struct inquiry_entry *e;
 550	int copied = 0;
 551
 552	list_for_each_entry(e, &cache->all, all) {
 553		struct inquiry_data *data = &e->data;
 554
 555		if (copied >= num)
 556			break;
 557
 558		bacpy(&info->bdaddr, &data->bdaddr);
 559		info->pscan_rep_mode	= data->pscan_rep_mode;
 560		info->pscan_period_mode	= data->pscan_period_mode;
 561		info->pscan_mode	= data->pscan_mode;
 562		memcpy(info->dev_class, data->dev_class, 3);
 563		info->clock_offset	= data->clock_offset;
 564
 565		info++;
 566		copied++;
 567	}
 568
 569	BT_DBG("cache %p, copied %d", cache, copied);
 570	return copied;
 571}
 572
 573static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
 574{
 575	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
 
 576	struct hci_cp_inquiry cp;
 577
 578	BT_DBG("%s", hdev->name);
 579
 580	if (test_bit(HCI_INQUIRY, &hdev->flags))
 581		return;
 582
 583	/* Start Inquiry */
 584	memcpy(&cp.lap, &ir->lap, 3);
 585	cp.length  = ir->length;
 586	cp.num_rsp = ir->num_rsp;
 587	hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
 
 
 588}
 589
 590int hci_inquiry(void __user *arg)
 591{
 592	__u8 __user *ptr = arg;
 593	struct hci_inquiry_req ir;
 594	struct hci_dev *hdev;
 595	int err = 0, do_inquiry = 0, max_rsp;
 596	long timeo;
 597	__u8 *buf;
 598
 599	if (copy_from_user(&ir, ptr, sizeof(ir)))
 600		return -EFAULT;
 601
 602	hdev = hci_dev_get(ir.dev_id);
 603	if (!hdev)
 604		return -ENODEV;
 605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 606	hci_dev_lock(hdev);
 607	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
 608				inquiry_cache_empty(hdev) ||
 609				ir.flags & IREQ_CACHE_FLUSH) {
 610		inquiry_cache_flush(hdev);
 611		do_inquiry = 1;
 612	}
 613	hci_dev_unlock(hdev);
 614
 615	timeo = ir.length * msecs_to_jiffies(2000);
 616
 617	if (do_inquiry) {
 618		err = hci_request(hdev, hci_inq_req, (unsigned long)&ir, timeo);
 
 619		if (err < 0)
 620			goto done;
 
 
 
 
 
 
 
 621	}
 622
 623	/* for unlimited number of responses we will use buffer with 255 entries */
 
 
 624	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
 625
 626	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
 627	 * copy it to the user space.
 628	 */
 629	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
 630	if (!buf) {
 631		err = -ENOMEM;
 632		goto done;
 633	}
 634
 635	hci_dev_lock(hdev);
 636	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
 637	hci_dev_unlock(hdev);
 638
 639	BT_DBG("num_rsp %d", ir.num_rsp);
 640
 641	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
 642		ptr += sizeof(ir);
 643		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
 644					ir.num_rsp))
 645			err = -EFAULT;
 646	} else
 647		err = -EFAULT;
 648
 649	kfree(buf);
 650
 651done:
 652	hci_dev_put(hdev);
 653	return err;
 654}
 655
 656/* ---- HCI ioctl helpers ---- */
 657
 658int hci_dev_open(__u16 dev)
 659{
 660	struct hci_dev *hdev;
 661	int ret = 0;
 662
 663	hdev = hci_dev_get(dev);
 664	if (!hdev)
 665		return -ENODEV;
 666
 667	BT_DBG("%s %p", hdev->name, hdev);
 668
 669	hci_req_lock(hdev);
 670
 671	if (test_bit(HCI_UNREGISTER, &hdev->dev_flags)) {
 672		ret = -ENODEV;
 673		goto done;
 674	}
 675
 676	if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
 677		ret = -ERFKILL;
 678		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 679	}
 680
 681	if (test_bit(HCI_UP, &hdev->flags)) {
 682		ret = -EALREADY;
 683		goto done;
 684	}
 685
 686	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 687		set_bit(HCI_RAW, &hdev->flags);
 688
 689	/* Treat all non BR/EDR controllers as raw devices if
 690	   enable_hs is not set */
 691	if (hdev->dev_type != HCI_BREDR && !enable_hs)
 692		set_bit(HCI_RAW, &hdev->flags);
 693
 694	if (hdev->open(hdev)) {
 695		ret = -EIO;
 696		goto done;
 697	}
 698
 699	if (!test_bit(HCI_RAW, &hdev->flags)) {
 700		atomic_set(&hdev->cmd_cnt, 1);
 701		set_bit(HCI_INIT, &hdev->flags);
 702		hdev->init_last_cmd = 0;
 
 703
 704		ret = __hci_request(hdev, hci_init_req, 0,
 705					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 706
 707		if (lmp_host_le_capable(hdev))
 708			ret = __hci_request(hdev, hci_le_init_req, 0,
 709					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 710
 711		clear_bit(HCI_INIT, &hdev->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 712	}
 713
 714	if (!ret) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 715		hci_dev_hold(hdev);
 
 716		set_bit(HCI_UP, &hdev->flags);
 717		hci_notify(hdev, HCI_DEV_UP);
 718		if (!test_bit(HCI_SETUP, &hdev->dev_flags)) {
 719			hci_dev_lock(hdev);
 720			mgmt_powered(hdev, 1);
 721			hci_dev_unlock(hdev);
 
 
 
 
 
 722		}
 723	} else {
 724		/* Init failed, cleanup */
 725		flush_work(&hdev->tx_work);
 726		flush_work(&hdev->cmd_work);
 727		flush_work(&hdev->rx_work);
 728
 729		skb_queue_purge(&hdev->cmd_q);
 730		skb_queue_purge(&hdev->rx_q);
 731
 732		if (hdev->flush)
 733			hdev->flush(hdev);
 734
 735		if (hdev->sent_cmd) {
 736			kfree_skb(hdev->sent_cmd);
 737			hdev->sent_cmd = NULL;
 738		}
 739
 
 
 
 740		hdev->close(hdev);
 741		hdev->flags = 0;
 742	}
 743
 744done:
 745	hci_req_unlock(hdev);
 746	hci_dev_put(hdev);
 747	return ret;
 748}
 749
 750static int hci_dev_do_close(struct hci_dev *hdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752	BT_DBG("%s %p", hdev->name, hdev);
 753
 754	cancel_work_sync(&hdev->le_scan);
 
 
 
 
 
 
 755
 756	cancel_delayed_work(&hdev->power_off);
 757
 758	hci_req_cancel(hdev, ENODEV);
 759	hci_req_lock(hdev);
 760
 761	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
 762		del_timer_sync(&hdev->cmd_timer);
 763		hci_req_unlock(hdev);
 764		return 0;
 765	}
 766
 
 
 767	/* Flush RX and TX works */
 768	flush_work(&hdev->tx_work);
 769	flush_work(&hdev->rx_work);
 770
 771	if (hdev->discov_timeout > 0) {
 772		cancel_delayed_work(&hdev->discov_off);
 773		hdev->discov_timeout = 0;
 774		clear_bit(HCI_DISCOVERABLE, &hdev->dev_flags);
 
 775	}
 776
 777	if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->dev_flags))
 778		cancel_delayed_work(&hdev->service_cache);
 779
 780	cancel_delayed_work_sync(&hdev->le_scan_disable);
 
 
 
 
 
 
 781
 782	hci_dev_lock(hdev);
 783	inquiry_cache_flush(hdev);
 
 
 
 
 
 
 
 
 
 
 
 784	hci_conn_hash_flush(hdev);
 785	hci_dev_unlock(hdev);
 786
 787	hci_notify(hdev, HCI_DEV_DOWN);
 
 
 788
 789	if (hdev->flush)
 790		hdev->flush(hdev);
 791
 792	/* Reset device */
 793	skb_queue_purge(&hdev->cmd_q);
 794	atomic_set(&hdev->cmd_cnt, 1);
 795	if (!test_bit(HCI_RAW, &hdev->flags) &&
 796				test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
 797		set_bit(HCI_INIT, &hdev->flags);
 798		__hci_request(hdev, hci_reset_req, 0,
 799					msecs_to_jiffies(250));
 800		clear_bit(HCI_INIT, &hdev->flags);
 801	}
 802
 803	/* flush cmd  work */
 804	flush_work(&hdev->cmd_work);
 805
 806	/* Drop queues */
 807	skb_queue_purge(&hdev->rx_q);
 808	skb_queue_purge(&hdev->cmd_q);
 809	skb_queue_purge(&hdev->raw_q);
 810
 811	/* Drop last sent command */
 812	if (hdev->sent_cmd) {
 813		del_timer_sync(&hdev->cmd_timer);
 814		kfree_skb(hdev->sent_cmd);
 815		hdev->sent_cmd = NULL;
 816	}
 817
 
 
 
 818	/* After this point our queues are empty
 819	 * and no tasks are scheduled. */
 820	hdev->close(hdev);
 821
 822	if (!test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags)) {
 823		hci_dev_lock(hdev);
 824		mgmt_powered(hdev, 0);
 825		hci_dev_unlock(hdev);
 826	}
 827
 828	/* Clear flags */
 829	hdev->flags = 0;
 
 
 
 
 830
 831	memset(hdev->eir, 0, sizeof(hdev->eir));
 832	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
 
 833
 834	hci_req_unlock(hdev);
 835
 836	hci_dev_put(hdev);
 837	return 0;
 838}
 839
 840int hci_dev_close(__u16 dev)
 841{
 842	struct hci_dev *hdev;
 843	int err;
 844
 845	hdev = hci_dev_get(dev);
 846	if (!hdev)
 847		return -ENODEV;
 848
 849	if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
 
 
 
 
 
 850		cancel_delayed_work(&hdev->power_off);
 851
 852	err = hci_dev_do_close(hdev);
 853
 
 854	hci_dev_put(hdev);
 855	return err;
 856}
 857
 858int hci_dev_reset(__u16 dev)
 859{
 860	struct hci_dev *hdev;
 861	int ret = 0;
 862
 863	hdev = hci_dev_get(dev);
 864	if (!hdev)
 865		return -ENODEV;
 866
 867	hci_req_lock(hdev);
 868
 869	if (!test_bit(HCI_UP, &hdev->flags))
 870		goto done;
 871
 872	/* Drop queues */
 873	skb_queue_purge(&hdev->rx_q);
 874	skb_queue_purge(&hdev->cmd_q);
 875
 
 
 
 
 
 876	hci_dev_lock(hdev);
 877	inquiry_cache_flush(hdev);
 878	hci_conn_hash_flush(hdev);
 879	hci_dev_unlock(hdev);
 880
 881	if (hdev->flush)
 882		hdev->flush(hdev);
 883
 884	atomic_set(&hdev->cmd_cnt, 1);
 885	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
 886
 887	if (!test_bit(HCI_RAW, &hdev->flags))
 888		ret = __hci_request(hdev, hci_reset_req, 0,
 889					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 890
 891done:
 892	hci_req_unlock(hdev);
 893	hci_dev_put(hdev);
 894	return ret;
 895}
 896
 897int hci_dev_reset_stat(__u16 dev)
 898{
 899	struct hci_dev *hdev;
 900	int ret = 0;
 901
 902	hdev = hci_dev_get(dev);
 903	if (!hdev)
 904		return -ENODEV;
 905
 
 
 
 
 
 
 
 
 
 
 906	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 907
 
 908	hci_dev_put(hdev);
 909
 910	return ret;
 911}
 912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913int hci_dev_cmd(unsigned int cmd, void __user *arg)
 914{
 915	struct hci_dev *hdev;
 916	struct hci_dev_req dr;
 917	int err = 0;
 918
 919	if (copy_from_user(&dr, arg, sizeof(dr)))
 920		return -EFAULT;
 921
 922	hdev = hci_dev_get(dr.dev_id);
 923	if (!hdev)
 924		return -ENODEV;
 925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 926	switch (cmd) {
 927	case HCISETAUTH:
 928		err = hci_request(hdev, hci_auth_req, dr.dev_opt,
 929					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 930		break;
 931
 932	case HCISETENCRYPT:
 933		if (!lmp_encrypt_capable(hdev)) {
 934			err = -EOPNOTSUPP;
 935			break;
 936		}
 937
 938		if (!test_bit(HCI_AUTH, &hdev->flags)) {
 939			/* Auth must be enabled first */
 940			err = hci_request(hdev, hci_auth_req, dr.dev_opt,
 941					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 942			if (err)
 943				break;
 944		}
 945
 946		err = hci_request(hdev, hci_encrypt_req, dr.dev_opt,
 947					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 948		break;
 949
 950	case HCISETSCAN:
 951		err = hci_request(hdev, hci_scan_req, dr.dev_opt,
 952					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 
 
 
 
 
 
 953		break;
 954
 955	case HCISETLINKPOL:
 956		err = hci_request(hdev, hci_linkpol_req, dr.dev_opt,
 957					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 958		break;
 959
 960	case HCISETLINKMODE:
 961		hdev->link_mode = ((__u16) dr.dev_opt) &
 962					(HCI_LM_MASTER | HCI_LM_ACCEPT);
 963		break;
 964
 965	case HCISETPTYPE:
 966		hdev->pkt_type = (__u16) dr.dev_opt;
 967		break;
 968
 969	case HCISETACLMTU:
 970		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
 971		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
 972		break;
 973
 974	case HCISETSCOMTU:
 975		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
 976		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
 977		break;
 978
 979	default:
 980		err = -EINVAL;
 981		break;
 982	}
 983
 
 984	hci_dev_put(hdev);
 985	return err;
 986}
 987
 988int hci_get_dev_list(void __user *arg)
 989{
 990	struct hci_dev *hdev;
 991	struct hci_dev_list_req *dl;
 992	struct hci_dev_req *dr;
 993	int n = 0, size, err;
 994	__u16 dev_num;
 995
 996	if (get_user(dev_num, (__u16 __user *) arg))
 997		return -EFAULT;
 998
 999	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1000		return -EINVAL;
1001
1002	size = sizeof(*dl) + dev_num * sizeof(*dr);
1003
1004	dl = kzalloc(size, GFP_KERNEL);
1005	if (!dl)
1006		return -ENOMEM;
1007
1008	dr = dl->dev_req;
1009
1010	read_lock(&hci_dev_list_lock);
1011	list_for_each_entry(hdev, &hci_dev_list, list) {
1012		if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1013			cancel_delayed_work(&hdev->power_off);
1014
1015		if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1016			set_bit(HCI_PAIRABLE, &hdev->dev_flags);
 
 
 
 
1017
1018		(dr + n)->dev_id  = hdev->id;
1019		(dr + n)->dev_opt = hdev->flags;
1020
1021		if (++n >= dev_num)
1022			break;
1023	}
1024	read_unlock(&hci_dev_list_lock);
1025
1026	dl->dev_num = n;
1027	size = sizeof(*dl) + n * sizeof(*dr);
1028
1029	err = copy_to_user(arg, dl, size);
1030	kfree(dl);
1031
1032	return err ? -EFAULT : 0;
1033}
1034
1035int hci_get_dev_info(void __user *arg)
1036{
1037	struct hci_dev *hdev;
1038	struct hci_dev_info di;
 
1039	int err = 0;
1040
1041	if (copy_from_user(&di, arg, sizeof(di)))
1042		return -EFAULT;
1043
1044	hdev = hci_dev_get(di.dev_id);
1045	if (!hdev)
1046		return -ENODEV;
1047
1048	if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1049		cancel_delayed_work_sync(&hdev->power_off);
1050
1051	if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1052		set_bit(HCI_PAIRABLE, &hdev->dev_flags);
 
 
 
1053
1054	strcpy(di.name, hdev->name);
1055	di.bdaddr   = hdev->bdaddr;
1056	di.type     = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
1057	di.flags    = hdev->flags;
1058	di.pkt_type = hdev->pkt_type;
1059	di.acl_mtu  = hdev->acl_mtu;
1060	di.acl_pkts = hdev->acl_pkts;
1061	di.sco_mtu  = hdev->sco_mtu;
1062	di.sco_pkts = hdev->sco_pkts;
 
 
 
 
 
 
 
1063	di.link_policy = hdev->link_policy;
1064	di.link_mode   = hdev->link_mode;
1065
1066	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1067	memcpy(&di.features, &hdev->features, sizeof(di.features));
1068
1069	if (copy_to_user(arg, &di, sizeof(di)))
1070		err = -EFAULT;
1071
1072	hci_dev_put(hdev);
1073
1074	return err;
1075}
1076
1077/* ---- Interface to HCI drivers ---- */
1078
1079static int hci_rfkill_set_block(void *data, bool blocked)
1080{
1081	struct hci_dev *hdev = data;
1082
1083	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1084
1085	if (!blocked)
1086		return 0;
1087
1088	hci_dev_do_close(hdev);
 
 
 
 
 
 
 
1089
1090	return 0;
1091}
1092
1093static const struct rfkill_ops hci_rfkill_ops = {
1094	.set_block = hci_rfkill_set_block,
1095};
1096
1097static void hci_power_on(struct work_struct *work)
1098{
1099	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
 
1100
1101	BT_DBG("%s", hdev->name);
1102
1103	if (hci_dev_open(hdev->id) < 0)
 
 
 
 
 
 
 
1104		return;
 
1105
1106	if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1107		schedule_delayed_work(&hdev->power_off,
1108					msecs_to_jiffies(AUTO_OFF_TIMEOUT));
 
 
 
 
1109
1110	if (test_and_clear_bit(HCI_SETUP, &hdev->dev_flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1111		mgmt_index_added(hdev);
 
1112}
1113
1114static void hci_power_off(struct work_struct *work)
1115{
1116	struct hci_dev *hdev = container_of(work, struct hci_dev,
1117							power_off.work);
1118
1119	BT_DBG("%s", hdev->name);
1120
1121	hci_dev_do_close(hdev);
1122}
1123
1124static void hci_discov_off(struct work_struct *work)
1125{
1126	struct hci_dev *hdev;
1127	u8 scan = SCAN_PAGE;
1128
1129	hdev = container_of(work, struct hci_dev, discov_off.work);
1130
1131	BT_DBG("%s", hdev->name);
1132
1133	hci_dev_lock(hdev);
1134
1135	hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, sizeof(scan), &scan);
 
 
1136
1137	hdev->discov_timeout = 0;
 
1138
1139	hci_dev_unlock(hdev);
1140}
1141
1142int hci_uuids_clear(struct hci_dev *hdev)
1143{
1144	struct list_head *p, *n;
1145
1146	list_for_each_safe(p, n, &hdev->uuids) {
1147		struct bt_uuid *uuid;
1148
1149		uuid = list_entry(p, struct bt_uuid, list);
1150
1151		list_del(p);
1152		kfree(uuid);
1153	}
1154
1155	return 0;
1156}
1157
1158int hci_link_keys_clear(struct hci_dev *hdev)
1159{
1160	struct list_head *p, *n;
1161
1162	list_for_each_safe(p, n, &hdev->link_keys) {
1163		struct link_key *key;
 
 
 
1164
1165		key = list_entry(p, struct link_key, list);
 
 
1166
1167		list_del(p);
1168		kfree(key);
 
1169	}
1170
1171	return 0;
1172}
1173
1174int hci_smp_ltks_clear(struct hci_dev *hdev)
1175{
1176	struct smp_ltk *k, *tmp;
1177
1178	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1179		list_del(&k->list);
1180		kfree(k);
1181	}
1182
1183	return 0;
1184}
1185
1186struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1187{
1188	struct link_key *k;
1189
1190	list_for_each_entry(k, &hdev->link_keys, list)
1191		if (bacmp(bdaddr, &k->bdaddr) == 0)
 
 
1192			return k;
 
 
 
1193
1194	return NULL;
1195}
1196
1197static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1198						u8 key_type, u8 old_key_type)
1199{
1200	/* Legacy key */
1201	if (key_type < 0x03)
1202		return true;
1203
1204	/* Debug keys are insecure so don't store them persistently */
1205	if (key_type == HCI_LK_DEBUG_COMBINATION)
1206		return false;
1207
1208	/* Changed combination key and there's no previous one */
1209	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1210		return false;
1211
1212	/* Security mode 3 case */
1213	if (!conn)
1214		return true;
1215
 
 
 
 
1216	/* Neither local nor remote side had no-bonding as requirement */
1217	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1218		return true;
1219
1220	/* Local side had dedicated bonding as requirement */
1221	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1222		return true;
1223
1224	/* Remote side had dedicated bonding as requirement */
1225	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1226		return true;
1227
1228	/* If none of the above criteria match, then don't store the key
1229	 * persistently */
1230	return false;
1231}
1232
1233struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
 
 
 
 
 
 
 
 
 
1234{
1235	struct smp_ltk *k;
1236
1237	list_for_each_entry(k, &hdev->long_term_keys, list) {
1238		if (k->ediv != ediv ||
1239				memcmp(rand, k->rand, sizeof(k->rand)))
1240			continue;
1241
1242		return k;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243	}
 
1244
1245	return NULL;
1246}
1247EXPORT_SYMBOL(hci_find_ltk);
1248
1249struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1250				     u8 addr_type)
1251{
1252	struct smp_ltk *k;
1253
1254	list_for_each_entry(k, &hdev->long_term_keys, list)
1255		if (addr_type == k->bdaddr_type &&
1256					bacmp(bdaddr, &k->bdaddr) == 0)
1257			return k;
 
 
 
 
 
 
 
 
 
1258
1259	return NULL;
1260}
1261EXPORT_SYMBOL(hci_find_ltk_by_addr);
1262
1263int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1264		     bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
 
1265{
1266	struct link_key *key, *old_key;
1267	u8 old_key_type;
1268	bool persistent;
1269
1270	old_key = hci_find_link_key(hdev, bdaddr);
1271	if (old_key) {
1272		old_key_type = old_key->type;
1273		key = old_key;
1274	} else {
1275		old_key_type = conn ? conn->key_type : 0xff;
1276		key = kzalloc(sizeof(*key), GFP_ATOMIC);
1277		if (!key)
1278			return -ENOMEM;
1279		list_add(&key->list, &hdev->link_keys);
1280	}
1281
1282	BT_DBG("%s key for %s type %u", hdev->name, batostr(bdaddr), type);
1283
1284	/* Some buggy controller combinations generate a changed
1285	 * combination key for legacy pairing even when there's no
1286	 * previous key */
1287	if (type == HCI_LK_CHANGED_COMBINATION &&
1288					(!conn || conn->remote_auth == 0xff) &&
1289					old_key_type == 0xff) {
1290		type = HCI_LK_COMBINATION;
1291		if (conn)
1292			conn->key_type = type;
1293	}
1294
1295	bacpy(&key->bdaddr, bdaddr);
1296	memcpy(key->val, val, 16);
1297	key->pin_len = pin_len;
1298
1299	if (type == HCI_LK_CHANGED_COMBINATION)
1300		key->type = old_key_type;
1301	else
1302		key->type = type;
1303
1304	if (!new_key)
1305		return 0;
1306
1307	persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1308
1309	mgmt_new_link_key(hdev, key, persistent);
1310
1311	if (conn)
1312		conn->flush_key = !persistent;
1313
1314	return 0;
1315}
1316
1317int hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type,
1318		int new_key, u8 authenticated, u8 tk[16], u8 enc_size, __le16
1319		ediv, u8 rand[8])
1320{
1321	struct smp_ltk *key, *old_key;
 
1322
1323	if (!(type & HCI_SMP_STK) && !(type & HCI_SMP_LTK))
1324		return 0;
1325
1326	old_key = hci_find_ltk_by_addr(hdev, bdaddr, addr_type);
1327	if (old_key)
1328		key = old_key;
1329	else {
1330		key = kzalloc(sizeof(*key), GFP_ATOMIC);
1331		if (!key)
1332			return -ENOMEM;
1333		list_add(&key->list, &hdev->long_term_keys);
1334	}
1335
1336	bacpy(&key->bdaddr, bdaddr);
1337	key->bdaddr_type = addr_type;
1338	memcpy(key->val, tk, sizeof(key->val));
1339	key->authenticated = authenticated;
1340	key->ediv = ediv;
 
1341	key->enc_size = enc_size;
1342	key->type = type;
1343	memcpy(key->rand, rand, sizeof(key->rand));
1344
1345	if (!new_key)
1346		return 0;
1347
1348	if (type & HCI_SMP_LTK)
1349		mgmt_new_ltk(hdev, key, 1);
 
 
1350
1351	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1352}
1353
1354int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1355{
1356	struct link_key *key;
1357
1358	key = hci_find_link_key(hdev, bdaddr);
1359	if (!key)
1360		return -ENOENT;
1361
1362	BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1363
1364	list_del(&key->list);
1365	kfree(key);
1366
1367	return 0;
1368}
1369
1370int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr)
1371{
1372	struct smp_ltk *k, *tmp;
 
1373
1374	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1375		if (bacmp(bdaddr, &k->bdaddr))
1376			continue;
1377
1378		BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1379
1380		list_del(&k->list);
1381		kfree(k);
 
1382	}
1383
1384	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385}
1386
1387/* HCI command timer function */
1388static void hci_cmd_timer(unsigned long arg)
1389{
1390	struct hci_dev *hdev = (void *) arg;
 
 
 
 
 
 
 
 
 
 
1391
1392	BT_ERR("%s command tx timeout", hdev->name);
1393	atomic_set(&hdev->cmd_cnt, 1);
1394	queue_work(hdev->workqueue, &hdev->cmd_work);
1395}
1396
1397struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1398					  bdaddr_t *bdaddr)
1399{
1400	struct oob_data *data;
1401
1402	list_for_each_entry(data, &hdev->remote_oob_data, list)
1403		if (bacmp(bdaddr, &data->bdaddr) == 0)
1404			return data;
 
 
 
 
1405
1406	return NULL;
1407}
1408
1409int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
 
1410{
1411	struct oob_data *data;
1412
1413	data = hci_find_remote_oob_data(hdev, bdaddr);
1414	if (!data)
1415		return -ENOENT;
1416
1417	BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1418
1419	list_del(&data->list);
1420	kfree(data);
1421
1422	return 0;
1423}
1424
1425int hci_remote_oob_data_clear(struct hci_dev *hdev)
1426{
1427	struct oob_data *data, *n;
1428
1429	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1430		list_del(&data->list);
1431		kfree(data);
1432	}
1433
1434	return 0;
1435}
1436
1437int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1438			    u8 *randomizer)
 
1439{
1440	struct oob_data *data;
1441
1442	data = hci_find_remote_oob_data(hdev, bdaddr);
1443
1444	if (!data) {
1445		data = kmalloc(sizeof(*data), GFP_ATOMIC);
1446		if (!data)
1447			return -ENOMEM;
1448
1449		bacpy(&data->bdaddr, bdaddr);
 
1450		list_add(&data->list, &hdev->remote_oob_data);
1451	}
1452
1453	memcpy(data->hash, hash, sizeof(data->hash));
1454	memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1455
1456	BT_DBG("%s for %s", hdev->name, batostr(bdaddr));
1457
1458	return 0;
1459}
1460
1461struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
 
1462{
1463	struct bdaddr_list *b;
1464
1465	list_for_each_entry(b, &hdev->blacklist, list)
1466		if (bacmp(bdaddr, &b->bdaddr) == 0)
1467			return b;
 
1468
1469	return NULL;
1470}
1471
1472int hci_blacklist_clear(struct hci_dev *hdev)
 
1473{
1474	struct list_head *p, *n;
1475
1476	list_for_each_safe(p, n, &hdev->blacklist) {
1477		struct bdaddr_list *b;
 
1478
1479		b = list_entry(p, struct bdaddr_list, list);
 
 
 
 
 
 
1480
1481		list_del(p);
1482		kfree(b);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1483	}
1484
 
 
 
 
 
1485	return 0;
1486}
1487
1488int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
 
1489{
1490	struct bdaddr_list *entry;
1491
1492	if (bacmp(bdaddr, BDADDR_ANY) == 0)
1493		return -EBADF;
 
 
1494
1495	if (hci_blacklist_lookup(hdev, bdaddr))
1496		return -EEXIST;
 
 
1497
1498	entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1499	if (!entry)
1500		return -ENOMEM;
1501
1502	bacpy(&entry->bdaddr, bdaddr);
 
 
 
 
 
 
1503
1504	list_add(&entry->list, &hdev->blacklist);
 
 
 
 
 
 
 
 
 
1505
1506	return mgmt_device_blocked(hdev, bdaddr, type);
1507}
 
1508
1509int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1510{
1511	struct bdaddr_list *entry;
 
 
1512
1513	if (bacmp(bdaddr, BDADDR_ANY) == 0)
1514		return hci_blacklist_clear(hdev);
 
1515
1516	entry = hci_blacklist_lookup(hdev, bdaddr);
1517	if (!entry)
1518		return -ENOENT;
1519
1520	list_del(&entry->list);
1521	kfree(entry);
 
1522
1523	return mgmt_device_unblocked(hdev, bdaddr, type);
1524}
1525
1526static void le_scan_param_req(struct hci_dev *hdev, unsigned long opt)
1527{
1528	struct le_scan_params *param =  (struct le_scan_params *) opt;
1529	struct hci_cp_le_set_scan_param cp;
1530
1531	memset(&cp, 0, sizeof(cp));
1532	cp.type = param->type;
1533	cp.interval = cpu_to_le16(param->interval);
1534	cp.window = cpu_to_le16(param->window);
1535
1536	hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_PARAM, sizeof(cp), &cp);
1537}
1538
1539static void le_scan_enable_req(struct hci_dev *hdev, unsigned long opt)
 
1540{
1541	struct hci_cp_le_set_scan_enable cp;
1542
1543	memset(&cp, 0, sizeof(cp));
1544	cp.enable = 1;
 
 
1545
1546	hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1547}
1548
1549static int hci_do_le_scan(struct hci_dev *hdev, u8 type, u16 interval,
1550			  u16 window, int timeout)
1551{
1552	long timeo = msecs_to_jiffies(3000);
1553	struct le_scan_params param;
1554	int err;
1555
1556	BT_DBG("%s", hdev->name);
1557
1558	if (test_bit(HCI_LE_SCAN, &hdev->dev_flags))
1559		return -EINPROGRESS;
 
 
 
1560
1561	param.type = type;
1562	param.interval = interval;
1563	param.window = window;
1564
1565	hci_req_lock(hdev);
 
1566
1567	err = __hci_request(hdev, le_scan_param_req, (unsigned long) &param,
1568			    timeo);
1569	if (!err)
1570		err = __hci_request(hdev, le_scan_enable_req, 0, timeo);
1571
1572	hci_req_unlock(hdev);
 
 
1573
1574	if (err < 0)
1575		return err;
1576
1577	schedule_delayed_work(&hdev->le_scan_disable,
1578			      msecs_to_jiffies(timeout));
1579
1580	return 0;
1581}
1582
1583int hci_cancel_le_scan(struct hci_dev *hdev)
1584{
1585	BT_DBG("%s", hdev->name);
1586
1587	if (!test_bit(HCI_LE_SCAN, &hdev->dev_flags))
1588		return -EALREADY;
 
 
1589
1590	if (cancel_delayed_work(&hdev->le_scan_disable)) {
1591		struct hci_cp_le_set_scan_enable cp;
 
1592
1593		/* Send HCI command to disable LE Scan */
1594		memset(&cp, 0, sizeof(cp));
1595		hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1596	}
1597
1598	return 0;
1599}
1600
1601static void le_scan_disable_work(struct work_struct *work)
1602{
1603	struct hci_dev *hdev = container_of(work, struct hci_dev,
1604					    le_scan_disable.work);
1605	struct hci_cp_le_set_scan_enable cp;
 
 
 
 
 
 
 
1606
1607	BT_DBG("%s", hdev->name);
 
1608
1609	memset(&cp, 0, sizeof(cp));
 
 
 
 
 
 
 
 
 
 
1610
1611	hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1612}
1613
1614static void le_scan_work(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615{
1616	struct hci_dev *hdev = container_of(work, struct hci_dev, le_scan);
1617	struct le_scan_params *param = &hdev->le_scan_params;
 
 
1618
1619	BT_DBG("%s", hdev->name);
 
 
 
 
 
 
 
 
 
 
 
 
1620
1621	hci_do_le_scan(hdev, param->type, param->interval, param->window,
1622		       param->timeout);
 
 
 
1623}
1624
1625int hci_le_scan(struct hci_dev *hdev, u8 type, u16 interval, u16 window,
1626		int timeout)
1627{
1628	struct le_scan_params *param = &hdev->le_scan_params;
1629
1630	BT_DBG("%s", hdev->name);
 
 
1631
1632	if (work_busy(&hdev->le_scan))
1633		return -EINPROGRESS;
 
 
 
 
 
1634
1635	param->type = type;
1636	param->interval = interval;
1637	param->window = window;
1638	param->timeout = timeout;
1639
1640	queue_work(system_long_wq, &hdev->le_scan);
 
1641
1642	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643}
1644
1645/* Alloc HCI device */
1646struct hci_dev *hci_alloc_dev(void)
1647{
1648	struct hci_dev *hdev;
1649
1650	hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
1651	if (!hdev)
1652		return NULL;
1653
1654	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1655	hdev->esco_type = (ESCO_HV1);
1656	hdev->link_mode = (HCI_LM_ACCEPT);
1657	hdev->io_capability = 0x03; /* No Input No Output */
 
 
 
 
 
 
 
1658
1659	hdev->sniff_max_interval = 800;
1660	hdev->sniff_min_interval = 80;
1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1662	mutex_init(&hdev->lock);
1663	mutex_init(&hdev->req_lock);
1664
1665	INIT_LIST_HEAD(&hdev->mgmt_pending);
1666	INIT_LIST_HEAD(&hdev->blacklist);
 
1667	INIT_LIST_HEAD(&hdev->uuids);
1668	INIT_LIST_HEAD(&hdev->link_keys);
1669	INIT_LIST_HEAD(&hdev->long_term_keys);
 
1670	INIT_LIST_HEAD(&hdev->remote_oob_data);
 
 
 
 
 
 
1671
1672	INIT_WORK(&hdev->rx_work, hci_rx_work);
1673	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
1674	INIT_WORK(&hdev->tx_work, hci_tx_work);
1675	INIT_WORK(&hdev->power_on, hci_power_on);
1676	INIT_WORK(&hdev->le_scan, le_scan_work);
1677
1678	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
1679	INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
1680	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
1681
1682	skb_queue_head_init(&hdev->driver_init);
1683	skb_queue_head_init(&hdev->rx_q);
1684	skb_queue_head_init(&hdev->cmd_q);
1685	skb_queue_head_init(&hdev->raw_q);
1686
1687	init_waitqueue_head(&hdev->req_wait_q);
1688
1689	setup_timer(&hdev->cmd_timer, hci_cmd_timer, (unsigned long) hdev);
 
 
1690
1691	hci_init_sysfs(hdev);
1692	discovery_init(hdev);
1693	hci_conn_hash_init(hdev);
1694
1695	return hdev;
1696}
1697EXPORT_SYMBOL(hci_alloc_dev);
1698
1699/* Free HCI device */
1700void hci_free_dev(struct hci_dev *hdev)
1701{
1702	skb_queue_purge(&hdev->driver_init);
1703
1704	/* will free via device release */
1705	put_device(&hdev->dev);
1706}
1707EXPORT_SYMBOL(hci_free_dev);
1708
1709/* Register HCI device */
1710int hci_register_dev(struct hci_dev *hdev)
1711{
1712	struct list_head *head, *p;
1713	int id, error;
1714
1715	if (!hdev->open || !hdev->close)
1716		return -EINVAL;
1717
1718	write_lock(&hci_dev_list_lock);
1719
1720	/* Do not allow HCI_AMP devices to register at index 0,
1721	 * so the index can be used as the AMP controller ID.
1722	 */
1723	id = (hdev->dev_type == HCI_BREDR) ? 0 : 1;
1724	head = &hci_dev_list;
1725
1726	/* Find first available device id */
1727	list_for_each(p, &hci_dev_list) {
1728		int nid = list_entry(p, struct hci_dev, list)->id;
1729		if (nid > id)
1730			break;
1731		if (nid == id)
1732			id++;
1733		head = p;
1734	}
1735
 
 
 
1736	sprintf(hdev->name, "hci%d", id);
1737	hdev->id = id;
1738
1739	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1740
1741	list_add(&hdev->list, head);
1742
1743	write_unlock(&hci_dev_list_lock);
1744
1745	hdev->workqueue = alloc_workqueue(hdev->name, WQ_HIGHPRI | WQ_UNBOUND |
1746							WQ_MEM_RECLAIM, 1);
1747	if (!hdev->workqueue) {
1748		error = -ENOMEM;
1749		goto err;
1750	}
1751
1752	error = hci_add_sysfs(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
1753	if (error < 0)
1754		goto err_wqueue;
1755
 
 
1756	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
1757				RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev);
 
1758	if (hdev->rfkill) {
1759		if (rfkill_register(hdev->rfkill) < 0) {
1760			rfkill_destroy(hdev->rfkill);
1761			hdev->rfkill = NULL;
1762		}
1763	}
1764
1765	set_bit(HCI_AUTO_OFF, &hdev->dev_flags);
1766	set_bit(HCI_SETUP, &hdev->dev_flags);
1767	schedule_work(&hdev->power_on);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768
1769	hci_notify(hdev, HCI_DEV_REG);
1770	hci_dev_hold(hdev);
1771
 
 
1772	return id;
1773
1774err_wqueue:
1775	destroy_workqueue(hdev->workqueue);
 
1776err:
1777	write_lock(&hci_dev_list_lock);
1778	list_del(&hdev->list);
1779	write_unlock(&hci_dev_list_lock);
1780
1781	return error;
1782}
1783EXPORT_SYMBOL(hci_register_dev);
1784
1785/* Unregister HCI device */
1786void hci_unregister_dev(struct hci_dev *hdev)
1787{
1788	int i;
1789
1790	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1791
1792	set_bit(HCI_UNREGISTER, &hdev->dev_flags);
 
 
1793
1794	write_lock(&hci_dev_list_lock);
1795	list_del(&hdev->list);
1796	write_unlock(&hci_dev_list_lock);
1797
1798	hci_dev_do_close(hdev);
1799
1800	for (i = 0; i < NUM_REASSEMBLY; i++)
1801		kfree_skb(hdev->reassembly[i]);
1802
1803	if (!test_bit(HCI_INIT, &hdev->flags) &&
1804				!test_bit(HCI_SETUP, &hdev->dev_flags)) {
 
1805		hci_dev_lock(hdev);
1806		mgmt_index_removed(hdev);
1807		hci_dev_unlock(hdev);
1808	}
1809
1810	/* mgmt_index_removed should take care of emptying the
1811	 * pending list */
1812	BUG_ON(!list_empty(&hdev->mgmt_pending));
1813
1814	hci_notify(hdev, HCI_DEV_UNREG);
1815
1816	if (hdev->rfkill) {
1817		rfkill_unregister(hdev->rfkill);
1818		rfkill_destroy(hdev->rfkill);
1819	}
1820
1821	hci_del_sysfs(hdev);
 
 
 
 
1822
1823	destroy_workqueue(hdev->workqueue);
 
1824
1825	hci_dev_lock(hdev);
1826	hci_blacklist_clear(hdev);
 
1827	hci_uuids_clear(hdev);
1828	hci_link_keys_clear(hdev);
1829	hci_smp_ltks_clear(hdev);
 
1830	hci_remote_oob_data_clear(hdev);
 
 
 
 
1831	hci_dev_unlock(hdev);
1832
1833	hci_dev_put(hdev);
 
 
1834}
1835EXPORT_SYMBOL(hci_unregister_dev);
1836
1837/* Suspend HCI device */
1838int hci_suspend_dev(struct hci_dev *hdev)
1839{
1840	hci_notify(hdev, HCI_DEV_SUSPEND);
1841	return 0;
1842}
1843EXPORT_SYMBOL(hci_suspend_dev);
1844
1845/* Resume HCI device */
1846int hci_resume_dev(struct hci_dev *hdev)
1847{
1848	hci_notify(hdev, HCI_DEV_RESUME);
1849	return 0;
1850}
1851EXPORT_SYMBOL(hci_resume_dev);
1852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1853/* Receive frame from HCI drivers */
1854int hci_recv_frame(struct sk_buff *skb)
1855{
1856	struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1857	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
1858				&& !test_bit(HCI_INIT, &hdev->flags))) {
1859		kfree_skb(skb);
1860		return -ENXIO;
1861	}
1862
1863	/* Incomming skb */
 
 
 
 
 
 
 
1864	bt_cb(skb)->incoming = 1;
1865
1866	/* Time stamp */
1867	__net_timestamp(skb);
1868
1869	skb_queue_tail(&hdev->rx_q, skb);
1870	queue_work(hdev->workqueue, &hdev->rx_work);
1871
1872	return 0;
1873}
1874EXPORT_SYMBOL(hci_recv_frame);
1875
1876static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
1877						  int count, __u8 index)
1878{
1879	int len = 0;
1880	int hlen = 0;
1881	int remain = count;
1882	struct sk_buff *skb;
1883	struct bt_skb_cb *scb;
1884
1885	if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
1886				index >= NUM_REASSEMBLY)
1887		return -EILSEQ;
1888
1889	skb = hdev->reassembly[index];
1890
1891	if (!skb) {
1892		switch (type) {
1893		case HCI_ACLDATA_PKT:
1894			len = HCI_MAX_FRAME_SIZE;
1895			hlen = HCI_ACL_HDR_SIZE;
1896			break;
1897		case HCI_EVENT_PKT:
1898			len = HCI_MAX_EVENT_SIZE;
1899			hlen = HCI_EVENT_HDR_SIZE;
1900			break;
1901		case HCI_SCODATA_PKT:
1902			len = HCI_MAX_SCO_SIZE;
1903			hlen = HCI_SCO_HDR_SIZE;
1904			break;
1905		}
1906
1907		skb = bt_skb_alloc(len, GFP_ATOMIC);
1908		if (!skb)
1909			return -ENOMEM;
1910
1911		scb = (void *) skb->cb;
1912		scb->expect = hlen;
1913		scb->pkt_type = type;
1914
1915		skb->dev = (void *) hdev;
1916		hdev->reassembly[index] = skb;
1917	}
1918
1919	while (count) {
1920		scb = (void *) skb->cb;
1921		len = min_t(uint, scb->expect, count);
1922
1923		memcpy(skb_put(skb, len), data, len);
1924
1925		count -= len;
1926		data += len;
1927		scb->expect -= len;
1928		remain = count;
1929
1930		switch (type) {
1931		case HCI_EVENT_PKT:
1932			if (skb->len == HCI_EVENT_HDR_SIZE) {
1933				struct hci_event_hdr *h = hci_event_hdr(skb);
1934				scb->expect = h->plen;
1935
1936				if (skb_tailroom(skb) < scb->expect) {
1937					kfree_skb(skb);
1938					hdev->reassembly[index] = NULL;
1939					return -ENOMEM;
1940				}
1941			}
1942			break;
1943
1944		case HCI_ACLDATA_PKT:
1945			if (skb->len  == HCI_ACL_HDR_SIZE) {
1946				struct hci_acl_hdr *h = hci_acl_hdr(skb);
1947				scb->expect = __le16_to_cpu(h->dlen);
1948
1949				if (skb_tailroom(skb) < scb->expect) {
1950					kfree_skb(skb);
1951					hdev->reassembly[index] = NULL;
1952					return -ENOMEM;
1953				}
1954			}
1955			break;
1956
1957		case HCI_SCODATA_PKT:
1958			if (skb->len == HCI_SCO_HDR_SIZE) {
1959				struct hci_sco_hdr *h = hci_sco_hdr(skb);
1960				scb->expect = h->dlen;
1961
1962				if (skb_tailroom(skb) < scb->expect) {
1963					kfree_skb(skb);
1964					hdev->reassembly[index] = NULL;
1965					return -ENOMEM;
1966				}
1967			}
1968			break;
1969		}
1970
1971		if (scb->expect == 0) {
1972			/* Complete frame */
1973
1974			bt_cb(skb)->pkt_type = type;
1975			hci_recv_frame(skb);
1976
1977			hdev->reassembly[index] = NULL;
1978			return remain;
1979		}
1980	}
1981
1982	return remain;
1983}
 
1984
1985int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
1986{
1987	int rem = 0;
1988
1989	if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
1990		return -EILSEQ;
1991
1992	while (count) {
1993		rem = hci_reassembly(hdev, type, data, count, type - 1);
1994		if (rem < 0)
1995			return rem;
1996
1997		data += (count - rem);
1998		count = rem;
1999	}
2000
2001	return rem;
 
 
 
2002}
2003EXPORT_SYMBOL(hci_recv_fragment);
2004
2005#define STREAM_REASSEMBLY 0
2006
2007int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
2008{
2009	int type;
2010	int rem = 0;
2011
2012	while (count) {
2013		struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
2014
2015		if (!skb) {
2016			struct { char type; } *pkt;
2017
2018			/* Start of the frame */
2019			pkt = data;
2020			type = pkt->type;
2021
2022			data++;
2023			count--;
2024		} else
2025			type = bt_cb(skb)->pkt_type;
2026
2027		rem = hci_reassembly(hdev, type, data, count,
2028							STREAM_REASSEMBLY);
2029		if (rem < 0)
2030			return rem;
2031
2032		data += (count - rem);
2033		count = rem;
2034	}
2035
2036	return rem;
2037}
2038EXPORT_SYMBOL(hci_recv_stream_fragment);
2039
2040/* ---- Interface to upper protocols ---- */
2041
2042int hci_register_cb(struct hci_cb *cb)
2043{
2044	BT_DBG("%p name %s", cb, cb->name);
2045
2046	write_lock(&hci_cb_list_lock);
2047	list_add(&cb->list, &hci_cb_list);
2048	write_unlock(&hci_cb_list_lock);
2049
2050	return 0;
2051}
2052EXPORT_SYMBOL(hci_register_cb);
2053
2054int hci_unregister_cb(struct hci_cb *cb)
2055{
2056	BT_DBG("%p name %s", cb, cb->name);
2057
2058	write_lock(&hci_cb_list_lock);
2059	list_del(&cb->list);
2060	write_unlock(&hci_cb_list_lock);
2061
2062	return 0;
2063}
2064EXPORT_SYMBOL(hci_unregister_cb);
2065
2066static int hci_send_frame(struct sk_buff *skb)
2067{
2068	struct hci_dev *hdev = (struct hci_dev *) skb->dev;
2069
2070	if (!hdev) {
2071		kfree_skb(skb);
2072		return -ENODEV;
2073	}
2074
2075	BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
 
2076
2077	/* Time stamp */
2078	__net_timestamp(skb);
2079
2080	/* Send copy to monitor */
2081	hci_send_to_monitor(hdev, skb);
2082
2083	if (atomic_read(&hdev->promisc)) {
2084		/* Send copy to the sockets */
2085		hci_send_to_sock(hdev, skb);
2086	}
2087
2088	/* Get rid of skb owner, prior to sending to the driver. */
2089	skb_orphan(skb);
2090
2091	return hdev->send(skb);
 
 
 
 
 
 
 
 
 
2092}
2093
2094/* Send HCI command */
2095int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
 
2096{
2097	int len = HCI_COMMAND_HDR_SIZE + plen;
2098	struct hci_command_hdr *hdr;
2099	struct sk_buff *skb;
2100
2101	BT_DBG("%s opcode 0x%x plen %d", hdev->name, opcode, plen);
2102
2103	skb = bt_skb_alloc(len, GFP_ATOMIC);
2104	if (!skb) {
2105		BT_ERR("%s no memory for command", hdev->name);
2106		return -ENOMEM;
2107	}
2108
2109	hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
2110	hdr->opcode = cpu_to_le16(opcode);
2111	hdr->plen   = plen;
2112
2113	if (plen)
2114		memcpy(skb_put(skb, plen), param, plen);
2115
2116	BT_DBG("skb len %d", skb->len);
2117
2118	bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
2119	skb->dev = (void *) hdev;
2120
2121	if (test_bit(HCI_INIT, &hdev->flags))
2122		hdev->init_last_cmd = opcode;
2123
2124	skb_queue_tail(&hdev->cmd_q, skb);
2125	queue_work(hdev->workqueue, &hdev->cmd_work);
2126
2127	return 0;
2128}
2129
2130/* Get data from the previously sent command */
2131void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
2132{
2133	struct hci_command_hdr *hdr;
2134
2135	if (!hdev->sent_cmd)
2136		return NULL;
2137
2138	hdr = (void *) hdev->sent_cmd->data;
2139
2140	if (hdr->opcode != cpu_to_le16(opcode))
2141		return NULL;
2142
2143	BT_DBG("%s opcode 0x%x", hdev->name, opcode);
2144
2145	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
2146}
2147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2148/* Send ACL data */
2149static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
2150{
2151	struct hci_acl_hdr *hdr;
2152	int len = skb->len;
2153
2154	skb_push(skb, HCI_ACL_HDR_SIZE);
2155	skb_reset_transport_header(skb);
2156	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
2157	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
2158	hdr->dlen   = cpu_to_le16(len);
2159}
2160
2161static void hci_queue_acl(struct hci_conn *conn, struct sk_buff_head *queue,
2162				struct sk_buff *skb, __u16 flags)
2163{
 
2164	struct hci_dev *hdev = conn->hdev;
2165	struct sk_buff *list;
2166
2167	skb->len = skb_headlen(skb);
2168	skb->data_len = 0;
2169
2170	bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2171	hci_add_acl_hdr(skb, conn->handle, flags);
 
 
 
 
 
 
 
 
 
 
 
2172
2173	list = skb_shinfo(skb)->frag_list;
2174	if (!list) {
2175		/* Non fragmented */
2176		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
2177
2178		skb_queue_tail(queue, skb);
2179	} else {
2180		/* Fragmented */
2181		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2182
2183		skb_shinfo(skb)->frag_list = NULL;
2184
2185		/* Queue all fragments atomically */
2186		spin_lock(&queue->lock);
 
 
 
 
2187
2188		__skb_queue_tail(queue, skb);
2189
2190		flags &= ~ACL_START;
2191		flags |= ACL_CONT;
2192		do {
2193			skb = list; list = list->next;
2194
2195			skb->dev = (void *) hdev;
2196			bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2197			hci_add_acl_hdr(skb, conn->handle, flags);
2198
2199			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2200
2201			__skb_queue_tail(queue, skb);
2202		} while (list);
2203
2204		spin_unlock(&queue->lock);
2205	}
2206}
2207
2208void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
2209{
2210	struct hci_conn *conn = chan->conn;
2211	struct hci_dev *hdev = conn->hdev;
2212
2213	BT_DBG("%s chan %p flags 0x%x", hdev->name, chan, flags);
2214
2215	skb->dev = (void *) hdev;
2216
2217	hci_queue_acl(conn, &chan->data_q, skb, flags);
2218
2219	queue_work(hdev->workqueue, &hdev->tx_work);
2220}
2221EXPORT_SYMBOL(hci_send_acl);
2222
2223/* Send SCO data */
2224void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2225{
2226	struct hci_dev *hdev = conn->hdev;
2227	struct hci_sco_hdr hdr;
2228
2229	BT_DBG("%s len %d", hdev->name, skb->len);
2230
2231	hdr.handle = cpu_to_le16(conn->handle);
2232	hdr.dlen   = skb->len;
2233
2234	skb_push(skb, HCI_SCO_HDR_SIZE);
2235	skb_reset_transport_header(skb);
2236	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2237
2238	skb->dev = (void *) hdev;
2239	bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2240
2241	skb_queue_tail(&conn->data_q, skb);
2242	queue_work(hdev->workqueue, &hdev->tx_work);
2243}
2244EXPORT_SYMBOL(hci_send_sco);
2245
2246/* ---- HCI TX task (outgoing data) ---- */
2247
2248/* HCI Connection scheduler */
2249static inline struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote)
 
2250{
2251	struct hci_conn_hash *h = &hdev->conn_hash;
2252	struct hci_conn *conn = NULL, *c;
2253	unsigned int num = 0, min = ~0;
2254
2255	/* We don't have to lock device here. Connections are always
2256	 * added and removed with TX task disabled. */
2257
2258	rcu_read_lock();
2259
2260	list_for_each_entry_rcu(c, &h->list, list) {
2261		if (c->type != type || skb_queue_empty(&c->data_q))
2262			continue;
2263
2264		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2265			continue;
2266
2267		num++;
2268
2269		if (c->sent < min) {
2270			min  = c->sent;
2271			conn = c;
2272		}
2273
2274		if (hci_conn_num(hdev, type) == num)
2275			break;
2276	}
2277
2278	rcu_read_unlock();
2279
2280	if (conn) {
2281		int cnt, q;
2282
2283		switch (conn->type) {
2284		case ACL_LINK:
2285			cnt = hdev->acl_cnt;
2286			break;
2287		case SCO_LINK:
2288		case ESCO_LINK:
2289			cnt = hdev->sco_cnt;
2290			break;
2291		case LE_LINK:
2292			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2293			break;
2294		default:
2295			cnt = 0;
2296			BT_ERR("Unknown link type");
2297		}
2298
2299		q = cnt / num;
2300		*quote = q ? q : 1;
2301	} else
2302		*quote = 0;
2303
2304	BT_DBG("conn %p quote %d", conn, *quote);
2305	return conn;
2306}
2307
2308static inline void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2309{
2310	struct hci_conn_hash *h = &hdev->conn_hash;
2311	struct hci_conn *c;
2312
2313	BT_ERR("%s link tx timeout", hdev->name);
2314
2315	rcu_read_lock();
2316
2317	/* Kill stalled connections */
2318	list_for_each_entry_rcu(c, &h->list, list) {
2319		if (c->type == type && c->sent) {
2320			BT_ERR("%s killing stalled connection %s",
2321				hdev->name, batostr(&c->dst));
2322			hci_acl_disconn(c, 0x13);
2323		}
2324	}
2325
2326	rcu_read_unlock();
2327}
2328
2329static inline struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
2330						int *quote)
2331{
2332	struct hci_conn_hash *h = &hdev->conn_hash;
2333	struct hci_chan *chan = NULL;
2334	unsigned int num = 0, min = ~0, cur_prio = 0;
2335	struct hci_conn *conn;
2336	int cnt, q, conn_num = 0;
2337
2338	BT_DBG("%s", hdev->name);
2339
2340	rcu_read_lock();
2341
2342	list_for_each_entry_rcu(conn, &h->list, list) {
2343		struct hci_chan *tmp;
2344
2345		if (conn->type != type)
2346			continue;
2347
2348		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2349			continue;
2350
2351		conn_num++;
2352
2353		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
2354			struct sk_buff *skb;
2355
2356			if (skb_queue_empty(&tmp->data_q))
2357				continue;
2358
2359			skb = skb_peek(&tmp->data_q);
2360			if (skb->priority < cur_prio)
2361				continue;
2362
2363			if (skb->priority > cur_prio) {
2364				num = 0;
2365				min = ~0;
2366				cur_prio = skb->priority;
2367			}
2368
2369			num++;
2370
2371			if (conn->sent < min) {
2372				min  = conn->sent;
2373				chan = tmp;
2374			}
2375		}
2376
2377		if (hci_conn_num(hdev, type) == conn_num)
2378			break;
2379	}
2380
2381	rcu_read_unlock();
2382
2383	if (!chan)
2384		return NULL;
2385
2386	switch (chan->conn->type) {
2387	case ACL_LINK:
2388		cnt = hdev->acl_cnt;
2389		break;
 
 
 
2390	case SCO_LINK:
2391	case ESCO_LINK:
2392		cnt = hdev->sco_cnt;
2393		break;
2394	case LE_LINK:
2395		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2396		break;
2397	default:
2398		cnt = 0;
2399		BT_ERR("Unknown link type");
2400	}
2401
2402	q = cnt / num;
2403	*quote = q ? q : 1;
2404	BT_DBG("chan %p quote %d", chan, *quote);
2405	return chan;
2406}
2407
2408static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
2409{
2410	struct hci_conn_hash *h = &hdev->conn_hash;
2411	struct hci_conn *conn;
2412	int num = 0;
2413
2414	BT_DBG("%s", hdev->name);
2415
2416	rcu_read_lock();
2417
2418	list_for_each_entry_rcu(conn, &h->list, list) {
2419		struct hci_chan *chan;
2420
2421		if (conn->type != type)
2422			continue;
2423
2424		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2425			continue;
2426
2427		num++;
2428
2429		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
2430			struct sk_buff *skb;
2431
2432			if (chan->sent) {
2433				chan->sent = 0;
2434				continue;
2435			}
2436
2437			if (skb_queue_empty(&chan->data_q))
2438				continue;
2439
2440			skb = skb_peek(&chan->data_q);
2441			if (skb->priority >= HCI_PRIO_MAX - 1)
2442				continue;
2443
2444			skb->priority = HCI_PRIO_MAX - 1;
2445
2446			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
2447								skb->priority);
2448		}
2449
2450		if (hci_conn_num(hdev, type) == num)
2451			break;
2452	}
2453
2454	rcu_read_unlock();
2455
2456}
2457
2458static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
2459{
2460	/* Calculate count of blocks used by this packet */
2461	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
2462}
2463
2464static inline void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
2465{
2466	if (!test_bit(HCI_RAW, &hdev->flags)) {
2467		/* ACL tx timeout must be longer than maximum
2468		 * link supervision timeout (40.9 seconds) */
2469		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
2470					msecs_to_jiffies(HCI_ACL_TX_TIMEOUT)))
2471			hci_link_tx_to(hdev, ACL_LINK);
2472	}
2473}
2474
2475static inline void hci_sched_acl_pkt(struct hci_dev *hdev)
2476{
2477	unsigned int cnt = hdev->acl_cnt;
2478	struct hci_chan *chan;
2479	struct sk_buff *skb;
2480	int quote;
2481
2482	__check_timeout(hdev, cnt);
2483
2484	while (hdev->acl_cnt &&
2485			(chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
2486		u32 priority = (skb_peek(&chan->data_q))->priority;
2487		while (quote-- && (skb = skb_peek(&chan->data_q))) {
2488			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2489					skb->len, skb->priority);
2490
2491			/* Stop if priority has changed */
2492			if (skb->priority < priority)
2493				break;
2494
2495			skb = skb_dequeue(&chan->data_q);
2496
2497			hci_conn_enter_active_mode(chan->conn,
2498						   bt_cb(skb)->force_active);
2499
2500			hci_send_frame(skb);
2501			hdev->acl_last_tx = jiffies;
2502
2503			hdev->acl_cnt--;
2504			chan->sent++;
2505			chan->conn->sent++;
2506		}
2507	}
2508
2509	if (cnt != hdev->acl_cnt)
2510		hci_prio_recalculate(hdev, ACL_LINK);
2511}
2512
2513static inline void hci_sched_acl_blk(struct hci_dev *hdev)
2514{
2515	unsigned int cnt = hdev->block_cnt;
2516	struct hci_chan *chan;
2517	struct sk_buff *skb;
2518	int quote;
 
2519
2520	__check_timeout(hdev, cnt);
2521
 
 
 
 
 
 
 
2522	while (hdev->block_cnt > 0 &&
2523			(chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
2524		u32 priority = (skb_peek(&chan->data_q))->priority;
2525		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
2526			int blocks;
2527
2528			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2529						skb->len, skb->priority);
2530
2531			/* Stop if priority has changed */
2532			if (skb->priority < priority)
2533				break;
2534
2535			skb = skb_dequeue(&chan->data_q);
2536
2537			blocks = __get_blocks(hdev, skb);
2538			if (blocks > hdev->block_cnt)
2539				return;
2540
2541			hci_conn_enter_active_mode(chan->conn,
2542						bt_cb(skb)->force_active);
2543
2544			hci_send_frame(skb);
2545			hdev->acl_last_tx = jiffies;
2546
2547			hdev->block_cnt -= blocks;
2548			quote -= blocks;
2549
2550			chan->sent += blocks;
2551			chan->conn->sent += blocks;
2552		}
2553	}
2554
2555	if (cnt != hdev->block_cnt)
2556		hci_prio_recalculate(hdev, ACL_LINK);
2557}
2558
2559static inline void hci_sched_acl(struct hci_dev *hdev)
2560{
2561	BT_DBG("%s", hdev->name);
2562
2563	if (!hci_conn_num(hdev, ACL_LINK))
 
 
 
 
 
2564		return;
2565
2566	switch (hdev->flow_ctl_mode) {
2567	case HCI_FLOW_CTL_MODE_PACKET_BASED:
2568		hci_sched_acl_pkt(hdev);
2569		break;
2570
2571	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
2572		hci_sched_acl_blk(hdev);
2573		break;
2574	}
2575}
2576
2577/* Schedule SCO */
2578static inline void hci_sched_sco(struct hci_dev *hdev)
2579{
2580	struct hci_conn *conn;
2581	struct sk_buff *skb;
2582	int quote;
2583
2584	BT_DBG("%s", hdev->name);
2585
2586	if (!hci_conn_num(hdev, SCO_LINK))
2587		return;
2588
2589	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
2590		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2591			BT_DBG("skb %p len %d", skb, skb->len);
2592			hci_send_frame(skb);
2593
2594			conn->sent++;
2595			if (conn->sent == ~0)
2596				conn->sent = 0;
2597		}
2598	}
2599}
2600
2601static inline void hci_sched_esco(struct hci_dev *hdev)
2602{
2603	struct hci_conn *conn;
2604	struct sk_buff *skb;
2605	int quote;
2606
2607	BT_DBG("%s", hdev->name);
2608
2609	if (!hci_conn_num(hdev, ESCO_LINK))
2610		return;
2611
2612	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, &quote))) {
 
2613		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2614			BT_DBG("skb %p len %d", skb, skb->len);
2615			hci_send_frame(skb);
2616
2617			conn->sent++;
2618			if (conn->sent == ~0)
2619				conn->sent = 0;
2620		}
2621	}
2622}
2623
2624static inline void hci_sched_le(struct hci_dev *hdev)
2625{
2626	struct hci_chan *chan;
2627	struct sk_buff *skb;
2628	int quote, cnt, tmp;
2629
2630	BT_DBG("%s", hdev->name);
2631
2632	if (!hci_conn_num(hdev, LE_LINK))
2633		return;
2634
2635	if (!test_bit(HCI_RAW, &hdev->flags)) {
2636		/* LE tx timeout must be longer than maximum
2637		 * link supervision timeout (40.9 seconds) */
2638		if (!hdev->le_cnt && hdev->le_pkts &&
2639				time_after(jiffies, hdev->le_last_tx + HZ * 45))
2640			hci_link_tx_to(hdev, LE_LINK);
2641	}
2642
2643	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
2644	tmp = cnt;
2645	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
2646		u32 priority = (skb_peek(&chan->data_q))->priority;
2647		while (quote-- && (skb = skb_peek(&chan->data_q))) {
2648			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2649					skb->len, skb->priority);
2650
2651			/* Stop if priority has changed */
2652			if (skb->priority < priority)
2653				break;
2654
2655			skb = skb_dequeue(&chan->data_q);
2656
2657			hci_send_frame(skb);
2658			hdev->le_last_tx = jiffies;
2659
2660			cnt--;
2661			chan->sent++;
2662			chan->conn->sent++;
2663		}
2664	}
2665
2666	if (hdev->le_pkts)
2667		hdev->le_cnt = cnt;
2668	else
2669		hdev->acl_cnt = cnt;
2670
2671	if (cnt != tmp)
2672		hci_prio_recalculate(hdev, LE_LINK);
2673}
2674
2675static void hci_tx_work(struct work_struct *work)
2676{
2677	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
2678	struct sk_buff *skb;
2679
2680	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
2681		hdev->sco_cnt, hdev->le_cnt);
2682
2683	/* Schedule queues and send stuff to HCI driver */
2684
2685	hci_sched_acl(hdev);
2686
2687	hci_sched_sco(hdev);
2688
2689	hci_sched_esco(hdev);
2690
2691	hci_sched_le(hdev);
2692
2693	/* Send next queued raw (unknown type) packet */
2694	while ((skb = skb_dequeue(&hdev->raw_q)))
2695		hci_send_frame(skb);
2696}
2697
2698/* ----- HCI RX task (incoming data processing) ----- */
2699
2700/* ACL data packet */
2701static inline void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2702{
2703	struct hci_acl_hdr *hdr = (void *) skb->data;
2704	struct hci_conn *conn;
2705	__u16 handle, flags;
2706
2707	skb_pull(skb, HCI_ACL_HDR_SIZE);
2708
2709	handle = __le16_to_cpu(hdr->handle);
2710	flags  = hci_flags(handle);
2711	handle = hci_handle(handle);
2712
2713	BT_DBG("%s len %d handle 0x%x flags 0x%x", hdev->name, skb->len, handle, flags);
 
2714
2715	hdev->stat.acl_rx++;
2716
2717	hci_dev_lock(hdev);
2718	conn = hci_conn_hash_lookup_handle(hdev, handle);
2719	hci_dev_unlock(hdev);
2720
2721	if (conn) {
2722		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
2723
2724		hci_dev_lock(hdev);
2725		if (test_bit(HCI_MGMT, &hdev->dev_flags) &&
2726		    !test_and_set_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags))
2727			mgmt_device_connected(hdev, &conn->dst, conn->type,
2728					      conn->dst_type, 0, NULL, 0,
2729					      conn->dev_class);
2730		hci_dev_unlock(hdev);
2731
2732		/* Send to upper protocol */
2733		l2cap_recv_acldata(conn, skb, flags);
2734		return;
2735	} else {
2736		BT_ERR("%s ACL packet for unknown connection handle %d",
2737			hdev->name, handle);
2738	}
2739
2740	kfree_skb(skb);
2741}
2742
2743/* SCO data packet */
2744static inline void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2745{
2746	struct hci_sco_hdr *hdr = (void *) skb->data;
2747	struct hci_conn *conn;
2748	__u16 handle;
2749
2750	skb_pull(skb, HCI_SCO_HDR_SIZE);
2751
2752	handle = __le16_to_cpu(hdr->handle);
2753
2754	BT_DBG("%s len %d handle 0x%x", hdev->name, skb->len, handle);
2755
2756	hdev->stat.sco_rx++;
2757
2758	hci_dev_lock(hdev);
2759	conn = hci_conn_hash_lookup_handle(hdev, handle);
2760	hci_dev_unlock(hdev);
2761
2762	if (conn) {
2763		/* Send to upper protocol */
2764		sco_recv_scodata(conn, skb);
2765		return;
2766	} else {
2767		BT_ERR("%s SCO packet for unknown connection handle %d",
2768			hdev->name, handle);
2769	}
2770
2771	kfree_skb(skb);
2772}
2773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2774static void hci_rx_work(struct work_struct *work)
2775{
2776	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
2777	struct sk_buff *skb;
2778
2779	BT_DBG("%s", hdev->name);
2780
2781	while ((skb = skb_dequeue(&hdev->rx_q))) {
2782		/* Send copy to monitor */
2783		hci_send_to_monitor(hdev, skb);
2784
2785		if (atomic_read(&hdev->promisc)) {
2786			/* Send copy to the sockets */
2787			hci_send_to_sock(hdev, skb);
2788		}
2789
2790		if (test_bit(HCI_RAW, &hdev->flags)) {
2791			kfree_skb(skb);
2792			continue;
2793		}
2794
2795		if (test_bit(HCI_INIT, &hdev->flags)) {
2796			/* Don't process data packets in this states. */
2797			switch (bt_cb(skb)->pkt_type) {
2798			case HCI_ACLDATA_PKT:
2799			case HCI_SCODATA_PKT:
2800				kfree_skb(skb);
2801				continue;
2802			}
2803		}
2804
2805		/* Process frame */
2806		switch (bt_cb(skb)->pkt_type) {
2807		case HCI_EVENT_PKT:
2808			BT_DBG("%s Event packet", hdev->name);
2809			hci_event_packet(hdev, skb);
2810			break;
2811
2812		case HCI_ACLDATA_PKT:
2813			BT_DBG("%s ACL data packet", hdev->name);
2814			hci_acldata_packet(hdev, skb);
2815			break;
2816
2817		case HCI_SCODATA_PKT:
2818			BT_DBG("%s SCO data packet", hdev->name);
2819			hci_scodata_packet(hdev, skb);
2820			break;
2821
2822		default:
2823			kfree_skb(skb);
2824			break;
2825		}
2826	}
2827}
2828
2829static void hci_cmd_work(struct work_struct *work)
2830{
2831	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
2832	struct sk_buff *skb;
2833
2834	BT_DBG("%s cmd %d", hdev->name, atomic_read(&hdev->cmd_cnt));
 
2835
2836	/* Send queued commands */
2837	if (atomic_read(&hdev->cmd_cnt)) {
2838		skb = skb_dequeue(&hdev->cmd_q);
2839		if (!skb)
2840			return;
2841
2842		kfree_skb(hdev->sent_cmd);
2843
2844		hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
2845		if (hdev->sent_cmd) {
2846			atomic_dec(&hdev->cmd_cnt);
2847			hci_send_frame(skb);
2848			if (test_bit(HCI_RESET, &hdev->flags))
2849				del_timer(&hdev->cmd_timer);
2850			else
2851				mod_timer(&hdev->cmd_timer,
2852				  jiffies + msecs_to_jiffies(HCI_CMD_TIMEOUT));
2853		} else {
2854			skb_queue_head(&hdev->cmd_q, skb);
2855			queue_work(hdev->workqueue, &hdev->cmd_work);
2856		}
2857	}
2858}
2859
2860int hci_do_inquiry(struct hci_dev *hdev, u8 length)
2861{
2862	/* General inquiry access code (GIAC) */
2863	u8 lap[3] = { 0x33, 0x8b, 0x9e };
2864	struct hci_cp_inquiry cp;
2865
2866	BT_DBG("%s", hdev->name);
2867
2868	if (test_bit(HCI_INQUIRY, &hdev->flags))
2869		return -EINPROGRESS;
2870
2871	inquiry_cache_flush(hdev);
2872
2873	memset(&cp, 0, sizeof(cp));
2874	memcpy(&cp.lap, lap, sizeof(cp.lap));
2875	cp.length  = length;
2876
2877	return hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
2878}
2879
2880int hci_cancel_inquiry(struct hci_dev *hdev)
2881{
2882	BT_DBG("%s", hdev->name);
2883
2884	if (!test_bit(HCI_INQUIRY, &hdev->flags))
2885		return -EALREADY;
2886
2887	return hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2888}
2889
2890u8 bdaddr_to_le(u8 bdaddr_type)
2891{
2892	switch (bdaddr_type) {
2893	case BDADDR_LE_PUBLIC:
2894		return ADDR_LE_DEV_PUBLIC;
2895
2896	default:
2897		/* Fallback to LE Random address type */
2898		return ADDR_LE_DEV_RANDOM;
2899	}
2900}
v4.10.11
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
 
 
 
  33#include <asm/unaligned.h>
  34
  35#include <net/bluetooth/bluetooth.h>
  36#include <net/bluetooth/hci_core.h>
  37#include <net/bluetooth/l2cap.h>
  38#include <net/bluetooth/mgmt.h>
  39
  40#include "hci_request.h"
  41#include "hci_debugfs.h"
  42#include "smp.h"
  43#include "leds.h"
  44
  45static void hci_rx_work(struct work_struct *work);
  46static void hci_cmd_work(struct work_struct *work);
  47static void hci_tx_work(struct work_struct *work);
  48
  49/* HCI device list */
  50LIST_HEAD(hci_dev_list);
  51DEFINE_RWLOCK(hci_dev_list_lock);
  52
  53/* HCI callback list */
  54LIST_HEAD(hci_cb_list);
  55DEFINE_MUTEX(hci_cb_list_lock);
  56
  57/* HCI ID Numbering */
  58static DEFINE_IDA(hci_index_ida);
  59
  60/* ---- HCI debugfs entries ---- */
  61
  62static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  63			     size_t count, loff_t *ppos)
  64{
  65	struct hci_dev *hdev = file->private_data;
  66	char buf[3];
  67
  68	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  69	buf[1] = '\n';
  70	buf[2] = '\0';
  71	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  72}
  73
  74static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  75			      size_t count, loff_t *ppos)
  76{
  77	struct hci_dev *hdev = file->private_data;
  78	struct sk_buff *skb;
  79	char buf[32];
  80	size_t buf_size = min(count, (sizeof(buf)-1));
  81	bool enable;
  82
  83	if (!test_bit(HCI_UP, &hdev->flags))
  84		return -ENETDOWN;
 
 
 
 
 
  85
  86	if (copy_from_user(buf, user_buf, buf_size))
  87		return -EFAULT;
 
 
 
 
  88
  89	buf[buf_size] = '\0';
  90	if (strtobool(buf, &enable))
  91		return -EINVAL;
  92
  93	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  94		return -EALREADY;
 
 
 
  95
  96	hci_req_sync_lock(hdev);
  97	if (enable)
  98		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	else
 101		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 102				     HCI_CMD_TIMEOUT);
 103	hci_req_sync_unlock(hdev);
 104
 105	if (IS_ERR(skb))
 106		return PTR_ERR(skb);
 107
 108	kfree_skb(skb);
 109
 110	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 111
 112	return count;
 113}
 114
 115static const struct file_operations dut_mode_fops = {
 116	.open		= simple_open,
 117	.read		= dut_mode_read,
 118	.write		= dut_mode_write,
 119	.llseek		= default_llseek,
 120};
 121
 122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 123				size_t count, loff_t *ppos)
 124{
 125	struct hci_dev *hdev = file->private_data;
 126	char buf[3];
 127
 128	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 129	buf[1] = '\n';
 130	buf[2] = '\0';
 131	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 
 132}
 133
 134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 135				 size_t count, loff_t *ppos)
 
 136{
 137	struct hci_dev *hdev = file->private_data;
 138	char buf[32];
 139	size_t buf_size = min(count, (sizeof(buf)-1));
 140	bool enable;
 141	int err;
 142
 143	if (copy_from_user(buf, user_buf, buf_size))
 144		return -EFAULT;
 145
 146	buf[buf_size] = '\0';
 147	if (strtobool(buf, &enable))
 148		return -EINVAL;
 149
 150	/* When the diagnostic flags are not persistent and the transport
 151	 * is not active, then there is no need for the vendor callback.
 152	 *
 153	 * Instead just store the desired value. If needed the setting
 154	 * will be programmed when the controller gets powered on.
 155	 */
 156	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 157	    !test_bit(HCI_RUNNING, &hdev->flags))
 158		goto done;
 159
 160	hci_req_sync_lock(hdev);
 161	err = hdev->set_diag(hdev, enable);
 162	hci_req_sync_unlock(hdev);
 163
 164	if (err < 0)
 165		return err;
 166
 167done:
 168	if (enable)
 169		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 170	else
 171		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 172
 173	return count;
 174}
 
 
 175
 176static const struct file_operations vendor_diag_fops = {
 177	.open		= simple_open,
 178	.read		= vendor_diag_read,
 179	.write		= vendor_diag_write,
 180	.llseek		= default_llseek,
 181};
 182
 183static void hci_debugfs_create_basic(struct hci_dev *hdev)
 184{
 185	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 186			    &dut_mode_fops);
 187
 188	if (hdev->set_diag)
 189		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 190				    &vendor_diag_fops);
 191}
 192
 193static int hci_reset_req(struct hci_request *req, unsigned long opt)
 194{
 195	BT_DBG("%s %ld", req->hdev->name, opt);
 196
 197	/* Reset device */
 198	set_bit(HCI_RESET, &req->hdev->flags);
 199	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 200	return 0;
 201}
 202
 203static void bredr_init(struct hci_request *req)
 
 204{
 205	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 206
 207	/* Read Local Supported Features */
 208	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 209
 210	/* Read Local Version */
 211	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 
 
 212
 213	/* Read BD Address */
 214	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 215}
 216
 217static void amp_init1(struct hci_request *req)
 218{
 219	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 220
 221	/* Read Local Version */
 222	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 223
 224	/* Read Local Supported Commands */
 225	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 226
 227	/* Read Local AMP Info */
 228	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 229
 230	/* Read Data Blk size */
 231	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 232
 233	/* Read Flow Control Mode */
 234	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 235
 236	/* Read Location Data */
 237	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 238}
 239
 240static int amp_init2(struct hci_request *req)
 241{
 242	/* Read Local Supported Features. Not all AMP controllers
 243	 * support this so it's placed conditionally in the second
 244	 * stage init.
 245	 */
 246	if (req->hdev->commands[14] & 0x20)
 247		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 248
 249	return 0;
 250}
 251
 252static int hci_init1_req(struct hci_request *req, unsigned long opt)
 253{
 254	struct hci_dev *hdev = req->hdev;
 255
 256	BT_DBG("%s %ld", hdev->name, opt);
 257
 258	/* Reset */
 259	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 260		hci_reset_req(req, 0);
 261
 262	switch (hdev->dev_type) {
 263	case HCI_PRIMARY:
 264		bredr_init(req);
 265		break;
 266	case HCI_AMP:
 267		amp_init1(req);
 268		break;
 269	default:
 270		BT_ERR("Unknown device type %d", hdev->dev_type);
 271		break;
 272	}
 273
 274	return 0;
 275}
 276
 277static void bredr_setup(struct hci_request *req)
 278{
 279	__le16 param;
 280	__u8 flt_type;
 281
 282	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 283	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 
 
 
 284
 285	/* Read Class of Device */
 286	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 287
 288	/* Read Local Name */
 289	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 290
 291	/* Read Voice Setting */
 292	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 293
 294	/* Read Number of Supported IAC */
 295	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 296
 297	/* Read Current IAC LAP */
 298	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 299
 300	/* Clear Event Filters */
 301	flt_type = HCI_FLT_CLEAR_ALL;
 302	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 303
 304	/* Connection accept timeout ~20 secs */
 305	param = cpu_to_le16(0x7d00);
 306	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 307}
 308
 309static void le_setup(struct hci_request *req)
 310{
 311	struct hci_dev *hdev = req->hdev;
 312
 313	/* Read LE Buffer Size */
 314	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 315
 316	/* Read LE Local Supported Features */
 317	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 318
 319	/* Read LE Supported States */
 320	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 321
 322	/* LE-only controllers have LE implicitly enabled */
 323	if (!lmp_bredr_capable(hdev))
 324		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 325}
 326
 327static void hci_setup_event_mask(struct hci_request *req)
 328{
 329	struct hci_dev *hdev = req->hdev;
 330
 331	/* The second byte is 0xff instead of 0x9f (two reserved bits
 332	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 333	 * command otherwise.
 334	 */
 335	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 336
 337	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 338	 * any event mask for pre 1.2 devices.
 339	 */
 340	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 341		return;
 342
 343	if (lmp_bredr_capable(hdev)) {
 344		events[4] |= 0x01; /* Flow Specification Complete */
 345	} else {
 346		/* Use a different default for LE-only devices */
 347		memset(events, 0, sizeof(events));
 348		events[1] |= 0x20; /* Command Complete */
 349		events[1] |= 0x40; /* Command Status */
 350		events[1] |= 0x80; /* Hardware Error */
 351
 352		/* If the controller supports the Disconnect command, enable
 353		 * the corresponding event. In addition enable packet flow
 354		 * control related events.
 355		 */
 356		if (hdev->commands[0] & 0x20) {
 357			events[0] |= 0x10; /* Disconnection Complete */
 358			events[2] |= 0x04; /* Number of Completed Packets */
 359			events[3] |= 0x02; /* Data Buffer Overflow */
 360		}
 361
 362		/* If the controller supports the Read Remote Version
 363		 * Information command, enable the corresponding event.
 364		 */
 365		if (hdev->commands[2] & 0x80)
 366			events[1] |= 0x08; /* Read Remote Version Information
 367					    * Complete
 368					    */
 369
 370		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 371			events[0] |= 0x80; /* Encryption Change */
 372			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 373		}
 374	}
 375
 376	if (lmp_inq_rssi_capable(hdev) ||
 377	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 378		events[4] |= 0x02; /* Inquiry Result with RSSI */
 379
 380	if (lmp_ext_feat_capable(hdev))
 381		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 382
 383	if (lmp_esco_capable(hdev)) {
 384		events[5] |= 0x08; /* Synchronous Connection Complete */
 385		events[5] |= 0x10; /* Synchronous Connection Changed */
 386	}
 387
 388	if (lmp_sniffsubr_capable(hdev))
 389		events[5] |= 0x20; /* Sniff Subrating */
 390
 391	if (lmp_pause_enc_capable(hdev))
 392		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 393
 394	if (lmp_ext_inq_capable(hdev))
 395		events[5] |= 0x40; /* Extended Inquiry Result */
 396
 397	if (lmp_no_flush_capable(hdev))
 398		events[7] |= 0x01; /* Enhanced Flush Complete */
 399
 400	if (lmp_lsto_capable(hdev))
 401		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 402
 403	if (lmp_ssp_capable(hdev)) {
 404		events[6] |= 0x01;	/* IO Capability Request */
 405		events[6] |= 0x02;	/* IO Capability Response */
 406		events[6] |= 0x04;	/* User Confirmation Request */
 407		events[6] |= 0x08;	/* User Passkey Request */
 408		events[6] |= 0x10;	/* Remote OOB Data Request */
 409		events[6] |= 0x20;	/* Simple Pairing Complete */
 410		events[7] |= 0x04;	/* User Passkey Notification */
 411		events[7] |= 0x08;	/* Keypress Notification */
 412		events[7] |= 0x10;	/* Remote Host Supported
 413					 * Features Notification
 414					 */
 415	}
 416
 417	if (lmp_le_capable(hdev))
 418		events[7] |= 0x20;	/* LE Meta-Event */
 419
 420	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 421}
 422
 423static int hci_init2_req(struct hci_request *req, unsigned long opt)
 424{
 425	struct hci_dev *hdev = req->hdev;
 426
 427	if (hdev->dev_type == HCI_AMP)
 428		return amp_init2(req);
 429
 430	if (lmp_bredr_capable(hdev))
 431		bredr_setup(req);
 432	else
 433		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 434
 435	if (lmp_le_capable(hdev))
 436		le_setup(req);
 437
 438	/* All Bluetooth 1.2 and later controllers should support the
 439	 * HCI command for reading the local supported commands.
 440	 *
 441	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 442	 * but do not have support for this command. If that is the case,
 443	 * the driver can quirk the behavior and skip reading the local
 444	 * supported commands.
 445	 */
 446	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 447	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 448		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 449
 450	if (lmp_ssp_capable(hdev)) {
 451		/* When SSP is available, then the host features page
 452		 * should also be available as well. However some
 453		 * controllers list the max_page as 0 as long as SSP
 454		 * has not been enabled. To achieve proper debugging
 455		 * output, force the minimum max_page to 1 at least.
 456		 */
 457		hdev->max_page = 0x01;
 458
 459		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 460			u8 mode = 0x01;
 461
 462			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 463				    sizeof(mode), &mode);
 464		} else {
 465			struct hci_cp_write_eir cp;
 466
 467			memset(hdev->eir, 0, sizeof(hdev->eir));
 468			memset(&cp, 0, sizeof(cp));
 469
 470			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 471		}
 472	}
 
 473
 474	if (lmp_inq_rssi_capable(hdev) ||
 475	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 476		u8 mode;
 477
 478		/* If Extended Inquiry Result events are supported, then
 479		 * they are clearly preferred over Inquiry Result with RSSI
 480		 * events.
 481		 */
 482		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 483
 484		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 485	}
 
 486
 487	if (lmp_inq_tx_pwr_capable(hdev))
 488		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 489
 490	if (lmp_ext_feat_capable(hdev)) {
 491		struct hci_cp_read_local_ext_features cp;
 492
 493		cp.page = 0x01;
 494		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 495			    sizeof(cp), &cp);
 496	}
 497
 498	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 499		u8 enable = 1;
 500		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 501			    &enable);
 502	}
 503
 504	return 0;
 505}
 506
 507static void hci_setup_link_policy(struct hci_request *req)
 508{
 509	struct hci_dev *hdev = req->hdev;
 510	struct hci_cp_write_def_link_policy cp;
 511	u16 link_policy = 0;
 512
 513	if (lmp_rswitch_capable(hdev))
 514		link_policy |= HCI_LP_RSWITCH;
 515	if (lmp_hold_capable(hdev))
 516		link_policy |= HCI_LP_HOLD;
 517	if (lmp_sniff_capable(hdev))
 518		link_policy |= HCI_LP_SNIFF;
 519	if (lmp_park_capable(hdev))
 520		link_policy |= HCI_LP_PARK;
 521
 522	cp.policy = cpu_to_le16(link_policy);
 523	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 524}
 525
 526static void hci_set_le_support(struct hci_request *req)
 527{
 528	struct hci_dev *hdev = req->hdev;
 529	struct hci_cp_write_le_host_supported cp;
 530
 531	/* LE-only devices do not support explicit enablement */
 532	if (!lmp_bredr_capable(hdev))
 533		return;
 534
 535	memset(&cp, 0, sizeof(cp));
 536
 537	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 538		cp.le = 0x01;
 539		cp.simul = 0x00;
 540	}
 541
 542	if (cp.le != lmp_host_le_capable(hdev))
 543		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 544			    &cp);
 545}
 546
 547static void hci_set_event_mask_page_2(struct hci_request *req)
 548{
 549	struct hci_dev *hdev = req->hdev;
 550	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 551
 552	/* If Connectionless Slave Broadcast master role is supported
 553	 * enable all necessary events for it.
 554	 */
 555	if (lmp_csb_master_capable(hdev)) {
 556		events[1] |= 0x40;	/* Triggered Clock Capture */
 557		events[1] |= 0x80;	/* Synchronization Train Complete */
 558		events[2] |= 0x10;	/* Slave Page Response Timeout */
 559		events[2] |= 0x20;	/* CSB Channel Map Change */
 560	}
 561
 562	/* If Connectionless Slave Broadcast slave role is supported
 563	 * enable all necessary events for it.
 564	 */
 565	if (lmp_csb_slave_capable(hdev)) {
 566		events[2] |= 0x01;	/* Synchronization Train Received */
 567		events[2] |= 0x02;	/* CSB Receive */
 568		events[2] |= 0x04;	/* CSB Timeout */
 569		events[2] |= 0x08;	/* Truncated Page Complete */
 570	}
 571
 572	/* Enable Authenticated Payload Timeout Expired event if supported */
 573	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
 574		events[2] |= 0x80;
 575
 576	hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
 577}
 578
 579static int hci_init3_req(struct hci_request *req, unsigned long opt)
 580{
 581	struct hci_dev *hdev = req->hdev;
 582	u8 p;
 583
 584	hci_setup_event_mask(req);
 585
 586	if (hdev->commands[6] & 0x20 &&
 587	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 588		struct hci_cp_read_stored_link_key cp;
 589
 590		bacpy(&cp.bdaddr, BDADDR_ANY);
 591		cp.read_all = 0x01;
 592		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 593	}
 594
 595	if (hdev->commands[5] & 0x10)
 596		hci_setup_link_policy(req);
 597
 598	if (hdev->commands[8] & 0x01)
 599		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 600
 601	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 602	 * support the Read Page Scan Type command. Check support for
 603	 * this command in the bit mask of supported commands.
 604	 */
 605	if (hdev->commands[13] & 0x01)
 606		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 607
 608	if (lmp_le_capable(hdev)) {
 609		u8 events[8];
 610
 611		memset(events, 0, sizeof(events));
 612
 613		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 614			events[0] |= 0x10;	/* LE Long Term Key Request */
 615
 616		/* If controller supports the Connection Parameters Request
 617		 * Link Layer Procedure, enable the corresponding event.
 618		 */
 619		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 620			events[0] |= 0x20;	/* LE Remote Connection
 621						 * Parameter Request
 622						 */
 623
 624		/* If the controller supports the Data Length Extension
 625		 * feature, enable the corresponding event.
 626		 */
 627		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 628			events[0] |= 0x40;	/* LE Data Length Change */
 629
 630		/* If the controller supports Extended Scanner Filter
 631		 * Policies, enable the correspondig event.
 632		 */
 633		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 634			events[1] |= 0x04;	/* LE Direct Advertising
 635						 * Report
 636						 */
 637
 638		/* If the controller supports the LE Set Scan Enable command,
 639		 * enable the corresponding advertising report event.
 640		 */
 641		if (hdev->commands[26] & 0x08)
 642			events[0] |= 0x02;	/* LE Advertising Report */
 643
 644		/* If the controller supports the LE Create Connection
 645		 * command, enable the corresponding event.
 646		 */
 647		if (hdev->commands[26] & 0x10)
 648			events[0] |= 0x01;	/* LE Connection Complete */
 649
 650		/* If the controller supports the LE Connection Update
 651		 * command, enable the corresponding event.
 652		 */
 653		if (hdev->commands[27] & 0x04)
 654			events[0] |= 0x04;	/* LE Connection Update
 655						 * Complete
 656						 */
 657
 658		/* If the controller supports the LE Read Remote Used Features
 659		 * command, enable the corresponding event.
 660		 */
 661		if (hdev->commands[27] & 0x20)
 662			events[0] |= 0x08;	/* LE Read Remote Used
 663						 * Features Complete
 664						 */
 665
 666		/* If the controller supports the LE Read Local P-256
 667		 * Public Key command, enable the corresponding event.
 668		 */
 669		if (hdev->commands[34] & 0x02)
 670			events[0] |= 0x80;	/* LE Read Local P-256
 671						 * Public Key Complete
 672						 */
 673
 674		/* If the controller supports the LE Generate DHKey
 675		 * command, enable the corresponding event.
 676		 */
 677		if (hdev->commands[34] & 0x04)
 678			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 679
 680		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 681			    events);
 682
 683		if (hdev->commands[25] & 0x40) {
 684			/* Read LE Advertising Channel TX Power */
 685			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 686		}
 687
 688		if (hdev->commands[26] & 0x40) {
 689			/* Read LE White List Size */
 690			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 691				    0, NULL);
 692		}
 693
 694		if (hdev->commands[26] & 0x80) {
 695			/* Clear LE White List */
 696			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 697		}
 698
 699		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 700			/* Read LE Maximum Data Length */
 701			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 702
 703			/* Read LE Suggested Default Data Length */
 704			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 705		}
 706
 707		hci_set_le_support(req);
 708	}
 709
 710	/* Read features beyond page 1 if available */
 711	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 712		struct hci_cp_read_local_ext_features cp;
 713
 714		cp.page = p;
 715		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 716			    sizeof(cp), &cp);
 717	}
 718
 719	return 0;
 720}
 721
 722static int hci_init4_req(struct hci_request *req, unsigned long opt)
 723{
 724	struct hci_dev *hdev = req->hdev;
 725
 726	/* Some Broadcom based Bluetooth controllers do not support the
 727	 * Delete Stored Link Key command. They are clearly indicating its
 728	 * absence in the bit mask of supported commands.
 729	 *
 730	 * Check the supported commands and only if the the command is marked
 731	 * as supported send it. If not supported assume that the controller
 732	 * does not have actual support for stored link keys which makes this
 733	 * command redundant anyway.
 734	 *
 735	 * Some controllers indicate that they support handling deleting
 736	 * stored link keys, but they don't. The quirk lets a driver
 737	 * just disable this command.
 738	 */
 739	if (hdev->commands[6] & 0x80 &&
 740	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 741		struct hci_cp_delete_stored_link_key cp;
 742
 743		bacpy(&cp.bdaddr, BDADDR_ANY);
 744		cp.delete_all = 0x01;
 745		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 746			    sizeof(cp), &cp);
 747	}
 748
 749	/* Set event mask page 2 if the HCI command for it is supported */
 750	if (hdev->commands[22] & 0x04)
 751		hci_set_event_mask_page_2(req);
 752
 753	/* Read local codec list if the HCI command is supported */
 754	if (hdev->commands[29] & 0x20)
 755		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 756
 757	/* Get MWS transport configuration if the HCI command is supported */
 758	if (hdev->commands[30] & 0x08)
 759		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 760
 761	/* Check for Synchronization Train support */
 762	if (lmp_sync_train_capable(hdev))
 763		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 764
 765	/* Enable Secure Connections if supported and configured */
 766	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 767	    bredr_sc_enabled(hdev)) {
 768		u8 support = 0x01;
 769
 770		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 771			    sizeof(support), &support);
 772	}
 773
 774	return 0;
 775}
 776
 777static int __hci_init(struct hci_dev *hdev)
 778{
 779	int err;
 780
 781	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 782	if (err < 0)
 783		return err;
 784
 785	if (hci_dev_test_flag(hdev, HCI_SETUP))
 786		hci_debugfs_create_basic(hdev);
 787
 788	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 789	if (err < 0)
 790		return err;
 791
 792	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
 793	 * BR/EDR/LE type controllers. AMP controllers only need the
 794	 * first two stages of init.
 795	 */
 796	if (hdev->dev_type != HCI_PRIMARY)
 797		return 0;
 798
 799	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 800	if (err < 0)
 801		return err;
 802
 803	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 804	if (err < 0)
 805		return err;
 806
 807	/* This function is only called when the controller is actually in
 808	 * configured state. When the controller is marked as unconfigured,
 809	 * this initialization procedure is not run.
 810	 *
 811	 * It means that it is possible that a controller runs through its
 812	 * setup phase and then discovers missing settings. If that is the
 813	 * case, then this function will not be called. It then will only
 814	 * be called during the config phase.
 815	 *
 816	 * So only when in setup phase or config phase, create the debugfs
 817	 * entries and register the SMP channels.
 818	 */
 819	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 820	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 821		return 0;
 822
 823	hci_debugfs_create_common(hdev);
 824
 825	if (lmp_bredr_capable(hdev))
 826		hci_debugfs_create_bredr(hdev);
 827
 828	if (lmp_le_capable(hdev))
 829		hci_debugfs_create_le(hdev);
 830
 831	return 0;
 832}
 833
 834static int hci_init0_req(struct hci_request *req, unsigned long opt)
 835{
 836	struct hci_dev *hdev = req->hdev;
 837
 838	BT_DBG("%s %ld", hdev->name, opt);
 839
 840	/* Reset */
 841	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 842		hci_reset_req(req, 0);
 843
 844	/* Read Local Version */
 845	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 846
 847	/* Read BD Address */
 848	if (hdev->set_bdaddr)
 849		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 850
 851	return 0;
 852}
 853
 854static int __hci_unconf_init(struct hci_dev *hdev)
 855{
 856	int err;
 857
 858	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 859		return 0;
 860
 861	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 862	if (err < 0)
 863		return err;
 864
 865	if (hci_dev_test_flag(hdev, HCI_SETUP))
 866		hci_debugfs_create_basic(hdev);
 867
 868	return 0;
 869}
 870
 871static int hci_scan_req(struct hci_request *req, unsigned long opt)
 872{
 873	__u8 scan = opt;
 874
 875	BT_DBG("%s %x", req->hdev->name, scan);
 876
 877	/* Inquiry and Page scans */
 878	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 879	return 0;
 880}
 881
 882static int hci_auth_req(struct hci_request *req, unsigned long opt)
 883{
 884	__u8 auth = opt;
 885
 886	BT_DBG("%s %x", req->hdev->name, auth);
 887
 888	/* Authentication */
 889	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 890	return 0;
 891}
 892
 893static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 894{
 895	__u8 encrypt = opt;
 896
 897	BT_DBG("%s %x", req->hdev->name, encrypt);
 898
 899	/* Encryption */
 900	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 901	return 0;
 902}
 903
 904static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 905{
 906	__le16 policy = cpu_to_le16(opt);
 907
 908	BT_DBG("%s %x", req->hdev->name, policy);
 909
 910	/* Default link policy */
 911	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 912	return 0;
 913}
 914
 915/* Get HCI device by index.
 916 * Device is held on return. */
 917struct hci_dev *hci_dev_get(int index)
 918{
 919	struct hci_dev *hdev = NULL, *d;
 920
 921	BT_DBG("%d", index);
 922
 923	if (index < 0)
 924		return NULL;
 925
 926	read_lock(&hci_dev_list_lock);
 927	list_for_each_entry(d, &hci_dev_list, list) {
 928		if (d->id == index) {
 929			hdev = hci_dev_hold(d);
 930			break;
 931		}
 932	}
 933	read_unlock(&hci_dev_list_lock);
 934	return hdev;
 935}
 936
 937/* ---- Inquiry support ---- */
 938
 939bool hci_discovery_active(struct hci_dev *hdev)
 940{
 941	struct discovery_state *discov = &hdev->discovery;
 942
 943	switch (discov->state) {
 944	case DISCOVERY_FINDING:
 945	case DISCOVERY_RESOLVING:
 946		return true;
 947
 948	default:
 949		return false;
 950	}
 951}
 952
 953void hci_discovery_set_state(struct hci_dev *hdev, int state)
 954{
 955	int old_state = hdev->discovery.state;
 956
 957	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 958
 959	if (old_state == state)
 960		return;
 961
 962	hdev->discovery.state = state;
 963
 964	switch (state) {
 965	case DISCOVERY_STOPPED:
 966		hci_update_background_scan(hdev);
 967
 968		if (old_state != DISCOVERY_STARTING)
 969			mgmt_discovering(hdev, 0);
 970		break;
 971	case DISCOVERY_STARTING:
 972		break;
 973	case DISCOVERY_FINDING:
 974		mgmt_discovering(hdev, 1);
 975		break;
 976	case DISCOVERY_RESOLVING:
 977		break;
 978	case DISCOVERY_STOPPING:
 979		break;
 980	}
 
 
 981}
 982
 983void hci_inquiry_cache_flush(struct hci_dev *hdev)
 984{
 985	struct discovery_state *cache = &hdev->discovery;
 986	struct inquiry_entry *p, *n;
 987
 988	list_for_each_entry_safe(p, n, &cache->all, all) {
 989		list_del(&p->all);
 990		kfree(p);
 991	}
 992
 993	INIT_LIST_HEAD(&cache->unknown);
 994	INIT_LIST_HEAD(&cache->resolve);
 995}
 996
 997struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
 998					       bdaddr_t *bdaddr)
 999{
1000	struct discovery_state *cache = &hdev->discovery;
1001	struct inquiry_entry *e;
1002
1003	BT_DBG("cache %p, %pMR", cache, bdaddr);
1004
1005	list_for_each_entry(e, &cache->all, all) {
1006		if (!bacmp(&e->data.bdaddr, bdaddr))
1007			return e;
1008	}
1009
1010	return NULL;
1011}
1012
1013struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1014						       bdaddr_t *bdaddr)
1015{
1016	struct discovery_state *cache = &hdev->discovery;
1017	struct inquiry_entry *e;
1018
1019	BT_DBG("cache %p, %pMR", cache, bdaddr);
1020
1021	list_for_each_entry(e, &cache->unknown, list) {
1022		if (!bacmp(&e->data.bdaddr, bdaddr))
1023			return e;
1024	}
1025
1026	return NULL;
1027}
1028
1029struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1030						       bdaddr_t *bdaddr,
1031						       int state)
1032{
1033	struct discovery_state *cache = &hdev->discovery;
1034	struct inquiry_entry *e;
1035
1036	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1037
1038	list_for_each_entry(e, &cache->resolve, list) {
1039		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1040			return e;
1041		if (!bacmp(&e->data.bdaddr, bdaddr))
1042			return e;
1043	}
1044
1045	return NULL;
1046}
1047
1048void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1049				      struct inquiry_entry *ie)
1050{
1051	struct discovery_state *cache = &hdev->discovery;
1052	struct list_head *pos = &cache->resolve;
1053	struct inquiry_entry *p;
1054
1055	list_del(&ie->list);
1056
1057	list_for_each_entry(p, &cache->resolve, list) {
1058		if (p->name_state != NAME_PENDING &&
1059		    abs(p->data.rssi) >= abs(ie->data.rssi))
1060			break;
1061		pos = &p->list;
1062	}
1063
1064	list_add(&ie->list, pos);
1065}
1066
1067u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1068			     bool name_known)
1069{
1070	struct discovery_state *cache = &hdev->discovery;
1071	struct inquiry_entry *ie;
1072	u32 flags = 0;
1073
1074	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1075
1076	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1077
1078	if (!data->ssp_mode)
1079		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1080
1081	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1082	if (ie) {
1083		if (!ie->data.ssp_mode)
1084			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1085
1086		if (ie->name_state == NAME_NEEDED &&
1087		    data->rssi != ie->data.rssi) {
1088			ie->data.rssi = data->rssi;
1089			hci_inquiry_cache_update_resolve(hdev, ie);
1090		}
1091
1092		goto update;
1093	}
1094
1095	/* Entry not in the cache. Add new one. */
1096	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1097	if (!ie) {
1098		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1099		goto done;
1100	}
1101
1102	list_add(&ie->all, &cache->all);
1103
1104	if (name_known) {
1105		ie->name_state = NAME_KNOWN;
1106	} else {
1107		ie->name_state = NAME_NOT_KNOWN;
1108		list_add(&ie->list, &cache->unknown);
1109	}
1110
1111update:
1112	if (name_known && ie->name_state != NAME_KNOWN &&
1113	    ie->name_state != NAME_PENDING) {
1114		ie->name_state = NAME_KNOWN;
1115		list_del(&ie->list);
1116	}
1117
1118	memcpy(&ie->data, data, sizeof(*data));
1119	ie->timestamp = jiffies;
1120	cache->timestamp = jiffies;
1121
1122	if (ie->name_state == NAME_NOT_KNOWN)
1123		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1124
1125done:
1126	return flags;
1127}
1128
1129static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1130{
1131	struct discovery_state *cache = &hdev->discovery;
1132	struct inquiry_info *info = (struct inquiry_info *) buf;
1133	struct inquiry_entry *e;
1134	int copied = 0;
1135
1136	list_for_each_entry(e, &cache->all, all) {
1137		struct inquiry_data *data = &e->data;
1138
1139		if (copied >= num)
1140			break;
1141
1142		bacpy(&info->bdaddr, &data->bdaddr);
1143		info->pscan_rep_mode	= data->pscan_rep_mode;
1144		info->pscan_period_mode	= data->pscan_period_mode;
1145		info->pscan_mode	= data->pscan_mode;
1146		memcpy(info->dev_class, data->dev_class, 3);
1147		info->clock_offset	= data->clock_offset;
1148
1149		info++;
1150		copied++;
1151	}
1152
1153	BT_DBG("cache %p, copied %d", cache, copied);
1154	return copied;
1155}
1156
1157static int hci_inq_req(struct hci_request *req, unsigned long opt)
1158{
1159	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1160	struct hci_dev *hdev = req->hdev;
1161	struct hci_cp_inquiry cp;
1162
1163	BT_DBG("%s", hdev->name);
1164
1165	if (test_bit(HCI_INQUIRY, &hdev->flags))
1166		return 0;
1167
1168	/* Start Inquiry */
1169	memcpy(&cp.lap, &ir->lap, 3);
1170	cp.length  = ir->length;
1171	cp.num_rsp = ir->num_rsp;
1172	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1173
1174	return 0;
1175}
1176
1177int hci_inquiry(void __user *arg)
1178{
1179	__u8 __user *ptr = arg;
1180	struct hci_inquiry_req ir;
1181	struct hci_dev *hdev;
1182	int err = 0, do_inquiry = 0, max_rsp;
1183	long timeo;
1184	__u8 *buf;
1185
1186	if (copy_from_user(&ir, ptr, sizeof(ir)))
1187		return -EFAULT;
1188
1189	hdev = hci_dev_get(ir.dev_id);
1190	if (!hdev)
1191		return -ENODEV;
1192
1193	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1194		err = -EBUSY;
1195		goto done;
1196	}
1197
1198	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1199		err = -EOPNOTSUPP;
1200		goto done;
1201	}
1202
1203	if (hdev->dev_type != HCI_PRIMARY) {
1204		err = -EOPNOTSUPP;
1205		goto done;
1206	}
1207
1208	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1209		err = -EOPNOTSUPP;
1210		goto done;
1211	}
1212
1213	hci_dev_lock(hdev);
1214	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1215	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1216		hci_inquiry_cache_flush(hdev);
 
1217		do_inquiry = 1;
1218	}
1219	hci_dev_unlock(hdev);
1220
1221	timeo = ir.length * msecs_to_jiffies(2000);
1222
1223	if (do_inquiry) {
1224		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1225				   timeo, NULL);
1226		if (err < 0)
1227			goto done;
1228
1229		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1230		 * cleared). If it is interrupted by a signal, return -EINTR.
1231		 */
1232		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1233				TASK_INTERRUPTIBLE))
1234			return -EINTR;
1235	}
1236
1237	/* for unlimited number of responses we will use buffer with
1238	 * 255 entries
1239	 */
1240	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1241
1242	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1243	 * copy it to the user space.
1244	 */
1245	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1246	if (!buf) {
1247		err = -ENOMEM;
1248		goto done;
1249	}
1250
1251	hci_dev_lock(hdev);
1252	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1253	hci_dev_unlock(hdev);
1254
1255	BT_DBG("num_rsp %d", ir.num_rsp);
1256
1257	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1258		ptr += sizeof(ir);
1259		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1260				 ir.num_rsp))
1261			err = -EFAULT;
1262	} else
1263		err = -EFAULT;
1264
1265	kfree(buf);
1266
1267done:
1268	hci_dev_put(hdev);
1269	return err;
1270}
1271
1272static int hci_dev_do_open(struct hci_dev *hdev)
 
 
1273{
 
1274	int ret = 0;
1275
 
 
 
 
1276	BT_DBG("%s %p", hdev->name, hdev);
1277
1278	hci_req_sync_lock(hdev);
1279
1280	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1281		ret = -ENODEV;
1282		goto done;
1283	}
1284
1285	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1286	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1287		/* Check for rfkill but allow the HCI setup stage to
1288		 * proceed (which in itself doesn't cause any RF activity).
1289		 */
1290		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1291			ret = -ERFKILL;
1292			goto done;
1293		}
1294
1295		/* Check for valid public address or a configured static
1296		 * random adddress, but let the HCI setup proceed to
1297		 * be able to determine if there is a public address
1298		 * or not.
1299		 *
1300		 * In case of user channel usage, it is not important
1301		 * if a public address or static random address is
1302		 * available.
1303		 *
1304		 * This check is only valid for BR/EDR controllers
1305		 * since AMP controllers do not have an address.
1306		 */
1307		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1308		    hdev->dev_type == HCI_PRIMARY &&
1309		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1310		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1311			ret = -EADDRNOTAVAIL;
1312			goto done;
1313		}
1314	}
1315
1316	if (test_bit(HCI_UP, &hdev->flags)) {
1317		ret = -EALREADY;
1318		goto done;
1319	}
1320
 
 
 
 
 
 
 
 
1321	if (hdev->open(hdev)) {
1322		ret = -EIO;
1323		goto done;
1324	}
1325
1326	set_bit(HCI_RUNNING, &hdev->flags);
1327	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1328
1329	atomic_set(&hdev->cmd_cnt, 1);
1330	set_bit(HCI_INIT, &hdev->flags);
1331
1332	if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1333		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1334
1335		if (hdev->setup)
1336			ret = hdev->setup(hdev);
 
1337
1338		/* The transport driver can set these quirks before
1339		 * creating the HCI device or in its setup callback.
1340		 *
1341		 * In case any of them is set, the controller has to
1342		 * start up as unconfigured.
1343		 */
1344		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1345		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1346			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1347
1348		/* For an unconfigured controller it is required to
1349		 * read at least the version information provided by
1350		 * the Read Local Version Information command.
1351		 *
1352		 * If the set_bdaddr driver callback is provided, then
1353		 * also the original Bluetooth public device address
1354		 * will be read using the Read BD Address command.
1355		 */
1356		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1357			ret = __hci_unconf_init(hdev);
1358	}
1359
1360	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1361		/* If public address change is configured, ensure that
1362		 * the address gets programmed. If the driver does not
1363		 * support changing the public address, fail the power
1364		 * on procedure.
1365		 */
1366		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1367		    hdev->set_bdaddr)
1368			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1369		else
1370			ret = -EADDRNOTAVAIL;
1371	}
1372
1373	if (!ret) {
1374		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1375		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1376			ret = __hci_init(hdev);
1377			if (!ret && hdev->post_init)
1378				ret = hdev->post_init(hdev);
1379		}
1380	}
1381
1382	/* If the HCI Reset command is clearing all diagnostic settings,
1383	 * then they need to be reprogrammed after the init procedure
1384	 * completed.
1385	 */
1386	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1387	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1388		ret = hdev->set_diag(hdev, true);
1389
1390	clear_bit(HCI_INIT, &hdev->flags);
1391
1392	if (!ret) {
1393		hci_dev_hold(hdev);
1394		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1395		set_bit(HCI_UP, &hdev->flags);
1396		hci_sock_dev_event(hdev, HCI_DEV_UP);
1397		hci_leds_update_powered(hdev, true);
1398		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1400		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1401		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1402		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1403		    hdev->dev_type == HCI_PRIMARY) {
1404			ret = __hci_req_hci_power_on(hdev);
1405			mgmt_power_on(hdev, ret);
1406		}
1407	} else {
1408		/* Init failed, cleanup */
1409		flush_work(&hdev->tx_work);
1410		flush_work(&hdev->cmd_work);
1411		flush_work(&hdev->rx_work);
1412
1413		skb_queue_purge(&hdev->cmd_q);
1414		skb_queue_purge(&hdev->rx_q);
1415
1416		if (hdev->flush)
1417			hdev->flush(hdev);
1418
1419		if (hdev->sent_cmd) {
1420			kfree_skb(hdev->sent_cmd);
1421			hdev->sent_cmd = NULL;
1422		}
1423
1424		clear_bit(HCI_RUNNING, &hdev->flags);
1425		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1426
1427		hdev->close(hdev);
1428		hdev->flags &= BIT(HCI_RAW);
1429	}
1430
1431done:
1432	hci_req_sync_unlock(hdev);
 
1433	return ret;
1434}
1435
1436/* ---- HCI ioctl helpers ---- */
1437
1438int hci_dev_open(__u16 dev)
1439{
1440	struct hci_dev *hdev;
1441	int err;
1442
1443	hdev = hci_dev_get(dev);
1444	if (!hdev)
1445		return -ENODEV;
1446
1447	/* Devices that are marked as unconfigured can only be powered
1448	 * up as user channel. Trying to bring them up as normal devices
1449	 * will result into a failure. Only user channel operation is
1450	 * possible.
1451	 *
1452	 * When this function is called for a user channel, the flag
1453	 * HCI_USER_CHANNEL will be set first before attempting to
1454	 * open the device.
1455	 */
1456	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1457	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1458		err = -EOPNOTSUPP;
1459		goto done;
1460	}
1461
1462	/* We need to ensure that no other power on/off work is pending
1463	 * before proceeding to call hci_dev_do_open. This is
1464	 * particularly important if the setup procedure has not yet
1465	 * completed.
1466	 */
1467	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1468		cancel_delayed_work(&hdev->power_off);
1469
1470	/* After this call it is guaranteed that the setup procedure
1471	 * has finished. This means that error conditions like RFKILL
1472	 * or no valid public or static random address apply.
1473	 */
1474	flush_workqueue(hdev->req_workqueue);
1475
1476	/* For controllers not using the management interface and that
1477	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1478	 * so that pairing works for them. Once the management interface
1479	 * is in use this bit will be cleared again and userspace has
1480	 * to explicitly enable it.
1481	 */
1482	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1483	    !hci_dev_test_flag(hdev, HCI_MGMT))
1484		hci_dev_set_flag(hdev, HCI_BONDABLE);
1485
1486	err = hci_dev_do_open(hdev);
1487
1488done:
1489	hci_dev_put(hdev);
1490	return err;
1491}
1492
1493/* This function requires the caller holds hdev->lock */
1494static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1495{
1496	struct hci_conn_params *p;
1497
1498	list_for_each_entry(p, &hdev->le_conn_params, list) {
1499		if (p->conn) {
1500			hci_conn_drop(p->conn);
1501			hci_conn_put(p->conn);
1502			p->conn = NULL;
1503		}
1504		list_del_init(&p->action);
1505	}
1506
1507	BT_DBG("All LE pending actions cleared");
1508}
1509
1510int hci_dev_do_close(struct hci_dev *hdev)
1511{
1512	bool auto_off;
1513
1514	BT_DBG("%s %p", hdev->name, hdev);
1515
1516	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1517	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1518	    test_bit(HCI_UP, &hdev->flags)) {
1519		/* Execute vendor specific shutdown routine */
1520		if (hdev->shutdown)
1521			hdev->shutdown(hdev);
1522	}
1523
1524	cancel_delayed_work(&hdev->power_off);
1525
1526	hci_request_cancel_all(hdev);
1527	hci_req_sync_lock(hdev);
1528
1529	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1530		cancel_delayed_work_sync(&hdev->cmd_timer);
1531		hci_req_sync_unlock(hdev);
1532		return 0;
1533	}
1534
1535	hci_leds_update_powered(hdev, false);
1536
1537	/* Flush RX and TX works */
1538	flush_work(&hdev->tx_work);
1539	flush_work(&hdev->rx_work);
1540
1541	if (hdev->discov_timeout > 0) {
 
1542		hdev->discov_timeout = 0;
1543		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1544		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1545	}
1546
1547	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1548		cancel_delayed_work(&hdev->service_cache);
1549
1550	if (hci_dev_test_flag(hdev, HCI_MGMT))
1551		cancel_delayed_work_sync(&hdev->rpa_expired);
1552
1553	/* Avoid potential lockdep warnings from the *_flush() calls by
1554	 * ensuring the workqueue is empty up front.
1555	 */
1556	drain_workqueue(hdev->workqueue);
1557
1558	hci_dev_lock(hdev);
1559
1560	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1561
1562	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1563
1564	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1565	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1566	    hci_dev_test_flag(hdev, HCI_MGMT))
1567		__mgmt_power_off(hdev);
1568
1569	hci_inquiry_cache_flush(hdev);
1570	hci_pend_le_actions_clear(hdev);
1571	hci_conn_hash_flush(hdev);
1572	hci_dev_unlock(hdev);
1573
1574	smp_unregister(hdev);
1575
1576	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1577
1578	if (hdev->flush)
1579		hdev->flush(hdev);
1580
1581	/* Reset device */
1582	skb_queue_purge(&hdev->cmd_q);
1583	atomic_set(&hdev->cmd_cnt, 1);
1584	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1585	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1586		set_bit(HCI_INIT, &hdev->flags);
1587		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
 
1588		clear_bit(HCI_INIT, &hdev->flags);
1589	}
1590
1591	/* flush cmd  work */
1592	flush_work(&hdev->cmd_work);
1593
1594	/* Drop queues */
1595	skb_queue_purge(&hdev->rx_q);
1596	skb_queue_purge(&hdev->cmd_q);
1597	skb_queue_purge(&hdev->raw_q);
1598
1599	/* Drop last sent command */
1600	if (hdev->sent_cmd) {
1601		cancel_delayed_work_sync(&hdev->cmd_timer);
1602		kfree_skb(hdev->sent_cmd);
1603		hdev->sent_cmd = NULL;
1604	}
1605
1606	clear_bit(HCI_RUNNING, &hdev->flags);
1607	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1608
1609	/* After this point our queues are empty
1610	 * and no tasks are scheduled. */
1611	hdev->close(hdev);
1612
 
 
 
 
 
 
1613	/* Clear flags */
1614	hdev->flags &= BIT(HCI_RAW);
1615	hci_dev_clear_volatile_flags(hdev);
1616
1617	/* Controller radio is available but is currently powered down */
1618	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1619
1620	memset(hdev->eir, 0, sizeof(hdev->eir));
1621	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1622	bacpy(&hdev->random_addr, BDADDR_ANY);
1623
1624	hci_req_sync_unlock(hdev);
1625
1626	hci_dev_put(hdev);
1627	return 0;
1628}
1629
1630int hci_dev_close(__u16 dev)
1631{
1632	struct hci_dev *hdev;
1633	int err;
1634
1635	hdev = hci_dev_get(dev);
1636	if (!hdev)
1637		return -ENODEV;
1638
1639	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1640		err = -EBUSY;
1641		goto done;
1642	}
1643
1644	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1645		cancel_delayed_work(&hdev->power_off);
1646
1647	err = hci_dev_do_close(hdev);
1648
1649done:
1650	hci_dev_put(hdev);
1651	return err;
1652}
1653
1654static int hci_dev_do_reset(struct hci_dev *hdev)
1655{
1656	int ret;
 
1657
1658	BT_DBG("%s %p", hdev->name, hdev);
 
 
1659
1660	hci_req_sync_lock(hdev);
 
 
 
1661
1662	/* Drop queues */
1663	skb_queue_purge(&hdev->rx_q);
1664	skb_queue_purge(&hdev->cmd_q);
1665
1666	/* Avoid potential lockdep warnings from the *_flush() calls by
1667	 * ensuring the workqueue is empty up front.
1668	 */
1669	drain_workqueue(hdev->workqueue);
1670
1671	hci_dev_lock(hdev);
1672	hci_inquiry_cache_flush(hdev);
1673	hci_conn_hash_flush(hdev);
1674	hci_dev_unlock(hdev);
1675
1676	if (hdev->flush)
1677		hdev->flush(hdev);
1678
1679	atomic_set(&hdev->cmd_cnt, 1);
1680	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1681
1682	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1683
1684	hci_req_sync_unlock(hdev);
1685	return ret;
1686}
1687
1688int hci_dev_reset(__u16 dev)
1689{
1690	struct hci_dev *hdev;
1691	int err;
1692
1693	hdev = hci_dev_get(dev);
1694	if (!hdev)
1695		return -ENODEV;
1696
1697	if (!test_bit(HCI_UP, &hdev->flags)) {
1698		err = -ENETDOWN;
1699		goto done;
1700	}
1701
1702	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1703		err = -EBUSY;
1704		goto done;
1705	}
1706
1707	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1708		err = -EOPNOTSUPP;
1709		goto done;
1710	}
1711
1712	err = hci_dev_do_reset(hdev);
1713
1714done:
 
1715	hci_dev_put(hdev);
1716	return err;
1717}
1718
1719int hci_dev_reset_stat(__u16 dev)
1720{
1721	struct hci_dev *hdev;
1722	int ret = 0;
1723
1724	hdev = hci_dev_get(dev);
1725	if (!hdev)
1726		return -ENODEV;
1727
1728	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1729		ret = -EBUSY;
1730		goto done;
1731	}
1732
1733	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1734		ret = -EOPNOTSUPP;
1735		goto done;
1736	}
1737
1738	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1739
1740done:
1741	hci_dev_put(hdev);
 
1742	return ret;
1743}
1744
1745static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1746{
1747	bool conn_changed, discov_changed;
1748
1749	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1750
1751	if ((scan & SCAN_PAGE))
1752		conn_changed = !hci_dev_test_and_set_flag(hdev,
1753							  HCI_CONNECTABLE);
1754	else
1755		conn_changed = hci_dev_test_and_clear_flag(hdev,
1756							   HCI_CONNECTABLE);
1757
1758	if ((scan & SCAN_INQUIRY)) {
1759		discov_changed = !hci_dev_test_and_set_flag(hdev,
1760							    HCI_DISCOVERABLE);
1761	} else {
1762		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1763		discov_changed = hci_dev_test_and_clear_flag(hdev,
1764							     HCI_DISCOVERABLE);
1765	}
1766
1767	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1768		return;
1769
1770	if (conn_changed || discov_changed) {
1771		/* In case this was disabled through mgmt */
1772		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1773
1774		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1775			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1776
1777		mgmt_new_settings(hdev);
1778	}
1779}
1780
1781int hci_dev_cmd(unsigned int cmd, void __user *arg)
1782{
1783	struct hci_dev *hdev;
1784	struct hci_dev_req dr;
1785	int err = 0;
1786
1787	if (copy_from_user(&dr, arg, sizeof(dr)))
1788		return -EFAULT;
1789
1790	hdev = hci_dev_get(dr.dev_id);
1791	if (!hdev)
1792		return -ENODEV;
1793
1794	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1795		err = -EBUSY;
1796		goto done;
1797	}
1798
1799	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1800		err = -EOPNOTSUPP;
1801		goto done;
1802	}
1803
1804	if (hdev->dev_type != HCI_PRIMARY) {
1805		err = -EOPNOTSUPP;
1806		goto done;
1807	}
1808
1809	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1810		err = -EOPNOTSUPP;
1811		goto done;
1812	}
1813
1814	switch (cmd) {
1815	case HCISETAUTH:
1816		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1817				   HCI_INIT_TIMEOUT, NULL);
1818		break;
1819
1820	case HCISETENCRYPT:
1821		if (!lmp_encrypt_capable(hdev)) {
1822			err = -EOPNOTSUPP;
1823			break;
1824		}
1825
1826		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1827			/* Auth must be enabled first */
1828			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1829					   HCI_INIT_TIMEOUT, NULL);
1830			if (err)
1831				break;
1832		}
1833
1834		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1835				   HCI_INIT_TIMEOUT, NULL);
1836		break;
1837
1838	case HCISETSCAN:
1839		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1840				   HCI_INIT_TIMEOUT, NULL);
1841
1842		/* Ensure that the connectable and discoverable states
1843		 * get correctly modified as this was a non-mgmt change.
1844		 */
1845		if (!err)
1846			hci_update_scan_state(hdev, dr.dev_opt);
1847		break;
1848
1849	case HCISETLINKPOL:
1850		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1851				   HCI_INIT_TIMEOUT, NULL);
1852		break;
1853
1854	case HCISETLINKMODE:
1855		hdev->link_mode = ((__u16) dr.dev_opt) &
1856					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1857		break;
1858
1859	case HCISETPTYPE:
1860		hdev->pkt_type = (__u16) dr.dev_opt;
1861		break;
1862
1863	case HCISETACLMTU:
1864		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1865		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1866		break;
1867
1868	case HCISETSCOMTU:
1869		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1870		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1871		break;
1872
1873	default:
1874		err = -EINVAL;
1875		break;
1876	}
1877
1878done:
1879	hci_dev_put(hdev);
1880	return err;
1881}
1882
1883int hci_get_dev_list(void __user *arg)
1884{
1885	struct hci_dev *hdev;
1886	struct hci_dev_list_req *dl;
1887	struct hci_dev_req *dr;
1888	int n = 0, size, err;
1889	__u16 dev_num;
1890
1891	if (get_user(dev_num, (__u16 __user *) arg))
1892		return -EFAULT;
1893
1894	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1895		return -EINVAL;
1896
1897	size = sizeof(*dl) + dev_num * sizeof(*dr);
1898
1899	dl = kzalloc(size, GFP_KERNEL);
1900	if (!dl)
1901		return -ENOMEM;
1902
1903	dr = dl->dev_req;
1904
1905	read_lock(&hci_dev_list_lock);
1906	list_for_each_entry(hdev, &hci_dev_list, list) {
1907		unsigned long flags = hdev->flags;
 
1908
1909		/* When the auto-off is configured it means the transport
1910		 * is running, but in that case still indicate that the
1911		 * device is actually down.
1912		 */
1913		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1914			flags &= ~BIT(HCI_UP);
1915
1916		(dr + n)->dev_id  = hdev->id;
1917		(dr + n)->dev_opt = flags;
1918
1919		if (++n >= dev_num)
1920			break;
1921	}
1922	read_unlock(&hci_dev_list_lock);
1923
1924	dl->dev_num = n;
1925	size = sizeof(*dl) + n * sizeof(*dr);
1926
1927	err = copy_to_user(arg, dl, size);
1928	kfree(dl);
1929
1930	return err ? -EFAULT : 0;
1931}
1932
1933int hci_get_dev_info(void __user *arg)
1934{
1935	struct hci_dev *hdev;
1936	struct hci_dev_info di;
1937	unsigned long flags;
1938	int err = 0;
1939
1940	if (copy_from_user(&di, arg, sizeof(di)))
1941		return -EFAULT;
1942
1943	hdev = hci_dev_get(di.dev_id);
1944	if (!hdev)
1945		return -ENODEV;
1946
1947	/* When the auto-off is configured it means the transport
1948	 * is running, but in that case still indicate that the
1949	 * device is actually down.
1950	 */
1951	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1952		flags = hdev->flags & ~BIT(HCI_UP);
1953	else
1954		flags = hdev->flags;
1955
1956	strcpy(di.name, hdev->name);
1957	di.bdaddr   = hdev->bdaddr;
1958	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1959	di.flags    = flags;
1960	di.pkt_type = hdev->pkt_type;
1961	if (lmp_bredr_capable(hdev)) {
1962		di.acl_mtu  = hdev->acl_mtu;
1963		di.acl_pkts = hdev->acl_pkts;
1964		di.sco_mtu  = hdev->sco_mtu;
1965		di.sco_pkts = hdev->sco_pkts;
1966	} else {
1967		di.acl_mtu  = hdev->le_mtu;
1968		di.acl_pkts = hdev->le_pkts;
1969		di.sco_mtu  = 0;
1970		di.sco_pkts = 0;
1971	}
1972	di.link_policy = hdev->link_policy;
1973	di.link_mode   = hdev->link_mode;
1974
1975	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1976	memcpy(&di.features, &hdev->features, sizeof(di.features));
1977
1978	if (copy_to_user(arg, &di, sizeof(di)))
1979		err = -EFAULT;
1980
1981	hci_dev_put(hdev);
1982
1983	return err;
1984}
1985
1986/* ---- Interface to HCI drivers ---- */
1987
1988static int hci_rfkill_set_block(void *data, bool blocked)
1989{
1990	struct hci_dev *hdev = data;
1991
1992	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1993
1994	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1995		return -EBUSY;
1996
1997	if (blocked) {
1998		hci_dev_set_flag(hdev, HCI_RFKILLED);
1999		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2000		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2001			hci_dev_do_close(hdev);
2002	} else {
2003		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2004	}
2005
2006	return 0;
2007}
2008
2009static const struct rfkill_ops hci_rfkill_ops = {
2010	.set_block = hci_rfkill_set_block,
2011};
2012
2013static void hci_power_on(struct work_struct *work)
2014{
2015	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2016	int err;
2017
2018	BT_DBG("%s", hdev->name);
2019
2020	if (test_bit(HCI_UP, &hdev->flags) &&
2021	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2022	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2023		cancel_delayed_work(&hdev->power_off);
2024		hci_req_sync_lock(hdev);
2025		err = __hci_req_hci_power_on(hdev);
2026		hci_req_sync_unlock(hdev);
2027		mgmt_power_on(hdev, err);
2028		return;
2029	}
2030
2031	err = hci_dev_do_open(hdev);
2032	if (err < 0) {
2033		hci_dev_lock(hdev);
2034		mgmt_set_powered_failed(hdev, err);
2035		hci_dev_unlock(hdev);
2036		return;
2037	}
2038
2039	/* During the HCI setup phase, a few error conditions are
2040	 * ignored and they need to be checked now. If they are still
2041	 * valid, it is important to turn the device back off.
2042	 */
2043	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2044	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2045	    (hdev->dev_type == HCI_PRIMARY &&
2046	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2047	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2048		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2049		hci_dev_do_close(hdev);
2050	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2051		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2052				   HCI_AUTO_OFF_TIMEOUT);
2053	}
2054
2055	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2056		/* For unconfigured devices, set the HCI_RAW flag
2057		 * so that userspace can easily identify them.
2058		 */
2059		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2060			set_bit(HCI_RAW, &hdev->flags);
2061
2062		/* For fully configured devices, this will send
2063		 * the Index Added event. For unconfigured devices,
2064		 * it will send Unconfigued Index Added event.
2065		 *
2066		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2067		 * and no event will be send.
2068		 */
2069		mgmt_index_added(hdev);
2070	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2071		/* When the controller is now configured, then it
2072		 * is important to clear the HCI_RAW flag.
2073		 */
2074		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2075			clear_bit(HCI_RAW, &hdev->flags);
2076
2077		/* Powering on the controller with HCI_CONFIG set only
2078		 * happens with the transition from unconfigured to
2079		 * configured. This will send the Index Added event.
2080		 */
2081		mgmt_index_added(hdev);
2082	}
2083}
2084
2085static void hci_power_off(struct work_struct *work)
2086{
2087	struct hci_dev *hdev = container_of(work, struct hci_dev,
2088					    power_off.work);
2089
2090	BT_DBG("%s", hdev->name);
2091
2092	hci_dev_do_close(hdev);
2093}
2094
2095static void hci_error_reset(struct work_struct *work)
2096{
2097	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
 
 
 
2098
2099	BT_DBG("%s", hdev->name);
2100
2101	if (hdev->hw_error)
2102		hdev->hw_error(hdev, hdev->hw_error_code);
2103	else
2104		BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2105		       hdev->hw_error_code);
2106
2107	if (hci_dev_do_close(hdev))
2108		return;
2109
2110	hci_dev_do_open(hdev);
2111}
2112
2113void hci_uuids_clear(struct hci_dev *hdev)
2114{
2115	struct bt_uuid *uuid, *tmp;
 
 
 
2116
2117	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2118		list_del(&uuid->list);
 
2119		kfree(uuid);
2120	}
 
 
2121}
2122
2123void hci_link_keys_clear(struct hci_dev *hdev)
2124{
2125	struct link_key *key;
2126
2127	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2128		list_del_rcu(&key->list);
2129		kfree_rcu(key, rcu);
2130	}
2131}
2132
2133void hci_smp_ltks_clear(struct hci_dev *hdev)
2134{
2135	struct smp_ltk *k;
2136
2137	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2138		list_del_rcu(&k->list);
2139		kfree_rcu(k, rcu);
2140	}
 
 
2141}
2142
2143void hci_smp_irks_clear(struct hci_dev *hdev)
2144{
2145	struct smp_irk *k;
2146
2147	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2148		list_del_rcu(&k->list);
2149		kfree_rcu(k, rcu);
2150	}
 
 
2151}
2152
2153struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2154{
2155	struct link_key *k;
2156
2157	rcu_read_lock();
2158	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2159		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2160			rcu_read_unlock();
2161			return k;
2162		}
2163	}
2164	rcu_read_unlock();
2165
2166	return NULL;
2167}
2168
2169static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2170			       u8 key_type, u8 old_key_type)
2171{
2172	/* Legacy key */
2173	if (key_type < 0x03)
2174		return true;
2175
2176	/* Debug keys are insecure so don't store them persistently */
2177	if (key_type == HCI_LK_DEBUG_COMBINATION)
2178		return false;
2179
2180	/* Changed combination key and there's no previous one */
2181	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2182		return false;
2183
2184	/* Security mode 3 case */
2185	if (!conn)
2186		return true;
2187
2188	/* BR/EDR key derived using SC from an LE link */
2189	if (conn->type == LE_LINK)
2190		return true;
2191
2192	/* Neither local nor remote side had no-bonding as requirement */
2193	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2194		return true;
2195
2196	/* Local side had dedicated bonding as requirement */
2197	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2198		return true;
2199
2200	/* Remote side had dedicated bonding as requirement */
2201	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2202		return true;
2203
2204	/* If none of the above criteria match, then don't store the key
2205	 * persistently */
2206	return false;
2207}
2208
2209static u8 ltk_role(u8 type)
2210{
2211	if (type == SMP_LTK)
2212		return HCI_ROLE_MASTER;
2213
2214	return HCI_ROLE_SLAVE;
2215}
2216
2217struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2218			     u8 addr_type, u8 role)
2219{
2220	struct smp_ltk *k;
2221
2222	rcu_read_lock();
2223	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2224		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2225			continue;
2226
2227		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2228			rcu_read_unlock();
2229			return k;
2230		}
2231	}
2232	rcu_read_unlock();
2233
2234	return NULL;
2235}
2236
2237struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2238{
2239	struct smp_irk *irk;
2240
2241	rcu_read_lock();
2242	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2243		if (!bacmp(&irk->rpa, rpa)) {
2244			rcu_read_unlock();
2245			return irk;
2246		}
2247	}
2248
2249	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2250		if (smp_irk_matches(hdev, irk->val, rpa)) {
2251			bacpy(&irk->rpa, rpa);
2252			rcu_read_unlock();
2253			return irk;
2254		}
2255	}
2256	rcu_read_unlock();
2257
2258	return NULL;
2259}
 
2260
2261struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2262				     u8 addr_type)
2263{
2264	struct smp_irk *irk;
2265
2266	/* Identity Address must be public or static random */
2267	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2268		return NULL;
2269
2270	rcu_read_lock();
2271	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2272		if (addr_type == irk->addr_type &&
2273		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2274			rcu_read_unlock();
2275			return irk;
2276		}
2277	}
2278	rcu_read_unlock();
2279
2280	return NULL;
2281}
 
2282
2283struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2284				  bdaddr_t *bdaddr, u8 *val, u8 type,
2285				  u8 pin_len, bool *persistent)
2286{
2287	struct link_key *key, *old_key;
2288	u8 old_key_type;
 
2289
2290	old_key = hci_find_link_key(hdev, bdaddr);
2291	if (old_key) {
2292		old_key_type = old_key->type;
2293		key = old_key;
2294	} else {
2295		old_key_type = conn ? conn->key_type : 0xff;
2296		key = kzalloc(sizeof(*key), GFP_KERNEL);
2297		if (!key)
2298			return NULL;
2299		list_add_rcu(&key->list, &hdev->link_keys);
2300	}
2301
2302	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2303
2304	/* Some buggy controller combinations generate a changed
2305	 * combination key for legacy pairing even when there's no
2306	 * previous key */
2307	if (type == HCI_LK_CHANGED_COMBINATION &&
2308	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
 
2309		type = HCI_LK_COMBINATION;
2310		if (conn)
2311			conn->key_type = type;
2312	}
2313
2314	bacpy(&key->bdaddr, bdaddr);
2315	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2316	key->pin_len = pin_len;
2317
2318	if (type == HCI_LK_CHANGED_COMBINATION)
2319		key->type = old_key_type;
2320	else
2321		key->type = type;
2322
2323	if (persistent)
2324		*persistent = hci_persistent_key(hdev, conn, type,
2325						 old_key_type);
 
 
 
2326
2327	return key;
 
 
 
2328}
2329
2330struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2331			    u8 addr_type, u8 type, u8 authenticated,
2332			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2333{
2334	struct smp_ltk *key, *old_key;
2335	u8 role = ltk_role(type);
2336
2337	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
 
 
 
2338	if (old_key)
2339		key = old_key;
2340	else {
2341		key = kzalloc(sizeof(*key), GFP_KERNEL);
2342		if (!key)
2343			return NULL;
2344		list_add_rcu(&key->list, &hdev->long_term_keys);
2345	}
2346
2347	bacpy(&key->bdaddr, bdaddr);
2348	key->bdaddr_type = addr_type;
2349	memcpy(key->val, tk, sizeof(key->val));
2350	key->authenticated = authenticated;
2351	key->ediv = ediv;
2352	key->rand = rand;
2353	key->enc_size = enc_size;
2354	key->type = type;
 
2355
2356	return key;
2357}
2358
2359struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2360			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2361{
2362	struct smp_irk *irk;
2363
2364	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2365	if (!irk) {
2366		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2367		if (!irk)
2368			return NULL;
2369
2370		bacpy(&irk->bdaddr, bdaddr);
2371		irk->addr_type = addr_type;
2372
2373		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2374	}
2375
2376	memcpy(irk->val, val, 16);
2377	bacpy(&irk->rpa, rpa);
2378
2379	return irk;
2380}
2381
2382int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2383{
2384	struct link_key *key;
2385
2386	key = hci_find_link_key(hdev, bdaddr);
2387	if (!key)
2388		return -ENOENT;
2389
2390	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2391
2392	list_del_rcu(&key->list);
2393	kfree_rcu(key, rcu);
2394
2395	return 0;
2396}
2397
2398int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2399{
2400	struct smp_ltk *k;
2401	int removed = 0;
2402
2403	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2404		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2405			continue;
2406
2407		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2408
2409		list_del_rcu(&k->list);
2410		kfree_rcu(k, rcu);
2411		removed++;
2412	}
2413
2414	return removed ? 0 : -ENOENT;
2415}
2416
2417void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2418{
2419	struct smp_irk *k;
2420
2421	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2422		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2423			continue;
2424
2425		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2426
2427		list_del_rcu(&k->list);
2428		kfree_rcu(k, rcu);
2429	}
2430}
2431
2432bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2433{
2434	struct smp_ltk *k;
2435	struct smp_irk *irk;
2436	u8 addr_type;
2437
2438	if (type == BDADDR_BREDR) {
2439		if (hci_find_link_key(hdev, bdaddr))
2440			return true;
2441		return false;
2442	}
2443
2444	/* Convert to HCI addr type which struct smp_ltk uses */
2445	if (type == BDADDR_LE_PUBLIC)
2446		addr_type = ADDR_LE_DEV_PUBLIC;
2447	else
2448		addr_type = ADDR_LE_DEV_RANDOM;
2449
2450	irk = hci_get_irk(hdev, bdaddr, addr_type);
2451	if (irk) {
2452		bdaddr = &irk->bdaddr;
2453		addr_type = irk->addr_type;
2454	}
2455
2456	rcu_read_lock();
2457	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2458		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2459			rcu_read_unlock();
2460			return true;
2461		}
2462	}
2463	rcu_read_unlock();
2464
2465	return false;
2466}
2467
2468/* HCI command timer function */
2469static void hci_cmd_timeout(struct work_struct *work)
2470{
2471	struct hci_dev *hdev = container_of(work, struct hci_dev,
2472					    cmd_timer.work);
2473
2474	if (hdev->sent_cmd) {
2475		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2476		u16 opcode = __le16_to_cpu(sent->opcode);
2477
2478		BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2479	} else {
2480		BT_ERR("%s command tx timeout", hdev->name);
2481	}
2482
 
2483	atomic_set(&hdev->cmd_cnt, 1);
2484	queue_work(hdev->workqueue, &hdev->cmd_work);
2485}
2486
2487struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2488					  bdaddr_t *bdaddr, u8 bdaddr_type)
2489{
2490	struct oob_data *data;
2491
2492	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2493		if (bacmp(bdaddr, &data->bdaddr) != 0)
2494			continue;
2495		if (data->bdaddr_type != bdaddr_type)
2496			continue;
2497		return data;
2498	}
2499
2500	return NULL;
2501}
2502
2503int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2504			       u8 bdaddr_type)
2505{
2506	struct oob_data *data;
2507
2508	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2509	if (!data)
2510		return -ENOENT;
2511
2512	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2513
2514	list_del(&data->list);
2515	kfree(data);
2516
2517	return 0;
2518}
2519
2520void hci_remote_oob_data_clear(struct hci_dev *hdev)
2521{
2522	struct oob_data *data, *n;
2523
2524	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2525		list_del(&data->list);
2526		kfree(data);
2527	}
 
 
2528}
2529
2530int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2531			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2532			    u8 *hash256, u8 *rand256)
2533{
2534	struct oob_data *data;
2535
2536	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
 
2537	if (!data) {
2538		data = kmalloc(sizeof(*data), GFP_KERNEL);
2539		if (!data)
2540			return -ENOMEM;
2541
2542		bacpy(&data->bdaddr, bdaddr);
2543		data->bdaddr_type = bdaddr_type;
2544		list_add(&data->list, &hdev->remote_oob_data);
2545	}
2546
2547	if (hash192 && rand192) {
2548		memcpy(data->hash192, hash192, sizeof(data->hash192));
2549		memcpy(data->rand192, rand192, sizeof(data->rand192));
2550		if (hash256 && rand256)
2551			data->present = 0x03;
2552	} else {
2553		memset(data->hash192, 0, sizeof(data->hash192));
2554		memset(data->rand192, 0, sizeof(data->rand192));
2555		if (hash256 && rand256)
2556			data->present = 0x02;
2557		else
2558			data->present = 0x00;
2559	}
2560
2561	if (hash256 && rand256) {
2562		memcpy(data->hash256, hash256, sizeof(data->hash256));
2563		memcpy(data->rand256, rand256, sizeof(data->rand256));
2564	} else {
2565		memset(data->hash256, 0, sizeof(data->hash256));
2566		memset(data->rand256, 0, sizeof(data->rand256));
2567		if (hash192 && rand192)
2568			data->present = 0x01;
2569	}
2570
2571	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2572
2573	return 0;
2574}
2575
2576/* This function requires the caller holds hdev->lock */
2577struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2578{
2579	struct adv_info *adv_instance;
2580
2581	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2582		if (adv_instance->instance == instance)
2583			return adv_instance;
2584	}
2585
2586	return NULL;
2587}
2588
2589/* This function requires the caller holds hdev->lock */
2590struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2591{
2592	struct adv_info *cur_instance;
2593
2594	cur_instance = hci_find_adv_instance(hdev, instance);
2595	if (!cur_instance)
2596		return NULL;
2597
2598	if (cur_instance == list_last_entry(&hdev->adv_instances,
2599					    struct adv_info, list))
2600		return list_first_entry(&hdev->adv_instances,
2601						 struct adv_info, list);
2602	else
2603		return list_next_entry(cur_instance, list);
2604}
2605
2606/* This function requires the caller holds hdev->lock */
2607int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2608{
2609	struct adv_info *adv_instance;
2610
2611	adv_instance = hci_find_adv_instance(hdev, instance);
2612	if (!adv_instance)
2613		return -ENOENT;
2614
2615	BT_DBG("%s removing %dMR", hdev->name, instance);
2616
2617	if (hdev->cur_adv_instance == instance) {
2618		if (hdev->adv_instance_timeout) {
2619			cancel_delayed_work(&hdev->adv_instance_expire);
2620			hdev->adv_instance_timeout = 0;
2621		}
2622		hdev->cur_adv_instance = 0x00;
2623	}
2624
2625	list_del(&adv_instance->list);
2626	kfree(adv_instance);
2627
2628	hdev->adv_instance_cnt--;
2629
2630	return 0;
2631}
2632
2633/* This function requires the caller holds hdev->lock */
2634void hci_adv_instances_clear(struct hci_dev *hdev)
2635{
2636	struct adv_info *adv_instance, *n;
2637
2638	if (hdev->adv_instance_timeout) {
2639		cancel_delayed_work(&hdev->adv_instance_expire);
2640		hdev->adv_instance_timeout = 0;
2641	}
2642
2643	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2644		list_del(&adv_instance->list);
2645		kfree(adv_instance);
2646	}
2647
2648	hdev->adv_instance_cnt = 0;
2649	hdev->cur_adv_instance = 0x00;
2650}
2651
2652/* This function requires the caller holds hdev->lock */
2653int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2654			 u16 adv_data_len, u8 *adv_data,
2655			 u16 scan_rsp_len, u8 *scan_rsp_data,
2656			 u16 timeout, u16 duration)
2657{
2658	struct adv_info *adv_instance;
2659
2660	adv_instance = hci_find_adv_instance(hdev, instance);
2661	if (adv_instance) {
2662		memset(adv_instance->adv_data, 0,
2663		       sizeof(adv_instance->adv_data));
2664		memset(adv_instance->scan_rsp_data, 0,
2665		       sizeof(adv_instance->scan_rsp_data));
2666	} else {
2667		if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2668		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2669			return -EOVERFLOW;
2670
2671		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2672		if (!adv_instance)
2673			return -ENOMEM;
2674
2675		adv_instance->pending = true;
2676		adv_instance->instance = instance;
2677		list_add(&adv_instance->list, &hdev->adv_instances);
2678		hdev->adv_instance_cnt++;
2679	}
2680
2681	adv_instance->flags = flags;
2682	adv_instance->adv_data_len = adv_data_len;
2683	adv_instance->scan_rsp_len = scan_rsp_len;
2684
2685	if (adv_data_len)
2686		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
 
2687
2688	if (scan_rsp_len)
2689		memcpy(adv_instance->scan_rsp_data,
2690		       scan_rsp_data, scan_rsp_len);
2691
2692	adv_instance->timeout = timeout;
2693	adv_instance->remaining_time = timeout;
2694
2695	if (duration == 0)
2696		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2697	else
2698		adv_instance->duration = duration;
2699
2700	BT_DBG("%s for %dMR", hdev->name, instance);
 
 
 
2701
2702	return 0;
2703}
2704
2705struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2706					 bdaddr_t *bdaddr, u8 type)
2707{
2708	struct bdaddr_list *b;
2709
2710	list_for_each_entry(b, bdaddr_list, list) {
2711		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2712			return b;
2713	}
2714
2715	return NULL;
2716}
2717
2718void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
 
2719{
2720	struct bdaddr_list *b, *n;
 
 
 
 
2721
2722	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2723		list_del(&b->list);
2724		kfree(b);
2725	}
2726}
2727
2728int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2729{
2730	struct bdaddr_list *entry;
2731
2732	if (!bacmp(bdaddr, BDADDR_ANY))
2733		return -EBADF;
2734
2735	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2736		return -EEXIST;
 
 
2737
2738	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2739	if (!entry)
2740		return -ENOMEM;
2741
2742	bacpy(&entry->bdaddr, bdaddr);
2743	entry->bdaddr_type = type;
2744
2745	list_add(&entry->list, list);
 
2746
2747	return 0;
2748}
2749
2750int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2751{
2752	struct bdaddr_list *entry;
2753
2754	if (!bacmp(bdaddr, BDADDR_ANY)) {
2755		hci_bdaddr_list_clear(list);
2756		return 0;
2757	}
2758
2759	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2760	if (!entry)
2761		return -ENOENT;
2762
2763	list_del(&entry->list);
2764	kfree(entry);
 
 
2765
2766	return 0;
2767}
2768
2769/* This function requires the caller holds hdev->lock */
2770struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2771					       bdaddr_t *addr, u8 addr_type)
2772{
2773	struct hci_conn_params *params;
2774
2775	list_for_each_entry(params, &hdev->le_conn_params, list) {
2776		if (bacmp(&params->addr, addr) == 0 &&
2777		    params->addr_type == addr_type) {
2778			return params;
2779		}
2780	}
2781
2782	return NULL;
2783}
2784
2785/* This function requires the caller holds hdev->lock */
2786struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2787						  bdaddr_t *addr, u8 addr_type)
2788{
2789	struct hci_conn_params *param;
2790
2791	list_for_each_entry(param, list, action) {
2792		if (bacmp(&param->addr, addr) == 0 &&
2793		    param->addr_type == addr_type)
2794			return param;
2795	}
2796
2797	return NULL;
2798}
2799
2800/* This function requires the caller holds hdev->lock */
2801struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2802					    bdaddr_t *addr, u8 addr_type)
2803{
2804	struct hci_conn_params *params;
2805
2806	params = hci_conn_params_lookup(hdev, addr, addr_type);
2807	if (params)
2808		return params;
2809
2810	params = kzalloc(sizeof(*params), GFP_KERNEL);
2811	if (!params) {
2812		BT_ERR("Out of memory");
2813		return NULL;
2814	}
2815
2816	bacpy(&params->addr, addr);
2817	params->addr_type = addr_type;
2818
2819	list_add(&params->list, &hdev->le_conn_params);
2820	INIT_LIST_HEAD(&params->action);
2821
2822	params->conn_min_interval = hdev->le_conn_min_interval;
2823	params->conn_max_interval = hdev->le_conn_max_interval;
2824	params->conn_latency = hdev->le_conn_latency;
2825	params->supervision_timeout = hdev->le_supv_timeout;
2826	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2827
2828	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2829
2830	return params;
2831}
2832
2833static void hci_conn_params_free(struct hci_conn_params *params)
2834{
2835	if (params->conn) {
2836		hci_conn_drop(params->conn);
2837		hci_conn_put(params->conn);
2838	}
2839
2840	list_del(&params->action);
2841	list_del(&params->list);
2842	kfree(params);
2843}
2844
2845/* This function requires the caller holds hdev->lock */
2846void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2847{
2848	struct hci_conn_params *params;
2849
2850	params = hci_conn_params_lookup(hdev, addr, addr_type);
2851	if (!params)
2852		return;
2853
2854	hci_conn_params_free(params);
2855
2856	hci_update_background_scan(hdev);
2857
2858	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2859}
2860
2861/* This function requires the caller holds hdev->lock */
2862void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2863{
2864	struct hci_conn_params *params, *tmp;
2865
2866	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2867		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2868			continue;
2869
2870		/* If trying to estabilish one time connection to disabled
2871		 * device, leave the params, but mark them as just once.
2872		 */
2873		if (params->explicit_connect) {
2874			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2875			continue;
2876		}
2877
2878		list_del(&params->list);
2879		kfree(params);
2880	}
 
2881
2882	BT_DBG("All LE disabled connection parameters were removed");
2883}
2884
2885/* This function requires the caller holds hdev->lock */
2886static void hci_conn_params_clear_all(struct hci_dev *hdev)
2887{
2888	struct hci_conn_params *params, *tmp;
2889
2890	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2891		hci_conn_params_free(params);
2892
2893	BT_DBG("All LE connection parameters were removed");
2894}
2895
2896/* Copy the Identity Address of the controller.
2897 *
2898 * If the controller has a public BD_ADDR, then by default use that one.
2899 * If this is a LE only controller without a public address, default to
2900 * the static random address.
2901 *
2902 * For debugging purposes it is possible to force controllers with a
2903 * public address to use the static random address instead.
2904 *
2905 * In case BR/EDR has been disabled on a dual-mode controller and
2906 * userspace has configured a static address, then that address
2907 * becomes the identity address instead of the public BR/EDR address.
2908 */
2909void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2910			       u8 *bdaddr_type)
2911{
2912	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2913	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2914	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2915	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2916		bacpy(bdaddr, &hdev->static_addr);
2917		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2918	} else {
2919		bacpy(bdaddr, &hdev->bdaddr);
2920		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2921	}
2922}
2923
2924/* Alloc HCI device */
2925struct hci_dev *hci_alloc_dev(void)
2926{
2927	struct hci_dev *hdev;
2928
2929	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2930	if (!hdev)
2931		return NULL;
2932
2933	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2934	hdev->esco_type = (ESCO_HV1);
2935	hdev->link_mode = (HCI_LM_ACCEPT);
2936	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2937	hdev->io_capability = 0x03;	/* No Input No Output */
2938	hdev->manufacturer = 0xffff;	/* Default to internal use */
2939	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2940	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2941	hdev->adv_instance_cnt = 0;
2942	hdev->cur_adv_instance = 0x00;
2943	hdev->adv_instance_timeout = 0;
2944
2945	hdev->sniff_max_interval = 800;
2946	hdev->sniff_min_interval = 80;
2947
2948	hdev->le_adv_channel_map = 0x07;
2949	hdev->le_adv_min_interval = 0x0800;
2950	hdev->le_adv_max_interval = 0x0800;
2951	hdev->le_scan_interval = 0x0060;
2952	hdev->le_scan_window = 0x0030;
2953	hdev->le_conn_min_interval = 0x0028;
2954	hdev->le_conn_max_interval = 0x0038;
2955	hdev->le_conn_latency = 0x0000;
2956	hdev->le_supv_timeout = 0x002a;
2957	hdev->le_def_tx_len = 0x001b;
2958	hdev->le_def_tx_time = 0x0148;
2959	hdev->le_max_tx_len = 0x001b;
2960	hdev->le_max_tx_time = 0x0148;
2961	hdev->le_max_rx_len = 0x001b;
2962	hdev->le_max_rx_time = 0x0148;
2963
2964	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2965	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2966	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2967	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2968
2969	mutex_init(&hdev->lock);
2970	mutex_init(&hdev->req_lock);
2971
2972	INIT_LIST_HEAD(&hdev->mgmt_pending);
2973	INIT_LIST_HEAD(&hdev->blacklist);
2974	INIT_LIST_HEAD(&hdev->whitelist);
2975	INIT_LIST_HEAD(&hdev->uuids);
2976	INIT_LIST_HEAD(&hdev->link_keys);
2977	INIT_LIST_HEAD(&hdev->long_term_keys);
2978	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2979	INIT_LIST_HEAD(&hdev->remote_oob_data);
2980	INIT_LIST_HEAD(&hdev->le_white_list);
2981	INIT_LIST_HEAD(&hdev->le_conn_params);
2982	INIT_LIST_HEAD(&hdev->pend_le_conns);
2983	INIT_LIST_HEAD(&hdev->pend_le_reports);
2984	INIT_LIST_HEAD(&hdev->conn_hash.list);
2985	INIT_LIST_HEAD(&hdev->adv_instances);
2986
2987	INIT_WORK(&hdev->rx_work, hci_rx_work);
2988	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2989	INIT_WORK(&hdev->tx_work, hci_tx_work);
2990	INIT_WORK(&hdev->power_on, hci_power_on);
2991	INIT_WORK(&hdev->error_reset, hci_error_reset);
2992
2993	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
 
 
2994
 
2995	skb_queue_head_init(&hdev->rx_q);
2996	skb_queue_head_init(&hdev->cmd_q);
2997	skb_queue_head_init(&hdev->raw_q);
2998
2999	init_waitqueue_head(&hdev->req_wait_q);
3000
3001	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3002
3003	hci_request_setup(hdev);
3004
3005	hci_init_sysfs(hdev);
3006	discovery_init(hdev);
 
3007
3008	return hdev;
3009}
3010EXPORT_SYMBOL(hci_alloc_dev);
3011
3012/* Free HCI device */
3013void hci_free_dev(struct hci_dev *hdev)
3014{
 
 
3015	/* will free via device release */
3016	put_device(&hdev->dev);
3017}
3018EXPORT_SYMBOL(hci_free_dev);
3019
3020/* Register HCI device */
3021int hci_register_dev(struct hci_dev *hdev)
3022{
 
3023	int id, error;
3024
3025	if (!hdev->open || !hdev->close || !hdev->send)
3026		return -EINVAL;
3027
 
 
3028	/* Do not allow HCI_AMP devices to register at index 0,
3029	 * so the index can be used as the AMP controller ID.
3030	 */
3031	switch (hdev->dev_type) {
3032	case HCI_PRIMARY:
3033		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3034		break;
3035	case HCI_AMP:
3036		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3037		break;
3038	default:
3039		return -EINVAL;
 
 
3040	}
3041
3042	if (id < 0)
3043		return id;
3044
3045	sprintf(hdev->name, "hci%d", id);
3046	hdev->id = id;
3047
3048	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3049
3050	hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3051					  WQ_MEM_RECLAIM, 1, hdev->name);
 
 
 
 
3052	if (!hdev->workqueue) {
3053		error = -ENOMEM;
3054		goto err;
3055	}
3056
3057	hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3058					      WQ_MEM_RECLAIM, 1, hdev->name);
3059	if (!hdev->req_workqueue) {
3060		destroy_workqueue(hdev->workqueue);
3061		error = -ENOMEM;
3062		goto err;
3063	}
3064
3065	if (!IS_ERR_OR_NULL(bt_debugfs))
3066		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3067
3068	dev_set_name(&hdev->dev, "%s", hdev->name);
3069
3070	error = device_add(&hdev->dev);
3071	if (error < 0)
3072		goto err_wqueue;
3073
3074	hci_leds_init(hdev);
3075
3076	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3077				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3078				    hdev);
3079	if (hdev->rfkill) {
3080		if (rfkill_register(hdev->rfkill) < 0) {
3081			rfkill_destroy(hdev->rfkill);
3082			hdev->rfkill = NULL;
3083		}
3084	}
3085
3086	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3087		hci_dev_set_flag(hdev, HCI_RFKILLED);
3088
3089	hci_dev_set_flag(hdev, HCI_SETUP);
3090	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3091
3092	if (hdev->dev_type == HCI_PRIMARY) {
3093		/* Assume BR/EDR support until proven otherwise (such as
3094		 * through reading supported features during init.
3095		 */
3096		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3097	}
3098
3099	write_lock(&hci_dev_list_lock);
3100	list_add(&hdev->list, &hci_dev_list);
3101	write_unlock(&hci_dev_list_lock);
3102
3103	/* Devices that are marked for raw-only usage are unconfigured
3104	 * and should not be included in normal operation.
3105	 */
3106	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3107		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3108
3109	hci_sock_dev_event(hdev, HCI_DEV_REG);
3110	hci_dev_hold(hdev);
3111
3112	queue_work(hdev->req_workqueue, &hdev->power_on);
3113
3114	return id;
3115
3116err_wqueue:
3117	destroy_workqueue(hdev->workqueue);
3118	destroy_workqueue(hdev->req_workqueue);
3119err:
3120	ida_simple_remove(&hci_index_ida, hdev->id);
 
 
3121
3122	return error;
3123}
3124EXPORT_SYMBOL(hci_register_dev);
3125
3126/* Unregister HCI device */
3127void hci_unregister_dev(struct hci_dev *hdev)
3128{
3129	int id;
3130
3131	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3132
3133	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3134
3135	id = hdev->id;
3136
3137	write_lock(&hci_dev_list_lock);
3138	list_del(&hdev->list);
3139	write_unlock(&hci_dev_list_lock);
3140
3141	cancel_work_sync(&hdev->power_on);
3142
3143	hci_dev_do_close(hdev);
 
3144
3145	if (!test_bit(HCI_INIT, &hdev->flags) &&
3146	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3147	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3148		hci_dev_lock(hdev);
3149		mgmt_index_removed(hdev);
3150		hci_dev_unlock(hdev);
3151	}
3152
3153	/* mgmt_index_removed should take care of emptying the
3154	 * pending list */
3155	BUG_ON(!list_empty(&hdev->mgmt_pending));
3156
3157	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3158
3159	if (hdev->rfkill) {
3160		rfkill_unregister(hdev->rfkill);
3161		rfkill_destroy(hdev->rfkill);
3162	}
3163
3164	device_del(&hdev->dev);
3165
3166	debugfs_remove_recursive(hdev->debugfs);
3167	kfree_const(hdev->hw_info);
3168	kfree_const(hdev->fw_info);
3169
3170	destroy_workqueue(hdev->workqueue);
3171	destroy_workqueue(hdev->req_workqueue);
3172
3173	hci_dev_lock(hdev);
3174	hci_bdaddr_list_clear(&hdev->blacklist);
3175	hci_bdaddr_list_clear(&hdev->whitelist);
3176	hci_uuids_clear(hdev);
3177	hci_link_keys_clear(hdev);
3178	hci_smp_ltks_clear(hdev);
3179	hci_smp_irks_clear(hdev);
3180	hci_remote_oob_data_clear(hdev);
3181	hci_adv_instances_clear(hdev);
3182	hci_bdaddr_list_clear(&hdev->le_white_list);
3183	hci_conn_params_clear_all(hdev);
3184	hci_discovery_filter_clear(hdev);
3185	hci_dev_unlock(hdev);
3186
3187	hci_dev_put(hdev);
3188
3189	ida_simple_remove(&hci_index_ida, id);
3190}
3191EXPORT_SYMBOL(hci_unregister_dev);
3192
3193/* Suspend HCI device */
3194int hci_suspend_dev(struct hci_dev *hdev)
3195{
3196	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3197	return 0;
3198}
3199EXPORT_SYMBOL(hci_suspend_dev);
3200
3201/* Resume HCI device */
3202int hci_resume_dev(struct hci_dev *hdev)
3203{
3204	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3205	return 0;
3206}
3207EXPORT_SYMBOL(hci_resume_dev);
3208
3209/* Reset HCI device */
3210int hci_reset_dev(struct hci_dev *hdev)
3211{
3212	const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3213	struct sk_buff *skb;
3214
3215	skb = bt_skb_alloc(3, GFP_ATOMIC);
3216	if (!skb)
3217		return -ENOMEM;
3218
3219	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3220	memcpy(skb_put(skb, 3), hw_err, 3);
3221
3222	/* Send Hardware Error to upper stack */
3223	return hci_recv_frame(hdev, skb);
3224}
3225EXPORT_SYMBOL(hci_reset_dev);
3226
3227/* Receive frame from HCI drivers */
3228int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3229{
 
3230	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3231		      && !test_bit(HCI_INIT, &hdev->flags))) {
3232		kfree_skb(skb);
3233		return -ENXIO;
3234	}
3235
3236	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3237	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3238	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3239		kfree_skb(skb);
3240		return -EINVAL;
3241	}
3242
3243	/* Incoming skb */
3244	bt_cb(skb)->incoming = 1;
3245
3246	/* Time stamp */
3247	__net_timestamp(skb);
3248
3249	skb_queue_tail(&hdev->rx_q, skb);
3250	queue_work(hdev->workqueue, &hdev->rx_work);
3251
3252	return 0;
3253}
3254EXPORT_SYMBOL(hci_recv_frame);
3255
3256/* Receive diagnostic message from HCI drivers */
3257int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3258{
3259	/* Mark as diagnostic packet */
3260	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
 
 
 
 
 
 
 
3261
3262	/* Time stamp */
3263	__net_timestamp(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3264
3265	skb_queue_tail(&hdev->rx_q, skb);
3266	queue_work(hdev->workqueue, &hdev->rx_work);
 
 
3267
3268	return 0;
3269}
3270EXPORT_SYMBOL(hci_recv_diag);
3271
3272void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3273{
3274	va_list vargs;
 
 
 
 
 
 
 
 
 
 
 
 
3275
3276	va_start(vargs, fmt);
3277	kfree_const(hdev->hw_info);
3278	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3279	va_end(vargs);
3280}
3281EXPORT_SYMBOL(hci_set_hw_info);
 
 
3282
3283void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3284{
3285	va_list vargs;
 
 
 
 
 
 
 
3286
3287	va_start(vargs, fmt);
3288	kfree_const(hdev->fw_info);
3289	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3290	va_end(vargs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3291}
3292EXPORT_SYMBOL(hci_set_fw_info);
3293
3294/* ---- Interface to upper protocols ---- */
3295
3296int hci_register_cb(struct hci_cb *cb)
3297{
3298	BT_DBG("%p name %s", cb, cb->name);
3299
3300	mutex_lock(&hci_cb_list_lock);
3301	list_add_tail(&cb->list, &hci_cb_list);
3302	mutex_unlock(&hci_cb_list_lock);
3303
3304	return 0;
3305}
3306EXPORT_SYMBOL(hci_register_cb);
3307
3308int hci_unregister_cb(struct hci_cb *cb)
3309{
3310	BT_DBG("%p name %s", cb, cb->name);
3311
3312	mutex_lock(&hci_cb_list_lock);
3313	list_del(&cb->list);
3314	mutex_unlock(&hci_cb_list_lock);
3315
3316	return 0;
3317}
3318EXPORT_SYMBOL(hci_unregister_cb);
3319
3320static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3321{
3322	int err;
 
 
 
 
 
3323
3324	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3325	       skb->len);
3326
3327	/* Time stamp */
3328	__net_timestamp(skb);
3329
3330	/* Send copy to monitor */
3331	hci_send_to_monitor(hdev, skb);
3332
3333	if (atomic_read(&hdev->promisc)) {
3334		/* Send copy to the sockets */
3335		hci_send_to_sock(hdev, skb);
3336	}
3337
3338	/* Get rid of skb owner, prior to sending to the driver. */
3339	skb_orphan(skb);
3340
3341	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3342		kfree_skb(skb);
3343		return;
3344	}
3345
3346	err = hdev->send(hdev, skb);
3347	if (err < 0) {
3348		BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3349		kfree_skb(skb);
3350	}
3351}
3352
3353/* Send HCI command */
3354int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3355		 const void *param)
3356{
 
 
3357	struct sk_buff *skb;
3358
3359	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3360
3361	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3362	if (!skb) {
3363		BT_ERR("%s no memory for command", hdev->name);
3364		return -ENOMEM;
3365	}
3366
3367	/* Stand-alone HCI commands must be flagged as
3368	 * single-command requests.
3369	 */
3370	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
 
 
 
 
 
 
 
 
 
 
3371
3372	skb_queue_tail(&hdev->cmd_q, skb);
3373	queue_work(hdev->workqueue, &hdev->cmd_work);
3374
3375	return 0;
3376}
3377
3378/* Get data from the previously sent command */
3379void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3380{
3381	struct hci_command_hdr *hdr;
3382
3383	if (!hdev->sent_cmd)
3384		return NULL;
3385
3386	hdr = (void *) hdev->sent_cmd->data;
3387
3388	if (hdr->opcode != cpu_to_le16(opcode))
3389		return NULL;
3390
3391	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3392
3393	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3394}
3395
3396/* Send HCI command and wait for command commplete event */
3397struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3398			     const void *param, u32 timeout)
3399{
3400	struct sk_buff *skb;
3401
3402	if (!test_bit(HCI_UP, &hdev->flags))
3403		return ERR_PTR(-ENETDOWN);
3404
3405	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3406
3407	hci_req_sync_lock(hdev);
3408	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3409	hci_req_sync_unlock(hdev);
3410
3411	return skb;
3412}
3413EXPORT_SYMBOL(hci_cmd_sync);
3414
3415/* Send ACL data */
3416static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3417{
3418	struct hci_acl_hdr *hdr;
3419	int len = skb->len;
3420
3421	skb_push(skb, HCI_ACL_HDR_SIZE);
3422	skb_reset_transport_header(skb);
3423	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3424	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3425	hdr->dlen   = cpu_to_le16(len);
3426}
3427
3428static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3429			  struct sk_buff *skb, __u16 flags)
3430{
3431	struct hci_conn *conn = chan->conn;
3432	struct hci_dev *hdev = conn->hdev;
3433	struct sk_buff *list;
3434
3435	skb->len = skb_headlen(skb);
3436	skb->data_len = 0;
3437
3438	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3439
3440	switch (hdev->dev_type) {
3441	case HCI_PRIMARY:
3442		hci_add_acl_hdr(skb, conn->handle, flags);
3443		break;
3444	case HCI_AMP:
3445		hci_add_acl_hdr(skb, chan->handle, flags);
3446		break;
3447	default:
3448		BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3449		return;
3450	}
3451
3452	list = skb_shinfo(skb)->frag_list;
3453	if (!list) {
3454		/* Non fragmented */
3455		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3456
3457		skb_queue_tail(queue, skb);
3458	} else {
3459		/* Fragmented */
3460		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3461
3462		skb_shinfo(skb)->frag_list = NULL;
3463
3464		/* Queue all fragments atomically. We need to use spin_lock_bh
3465		 * here because of 6LoWPAN links, as there this function is
3466		 * called from softirq and using normal spin lock could cause
3467		 * deadlocks.
3468		 */
3469		spin_lock_bh(&queue->lock);
3470
3471		__skb_queue_tail(queue, skb);
3472
3473		flags &= ~ACL_START;
3474		flags |= ACL_CONT;
3475		do {
3476			skb = list; list = list->next;
3477
3478			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
 
3479			hci_add_acl_hdr(skb, conn->handle, flags);
3480
3481			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3482
3483			__skb_queue_tail(queue, skb);
3484		} while (list);
3485
3486		spin_unlock_bh(&queue->lock);
3487	}
3488}
3489
3490void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3491{
3492	struct hci_dev *hdev = chan->conn->hdev;
 
3493
3494	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3495
3496	hci_queue_acl(chan, &chan->data_q, skb, flags);
 
 
3497
3498	queue_work(hdev->workqueue, &hdev->tx_work);
3499}
 
3500
3501/* Send SCO data */
3502void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3503{
3504	struct hci_dev *hdev = conn->hdev;
3505	struct hci_sco_hdr hdr;
3506
3507	BT_DBG("%s len %d", hdev->name, skb->len);
3508
3509	hdr.handle = cpu_to_le16(conn->handle);
3510	hdr.dlen   = skb->len;
3511
3512	skb_push(skb, HCI_SCO_HDR_SIZE);
3513	skb_reset_transport_header(skb);
3514	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3515
3516	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
 
3517
3518	skb_queue_tail(&conn->data_q, skb);
3519	queue_work(hdev->workqueue, &hdev->tx_work);
3520}
 
3521
3522/* ---- HCI TX task (outgoing data) ---- */
3523
3524/* HCI Connection scheduler */
3525static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3526				     int *quote)
3527{
3528	struct hci_conn_hash *h = &hdev->conn_hash;
3529	struct hci_conn *conn = NULL, *c;
3530	unsigned int num = 0, min = ~0;
3531
3532	/* We don't have to lock device here. Connections are always
3533	 * added and removed with TX task disabled. */
3534
3535	rcu_read_lock();
3536
3537	list_for_each_entry_rcu(c, &h->list, list) {
3538		if (c->type != type || skb_queue_empty(&c->data_q))
3539			continue;
3540
3541		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3542			continue;
3543
3544		num++;
3545
3546		if (c->sent < min) {
3547			min  = c->sent;
3548			conn = c;
3549		}
3550
3551		if (hci_conn_num(hdev, type) == num)
3552			break;
3553	}
3554
3555	rcu_read_unlock();
3556
3557	if (conn) {
3558		int cnt, q;
3559
3560		switch (conn->type) {
3561		case ACL_LINK:
3562			cnt = hdev->acl_cnt;
3563			break;
3564		case SCO_LINK:
3565		case ESCO_LINK:
3566			cnt = hdev->sco_cnt;
3567			break;
3568		case LE_LINK:
3569			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3570			break;
3571		default:
3572			cnt = 0;
3573			BT_ERR("Unknown link type");
3574		}
3575
3576		q = cnt / num;
3577		*quote = q ? q : 1;
3578	} else
3579		*quote = 0;
3580
3581	BT_DBG("conn %p quote %d", conn, *quote);
3582	return conn;
3583}
3584
3585static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3586{
3587	struct hci_conn_hash *h = &hdev->conn_hash;
3588	struct hci_conn *c;
3589
3590	BT_ERR("%s link tx timeout", hdev->name);
3591
3592	rcu_read_lock();
3593
3594	/* Kill stalled connections */
3595	list_for_each_entry_rcu(c, &h->list, list) {
3596		if (c->type == type && c->sent) {
3597			BT_ERR("%s killing stalled connection %pMR",
3598			       hdev->name, &c->dst);
3599			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3600		}
3601	}
3602
3603	rcu_read_unlock();
3604}
3605
3606static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3607				      int *quote)
3608{
3609	struct hci_conn_hash *h = &hdev->conn_hash;
3610	struct hci_chan *chan = NULL;
3611	unsigned int num = 0, min = ~0, cur_prio = 0;
3612	struct hci_conn *conn;
3613	int cnt, q, conn_num = 0;
3614
3615	BT_DBG("%s", hdev->name);
3616
3617	rcu_read_lock();
3618
3619	list_for_each_entry_rcu(conn, &h->list, list) {
3620		struct hci_chan *tmp;
3621
3622		if (conn->type != type)
3623			continue;
3624
3625		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3626			continue;
3627
3628		conn_num++;
3629
3630		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3631			struct sk_buff *skb;
3632
3633			if (skb_queue_empty(&tmp->data_q))
3634				continue;
3635
3636			skb = skb_peek(&tmp->data_q);
3637			if (skb->priority < cur_prio)
3638				continue;
3639
3640			if (skb->priority > cur_prio) {
3641				num = 0;
3642				min = ~0;
3643				cur_prio = skb->priority;
3644			}
3645
3646			num++;
3647
3648			if (conn->sent < min) {
3649				min  = conn->sent;
3650				chan = tmp;
3651			}
3652		}
3653
3654		if (hci_conn_num(hdev, type) == conn_num)
3655			break;
3656	}
3657
3658	rcu_read_unlock();
3659
3660	if (!chan)
3661		return NULL;
3662
3663	switch (chan->conn->type) {
3664	case ACL_LINK:
3665		cnt = hdev->acl_cnt;
3666		break;
3667	case AMP_LINK:
3668		cnt = hdev->block_cnt;
3669		break;
3670	case SCO_LINK:
3671	case ESCO_LINK:
3672		cnt = hdev->sco_cnt;
3673		break;
3674	case LE_LINK:
3675		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3676		break;
3677	default:
3678		cnt = 0;
3679		BT_ERR("Unknown link type");
3680	}
3681
3682	q = cnt / num;
3683	*quote = q ? q : 1;
3684	BT_DBG("chan %p quote %d", chan, *quote);
3685	return chan;
3686}
3687
3688static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3689{
3690	struct hci_conn_hash *h = &hdev->conn_hash;
3691	struct hci_conn *conn;
3692	int num = 0;
3693
3694	BT_DBG("%s", hdev->name);
3695
3696	rcu_read_lock();
3697
3698	list_for_each_entry_rcu(conn, &h->list, list) {
3699		struct hci_chan *chan;
3700
3701		if (conn->type != type)
3702			continue;
3703
3704		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3705			continue;
3706
3707		num++;
3708
3709		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3710			struct sk_buff *skb;
3711
3712			if (chan->sent) {
3713				chan->sent = 0;
3714				continue;
3715			}
3716
3717			if (skb_queue_empty(&chan->data_q))
3718				continue;
3719
3720			skb = skb_peek(&chan->data_q);
3721			if (skb->priority >= HCI_PRIO_MAX - 1)
3722				continue;
3723
3724			skb->priority = HCI_PRIO_MAX - 1;
3725
3726			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3727			       skb->priority);
3728		}
3729
3730		if (hci_conn_num(hdev, type) == num)
3731			break;
3732	}
3733
3734	rcu_read_unlock();
3735
3736}
3737
3738static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3739{
3740	/* Calculate count of blocks used by this packet */
3741	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3742}
3743
3744static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3745{
3746	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3747		/* ACL tx timeout must be longer than maximum
3748		 * link supervision timeout (40.9 seconds) */
3749		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3750				       HCI_ACL_TX_TIMEOUT))
3751			hci_link_tx_to(hdev, ACL_LINK);
3752	}
3753}
3754
3755static void hci_sched_acl_pkt(struct hci_dev *hdev)
3756{
3757	unsigned int cnt = hdev->acl_cnt;
3758	struct hci_chan *chan;
3759	struct sk_buff *skb;
3760	int quote;
3761
3762	__check_timeout(hdev, cnt);
3763
3764	while (hdev->acl_cnt &&
3765	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3766		u32 priority = (skb_peek(&chan->data_q))->priority;
3767		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3768			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3769			       skb->len, skb->priority);
3770
3771			/* Stop if priority has changed */
3772			if (skb->priority < priority)
3773				break;
3774
3775			skb = skb_dequeue(&chan->data_q);
3776
3777			hci_conn_enter_active_mode(chan->conn,
3778						   bt_cb(skb)->force_active);
3779
3780			hci_send_frame(hdev, skb);
3781			hdev->acl_last_tx = jiffies;
3782
3783			hdev->acl_cnt--;
3784			chan->sent++;
3785			chan->conn->sent++;
3786		}
3787	}
3788
3789	if (cnt != hdev->acl_cnt)
3790		hci_prio_recalculate(hdev, ACL_LINK);
3791}
3792
3793static void hci_sched_acl_blk(struct hci_dev *hdev)
3794{
3795	unsigned int cnt = hdev->block_cnt;
3796	struct hci_chan *chan;
3797	struct sk_buff *skb;
3798	int quote;
3799	u8 type;
3800
3801	__check_timeout(hdev, cnt);
3802
3803	BT_DBG("%s", hdev->name);
3804
3805	if (hdev->dev_type == HCI_AMP)
3806		type = AMP_LINK;
3807	else
3808		type = ACL_LINK;
3809
3810	while (hdev->block_cnt > 0 &&
3811	       (chan = hci_chan_sent(hdev, type, &quote))) {
3812		u32 priority = (skb_peek(&chan->data_q))->priority;
3813		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3814			int blocks;
3815
3816			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3817			       skb->len, skb->priority);
3818
3819			/* Stop if priority has changed */
3820			if (skb->priority < priority)
3821				break;
3822
3823			skb = skb_dequeue(&chan->data_q);
3824
3825			blocks = __get_blocks(hdev, skb);
3826			if (blocks > hdev->block_cnt)
3827				return;
3828
3829			hci_conn_enter_active_mode(chan->conn,
3830						   bt_cb(skb)->force_active);
3831
3832			hci_send_frame(hdev, skb);
3833			hdev->acl_last_tx = jiffies;
3834
3835			hdev->block_cnt -= blocks;
3836			quote -= blocks;
3837
3838			chan->sent += blocks;
3839			chan->conn->sent += blocks;
3840		}
3841	}
3842
3843	if (cnt != hdev->block_cnt)
3844		hci_prio_recalculate(hdev, type);
3845}
3846
3847static void hci_sched_acl(struct hci_dev *hdev)
3848{
3849	BT_DBG("%s", hdev->name);
3850
3851	/* No ACL link over BR/EDR controller */
3852	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3853		return;
3854
3855	/* No AMP link over AMP controller */
3856	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3857		return;
3858
3859	switch (hdev->flow_ctl_mode) {
3860	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3861		hci_sched_acl_pkt(hdev);
3862		break;
3863
3864	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3865		hci_sched_acl_blk(hdev);
3866		break;
3867	}
3868}
3869
3870/* Schedule SCO */
3871static void hci_sched_sco(struct hci_dev *hdev)
3872{
3873	struct hci_conn *conn;
3874	struct sk_buff *skb;
3875	int quote;
3876
3877	BT_DBG("%s", hdev->name);
3878
3879	if (!hci_conn_num(hdev, SCO_LINK))
3880		return;
3881
3882	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3883		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3884			BT_DBG("skb %p len %d", skb, skb->len);
3885			hci_send_frame(hdev, skb);
3886
3887			conn->sent++;
3888			if (conn->sent == ~0)
3889				conn->sent = 0;
3890		}
3891	}
3892}
3893
3894static void hci_sched_esco(struct hci_dev *hdev)
3895{
3896	struct hci_conn *conn;
3897	struct sk_buff *skb;
3898	int quote;
3899
3900	BT_DBG("%s", hdev->name);
3901
3902	if (!hci_conn_num(hdev, ESCO_LINK))
3903		return;
3904
3905	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3906						     &quote))) {
3907		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3908			BT_DBG("skb %p len %d", skb, skb->len);
3909			hci_send_frame(hdev, skb);
3910
3911			conn->sent++;
3912			if (conn->sent == ~0)
3913				conn->sent = 0;
3914		}
3915	}
3916}
3917
3918static void hci_sched_le(struct hci_dev *hdev)
3919{
3920	struct hci_chan *chan;
3921	struct sk_buff *skb;
3922	int quote, cnt, tmp;
3923
3924	BT_DBG("%s", hdev->name);
3925
3926	if (!hci_conn_num(hdev, LE_LINK))
3927		return;
3928
3929	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3930		/* LE tx timeout must be longer than maximum
3931		 * link supervision timeout (40.9 seconds) */
3932		if (!hdev->le_cnt && hdev->le_pkts &&
3933		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
3934			hci_link_tx_to(hdev, LE_LINK);
3935	}
3936
3937	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3938	tmp = cnt;
3939	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3940		u32 priority = (skb_peek(&chan->data_q))->priority;
3941		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3942			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3943			       skb->len, skb->priority);
3944
3945			/* Stop if priority has changed */
3946			if (skb->priority < priority)
3947				break;
3948
3949			skb = skb_dequeue(&chan->data_q);
3950
3951			hci_send_frame(hdev, skb);
3952			hdev->le_last_tx = jiffies;
3953
3954			cnt--;
3955			chan->sent++;
3956			chan->conn->sent++;
3957		}
3958	}
3959
3960	if (hdev->le_pkts)
3961		hdev->le_cnt = cnt;
3962	else
3963		hdev->acl_cnt = cnt;
3964
3965	if (cnt != tmp)
3966		hci_prio_recalculate(hdev, LE_LINK);
3967}
3968
3969static void hci_tx_work(struct work_struct *work)
3970{
3971	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3972	struct sk_buff *skb;
3973
3974	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3975	       hdev->sco_cnt, hdev->le_cnt);
 
 
3976
3977	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3978		/* Schedule queues and send stuff to HCI driver */
3979		hci_sched_acl(hdev);
3980		hci_sched_sco(hdev);
3981		hci_sched_esco(hdev);
3982		hci_sched_le(hdev);
3983	}
3984
3985	/* Send next queued raw (unknown type) packet */
3986	while ((skb = skb_dequeue(&hdev->raw_q)))
3987		hci_send_frame(hdev, skb);
3988}
3989
3990/* ----- HCI RX task (incoming data processing) ----- */
3991
3992/* ACL data packet */
3993static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3994{
3995	struct hci_acl_hdr *hdr = (void *) skb->data;
3996	struct hci_conn *conn;
3997	__u16 handle, flags;
3998
3999	skb_pull(skb, HCI_ACL_HDR_SIZE);
4000
4001	handle = __le16_to_cpu(hdr->handle);
4002	flags  = hci_flags(handle);
4003	handle = hci_handle(handle);
4004
4005	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4006	       handle, flags);
4007
4008	hdev->stat.acl_rx++;
4009
4010	hci_dev_lock(hdev);
4011	conn = hci_conn_hash_lookup_handle(hdev, handle);
4012	hci_dev_unlock(hdev);
4013
4014	if (conn) {
4015		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4016
 
 
 
 
 
 
 
 
4017		/* Send to upper protocol */
4018		l2cap_recv_acldata(conn, skb, flags);
4019		return;
4020	} else {
4021		BT_ERR("%s ACL packet for unknown connection handle %d",
4022		       hdev->name, handle);
4023	}
4024
4025	kfree_skb(skb);
4026}
4027
4028/* SCO data packet */
4029static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4030{
4031	struct hci_sco_hdr *hdr = (void *) skb->data;
4032	struct hci_conn *conn;
4033	__u16 handle;
4034
4035	skb_pull(skb, HCI_SCO_HDR_SIZE);
4036
4037	handle = __le16_to_cpu(hdr->handle);
4038
4039	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4040
4041	hdev->stat.sco_rx++;
4042
4043	hci_dev_lock(hdev);
4044	conn = hci_conn_hash_lookup_handle(hdev, handle);
4045	hci_dev_unlock(hdev);
4046
4047	if (conn) {
4048		/* Send to upper protocol */
4049		sco_recv_scodata(conn, skb);
4050		return;
4051	} else {
4052		BT_ERR("%s SCO packet for unknown connection handle %d",
4053		       hdev->name, handle);
4054	}
4055
4056	kfree_skb(skb);
4057}
4058
4059static bool hci_req_is_complete(struct hci_dev *hdev)
4060{
4061	struct sk_buff *skb;
4062
4063	skb = skb_peek(&hdev->cmd_q);
4064	if (!skb)
4065		return true;
4066
4067	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4068}
4069
4070static void hci_resend_last(struct hci_dev *hdev)
4071{
4072	struct hci_command_hdr *sent;
4073	struct sk_buff *skb;
4074	u16 opcode;
4075
4076	if (!hdev->sent_cmd)
4077		return;
4078
4079	sent = (void *) hdev->sent_cmd->data;
4080	opcode = __le16_to_cpu(sent->opcode);
4081	if (opcode == HCI_OP_RESET)
4082		return;
4083
4084	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4085	if (!skb)
4086		return;
4087
4088	skb_queue_head(&hdev->cmd_q, skb);
4089	queue_work(hdev->workqueue, &hdev->cmd_work);
4090}
4091
4092void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4093			  hci_req_complete_t *req_complete,
4094			  hci_req_complete_skb_t *req_complete_skb)
4095{
4096	struct sk_buff *skb;
4097	unsigned long flags;
4098
4099	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4100
4101	/* If the completed command doesn't match the last one that was
4102	 * sent we need to do special handling of it.
4103	 */
4104	if (!hci_sent_cmd_data(hdev, opcode)) {
4105		/* Some CSR based controllers generate a spontaneous
4106		 * reset complete event during init and any pending
4107		 * command will never be completed. In such a case we
4108		 * need to resend whatever was the last sent
4109		 * command.
4110		 */
4111		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4112			hci_resend_last(hdev);
4113
4114		return;
4115	}
4116
4117	/* If the command succeeded and there's still more commands in
4118	 * this request the request is not yet complete.
4119	 */
4120	if (!status && !hci_req_is_complete(hdev))
4121		return;
4122
4123	/* If this was the last command in a request the complete
4124	 * callback would be found in hdev->sent_cmd instead of the
4125	 * command queue (hdev->cmd_q).
4126	 */
4127	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4128		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4129		return;
4130	}
4131
4132	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4133		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4134		return;
4135	}
4136
4137	/* Remove all pending commands belonging to this request */
4138	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4139	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4140		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4141			__skb_queue_head(&hdev->cmd_q, skb);
4142			break;
4143		}
4144
4145		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4146			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4147		else
4148			*req_complete = bt_cb(skb)->hci.req_complete;
4149		kfree_skb(skb);
4150	}
4151	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4152}
4153
4154static void hci_rx_work(struct work_struct *work)
4155{
4156	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4157	struct sk_buff *skb;
4158
4159	BT_DBG("%s", hdev->name);
4160
4161	while ((skb = skb_dequeue(&hdev->rx_q))) {
4162		/* Send copy to monitor */
4163		hci_send_to_monitor(hdev, skb);
4164
4165		if (atomic_read(&hdev->promisc)) {
4166			/* Send copy to the sockets */
4167			hci_send_to_sock(hdev, skb);
4168		}
4169
4170		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4171			kfree_skb(skb);
4172			continue;
4173		}
4174
4175		if (test_bit(HCI_INIT, &hdev->flags)) {
4176			/* Don't process data packets in this states. */
4177			switch (hci_skb_pkt_type(skb)) {
4178			case HCI_ACLDATA_PKT:
4179			case HCI_SCODATA_PKT:
4180				kfree_skb(skb);
4181				continue;
4182			}
4183		}
4184
4185		/* Process frame */
4186		switch (hci_skb_pkt_type(skb)) {
4187		case HCI_EVENT_PKT:
4188			BT_DBG("%s Event packet", hdev->name);
4189			hci_event_packet(hdev, skb);
4190			break;
4191
4192		case HCI_ACLDATA_PKT:
4193			BT_DBG("%s ACL data packet", hdev->name);
4194			hci_acldata_packet(hdev, skb);
4195			break;
4196
4197		case HCI_SCODATA_PKT:
4198			BT_DBG("%s SCO data packet", hdev->name);
4199			hci_scodata_packet(hdev, skb);
4200			break;
4201
4202		default:
4203			kfree_skb(skb);
4204			break;
4205		}
4206	}
4207}
4208
4209static void hci_cmd_work(struct work_struct *work)
4210{
4211	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4212	struct sk_buff *skb;
4213
4214	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4215	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4216
4217	/* Send queued commands */
4218	if (atomic_read(&hdev->cmd_cnt)) {
4219		skb = skb_dequeue(&hdev->cmd_q);
4220		if (!skb)
4221			return;
4222
4223		kfree_skb(hdev->sent_cmd);
4224
4225		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4226		if (hdev->sent_cmd) {
4227			atomic_dec(&hdev->cmd_cnt);
4228			hci_send_frame(hdev, skb);
4229			if (test_bit(HCI_RESET, &hdev->flags))
4230				cancel_delayed_work(&hdev->cmd_timer);
4231			else
4232				schedule_delayed_work(&hdev->cmd_timer,
4233						      HCI_CMD_TIMEOUT);
4234		} else {
4235			skb_queue_head(&hdev->cmd_q, skb);
4236			queue_work(hdev->workqueue, &hdev->cmd_work);
4237		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4238	}
4239}