Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v3.5.6
  1/*
  2 *  linux/kernel/time/tick-sched.c
  3 *
  4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
  7 *
  8 *  No idle tick implementation for low and high resolution timers
  9 *
 10 *  Started by: Thomas Gleixner and Ingo Molnar
 11 *
 12 *  Distribute under GPLv2.
 13 */
 14#include <linux/cpu.h>
 15#include <linux/err.h>
 16#include <linux/hrtimer.h>
 17#include <linux/interrupt.h>
 18#include <linux/kernel_stat.h>
 19#include <linux/percpu.h>
 20#include <linux/profile.h>
 21#include <linux/sched.h>
 22#include <linux/module.h>
 
 
 
 23
 24#include <asm/irq_regs.h>
 25
 26#include "tick-internal.h"
 27
 28/*
 29 * Per cpu nohz control structure
 30 */
 31static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
 32
 33/*
 34 * The time, when the last jiffy update happened. Protected by xtime_lock.
 35 */
 36static ktime_t last_jiffies_update;
 37
 38struct tick_sched *tick_get_tick_sched(int cpu)
 39{
 40	return &per_cpu(tick_cpu_sched, cpu);
 41}
 42
 
 
 
 
 
 
 43/*
 44 * Must be called with interrupts disabled !
 45 */
 46static void tick_do_update_jiffies64(ktime_t now)
 47{
 48	unsigned long ticks = 0;
 49	ktime_t delta;
 50
 51	/*
 52	 * Do a quick check without holding xtime_lock:
 53	 */
 54	delta = ktime_sub(now, last_jiffies_update);
 55	if (delta.tv64 < tick_period.tv64)
 56		return;
 57
 58	/* Reevalute with xtime_lock held */
 59	write_seqlock(&xtime_lock);
 60
 61	delta = ktime_sub(now, last_jiffies_update);
 62	if (delta.tv64 >= tick_period.tv64) {
 63
 64		delta = ktime_sub(delta, tick_period);
 65		last_jiffies_update = ktime_add(last_jiffies_update,
 66						tick_period);
 67
 68		/* Slow path for long timeouts */
 69		if (unlikely(delta.tv64 >= tick_period.tv64)) {
 70			s64 incr = ktime_to_ns(tick_period);
 71
 72			ticks = ktime_divns(delta, incr);
 73
 74			last_jiffies_update = ktime_add_ns(last_jiffies_update,
 75							   incr * ticks);
 76		}
 77		do_timer(++ticks);
 78
 79		/* Keep the tick_next_period variable up to date */
 80		tick_next_period = ktime_add(last_jiffies_update, tick_period);
 
 
 
 81	}
 82	write_sequnlock(&xtime_lock);
 
 83}
 84
 85/*
 86 * Initialize and return retrieve the jiffies update.
 87 */
 88static ktime_t tick_init_jiffy_update(void)
 89{
 90	ktime_t period;
 91
 92	write_seqlock(&xtime_lock);
 93	/* Did we start the jiffies update yet ? */
 94	if (last_jiffies_update.tv64 == 0)
 95		last_jiffies_update = tick_next_period;
 96	period = last_jiffies_update;
 97	write_sequnlock(&xtime_lock);
 98	return period;
 99}
100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101/*
102 * NOHZ - aka dynamic tick functionality
103 */
104#ifdef CONFIG_NO_HZ
105/*
106 * NO HZ enabled ?
107 */
108static int tick_nohz_enabled __read_mostly  = 1;
109
110/*
111 * Enable / Disable tickless mode
112 */
113static int __init setup_tick_nohz(char *str)
114{
115	if (!strcmp(str, "off"))
116		tick_nohz_enabled = 0;
117	else if (!strcmp(str, "on"))
118		tick_nohz_enabled = 1;
119	else
120		return 0;
121	return 1;
122}
123
124__setup("nohz=", setup_tick_nohz);
125
 
 
 
 
 
126/**
127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
128 *
129 * Called from interrupt entry when the CPU was idle
130 *
131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132 * must be updated. Otherwise an interrupt handler could use a stale jiffy
133 * value. We do this unconditionally on any cpu, as we don't know whether the
134 * cpu, which has the update task assigned is in a long sleep.
135 */
136static void tick_nohz_update_jiffies(ktime_t now)
137{
138	int cpu = smp_processor_id();
139	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140	unsigned long flags;
141
142	ts->idle_waketime = now;
143
144	local_irq_save(flags);
145	tick_do_update_jiffies64(now);
146	local_irq_restore(flags);
147
148	calc_load_exit_idle();
149	touch_softlockup_watchdog();
150}
151
152/*
153 * Updates the per cpu time idle statistics counters
154 */
155static void
156update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
157{
158	ktime_t delta;
159
160	if (ts->idle_active) {
161		delta = ktime_sub(now, ts->idle_entrytime);
162		if (nr_iowait_cpu(cpu) > 0)
163			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
164		else
165			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
166		ts->idle_entrytime = now;
167	}
168
169	if (last_update_time)
170		*last_update_time = ktime_to_us(now);
171
172}
173
174static void tick_nohz_stop_idle(int cpu, ktime_t now)
175{
176	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
177
178	update_ts_time_stats(cpu, ts, now, NULL);
179	ts->idle_active = 0;
180
181	sched_clock_idle_wakeup_event(0);
182}
183
184static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
185{
186	ktime_t now = ktime_get();
187
188	ts->idle_entrytime = now;
189	ts->idle_active = 1;
190	sched_clock_idle_sleep_event();
191	return now;
192}
193
194/**
195 * get_cpu_idle_time_us - get the total idle time of a cpu
196 * @cpu: CPU number to query
197 * @last_update_time: variable to store update time in. Do not update
198 * counters if NULL.
199 *
200 * Return the cummulative idle time (since boot) for a given
201 * CPU, in microseconds.
202 *
203 * This time is measured via accounting rather than sampling,
204 * and is as accurate as ktime_get() is.
205 *
206 * This function returns -1 if NOHZ is not enabled.
207 */
208u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
209{
210	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
211	ktime_t now, idle;
212
213	if (!tick_nohz_enabled)
214		return -1;
215
216	now = ktime_get();
217	if (last_update_time) {
218		update_ts_time_stats(cpu, ts, now, last_update_time);
219		idle = ts->idle_sleeptime;
220	} else {
221		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
222			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
223
224			idle = ktime_add(ts->idle_sleeptime, delta);
225		} else {
226			idle = ts->idle_sleeptime;
227		}
228	}
229
230	return ktime_to_us(idle);
231
232}
233EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
234
235/**
236 * get_cpu_iowait_time_us - get the total iowait time of a cpu
237 * @cpu: CPU number to query
238 * @last_update_time: variable to store update time in. Do not update
239 * counters if NULL.
240 *
241 * Return the cummulative iowait time (since boot) for a given
242 * CPU, in microseconds.
243 *
244 * This time is measured via accounting rather than sampling,
245 * and is as accurate as ktime_get() is.
246 *
247 * This function returns -1 if NOHZ is not enabled.
248 */
249u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
250{
251	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
252	ktime_t now, iowait;
253
254	if (!tick_nohz_enabled)
255		return -1;
256
257	now = ktime_get();
258	if (last_update_time) {
259		update_ts_time_stats(cpu, ts, now, last_update_time);
260		iowait = ts->iowait_sleeptime;
261	} else {
262		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
263			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
264
265			iowait = ktime_add(ts->iowait_sleeptime, delta);
266		} else {
267			iowait = ts->iowait_sleeptime;
268		}
269	}
270
271	return ktime_to_us(iowait);
272}
273EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
274
275static void tick_nohz_stop_sched_tick(struct tick_sched *ts)
276{
277	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
278	unsigned long rcu_delta_jiffies;
279	ktime_t last_update, expires, now;
280	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
281	u64 time_delta;
282	int cpu;
283
284	cpu = smp_processor_id();
285	ts = &per_cpu(tick_cpu_sched, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286
287	now = tick_nohz_start_idle(cpu, ts);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288
 
 
289	/*
290	 * If this cpu is offline and it is the one which updates
291	 * jiffies, then give up the assignment and let it be taken by
292	 * the cpu which runs the tick timer next. If we don't drop
293	 * this here the jiffies might be stale and do_timer() never
294	 * invoked.
295	 */
296	if (unlikely(!cpu_online(cpu))) {
297		if (cpu == tick_do_timer_cpu)
298			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 
299	}
300
301	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
302		return;
 
 
303
304	if (need_resched())
305		return;
306
307	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
308		static int ratelimit;
309
310		if (ratelimit < 10) {
311			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
312			       (unsigned int) local_softirq_pending());
 
313			ratelimit++;
314		}
315		return;
316	}
317
318	ts->idle_calls++;
319	/* Read jiffies and the time when jiffies were updated last */
320	do {
321		seq = read_seqbegin(&xtime_lock);
322		last_update = last_jiffies_update;
323		last_jiffies = jiffies;
324		time_delta = timekeeping_max_deferment();
325	} while (read_seqretry(&xtime_lock, seq));
326
327	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || printk_needs_cpu(cpu) ||
328	    arch_needs_cpu(cpu)) {
329		next_jiffies = last_jiffies + 1;
330		delta_jiffies = 1;
331	} else {
332		/* Get the next timer wheel timer */
333		next_jiffies = get_next_timer_interrupt(last_jiffies);
334		delta_jiffies = next_jiffies - last_jiffies;
335		if (rcu_delta_jiffies < delta_jiffies) {
336			next_jiffies = last_jiffies + rcu_delta_jiffies;
337			delta_jiffies = rcu_delta_jiffies;
338		}
339	}
340	/*
341	 * Do not stop the tick, if we are only one off
342	 * or if the cpu is required for rcu
343	 */
344	if (!ts->tick_stopped && delta_jiffies == 1)
345		goto out;
346
347	/* Schedule the tick, if we are at least one jiffie off */
348	if ((long)delta_jiffies >= 1) {
349
350		/*
351		 * If this cpu is the one which updates jiffies, then
352		 * give up the assignment and let it be taken by the
353		 * cpu which runs the tick timer next, which might be
354		 * this cpu as well. If we don't drop this here the
355		 * jiffies might be stale and do_timer() never
356		 * invoked. Keep track of the fact that it was the one
357		 * which had the do_timer() duty last. If this cpu is
358		 * the one which had the do_timer() duty last, we
359		 * limit the sleep time to the timekeeping
360		 * max_deferement value which we retrieved
361		 * above. Otherwise we can sleep as long as we want.
362		 */
363		if (cpu == tick_do_timer_cpu) {
364			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
365			ts->do_timer_last = 1;
366		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
367			time_delta = KTIME_MAX;
368			ts->do_timer_last = 0;
369		} else if (!ts->do_timer_last) {
370			time_delta = KTIME_MAX;
371		}
372
373		/*
374		 * calculate the expiry time for the next timer wheel
375		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
376		 * that there is no timer pending or at least extremely
377		 * far into the future (12 days for HZ=1000). In this
378		 * case we set the expiry to the end of time.
379		 */
380		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
381			/*
382			 * Calculate the time delta for the next timer event.
383			 * If the time delta exceeds the maximum time delta
384			 * permitted by the current clocksource then adjust
385			 * the time delta accordingly to ensure the
386			 * clocksource does not wrap.
387			 */
388			time_delta = min_t(u64, time_delta,
389					   tick_period.tv64 * delta_jiffies);
390		}
391
392		if (time_delta < KTIME_MAX)
393			expires = ktime_add_ns(last_update, time_delta);
394		else
395			expires.tv64 = KTIME_MAX;
396
397		/* Skip reprogram of event if its not changed */
398		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
399			goto out;
 
400
401		/*
402		 * nohz_stop_sched_tick can be called several times before
403		 * the nohz_restart_sched_tick is called. This happens when
404		 * interrupts arrive which do not cause a reschedule. In the
405		 * first call we save the current tick time, so we can restart
406		 * the scheduler tick in nohz_restart_sched_tick.
407		 */
408		if (!ts->tick_stopped) {
409			select_nohz_load_balancer(1);
410			calc_load_enter_idle();
411
412			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
413			ts->tick_stopped = 1;
414			ts->idle_jiffies = last_jiffies;
415		}
416
417		ts->idle_sleeps++;
 
418
419		/* Mark expires */
420		ts->idle_expires = expires;
421
422		/*
423		 * If the expiration time == KTIME_MAX, then
424		 * in this case we simply stop the tick timer.
425		 */
426		 if (unlikely(expires.tv64 == KTIME_MAX)) {
427			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
428				hrtimer_cancel(&ts->sched_timer);
429			goto out;
430		}
431
432		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
433			hrtimer_start(&ts->sched_timer, expires,
434				      HRTIMER_MODE_ABS_PINNED);
435			/* Check, if the timer was already in the past */
436			if (hrtimer_active(&ts->sched_timer))
437				goto out;
438		} else if (!tick_program_event(expires, 0))
439				goto out;
440		/*
441		 * We are past the event already. So we crossed a
442		 * jiffie boundary. Update jiffies and raise the
443		 * softirq.
444		 */
445		tick_do_update_jiffies64(ktime_get());
446	}
447	raise_softirq_irqoff(TIMER_SOFTIRQ);
448out:
449	ts->next_jiffies = next_jiffies;
450	ts->last_jiffies = last_jiffies;
451	ts->sleep_length = ktime_sub(dev->next_event, now);
452}
453
454/**
455 * tick_nohz_idle_enter - stop the idle tick from the idle task
456 *
457 * When the next event is more than a tick into the future, stop the idle tick
458 * Called when we start the idle loop.
459 *
460 * The arch is responsible of calling:
461 *
462 * - rcu_idle_enter() after its last use of RCU before the CPU is put
463 *  to sleep.
464 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
465 */
466void tick_nohz_idle_enter(void)
467{
468	struct tick_sched *ts;
469
470	WARN_ON_ONCE(irqs_disabled());
471
472	/*
473 	 * Update the idle state in the scheduler domain hierarchy
474 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
475 	 * State will be updated to busy during the first busy tick after
476 	 * exiting idle.
477 	 */
478	set_cpu_sd_state_idle();
479
480	local_irq_disable();
481
482	ts = &__get_cpu_var(tick_cpu_sched);
483	/*
484	 * set ts->inidle unconditionally. even if the system did not
485	 * switch to nohz mode the cpu frequency governers rely on the
486	 * update of the idle time accounting in tick_nohz_start_idle().
487	 */
488	ts->inidle = 1;
489	tick_nohz_stop_sched_tick(ts);
490
491	local_irq_enable();
492}
493
494/**
495 * tick_nohz_irq_exit - update next tick event from interrupt exit
496 *
497 * When an interrupt fires while we are idle and it doesn't cause
498 * a reschedule, it may still add, modify or delete a timer, enqueue
499 * an RCU callback, etc...
500 * So we need to re-calculate and reprogram the next tick event.
501 */
502void tick_nohz_irq_exit(void)
503{
504	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
505
506	if (!ts->inidle)
507		return;
508
509	tick_nohz_stop_sched_tick(ts);
510}
511
512/**
513 * tick_nohz_get_sleep_length - return the length of the current sleep
514 *
515 * Called from power state control code with interrupts disabled
516 */
517ktime_t tick_nohz_get_sleep_length(void)
518{
519	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
520
521	return ts->sleep_length;
522}
523
524static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
525{
526	hrtimer_cancel(&ts->sched_timer);
527	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
528
529	while (1) {
530		/* Forward the time to expire in the future */
531		hrtimer_forward(&ts->sched_timer, now, tick_period);
532
533		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
534			hrtimer_start_expires(&ts->sched_timer,
535					      HRTIMER_MODE_ABS_PINNED);
536			/* Check, if the timer was already in the past */
537			if (hrtimer_active(&ts->sched_timer))
538				break;
539		} else {
540			if (!tick_program_event(
541				hrtimer_get_expires(&ts->sched_timer), 0))
542				break;
543		}
544		/* Reread time and update jiffies */
545		now = ktime_get();
546		tick_do_update_jiffies64(now);
547	}
548}
549
550/**
551 * tick_nohz_idle_exit - restart the idle tick from the idle task
552 *
553 * Restart the idle tick when the CPU is woken up from idle
554 * This also exit the RCU extended quiescent state. The CPU
555 * can use RCU again after this function is called.
556 */
557void tick_nohz_idle_exit(void)
558{
559	int cpu = smp_processor_id();
560	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
561#ifndef CONFIG_VIRT_CPU_ACCOUNTING
562	unsigned long ticks;
563#endif
564	ktime_t now;
565
566	local_irq_disable();
567
568	WARN_ON_ONCE(!ts->inidle);
569
570	ts->inidle = 0;
571
572	if (ts->idle_active || ts->tick_stopped)
573		now = ktime_get();
574
575	if (ts->idle_active)
576		tick_nohz_stop_idle(cpu, now);
577
578	if (!ts->tick_stopped) {
579		local_irq_enable();
580		return;
581	}
582
583	/* Update jiffies first */
584	select_nohz_load_balancer(0);
585	tick_do_update_jiffies64(now);
586	update_cpu_load_nohz();
587
588#ifndef CONFIG_VIRT_CPU_ACCOUNTING
589	/*
590	 * We stopped the tick in idle. Update process times would miss the
591	 * time we slept as update_process_times does only a 1 tick
592	 * accounting. Enforce that this is accounted to idle !
593	 */
594	ticks = jiffies - ts->idle_jiffies;
595	/*
596	 * We might be one off. Do not randomly account a huge number of ticks!
597	 */
598	if (ticks && ticks < LONG_MAX)
599		account_idle_ticks(ticks);
600#endif
601
602	calc_load_exit_idle();
603	touch_softlockup_watchdog();
604	/*
605	 * Cancel the scheduled timer and restore the tick
606	 */
607	ts->tick_stopped  = 0;
608	ts->idle_exittime = now;
609
610	tick_nohz_restart(ts, now);
611
612	local_irq_enable();
613}
614
615static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
616{
617	hrtimer_forward(&ts->sched_timer, now, tick_period);
618	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
619}
620
621/*
622 * The nohz low res interrupt handler
623 */
624static void tick_nohz_handler(struct clock_event_device *dev)
625{
626	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
627	struct pt_regs *regs = get_irq_regs();
628	int cpu = smp_processor_id();
629	ktime_t now = ktime_get();
630
631	dev->next_event.tv64 = KTIME_MAX;
632
633	/*
634	 * Check if the do_timer duty was dropped. We don't care about
635	 * concurrency: This happens only when the cpu in charge went
636	 * into a long sleep. If two cpus happen to assign themself to
637	 * this duty, then the jiffies update is still serialized by
638	 * xtime_lock.
639	 */
640	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
641		tick_do_timer_cpu = cpu;
642
643	/* Check, if the jiffies need an update */
644	if (tick_do_timer_cpu == cpu)
645		tick_do_update_jiffies64(now);
646
647	/*
648	 * When we are idle and the tick is stopped, we have to touch
649	 * the watchdog as we might not schedule for a really long
650	 * time. This happens on complete idle SMP systems while
651	 * waiting on the login prompt. We also increment the "start
652	 * of idle" jiffy stamp so the idle accounting adjustment we
653	 * do when we go busy again does not account too much ticks.
654	 */
655	if (ts->tick_stopped) {
656		touch_softlockup_watchdog();
657		ts->idle_jiffies++;
658	}
659
660	update_process_times(user_mode(regs));
661	profile_tick(CPU_PROFILING);
 
662
663	while (tick_nohz_reprogram(ts, now)) {
664		now = ktime_get();
665		tick_do_update_jiffies64(now);
666	}
 
 
 
 
667}
668
669/**
670 * tick_nohz_switch_to_nohz - switch to nohz mode
671 */
672static void tick_nohz_switch_to_nohz(void)
673{
674	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
675	ktime_t next;
676
677	if (!tick_nohz_enabled)
678		return;
679
680	local_irq_disable();
681	if (tick_switch_to_oneshot(tick_nohz_handler)) {
682		local_irq_enable();
683		return;
684	}
685
686	ts->nohz_mode = NOHZ_MODE_LOWRES;
687
688	/*
689	 * Recycle the hrtimer in ts, so we can share the
690	 * hrtimer_forward with the highres code.
691	 */
692	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
693	/* Get the next period */
694	next = tick_init_jiffy_update();
695
696	for (;;) {
697		hrtimer_set_expires(&ts->sched_timer, next);
698		if (!tick_program_event(next, 0))
699			break;
700		next = ktime_add(next, tick_period);
701	}
702	local_irq_enable();
703}
704
705/*
706 * When NOHZ is enabled and the tick is stopped, we need to kick the
707 * tick timer from irq_enter() so that the jiffies update is kept
708 * alive during long running softirqs. That's ugly as hell, but
709 * correctness is key even if we need to fix the offending softirq in
710 * the first place.
711 *
712 * Note, this is different to tick_nohz_restart. We just kick the
713 * timer and do not touch the other magic bits which need to be done
714 * when idle is left.
715 */
716static void tick_nohz_kick_tick(int cpu, ktime_t now)
717{
718#if 0
719	/* Switch back to 2.6.27 behaviour */
720
721	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
722	ktime_t delta;
723
724	/*
725	 * Do not touch the tick device, when the next expiry is either
726	 * already reached or less/equal than the tick period.
727	 */
728	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
729	if (delta.tv64 <= tick_period.tv64)
730		return;
731
732	tick_nohz_restart(ts, now);
733#endif
734}
735
736static inline void tick_check_nohz(int cpu)
737{
738	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
739	ktime_t now;
740
741	if (!ts->idle_active && !ts->tick_stopped)
742		return;
743	now = ktime_get();
744	if (ts->idle_active)
745		tick_nohz_stop_idle(cpu, now);
746	if (ts->tick_stopped) {
747		tick_nohz_update_jiffies(now);
748		tick_nohz_kick_tick(cpu, now);
749	}
750}
751
752#else
753
754static inline void tick_nohz_switch_to_nohz(void) { }
755static inline void tick_check_nohz(int cpu) { }
 
756
757#endif /* NO_HZ */
758
759/*
760 * Called from irq_enter to notify about the possible interruption of idle()
761 */
762void tick_check_idle(int cpu)
763{
764	tick_check_oneshot_broadcast(cpu);
765	tick_check_nohz(cpu);
766}
767
768/*
769 * High resolution timer specific code
770 */
771#ifdef CONFIG_HIGH_RES_TIMERS
772/*
773 * We rearm the timer until we get disabled by the idle code.
774 * Called with interrupts disabled and timer->base->cpu_base->lock held.
775 */
776static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
777{
778	struct tick_sched *ts =
779		container_of(timer, struct tick_sched, sched_timer);
780	struct pt_regs *regs = get_irq_regs();
781	ktime_t now = ktime_get();
782	int cpu = smp_processor_id();
783
784#ifdef CONFIG_NO_HZ
785	/*
786	 * Check if the do_timer duty was dropped. We don't care about
787	 * concurrency: This happens only when the cpu in charge went
788	 * into a long sleep. If two cpus happen to assign themself to
789	 * this duty, then the jiffies update is still serialized by
790	 * xtime_lock.
791	 */
792	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
793		tick_do_timer_cpu = cpu;
794#endif
795
796	/* Check, if the jiffies need an update */
797	if (tick_do_timer_cpu == cpu)
798		tick_do_update_jiffies64(now);
799
800	/*
801	 * Do not call, when we are not in irq context and have
802	 * no valid regs pointer
803	 */
804	if (regs) {
805		/*
806		 * When we are idle and the tick is stopped, we have to touch
807		 * the watchdog as we might not schedule for a really long
808		 * time. This happens on complete idle SMP systems while
809		 * waiting on the login prompt. We also increment the "start of
810		 * idle" jiffy stamp so the idle accounting adjustment we do
811		 * when we go busy again does not account too much ticks.
812		 */
813		if (ts->tick_stopped) {
814			touch_softlockup_watchdog();
815			ts->idle_jiffies++;
816		}
817		update_process_times(user_mode(regs));
818		profile_tick(CPU_PROFILING);
819	}
820
821	hrtimer_forward(timer, now, tick_period);
822
823	return HRTIMER_RESTART;
824}
825
826static int sched_skew_tick;
827
828static int __init skew_tick(char *str)
829{
830	get_option(&str, &sched_skew_tick);
831
832	return 0;
833}
834early_param("skew_tick", skew_tick);
835
836/**
837 * tick_setup_sched_timer - setup the tick emulation timer
838 */
839void tick_setup_sched_timer(void)
840{
841	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
842	ktime_t now = ktime_get();
843
844	/*
845	 * Emulate tick processing via per-CPU hrtimers:
846	 */
847	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
848	ts->sched_timer.function = tick_sched_timer;
849
850	/* Get the next period (per cpu) */
851	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
852
853	/* Offset the tick to avert xtime_lock contention. */
854	if (sched_skew_tick) {
855		u64 offset = ktime_to_ns(tick_period) >> 1;
856		do_div(offset, num_possible_cpus());
857		offset *= smp_processor_id();
858		hrtimer_add_expires_ns(&ts->sched_timer, offset);
859	}
860
861	for (;;) {
862		hrtimer_forward(&ts->sched_timer, now, tick_period);
863		hrtimer_start_expires(&ts->sched_timer,
864				      HRTIMER_MODE_ABS_PINNED);
865		/* Check, if the timer was already in the past */
866		if (hrtimer_active(&ts->sched_timer))
867			break;
868		now = ktime_get();
869	}
870
871#ifdef CONFIG_NO_HZ
872	if (tick_nohz_enabled)
873		ts->nohz_mode = NOHZ_MODE_HIGHRES;
874#endif
875}
876#endif /* HIGH_RES_TIMERS */
877
878#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
879void tick_cancel_sched_timer(int cpu)
880{
881	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
882
883# ifdef CONFIG_HIGH_RES_TIMERS
884	if (ts->sched_timer.base)
885		hrtimer_cancel(&ts->sched_timer);
886# endif
887
888	ts->nohz_mode = NOHZ_MODE_INACTIVE;
889}
890#endif
891
892/**
893 * Async notification about clocksource changes
894 */
895void tick_clock_notify(void)
896{
897	int cpu;
898
899	for_each_possible_cpu(cpu)
900		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
901}
902
903/*
904 * Async notification about clock event changes
905 */
906void tick_oneshot_notify(void)
907{
908	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
909
910	set_bit(0, &ts->check_clocks);
911}
912
913/**
914 * Check, if a change happened, which makes oneshot possible.
915 *
916 * Called cyclic from the hrtimer softirq (driven by the timer
917 * softirq) allow_nohz signals, that we can switch into low-res nohz
918 * mode, because high resolution timers are disabled (either compile
919 * or runtime).
920 */
921int tick_check_oneshot_change(int allow_nohz)
922{
923	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
924
925	if (!test_and_clear_bit(0, &ts->check_clocks))
926		return 0;
927
928	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
929		return 0;
930
931	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
932		return 0;
933
934	if (!allow_nohz)
935		return 1;
936
937	tick_nohz_switch_to_nohz();
938	return 0;
939}
v4.10.11
   1/*
   2 *  linux/kernel/time/tick-sched.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  No idle tick implementation for low and high resolution timers
   9 *
  10 *  Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 *  Distribute under GPLv2.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/percpu.h>
  20#include <linux/profile.h>
  21#include <linux/sched.h>
  22#include <linux/module.h>
  23#include <linux/irq_work.h>
  24#include <linux/posix-timers.h>
  25#include <linux/context_tracking.h>
  26
  27#include <asm/irq_regs.h>
  28
  29#include "tick-internal.h"
  30
  31#include <trace/events/timer.h>
 
 
 
  32
  33/*
  34 * Per-CPU nohz control structure
  35 */
  36static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  37
  38struct tick_sched *tick_get_tick_sched(int cpu)
  39{
  40	return &per_cpu(tick_cpu_sched, cpu);
  41}
  42
  43#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  44/*
  45 * The time, when the last jiffy update happened. Protected by jiffies_lock.
  46 */
  47static ktime_t last_jiffies_update;
  48
  49/*
  50 * Must be called with interrupts disabled !
  51 */
  52static void tick_do_update_jiffies64(ktime_t now)
  53{
  54	unsigned long ticks = 0;
  55	ktime_t delta;
  56
  57	/*
  58	 * Do a quick check without holding jiffies_lock:
  59	 */
  60	delta = ktime_sub(now, last_jiffies_update);
  61	if (delta < tick_period)
  62		return;
  63
  64	/* Reevaluate with jiffies_lock held */
  65	write_seqlock(&jiffies_lock);
  66
  67	delta = ktime_sub(now, last_jiffies_update);
  68	if (delta >= tick_period) {
  69
  70		delta = ktime_sub(delta, tick_period);
  71		last_jiffies_update = ktime_add(last_jiffies_update,
  72						tick_period);
  73
  74		/* Slow path for long timeouts */
  75		if (unlikely(delta >= tick_period)) {
  76			s64 incr = ktime_to_ns(tick_period);
  77
  78			ticks = ktime_divns(delta, incr);
  79
  80			last_jiffies_update = ktime_add_ns(last_jiffies_update,
  81							   incr * ticks);
  82		}
  83		do_timer(++ticks);
  84
  85		/* Keep the tick_next_period variable up to date */
  86		tick_next_period = ktime_add(last_jiffies_update, tick_period);
  87	} else {
  88		write_sequnlock(&jiffies_lock);
  89		return;
  90	}
  91	write_sequnlock(&jiffies_lock);
  92	update_wall_time();
  93}
  94
  95/*
  96 * Initialize and return retrieve the jiffies update.
  97 */
  98static ktime_t tick_init_jiffy_update(void)
  99{
 100	ktime_t period;
 101
 102	write_seqlock(&jiffies_lock);
 103	/* Did we start the jiffies update yet ? */
 104	if (last_jiffies_update == 0)
 105		last_jiffies_update = tick_next_period;
 106	period = last_jiffies_update;
 107	write_sequnlock(&jiffies_lock);
 108	return period;
 109}
 110
 111
 112static void tick_sched_do_timer(ktime_t now)
 113{
 114	int cpu = smp_processor_id();
 115
 116#ifdef CONFIG_NO_HZ_COMMON
 117	/*
 118	 * Check if the do_timer duty was dropped. We don't care about
 119	 * concurrency: This happens only when the CPU in charge went
 120	 * into a long sleep. If two CPUs happen to assign themselves to
 121	 * this duty, then the jiffies update is still serialized by
 122	 * jiffies_lock.
 123	 */
 124	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 125	    && !tick_nohz_full_cpu(cpu))
 126		tick_do_timer_cpu = cpu;
 127#endif
 128
 129	/* Check, if the jiffies need an update */
 130	if (tick_do_timer_cpu == cpu)
 131		tick_do_update_jiffies64(now);
 132}
 133
 134static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 135{
 136#ifdef CONFIG_NO_HZ_COMMON
 137	/*
 138	 * When we are idle and the tick is stopped, we have to touch
 139	 * the watchdog as we might not schedule for a really long
 140	 * time. This happens on complete idle SMP systems while
 141	 * waiting on the login prompt. We also increment the "start of
 142	 * idle" jiffy stamp so the idle accounting adjustment we do
 143	 * when we go busy again does not account too much ticks.
 144	 */
 145	if (ts->tick_stopped) {
 146		touch_softlockup_watchdog_sched();
 147		if (is_idle_task(current))
 148			ts->idle_jiffies++;
 149	}
 150#endif
 151	update_process_times(user_mode(regs));
 152	profile_tick(CPU_PROFILING);
 153}
 154#endif
 155
 156#ifdef CONFIG_NO_HZ_FULL
 157cpumask_var_t tick_nohz_full_mask;
 158cpumask_var_t housekeeping_mask;
 159bool tick_nohz_full_running;
 160static atomic_t tick_dep_mask;
 161
 162static bool check_tick_dependency(atomic_t *dep)
 163{
 164	int val = atomic_read(dep);
 165
 166	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 167		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 168		return true;
 169	}
 170
 171	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 172		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 173		return true;
 174	}
 175
 176	if (val & TICK_DEP_MASK_SCHED) {
 177		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 178		return true;
 179	}
 180
 181	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 182		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 183		return true;
 184	}
 185
 186	return false;
 187}
 188
 189static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 190{
 191	WARN_ON_ONCE(!irqs_disabled());
 192
 193	if (unlikely(!cpu_online(cpu)))
 194		return false;
 195
 196	if (check_tick_dependency(&tick_dep_mask))
 197		return false;
 198
 199	if (check_tick_dependency(&ts->tick_dep_mask))
 200		return false;
 201
 202	if (check_tick_dependency(&current->tick_dep_mask))
 203		return false;
 204
 205	if (check_tick_dependency(&current->signal->tick_dep_mask))
 206		return false;
 207
 208	return true;
 209}
 210
 211static void nohz_full_kick_func(struct irq_work *work)
 212{
 213	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 214}
 215
 216static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 217	.func = nohz_full_kick_func,
 218};
 219
 220/*
 221 * Kick this CPU if it's full dynticks in order to force it to
 222 * re-evaluate its dependency on the tick and restart it if necessary.
 223 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 224 * is NMI safe.
 225 */
 226static void tick_nohz_full_kick(void)
 227{
 228	if (!tick_nohz_full_cpu(smp_processor_id()))
 229		return;
 230
 231	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 232}
 233
 234/*
 235 * Kick the CPU if it's full dynticks in order to force it to
 236 * re-evaluate its dependency on the tick and restart it if necessary.
 237 */
 238void tick_nohz_full_kick_cpu(int cpu)
 239{
 240	if (!tick_nohz_full_cpu(cpu))
 241		return;
 242
 243	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 244}
 245
 246/*
 247 * Kick all full dynticks CPUs in order to force these to re-evaluate
 248 * their dependency on the tick and restart it if necessary.
 249 */
 250static void tick_nohz_full_kick_all(void)
 251{
 252	int cpu;
 253
 254	if (!tick_nohz_full_running)
 255		return;
 256
 257	preempt_disable();
 258	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 259		tick_nohz_full_kick_cpu(cpu);
 260	preempt_enable();
 261}
 262
 263static void tick_nohz_dep_set_all(atomic_t *dep,
 264				  enum tick_dep_bits bit)
 265{
 266	int prev;
 267
 268	prev = atomic_fetch_or(BIT(bit), dep);
 269	if (!prev)
 270		tick_nohz_full_kick_all();
 271}
 272
 273/*
 274 * Set a global tick dependency. Used by perf events that rely on freq and
 275 * by unstable clock.
 276 */
 277void tick_nohz_dep_set(enum tick_dep_bits bit)
 278{
 279	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 280}
 281
 282void tick_nohz_dep_clear(enum tick_dep_bits bit)
 283{
 284	atomic_andnot(BIT(bit), &tick_dep_mask);
 285}
 286
 287/*
 288 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 289 * manage events throttling.
 290 */
 291void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 292{
 293	int prev;
 294	struct tick_sched *ts;
 295
 296	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 297
 298	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 299	if (!prev) {
 300		preempt_disable();
 301		/* Perf needs local kick that is NMI safe */
 302		if (cpu == smp_processor_id()) {
 303			tick_nohz_full_kick();
 304		} else {
 305			/* Remote irq work not NMI-safe */
 306			if (!WARN_ON_ONCE(in_nmi()))
 307				tick_nohz_full_kick_cpu(cpu);
 308		}
 309		preempt_enable();
 310	}
 311}
 312
 313void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 314{
 315	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 316
 317	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 318}
 319
 320/*
 321 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 322 * per task timers.
 323 */
 324void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 325{
 326	/*
 327	 * We could optimize this with just kicking the target running the task
 328	 * if that noise matters for nohz full users.
 329	 */
 330	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
 331}
 332
 333void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 334{
 335	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 336}
 337
 338/*
 339 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 340 * per process timers.
 341 */
 342void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 343{
 344	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
 345}
 346
 347void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 348{
 349	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 350}
 351
 352/*
 353 * Re-evaluate the need for the tick as we switch the current task.
 354 * It might need the tick due to per task/process properties:
 355 * perf events, posix CPU timers, ...
 356 */
 357void __tick_nohz_task_switch(void)
 358{
 359	unsigned long flags;
 360	struct tick_sched *ts;
 361
 362	local_irq_save(flags);
 363
 364	if (!tick_nohz_full_cpu(smp_processor_id()))
 365		goto out;
 366
 367	ts = this_cpu_ptr(&tick_cpu_sched);
 368
 369	if (ts->tick_stopped) {
 370		if (atomic_read(&current->tick_dep_mask) ||
 371		    atomic_read(&current->signal->tick_dep_mask))
 372			tick_nohz_full_kick();
 373	}
 374out:
 375	local_irq_restore(flags);
 376}
 377
 378/* Parse the boot-time nohz CPU list from the kernel parameters. */
 379static int __init tick_nohz_full_setup(char *str)
 380{
 381	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 382	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
 383		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
 384		free_bootmem_cpumask_var(tick_nohz_full_mask);
 385		return 1;
 386	}
 387	tick_nohz_full_running = true;
 388
 389	return 1;
 390}
 391__setup("nohz_full=", tick_nohz_full_setup);
 392
 393static int tick_nohz_cpu_down(unsigned int cpu)
 394{
 395	/*
 396	 * The boot CPU handles housekeeping duty (unbound timers,
 397	 * workqueues, timekeeping, ...) on behalf of full dynticks
 398	 * CPUs. It must remain online when nohz full is enabled.
 399	 */
 400	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 401		return -EBUSY;
 402	return 0;
 403}
 404
 405static int tick_nohz_init_all(void)
 406{
 407	int err = -1;
 408
 409#ifdef CONFIG_NO_HZ_FULL_ALL
 410	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
 411		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
 412		return err;
 413	}
 414	err = 0;
 415	cpumask_setall(tick_nohz_full_mask);
 416	tick_nohz_full_running = true;
 417#endif
 418	return err;
 419}
 420
 421void __init tick_nohz_init(void)
 422{
 423	int cpu, ret;
 424
 425	if (!tick_nohz_full_running) {
 426		if (tick_nohz_init_all() < 0)
 427			return;
 428	}
 429
 430	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
 431		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
 432		cpumask_clear(tick_nohz_full_mask);
 433		tick_nohz_full_running = false;
 434		return;
 435	}
 436
 437	/*
 438	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 439	 * locking contexts. But then we need irq work to raise its own
 440	 * interrupts to avoid circular dependency on the tick
 441	 */
 442	if (!arch_irq_work_has_interrupt()) {
 443		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 444		cpumask_clear(tick_nohz_full_mask);
 445		cpumask_copy(housekeeping_mask, cpu_possible_mask);
 446		tick_nohz_full_running = false;
 447		return;
 448	}
 449
 450	cpu = smp_processor_id();
 451
 452	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 453		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
 454			cpu);
 455		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 456	}
 457
 458	cpumask_andnot(housekeeping_mask,
 459		       cpu_possible_mask, tick_nohz_full_mask);
 460
 461	for_each_cpu(cpu, tick_nohz_full_mask)
 462		context_tracking_cpu_set(cpu);
 463
 464	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 465					"kernel/nohz:predown", NULL,
 466					tick_nohz_cpu_down);
 467	WARN_ON(ret < 0);
 468	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 469		cpumask_pr_args(tick_nohz_full_mask));
 470
 471	/*
 472	 * We need at least one CPU to handle housekeeping work such
 473	 * as timekeeping, unbound timers, workqueues, ...
 474	 */
 475	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
 476}
 477#endif
 478
 479/*
 480 * NOHZ - aka dynamic tick functionality
 481 */
 482#ifdef CONFIG_NO_HZ_COMMON
 483/*
 484 * NO HZ enabled ?
 485 */
 486bool tick_nohz_enabled __read_mostly  = true;
 487unsigned long tick_nohz_active  __read_mostly;
 488/*
 489 * Enable / Disable tickless mode
 490 */
 491static int __init setup_tick_nohz(char *str)
 492{
 493	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 
 
 
 
 
 
 494}
 495
 496__setup("nohz=", setup_tick_nohz);
 497
 498int tick_nohz_tick_stopped(void)
 499{
 500	return __this_cpu_read(tick_cpu_sched.tick_stopped);
 501}
 502
 503/**
 504 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 505 *
 506 * Called from interrupt entry when the CPU was idle
 507 *
 508 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 509 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 510 * value. We do this unconditionally on any CPU, as we don't know whether the
 511 * CPU, which has the update task assigned is in a long sleep.
 512 */
 513static void tick_nohz_update_jiffies(ktime_t now)
 514{
 
 
 515	unsigned long flags;
 516
 517	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 518
 519	local_irq_save(flags);
 520	tick_do_update_jiffies64(now);
 521	local_irq_restore(flags);
 522
 523	touch_softlockup_watchdog_sched();
 
 524}
 525
 526/*
 527 * Updates the per-CPU time idle statistics counters
 528 */
 529static void
 530update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 531{
 532	ktime_t delta;
 533
 534	if (ts->idle_active) {
 535		delta = ktime_sub(now, ts->idle_entrytime);
 536		if (nr_iowait_cpu(cpu) > 0)
 537			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 538		else
 539			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 540		ts->idle_entrytime = now;
 541	}
 542
 543	if (last_update_time)
 544		*last_update_time = ktime_to_us(now);
 545
 546}
 547
 548static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 549{
 550	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 
 
 551	ts->idle_active = 0;
 552
 553	sched_clock_idle_wakeup_event(0);
 554}
 555
 556static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
 557{
 558	ktime_t now = ktime_get();
 559
 560	ts->idle_entrytime = now;
 561	ts->idle_active = 1;
 562	sched_clock_idle_sleep_event();
 563	return now;
 564}
 565
 566/**
 567 * get_cpu_idle_time_us - get the total idle time of a CPU
 568 * @cpu: CPU number to query
 569 * @last_update_time: variable to store update time in. Do not update
 570 * counters if NULL.
 571 *
 572 * Return the cumulative idle time (since boot) for a given
 573 * CPU, in microseconds.
 574 *
 575 * This time is measured via accounting rather than sampling,
 576 * and is as accurate as ktime_get() is.
 577 *
 578 * This function returns -1 if NOHZ is not enabled.
 579 */
 580u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 581{
 582	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 583	ktime_t now, idle;
 584
 585	if (!tick_nohz_active)
 586		return -1;
 587
 588	now = ktime_get();
 589	if (last_update_time) {
 590		update_ts_time_stats(cpu, ts, now, last_update_time);
 591		idle = ts->idle_sleeptime;
 592	} else {
 593		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 594			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 595
 596			idle = ktime_add(ts->idle_sleeptime, delta);
 597		} else {
 598			idle = ts->idle_sleeptime;
 599		}
 600	}
 601
 602	return ktime_to_us(idle);
 603
 604}
 605EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 606
 607/**
 608 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 609 * @cpu: CPU number to query
 610 * @last_update_time: variable to store update time in. Do not update
 611 * counters if NULL.
 612 *
 613 * Return the cumulative iowait time (since boot) for a given
 614 * CPU, in microseconds.
 615 *
 616 * This time is measured via accounting rather than sampling,
 617 * and is as accurate as ktime_get() is.
 618 *
 619 * This function returns -1 if NOHZ is not enabled.
 620 */
 621u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 622{
 623	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 624	ktime_t now, iowait;
 625
 626	if (!tick_nohz_active)
 627		return -1;
 628
 629	now = ktime_get();
 630	if (last_update_time) {
 631		update_ts_time_stats(cpu, ts, now, last_update_time);
 632		iowait = ts->iowait_sleeptime;
 633	} else {
 634		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 635			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 636
 637			iowait = ktime_add(ts->iowait_sleeptime, delta);
 638		} else {
 639			iowait = ts->iowait_sleeptime;
 640		}
 641	}
 642
 643	return ktime_to_us(iowait);
 644}
 645EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 646
 647static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 648{
 649	hrtimer_cancel(&ts->sched_timer);
 650	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 
 
 
 
 651
 652	/* Forward the time to expire in the future */
 653	hrtimer_forward(&ts->sched_timer, now, tick_period);
 654
 655	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 656		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
 657	else
 658		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 659}
 660
 661static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
 662					 ktime_t now, int cpu)
 663{
 664	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 665	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 666	unsigned long seq, basejiff;
 667	ktime_t	tick;
 668
 669	/* Read jiffies and the time when jiffies were updated last */
 670	do {
 671		seq = read_seqbegin(&jiffies_lock);
 672		basemono = last_jiffies_update;
 673		basejiff = jiffies;
 674	} while (read_seqretry(&jiffies_lock, seq));
 675	ts->last_jiffies = basejiff;
 676
 677	if (rcu_needs_cpu(basemono, &next_rcu) ||
 678	    arch_needs_cpu() || irq_work_needs_cpu()) {
 679		next_tick = basemono + TICK_NSEC;
 680	} else {
 681		/*
 682		 * Get the next pending timer. If high resolution
 683		 * timers are enabled this only takes the timer wheel
 684		 * timers into account. If high resolution timers are
 685		 * disabled this also looks at the next expiring
 686		 * hrtimer.
 687		 */
 688		next_tmr = get_next_timer_interrupt(basejiff, basemono);
 689		ts->next_timer = next_tmr;
 690		/* Take the next rcu event into account */
 691		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 692	}
 693
 694	/*
 695	 * If the tick is due in the next period, keep it ticking or
 696	 * force prod the timer.
 697	 */
 698	delta = next_tick - basemono;
 699	if (delta <= (u64)TICK_NSEC) {
 700		tick = 0;
 701
 702		/*
 703		 * Tell the timer code that the base is not idle, i.e. undo
 704		 * the effect of get_next_timer_interrupt():
 705		 */
 706		timer_clear_idle();
 707		/*
 708		 * We've not stopped the tick yet, and there's a timer in the
 709		 * next period, so no point in stopping it either, bail.
 710		 */
 711		if (!ts->tick_stopped)
 712			goto out;
 713
 714		/*
 715		 * If, OTOH, we did stop it, but there's a pending (expired)
 716		 * timer reprogram the timer hardware to fire now.
 717		 *
 718		 * We will not restart the tick proper, just prod the timer
 719		 * hardware into firing an interrupt to process the pending
 720		 * timers. Just like tick_irq_exit() will not restart the tick
 721		 * for 'normal' interrupts.
 722		 *
 723		 * Only once we exit the idle loop will we re-enable the tick,
 724		 * see tick_nohz_idle_exit().
 725		 */
 726		if (delta == 0) {
 727			tick_nohz_restart(ts, now);
 728			goto out;
 729		}
 730	}
 731
 732	/*
 733	 * If this CPU is the one which updates jiffies, then give up
 734	 * the assignment and let it be taken by the CPU which runs
 735	 * the tick timer next, which might be this CPU as well. If we
 736	 * don't drop this here the jiffies might be stale and
 737	 * do_timer() never invoked. Keep track of the fact that it
 738	 * was the one which had the do_timer() duty last. If this CPU
 739	 * is the one which had the do_timer() duty last, we limit the
 740	 * sleep time to the timekeeping max_deferment value.
 741	 * Otherwise we can sleep as long as we want.
 742	 */
 743	delta = timekeeping_max_deferment();
 744	if (cpu == tick_do_timer_cpu) {
 745		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 746		ts->do_timer_last = 1;
 747	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 748		delta = KTIME_MAX;
 749		ts->do_timer_last = 0;
 750	} else if (!ts->do_timer_last) {
 751		delta = KTIME_MAX;
 752	}
 753
 754#ifdef CONFIG_NO_HZ_FULL
 755	/* Limit the tick delta to the maximum scheduler deferment */
 756	if (!ts->inidle)
 757		delta = min(delta, scheduler_tick_max_deferment());
 758#endif
 759
 760	/* Calculate the next expiry time */
 761	if (delta < (KTIME_MAX - basemono))
 762		expires = basemono + delta;
 763	else
 764		expires = KTIME_MAX;
 765
 766	expires = min_t(u64, expires, next_tick);
 767	tick = expires;
 768
 769	/* Skip reprogram of event if its not changed */
 770	if (ts->tick_stopped && (expires == dev->next_event))
 771		goto out;
 772
 773	/*
 774	 * nohz_stop_sched_tick can be called several times before
 775	 * the nohz_restart_sched_tick is called. This happens when
 776	 * interrupts arrive which do not cause a reschedule. In the
 777	 * first call we save the current tick time, so we can restart
 778	 * the scheduler tick in nohz_restart_sched_tick.
 779	 */
 780	if (!ts->tick_stopped) {
 781		nohz_balance_enter_idle(cpu);
 782		calc_load_enter_idle();
 783		cpu_load_update_nohz_start();
 784
 785		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 786		ts->tick_stopped = 1;
 787		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 788	}
 789
 790	/*
 791	 * If the expiration time == KTIME_MAX, then we simply stop
 792	 * the tick timer.
 793	 */
 794	if (unlikely(expires == KTIME_MAX)) {
 795		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 796			hrtimer_cancel(&ts->sched_timer);
 797		goto out;
 798	}
 799
 800	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 801		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
 802	else
 803		tick_program_event(tick, 1);
 804out:
 805	/* Update the estimated sleep length */
 806	ts->sleep_length = ktime_sub(dev->next_event, now);
 807	return tick;
 808}
 809
 810static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 811{
 812	/* Update jiffies first */
 813	tick_do_update_jiffies64(now);
 814	cpu_load_update_nohz_stop();
 815
 816	/*
 817	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 818	 * the clock forward checks in the enqueue path:
 819	 */
 820	timer_clear_idle();
 821
 822	calc_load_exit_idle();
 823	touch_softlockup_watchdog_sched();
 824	/*
 825	 * Cancel the scheduled timer and restore the tick
 826	 */
 827	ts->tick_stopped  = 0;
 828	ts->idle_exittime = now;
 829
 830	tick_nohz_restart(ts, now);
 831}
 832
 833static void tick_nohz_full_update_tick(struct tick_sched *ts)
 834{
 835#ifdef CONFIG_NO_HZ_FULL
 836	int cpu = smp_processor_id();
 837
 838	if (!tick_nohz_full_cpu(cpu))
 839		return;
 840
 841	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 842		return;
 843
 844	if (can_stop_full_tick(cpu, ts))
 845		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
 846	else if (ts->tick_stopped)
 847		tick_nohz_restart_sched_tick(ts, ktime_get());
 848#endif
 849}
 850
 851static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 852{
 853	/*
 854	 * If this CPU is offline and it is the one which updates
 855	 * jiffies, then give up the assignment and let it be taken by
 856	 * the CPU which runs the tick timer next. If we don't drop
 857	 * this here the jiffies might be stale and do_timer() never
 858	 * invoked.
 859	 */
 860	if (unlikely(!cpu_online(cpu))) {
 861		if (cpu == tick_do_timer_cpu)
 862			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 863		return false;
 864	}
 865
 866	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
 867		ts->sleep_length = NSEC_PER_SEC / HZ;
 868		return false;
 869	}
 870
 871	if (need_resched())
 872		return false;
 873
 874	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
 875		static int ratelimit;
 876
 877		if (ratelimit < 10 &&
 878		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 879			pr_warn("NOHZ: local_softirq_pending %02x\n",
 880				(unsigned int) local_softirq_pending());
 881			ratelimit++;
 882		}
 883		return false;
 884	}
 885
 886	if (tick_nohz_full_enabled()) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 887		/*
 888		 * Keep the tick alive to guarantee timekeeping progression
 889		 * if there are full dynticks CPUs around
 
 
 
 
 
 
 
 
 
 890		 */
 891		if (tick_do_timer_cpu == cpu)
 892			return false;
 
 
 
 
 
 
 
 
 893		/*
 894		 * Boot safety: make sure the timekeeping duty has been
 895		 * assigned before entering dyntick-idle mode,
 
 
 
 896		 */
 897		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 898			return false;
 899	}
 
 
 
 
 
 
 
 
 900
 901	return true;
 902}
 
 
 903
 904static void __tick_nohz_idle_enter(struct tick_sched *ts)
 905{
 906	ktime_t now, expires;
 907	int cpu = smp_processor_id();
 908
 909	now = tick_nohz_start_idle(ts);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 910
 911	if (can_stop_idle_tick(cpu, ts)) {
 912		int was_stopped = ts->tick_stopped;
 913
 914		ts->idle_calls++;
 
 915
 916		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
 917		if (expires > 0LL) {
 918			ts->idle_sleeps++;
 919			ts->idle_expires = expires;
 
 
 
 
 920		}
 921
 922		if (!was_stopped && ts->tick_stopped)
 923			ts->idle_jiffies = ts->last_jiffies;
 
 
 
 
 
 
 
 
 
 
 
 
 924	}
 
 
 
 
 
 925}
 926
 927/**
 928 * tick_nohz_idle_enter - stop the idle tick from the idle task
 929 *
 930 * When the next event is more than a tick into the future, stop the idle tick
 931 * Called when we start the idle loop.
 932 *
 933 * The arch is responsible of calling:
 934 *
 935 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 936 *  to sleep.
 937 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
 938 */
 939void tick_nohz_idle_enter(void)
 940{
 941	struct tick_sched *ts;
 942
 943	WARN_ON_ONCE(irqs_disabled());
 944
 945	/*
 946	 * Update the idle state in the scheduler domain hierarchy
 947	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 948	 * State will be updated to busy during the first busy tick after
 949	 * exiting idle.
 950	 */
 951	set_cpu_sd_state_idle();
 952
 953	local_irq_disable();
 954
 955	ts = this_cpu_ptr(&tick_cpu_sched);
 
 
 
 
 
 956	ts->inidle = 1;
 957	__tick_nohz_idle_enter(ts);
 958
 959	local_irq_enable();
 960}
 961
 962/**
 963 * tick_nohz_irq_exit - update next tick event from interrupt exit
 964 *
 965 * When an interrupt fires while we are idle and it doesn't cause
 966 * a reschedule, it may still add, modify or delete a timer, enqueue
 967 * an RCU callback, etc...
 968 * So we need to re-calculate and reprogram the next tick event.
 969 */
 970void tick_nohz_irq_exit(void)
 971{
 972	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 973
 974	if (ts->inidle)
 975		__tick_nohz_idle_enter(ts);
 976	else
 977		tick_nohz_full_update_tick(ts);
 978}
 979
 980/**
 981 * tick_nohz_get_sleep_length - return the length of the current sleep
 982 *
 983 * Called from power state control code with interrupts disabled
 984 */
 985ktime_t tick_nohz_get_sleep_length(void)
 986{
 987	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 988
 989	return ts->sleep_length;
 990}
 991
 992static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
 993{
 994#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 995	unsigned long ticks;
 996
 997	if (vtime_accounting_cpu_enabled())
 998		return;
 999	/*
1000	 * We stopped the tick in idle. Update process times would miss the
1001	 * time we slept as update_process_times does only a 1 tick
1002	 * accounting. Enforce that this is accounted to idle !
1003	 */
1004	ticks = jiffies - ts->idle_jiffies;
1005	/*
1006	 * We might be one off. Do not randomly account a huge number of ticks!
1007	 */
1008	if (ticks && ticks < LONG_MAX)
1009		account_idle_ticks(ticks);
1010#endif
 
 
 
 
 
1011}
1012
1013/**
1014 * tick_nohz_idle_exit - restart the idle tick from the idle task
1015 *
1016 * Restart the idle tick when the CPU is woken up from idle
1017 * This also exit the RCU extended quiescent state. The CPU
1018 * can use RCU again after this function is called.
1019 */
1020void tick_nohz_idle_exit(void)
1021{
1022	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 
 
 
 
1023	ktime_t now;
1024
1025	local_irq_disable();
1026
1027	WARN_ON_ONCE(!ts->inidle);
1028
1029	ts->inidle = 0;
1030
1031	if (ts->idle_active || ts->tick_stopped)
1032		now = ktime_get();
1033
1034	if (ts->idle_active)
1035		tick_nohz_stop_idle(ts, now);
1036
1037	if (ts->tick_stopped) {
1038		tick_nohz_restart_sched_tick(ts, now);
1039		tick_nohz_account_idle_ticks(ts);
1040	}
1041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042	local_irq_enable();
1043}
1044
 
 
 
 
 
 
1045/*
1046 * The nohz low res interrupt handler
1047 */
1048static void tick_nohz_handler(struct clock_event_device *dev)
1049{
1050	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1051	struct pt_regs *regs = get_irq_regs();
 
1052	ktime_t now = ktime_get();
1053
1054	dev->next_event = KTIME_MAX;
1055
1056	tick_sched_do_timer(now);
1057	tick_sched_handle(ts, regs);
 
 
 
 
 
 
 
 
 
 
 
1058
1059	/* No need to reprogram if we are running tickless  */
1060	if (unlikely(ts->tick_stopped))
1061		return;
 
 
 
 
 
 
 
 
 
1062
1063	hrtimer_forward(&ts->sched_timer, now, tick_period);
1064	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1065}
1066
1067static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1068{
1069	if (!tick_nohz_enabled)
1070		return;
1071	ts->nohz_mode = mode;
1072	/* One update is enough */
1073	if (!test_and_set_bit(0, &tick_nohz_active))
1074		timers_update_migration(true);
1075}
1076
1077/**
1078 * tick_nohz_switch_to_nohz - switch to nohz mode
1079 */
1080static void tick_nohz_switch_to_nohz(void)
1081{
1082	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1083	ktime_t next;
1084
1085	if (!tick_nohz_enabled)
1086		return;
1087
1088	if (tick_switch_to_oneshot(tick_nohz_handler))
 
 
1089		return;
 
 
 
1090
1091	/*
1092	 * Recycle the hrtimer in ts, so we can share the
1093	 * hrtimer_forward with the highres code.
1094	 */
1095	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1096	/* Get the next period */
1097	next = tick_init_jiffy_update();
1098
1099	hrtimer_set_expires(&ts->sched_timer, next);
1100	hrtimer_forward_now(&ts->sched_timer, tick_period);
1101	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1102	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
 
 
 
1103}
1104
1105static inline void tick_nohz_irq_enter(void)
 
 
 
 
 
 
 
 
 
 
 
1106{
1107	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108	ktime_t now;
1109
1110	if (!ts->idle_active && !ts->tick_stopped)
1111		return;
1112	now = ktime_get();
1113	if (ts->idle_active)
1114		tick_nohz_stop_idle(ts, now);
1115	if (ts->tick_stopped)
1116		tick_nohz_update_jiffies(now);
 
 
1117}
1118
1119#else
1120
1121static inline void tick_nohz_switch_to_nohz(void) { }
1122static inline void tick_nohz_irq_enter(void) { }
1123static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1124
1125#endif /* CONFIG_NO_HZ_COMMON */
1126
1127/*
1128 * Called from irq_enter to notify about the possible interruption of idle()
1129 */
1130void tick_irq_enter(void)
1131{
1132	tick_check_oneshot_broadcast_this_cpu();
1133	tick_nohz_irq_enter();
1134}
1135
1136/*
1137 * High resolution timer specific code
1138 */
1139#ifdef CONFIG_HIGH_RES_TIMERS
1140/*
1141 * We rearm the timer until we get disabled by the idle code.
1142 * Called with interrupts disabled.
1143 */
1144static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1145{
1146	struct tick_sched *ts =
1147		container_of(timer, struct tick_sched, sched_timer);
1148	struct pt_regs *regs = get_irq_regs();
1149	ktime_t now = ktime_get();
 
 
 
 
 
 
 
 
 
 
 
 
 
1150
1151	tick_sched_do_timer(now);
 
 
1152
1153	/*
1154	 * Do not call, when we are not in irq context and have
1155	 * no valid regs pointer
1156	 */
1157	if (regs)
1158		tick_sched_handle(ts, regs);
1159
1160	/* No need to reprogram if we are in idle or full dynticks mode */
1161	if (unlikely(ts->tick_stopped))
1162		return HRTIMER_NORESTART;
 
 
 
 
 
 
 
 
 
 
1163
1164	hrtimer_forward(timer, now, tick_period);
1165
1166	return HRTIMER_RESTART;
1167}
1168
1169static int sched_skew_tick;
1170
1171static int __init skew_tick(char *str)
1172{
1173	get_option(&str, &sched_skew_tick);
1174
1175	return 0;
1176}
1177early_param("skew_tick", skew_tick);
1178
1179/**
1180 * tick_setup_sched_timer - setup the tick emulation timer
1181 */
1182void tick_setup_sched_timer(void)
1183{
1184	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1185	ktime_t now = ktime_get();
1186
1187	/*
1188	 * Emulate tick processing via per-CPU hrtimers:
1189	 */
1190	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1191	ts->sched_timer.function = tick_sched_timer;
1192
1193	/* Get the next period (per-CPU) */
1194	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1195
1196	/* Offset the tick to avert jiffies_lock contention. */
1197	if (sched_skew_tick) {
1198		u64 offset = ktime_to_ns(tick_period) >> 1;
1199		do_div(offset, num_possible_cpus());
1200		offset *= smp_processor_id();
1201		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1202	}
1203
1204	hrtimer_forward(&ts->sched_timer, now, tick_period);
1205	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1206	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
 
 
 
 
 
 
 
 
 
 
 
1207}
1208#endif /* HIGH_RES_TIMERS */
1209
1210#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1211void tick_cancel_sched_timer(int cpu)
1212{
1213	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1214
1215# ifdef CONFIG_HIGH_RES_TIMERS
1216	if (ts->sched_timer.base)
1217		hrtimer_cancel(&ts->sched_timer);
1218# endif
1219
1220	memset(ts, 0, sizeof(*ts));
1221}
1222#endif
1223
1224/**
1225 * Async notification about clocksource changes
1226 */
1227void tick_clock_notify(void)
1228{
1229	int cpu;
1230
1231	for_each_possible_cpu(cpu)
1232		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1233}
1234
1235/*
1236 * Async notification about clock event changes
1237 */
1238void tick_oneshot_notify(void)
1239{
1240	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1241
1242	set_bit(0, &ts->check_clocks);
1243}
1244
1245/**
1246 * Check, if a change happened, which makes oneshot possible.
1247 *
1248 * Called cyclic from the hrtimer softirq (driven by the timer
1249 * softirq) allow_nohz signals, that we can switch into low-res nohz
1250 * mode, because high resolution timers are disabled (either compile
1251 * or runtime). Called with interrupts disabled.
1252 */
1253int tick_check_oneshot_change(int allow_nohz)
1254{
1255	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1256
1257	if (!test_and_clear_bit(0, &ts->check_clocks))
1258		return 0;
1259
1260	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1261		return 0;
1262
1263	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1264		return 0;
1265
1266	if (!allow_nohz)
1267		return 1;
1268
1269	tick_nohz_switch_to_nohz();
1270	return 0;
1271}