Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * linux/kernel/time/tick-broadcast.c
  3 *
  4 * This file contains functions which emulate a local clock-event
  5 * device via a broadcast event source.
  6 *
  7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 10 *
 11 * This code is licenced under the GPL version 2. For details see
 12 * kernel-base/COPYING.
 13 */
 14#include <linux/cpu.h>
 15#include <linux/err.h>
 16#include <linux/hrtimer.h>
 17#include <linux/interrupt.h>
 18#include <linux/percpu.h>
 19#include <linux/profile.h>
 20#include <linux/sched.h>
 
 
 21
 22#include "tick-internal.h"
 23
 24/*
 25 * Broadcast support for broken x86 hardware, where the local apic
 26 * timer stops in C3 state.
 27 */
 28
 29static struct tick_device tick_broadcast_device;
 30/* FIXME: Use cpumask_var_t. */
 31static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
 32static DECLARE_BITMAP(tmpmask, NR_CPUS);
 33static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
 34static int tick_broadcast_force;
 35
 36#ifdef CONFIG_TICK_ONESHOT
 37static void tick_broadcast_clear_oneshot(int cpu);
 
 38#else
 39static inline void tick_broadcast_clear_oneshot(int cpu) { }
 
 40#endif
 41
 42/*
 43 * Debugging: see timer_list.c
 44 */
 45struct tick_device *tick_get_broadcast_device(void)
 46{
 47	return &tick_broadcast_device;
 48}
 49
 50struct cpumask *tick_get_broadcast_mask(void)
 51{
 52	return to_cpumask(tick_broadcast_mask);
 53}
 54
 55/*
 56 * Start the device in periodic mode
 57 */
 58static void tick_broadcast_start_periodic(struct clock_event_device *bc)
 59{
 60	if (bc)
 61		tick_setup_periodic(bc, 1);
 62}
 63
 64/*
 65 * Check, if the device can be utilized as broadcast device:
 66 */
 67int tick_check_broadcast_device(struct clock_event_device *dev)
 
 68{
 69	if ((tick_broadcast_device.evtdev &&
 70	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
 71	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
 72		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 73
 74	clockevents_exchange_device(tick_broadcast_device.evtdev, dev);
 
 
 
 
 
 75	tick_broadcast_device.evtdev = dev;
 76	if (!cpumask_empty(tick_get_broadcast_mask()))
 77		tick_broadcast_start_periodic(dev);
 78	return 1;
 
 
 
 
 
 
 
 
 
 79}
 80
 81/*
 82 * Check, if the device is the broadcast device
 83 */
 84int tick_is_broadcast_device(struct clock_event_device *dev)
 85{
 86	return (dev && tick_broadcast_device.evtdev == dev);
 87}
 88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 89/*
 90 * Check, if the device is disfunctional and a place holder, which
 91 * needs to be handled by the broadcast device.
 92 */
 93int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
 94{
 
 95	unsigned long flags;
 96	int ret = 0;
 97
 98	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 99
100	/*
101	 * Devices might be registered with both periodic and oneshot
102	 * mode disabled. This signals, that the device needs to be
103	 * operated from the broadcast device and is a placeholder for
104	 * the cpu local device.
105	 */
106	if (!tick_device_is_functional(dev)) {
107		dev->event_handler = tick_handle_periodic;
108		cpumask_set_cpu(cpu, tick_get_broadcast_mask());
109		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
 
 
 
 
110		ret = 1;
111	} else {
112		/*
113		 * When the new device is not affected by the stop
114		 * feature and the cpu is marked in the broadcast mask
115		 * then clear the broadcast bit.
116		 */
117		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
118			int cpu = smp_processor_id();
 
 
119
120			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121			tick_broadcast_clear_oneshot(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122		}
123	}
124	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
125	return ret;
126}
127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128/*
129 * Broadcast the event to the cpus, which are set in the mask (mangled).
130 */
131static void tick_do_broadcast(struct cpumask *mask)
132{
133	int cpu = smp_processor_id();
134	struct tick_device *td;
 
135
136	/*
137	 * Check, if the current cpu is in the mask
138	 */
139	if (cpumask_test_cpu(cpu, mask)) {
 
 
140		cpumask_clear_cpu(cpu, mask);
141		td = &per_cpu(tick_cpu_device, cpu);
142		td->evtdev->event_handler(td->evtdev);
 
 
 
 
 
 
 
 
 
 
 
143	}
144
145	if (!cpumask_empty(mask)) {
146		/*
147		 * It might be necessary to actually check whether the devices
148		 * have different broadcast functions. For now, just use the
149		 * one of the first device. This works as long as we have this
150		 * misfeature only on x86 (lapic)
151		 */
152		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
153		td->evtdev->broadcast(mask);
154	}
 
155}
156
157/*
158 * Periodic broadcast:
159 * - invoke the broadcast handlers
160 */
161static void tick_do_periodic_broadcast(void)
162{
163	raw_spin_lock(&tick_broadcast_lock);
164
165	cpumask_and(to_cpumask(tmpmask),
166		    cpu_online_mask, tick_get_broadcast_mask());
167	tick_do_broadcast(to_cpumask(tmpmask));
168
169	raw_spin_unlock(&tick_broadcast_lock);
170}
171
172/*
173 * Event handler for periodic broadcast ticks
174 */
175static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
176{
177	ktime_t next;
 
178
179	tick_do_periodic_broadcast();
180
181	/*
182	 * The device is in periodic mode. No reprogramming necessary:
183	 */
184	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
185		return;
 
186
187	/*
188	 * Setup the next period for devices, which do not have
189	 * periodic mode. We read dev->next_event first and add to it
190	 * when the event already expired. clockevents_program_event()
191	 * sets dev->next_event only when the event is really
192	 * programmed to the device.
193	 */
194	for (next = dev->next_event; ;) {
195		next = ktime_add(next, tick_period);
196
197		if (!clockevents_program_event(dev, next, false))
198			return;
199		tick_do_periodic_broadcast();
 
200	}
 
 
 
 
 
 
 
 
 
201}
202
203/*
204 * Powerstate information: The system enters/leaves a state, where
205 * affected devices might stop
 
 
 
206 */
207static void tick_do_broadcast_on_off(unsigned long *reason)
208{
209	struct clock_event_device *bc, *dev;
210	struct tick_device *td;
211	unsigned long flags;
212	int cpu, bc_stopped;
 
213
 
214	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
215
216	cpu = smp_processor_id();
217	td = &per_cpu(tick_cpu_device, cpu);
218	dev = td->evtdev;
219	bc = tick_broadcast_device.evtdev;
220
221	/*
222	 * Is the device not affected by the powerstate ?
223	 */
224	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
225		goto out;
226
227	if (!tick_device_is_functional(dev))
228		goto out;
229
230	bc_stopped = cpumask_empty(tick_get_broadcast_mask());
 
 
231
232	switch (*reason) {
233	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
234	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
235		if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
236			cpumask_set_cpu(cpu, tick_get_broadcast_mask());
237			if (tick_broadcast_device.mode ==
238			    TICKDEV_MODE_PERIODIC)
 
 
 
 
 
 
 
 
 
239				clockevents_shutdown(dev);
240		}
241		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
242			tick_broadcast_force = 1;
243		break;
244	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
245		if (!tick_broadcast_force &&
246		    cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
247			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
 
 
 
 
248			if (tick_broadcast_device.mode ==
249			    TICKDEV_MODE_PERIODIC)
250				tick_setup_periodic(dev, 0);
251		}
252		break;
253	}
254
255	if (cpumask_empty(tick_get_broadcast_mask())) {
256		if (!bc_stopped)
257			clockevents_shutdown(bc);
258	} else if (bc_stopped) {
259		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
260			tick_broadcast_start_periodic(bc);
261		else
262			tick_broadcast_setup_oneshot(bc);
 
 
263	}
264out:
265	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
266}
267
268/*
269 * Powerstate information: The system enters/leaves a state, where
270 * affected devices might stop.
271 */
272void tick_broadcast_on_off(unsigned long reason, int *oncpu)
273{
274	if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
275		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
276		       "offline CPU #%d\n", *oncpu);
277	else
278		tick_do_broadcast_on_off(&reason);
279}
280
281/*
282 * Set the periodic handler depending on broadcast on/off
283 */
284void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
285{
286	if (!broadcast)
287		dev->event_handler = tick_handle_periodic;
288	else
289		dev->event_handler = tick_handle_periodic_broadcast;
290}
291
 
292/*
293 * Remove a CPU from broadcasting
294 */
295void tick_shutdown_broadcast(unsigned int *cpup)
296{
297	struct clock_event_device *bc;
298	unsigned long flags;
299	unsigned int cpu = *cpup;
300
301	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
302
303	bc = tick_broadcast_device.evtdev;
304	cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
 
305
306	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
307		if (bc && cpumask_empty(tick_get_broadcast_mask()))
308			clockevents_shutdown(bc);
309	}
310
311	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
312}
 
313
314void tick_suspend_broadcast(void)
315{
316	struct clock_event_device *bc;
317	unsigned long flags;
318
319	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
320
321	bc = tick_broadcast_device.evtdev;
322	if (bc)
323		clockevents_shutdown(bc);
324
325	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
326}
327
328int tick_resume_broadcast(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
329{
330	struct clock_event_device *bc;
331	unsigned long flags;
332	int broadcast = 0;
333
334	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
335
336	bc = tick_broadcast_device.evtdev;
337
338	if (bc) {
339		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
340
341		switch (tick_broadcast_device.mode) {
342		case TICKDEV_MODE_PERIODIC:
343			if (!cpumask_empty(tick_get_broadcast_mask()))
344				tick_broadcast_start_periodic(bc);
345			broadcast = cpumask_test_cpu(smp_processor_id(),
346						     tick_get_broadcast_mask());
347			break;
348		case TICKDEV_MODE_ONESHOT:
349			if (!cpumask_empty(tick_get_broadcast_mask()))
350				broadcast = tick_resume_broadcast_oneshot(bc);
351			break;
352		}
353	}
354	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
355
356	return broadcast;
357}
358
359
360#ifdef CONFIG_TICK_ONESHOT
361
362/* FIXME: use cpumask_var_t. */
363static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
 
364
365/*
366 * Exposed for debugging: see timer_list.c
367 */
368struct cpumask *tick_get_broadcast_oneshot_mask(void)
369{
370	return to_cpumask(tick_broadcast_oneshot_mask);
371}
372
373static int tick_broadcast_set_event(ktime_t expires, int force)
 
 
 
 
 
 
 
374{
375	struct clock_event_device *bc = tick_broadcast_device.evtdev;
 
376
377	if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
378		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
 
 
 
 
 
 
 
 
 
379
380	return clockevents_program_event(bc, expires, force);
 
381}
382
383int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
 
384{
385	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
386	return 0;
 
 
 
 
 
 
 
 
387}
388
389/*
390 * Called from irq_enter() when idle was interrupted to reenable the
391 * per cpu device.
392 */
393void tick_check_oneshot_broadcast(int cpu)
394{
395	if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
396		struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
397
398		clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
 
 
 
 
 
 
 
 
399	}
400}
401
402/*
403 * Handle oneshot mode broadcasting
404 */
405static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
406{
407	struct tick_device *td;
408	ktime_t now, next_event;
409	int cpu;
 
410
411	raw_spin_lock(&tick_broadcast_lock);
412again:
413	dev->next_event.tv64 = KTIME_MAX;
414	next_event.tv64 = KTIME_MAX;
415	cpumask_clear(to_cpumask(tmpmask));
416	now = ktime_get();
417	/* Find all expired events */
418	for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
419		td = &per_cpu(tick_cpu_device, cpu);
420		if (td->evtdev->next_event.tv64 <= now.tv64)
421			cpumask_set_cpu(cpu, to_cpumask(tmpmask));
422		else if (td->evtdev->next_event.tv64 < next_event.tv64)
423			next_event.tv64 = td->evtdev->next_event.tv64;
 
 
 
 
 
 
 
 
424	}
425
426	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
427	 * Wakeup the cpus which have an expired event.
428	 */
429	tick_do_broadcast(to_cpumask(tmpmask));
430
431	/*
432	 * Two reasons for reprogram:
433	 *
434	 * - The global event did not expire any CPU local
435	 * events. This happens in dyntick mode, as the maximum PIT
436	 * delta is quite small.
437	 *
438	 * - There are pending events on sleeping CPUs which were not
439	 * in the event mask
440	 */
441	if (next_event.tv64 != KTIME_MAX) {
442		/*
443		 * Rearm the broadcast device. If event expired,
444		 * repeat the above
445		 */
446		if (tick_broadcast_set_event(next_event, 0))
447			goto again;
448	}
449	raw_spin_unlock(&tick_broadcast_lock);
 
 
 
 
 
450}
451
452/*
453 * Powerstate information: The system enters/leaves a state, where
454 * affected devices might stop
455 */
456void tick_broadcast_oneshot_control(unsigned long reason)
457{
458	struct clock_event_device *bc, *dev;
459	struct tick_device *td;
460	unsigned long flags;
461	int cpu;
 
 
462
 
 
 
463	/*
464	 * Periodic mode does not care about the enter/exit of power
465	 * states
 
466	 */
467	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
468		return;
 
 
 
 
 
 
 
 
 
 
 
 
469
470	/*
471	 * We are called with preemtion disabled from the depth of the
472	 * idle code, so we can't be moved away.
473	 */
474	cpu = smp_processor_id();
475	td = &per_cpu(tick_cpu_device, cpu);
476	dev = td->evtdev;
477
478	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
479		return;
480
 
481	bc = tick_broadcast_device.evtdev;
 
482
483	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
484	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
485		if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
486			cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
487			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
488			if (dev->next_event.tv64 < bc->next_event.tv64)
489				tick_broadcast_set_event(dev->next_event, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
490		}
491	} else {
492		if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
493			cpumask_clear_cpu(cpu,
494					  tick_get_broadcast_oneshot_mask());
495			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
496			if (dev->next_event.tv64 != KTIME_MAX)
497				tick_program_event(dev->next_event, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
498		}
499	}
500	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 
 
501}
502
503/*
504 * Reset the one shot broadcast for a cpu
505 *
506 * Called with tick_broadcast_lock held
507 */
508static void tick_broadcast_clear_oneshot(int cpu)
509{
510	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
 
511}
512
513static void tick_broadcast_init_next_event(struct cpumask *mask,
514					   ktime_t expires)
515{
516	struct tick_device *td;
517	int cpu;
518
519	for_each_cpu(cpu, mask) {
520		td = &per_cpu(tick_cpu_device, cpu);
521		if (td->evtdev)
522			td->evtdev->next_event = expires;
523	}
524}
525
526/**
527 * tick_broadcast_setup_oneshot - setup the broadcast device
528 */
529void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
530{
531	int cpu = smp_processor_id();
532
 
 
 
533	/* Set it up only once ! */
534	if (bc->event_handler != tick_handle_oneshot_broadcast) {
535		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
536
537		bc->event_handler = tick_handle_oneshot_broadcast;
538
539		/* Take the do_timer update */
540		tick_do_timer_cpu = cpu;
541
542		/*
543		 * We must be careful here. There might be other CPUs
544		 * waiting for periodic broadcast. We need to set the
545		 * oneshot_mask bits for those and program the
546		 * broadcast device to fire.
547		 */
548		cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
549		cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
550		cpumask_or(tick_get_broadcast_oneshot_mask(),
551			   tick_get_broadcast_oneshot_mask(),
552			   to_cpumask(tmpmask));
553
554		if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
555			clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
556			tick_broadcast_init_next_event(to_cpumask(tmpmask),
557						       tick_next_period);
558			tick_broadcast_set_event(tick_next_period, 1);
559		} else
560			bc->next_event.tv64 = KTIME_MAX;
561	} else {
562		/*
563		 * The first cpu which switches to oneshot mode sets
564		 * the bit for all other cpus which are in the general
565		 * (periodic) broadcast mask. So the bit is set and
566		 * would prevent the first broadcast enter after this
567		 * to program the bc device.
568		 */
569		tick_broadcast_clear_oneshot(cpu);
570	}
571}
572
573/*
574 * Select oneshot operating mode for the broadcast device
575 */
576void tick_broadcast_switch_to_oneshot(void)
577{
578	struct clock_event_device *bc;
579	unsigned long flags;
580
581	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
582
583	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
584	bc = tick_broadcast_device.evtdev;
585	if (bc)
586		tick_broadcast_setup_oneshot(bc);
587
588	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
589}
590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
591
592/*
593 * Remove a dead CPU from broadcasting
594 */
595void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
596{
597	unsigned long flags;
598	unsigned int cpu = *cpup;
599
600	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
601
602	/*
603	 * Clear the broadcast mask flag for the dead cpu, but do not
604	 * stop the broadcast device!
605	 */
606	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
 
 
607
608	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
609}
 
610
611/*
612 * Check, whether the broadcast device is in one shot mode
613 */
614int tick_broadcast_oneshot_active(void)
615{
616	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
617}
618
619/*
620 * Check whether the broadcast device supports oneshot.
621 */
622bool tick_broadcast_oneshot_available(void)
623{
624	struct clock_event_device *bc = tick_broadcast_device.evtdev;
625
626	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
627}
628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
629#endif
v4.10.11
   1/*
   2 * linux/kernel/time/tick-broadcast.c
   3 *
   4 * This file contains functions which emulate a local clock-event
   5 * device via a broadcast event source.
   6 *
   7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  10 *
  11 * This code is licenced under the GPL version 2. For details see
  12 * kernel-base/COPYING.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/percpu.h>
  19#include <linux/profile.h>
  20#include <linux/sched.h>
  21#include <linux/smp.h>
  22#include <linux/module.h>
  23
  24#include "tick-internal.h"
  25
  26/*
  27 * Broadcast support for broken x86 hardware, where the local apic
  28 * timer stops in C3 state.
  29 */
  30
  31static struct tick_device tick_broadcast_device;
  32static cpumask_var_t tick_broadcast_mask;
  33static cpumask_var_t tick_broadcast_on;
  34static cpumask_var_t tmpmask;
  35static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
  36static int tick_broadcast_forced;
  37
  38#ifdef CONFIG_TICK_ONESHOT
  39static void tick_broadcast_clear_oneshot(int cpu);
  40static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
  41#else
  42static inline void tick_broadcast_clear_oneshot(int cpu) { }
  43static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
  44#endif
  45
  46/*
  47 * Debugging: see timer_list.c
  48 */
  49struct tick_device *tick_get_broadcast_device(void)
  50{
  51	return &tick_broadcast_device;
  52}
  53
  54struct cpumask *tick_get_broadcast_mask(void)
  55{
  56	return tick_broadcast_mask;
  57}
  58
  59/*
  60 * Start the device in periodic mode
  61 */
  62static void tick_broadcast_start_periodic(struct clock_event_device *bc)
  63{
  64	if (bc)
  65		tick_setup_periodic(bc, 1);
  66}
  67
  68/*
  69 * Check, if the device can be utilized as broadcast device:
  70 */
  71static bool tick_check_broadcast_device(struct clock_event_device *curdev,
  72					struct clock_event_device *newdev)
  73{
  74	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
  75	    (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
  76	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
  77		return false;
  78
  79	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
  80	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
  81		return false;
  82
  83	return !curdev || newdev->rating > curdev->rating;
  84}
  85
  86/*
  87 * Conditionally install/replace broadcast device
  88 */
  89void tick_install_broadcast_device(struct clock_event_device *dev)
  90{
  91	struct clock_event_device *cur = tick_broadcast_device.evtdev;
  92
  93	if (!tick_check_broadcast_device(cur, dev))
  94		return;
  95
  96	if (!try_module_get(dev->owner))
  97		return;
  98
  99	clockevents_exchange_device(cur, dev);
 100	if (cur)
 101		cur->event_handler = clockevents_handle_noop;
 102	tick_broadcast_device.evtdev = dev;
 103	if (!cpumask_empty(tick_broadcast_mask))
 104		tick_broadcast_start_periodic(dev);
 105	/*
 106	 * Inform all cpus about this. We might be in a situation
 107	 * where we did not switch to oneshot mode because the per cpu
 108	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
 109	 * of a oneshot capable broadcast device. Without that
 110	 * notification the systems stays stuck in periodic mode
 111	 * forever.
 112	 */
 113	if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
 114		tick_clock_notify();
 115}
 116
 117/*
 118 * Check, if the device is the broadcast device
 119 */
 120int tick_is_broadcast_device(struct clock_event_device *dev)
 121{
 122	return (dev && tick_broadcast_device.evtdev == dev);
 123}
 124
 125int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
 126{
 127	int ret = -ENODEV;
 128
 129	if (tick_is_broadcast_device(dev)) {
 130		raw_spin_lock(&tick_broadcast_lock);
 131		ret = __clockevents_update_freq(dev, freq);
 132		raw_spin_unlock(&tick_broadcast_lock);
 133	}
 134	return ret;
 135}
 136
 137
 138static void err_broadcast(const struct cpumask *mask)
 139{
 140	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
 141}
 142
 143static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
 144{
 145	if (!dev->broadcast)
 146		dev->broadcast = tick_broadcast;
 147	if (!dev->broadcast) {
 148		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
 149			     dev->name);
 150		dev->broadcast = err_broadcast;
 151	}
 152}
 153
 154/*
 155 * Check, if the device is disfunctional and a place holder, which
 156 * needs to be handled by the broadcast device.
 157 */
 158int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
 159{
 160	struct clock_event_device *bc = tick_broadcast_device.evtdev;
 161	unsigned long flags;
 162	int ret = 0;
 163
 164	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 165
 166	/*
 167	 * Devices might be registered with both periodic and oneshot
 168	 * mode disabled. This signals, that the device needs to be
 169	 * operated from the broadcast device and is a placeholder for
 170	 * the cpu local device.
 171	 */
 172	if (!tick_device_is_functional(dev)) {
 173		dev->event_handler = tick_handle_periodic;
 174		tick_device_setup_broadcast_func(dev);
 175		cpumask_set_cpu(cpu, tick_broadcast_mask);
 176		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 177			tick_broadcast_start_periodic(bc);
 178		else
 179			tick_broadcast_setup_oneshot(bc);
 180		ret = 1;
 181	} else {
 182		/*
 183		 * Clear the broadcast bit for this cpu if the
 184		 * device is not power state affected.
 
 185		 */
 186		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 187			cpumask_clear_cpu(cpu, tick_broadcast_mask);
 188		else
 189			tick_device_setup_broadcast_func(dev);
 190
 191		/*
 192		 * Clear the broadcast bit if the CPU is not in
 193		 * periodic broadcast on state.
 194		 */
 195		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
 196			cpumask_clear_cpu(cpu, tick_broadcast_mask);
 197
 198		switch (tick_broadcast_device.mode) {
 199		case TICKDEV_MODE_ONESHOT:
 200			/*
 201			 * If the system is in oneshot mode we can
 202			 * unconditionally clear the oneshot mask bit,
 203			 * because the CPU is running and therefore
 204			 * not in an idle state which causes the power
 205			 * state affected device to stop. Let the
 206			 * caller initialize the device.
 207			 */
 208			tick_broadcast_clear_oneshot(cpu);
 209			ret = 0;
 210			break;
 211
 212		case TICKDEV_MODE_PERIODIC:
 213			/*
 214			 * If the system is in periodic mode, check
 215			 * whether the broadcast device can be
 216			 * switched off now.
 217			 */
 218			if (cpumask_empty(tick_broadcast_mask) && bc)
 219				clockevents_shutdown(bc);
 220			/*
 221			 * If we kept the cpu in the broadcast mask,
 222			 * tell the caller to leave the per cpu device
 223			 * in shutdown state. The periodic interrupt
 224			 * is delivered by the broadcast device, if
 225			 * the broadcast device exists and is not
 226			 * hrtimer based.
 227			 */
 228			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
 229				ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
 230			break;
 231		default:
 232			break;
 233		}
 234	}
 235	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 236	return ret;
 237}
 238
 239#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 240int tick_receive_broadcast(void)
 241{
 242	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 243	struct clock_event_device *evt = td->evtdev;
 244
 245	if (!evt)
 246		return -ENODEV;
 247
 248	if (!evt->event_handler)
 249		return -EINVAL;
 250
 251	evt->event_handler(evt);
 252	return 0;
 253}
 254#endif
 255
 256/*
 257 * Broadcast the event to the cpus, which are set in the mask (mangled).
 258 */
 259static bool tick_do_broadcast(struct cpumask *mask)
 260{
 261	int cpu = smp_processor_id();
 262	struct tick_device *td;
 263	bool local = false;
 264
 265	/*
 266	 * Check, if the current cpu is in the mask
 267	 */
 268	if (cpumask_test_cpu(cpu, mask)) {
 269		struct clock_event_device *bc = tick_broadcast_device.evtdev;
 270
 271		cpumask_clear_cpu(cpu, mask);
 272		/*
 273		 * We only run the local handler, if the broadcast
 274		 * device is not hrtimer based. Otherwise we run into
 275		 * a hrtimer recursion.
 276		 *
 277		 * local timer_interrupt()
 278		 *   local_handler()
 279		 *     expire_hrtimers()
 280		 *       bc_handler()
 281		 *         local_handler()
 282		 *	     expire_hrtimers()
 283		 */
 284		local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
 285	}
 286
 287	if (!cpumask_empty(mask)) {
 288		/*
 289		 * It might be necessary to actually check whether the devices
 290		 * have different broadcast functions. For now, just use the
 291		 * one of the first device. This works as long as we have this
 292		 * misfeature only on x86 (lapic)
 293		 */
 294		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
 295		td->evtdev->broadcast(mask);
 296	}
 297	return local;
 298}
 299
 300/*
 301 * Periodic broadcast:
 302 * - invoke the broadcast handlers
 303 */
 304static bool tick_do_periodic_broadcast(void)
 305{
 306	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
 307	return tick_do_broadcast(tmpmask);
 
 
 
 
 
 308}
 309
 310/*
 311 * Event handler for periodic broadcast ticks
 312 */
 313static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
 314{
 315	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 316	bool bc_local;
 317
 318	raw_spin_lock(&tick_broadcast_lock);
 319
 320	/* Handle spurious interrupts gracefully */
 321	if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
 322		raw_spin_unlock(&tick_broadcast_lock);
 
 323		return;
 324	}
 325
 326	bc_local = tick_do_periodic_broadcast();
 
 
 
 
 
 
 
 
 327
 328	if (clockevent_state_oneshot(dev)) {
 329		ktime_t next = ktime_add(dev->next_event, tick_period);
 330
 331		clockevents_program_event(dev, next, true);
 332	}
 333	raw_spin_unlock(&tick_broadcast_lock);
 334
 335	/*
 336	 * We run the handler of the local cpu after dropping
 337	 * tick_broadcast_lock because the handler might deadlock when
 338	 * trying to switch to oneshot mode.
 339	 */
 340	if (bc_local)
 341		td->evtdev->event_handler(td->evtdev);
 342}
 343
 344/**
 345 * tick_broadcast_control - Enable/disable or force broadcast mode
 346 * @mode:	The selected broadcast mode
 347 *
 348 * Called when the system enters a state where affected tick devices
 349 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
 350 */
 351void tick_broadcast_control(enum tick_broadcast_mode mode)
 352{
 353	struct clock_event_device *bc, *dev;
 354	struct tick_device *td;
 
 355	int cpu, bc_stopped;
 356	unsigned long flags;
 357
 358	/* Protects also the local clockevent device. */
 359	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 360	td = this_cpu_ptr(&tick_cpu_device);
 
 
 361	dev = td->evtdev;
 
 362
 363	/*
 364	 * Is the device not affected by the powerstate ?
 365	 */
 366	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
 367		goto out;
 368
 369	if (!tick_device_is_functional(dev))
 370		goto out;
 371
 372	cpu = smp_processor_id();
 373	bc = tick_broadcast_device.evtdev;
 374	bc_stopped = cpumask_empty(tick_broadcast_mask);
 375
 376	switch (mode) {
 377	case TICK_BROADCAST_FORCE:
 378		tick_broadcast_forced = 1;
 379	case TICK_BROADCAST_ON:
 380		cpumask_set_cpu(cpu, tick_broadcast_on);
 381		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
 382			/*
 383			 * Only shutdown the cpu local device, if:
 384			 *
 385			 * - the broadcast device exists
 386			 * - the broadcast device is not a hrtimer based one
 387			 * - the broadcast device is in periodic mode to
 388			 *   avoid a hickup during switch to oneshot mode
 389			 */
 390			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
 391			    tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 392				clockevents_shutdown(dev);
 393		}
 
 
 394		break;
 395
 396	case TICK_BROADCAST_OFF:
 397		if (tick_broadcast_forced)
 398			break;
 399		cpumask_clear_cpu(cpu, tick_broadcast_on);
 400		if (!tick_device_is_functional(dev))
 401			break;
 402		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
 403			if (tick_broadcast_device.mode ==
 404			    TICKDEV_MODE_PERIODIC)
 405				tick_setup_periodic(dev, 0);
 406		}
 407		break;
 408	}
 409
 410	if (bc) {
 411		if (cpumask_empty(tick_broadcast_mask)) {
 412			if (!bc_stopped)
 413				clockevents_shutdown(bc);
 414		} else if (bc_stopped) {
 415			if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 416				tick_broadcast_start_periodic(bc);
 417			else
 418				tick_broadcast_setup_oneshot(bc);
 419		}
 420	}
 421out:
 422	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 423}
 424EXPORT_SYMBOL_GPL(tick_broadcast_control);
 
 
 
 
 
 
 
 
 
 
 
 
 425
 426/*
 427 * Set the periodic handler depending on broadcast on/off
 428 */
 429void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
 430{
 431	if (!broadcast)
 432		dev->event_handler = tick_handle_periodic;
 433	else
 434		dev->event_handler = tick_handle_periodic_broadcast;
 435}
 436
 437#ifdef CONFIG_HOTPLUG_CPU
 438/*
 439 * Remove a CPU from broadcasting
 440 */
 441void tick_shutdown_broadcast(unsigned int cpu)
 442{
 443	struct clock_event_device *bc;
 444	unsigned long flags;
 
 445
 446	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 447
 448	bc = tick_broadcast_device.evtdev;
 449	cpumask_clear_cpu(cpu, tick_broadcast_mask);
 450	cpumask_clear_cpu(cpu, tick_broadcast_on);
 451
 452	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
 453		if (bc && cpumask_empty(tick_broadcast_mask))
 454			clockevents_shutdown(bc);
 455	}
 456
 457	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 458}
 459#endif
 460
 461void tick_suspend_broadcast(void)
 462{
 463	struct clock_event_device *bc;
 464	unsigned long flags;
 465
 466	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 467
 468	bc = tick_broadcast_device.evtdev;
 469	if (bc)
 470		clockevents_shutdown(bc);
 471
 472	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 473}
 474
 475/*
 476 * This is called from tick_resume_local() on a resuming CPU. That's
 477 * called from the core resume function, tick_unfreeze() and the magic XEN
 478 * resume hackery.
 479 *
 480 * In none of these cases the broadcast device mode can change and the
 481 * bit of the resuming CPU in the broadcast mask is safe as well.
 482 */
 483bool tick_resume_check_broadcast(void)
 484{
 485	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
 486		return false;
 487	else
 488		return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
 489}
 490
 491void tick_resume_broadcast(void)
 492{
 493	struct clock_event_device *bc;
 494	unsigned long flags;
 
 495
 496	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 497
 498	bc = tick_broadcast_device.evtdev;
 499
 500	if (bc) {
 501		clockevents_tick_resume(bc);
 502
 503		switch (tick_broadcast_device.mode) {
 504		case TICKDEV_MODE_PERIODIC:
 505			if (!cpumask_empty(tick_broadcast_mask))
 506				tick_broadcast_start_periodic(bc);
 
 
 507			break;
 508		case TICKDEV_MODE_ONESHOT:
 509			if (!cpumask_empty(tick_broadcast_mask))
 510				tick_resume_broadcast_oneshot(bc);
 511			break;
 512		}
 513	}
 514	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 
 
 515}
 516
 
 517#ifdef CONFIG_TICK_ONESHOT
 518
 519static cpumask_var_t tick_broadcast_oneshot_mask;
 520static cpumask_var_t tick_broadcast_pending_mask;
 521static cpumask_var_t tick_broadcast_force_mask;
 522
 523/*
 524 * Exposed for debugging: see timer_list.c
 525 */
 526struct cpumask *tick_get_broadcast_oneshot_mask(void)
 527{
 528	return tick_broadcast_oneshot_mask;
 529}
 530
 531/*
 532 * Called before going idle with interrupts disabled. Checks whether a
 533 * broadcast event from the other core is about to happen. We detected
 534 * that in tick_broadcast_oneshot_control(). The callsite can use this
 535 * to avoid a deep idle transition as we are about to get the
 536 * broadcast IPI right away.
 537 */
 538int tick_check_broadcast_expired(void)
 539{
 540	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
 541}
 542
 543/*
 544 * Set broadcast interrupt affinity
 545 */
 546static void tick_broadcast_set_affinity(struct clock_event_device *bc,
 547					const struct cpumask *cpumask)
 548{
 549	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
 550		return;
 551
 552	if (cpumask_equal(bc->cpumask, cpumask))
 553		return;
 554
 555	bc->cpumask = cpumask;
 556	irq_set_affinity(bc->irq, bc->cpumask);
 557}
 558
 559static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
 560				     ktime_t expires)
 561{
 562	if (!clockevent_state_oneshot(bc))
 563		clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 564
 565	clockevents_program_event(bc, expires, 1);
 566	tick_broadcast_set_affinity(bc, cpumask_of(cpu));
 567}
 568
 569static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
 570{
 571	clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 572}
 573
 574/*
 575 * Called from irq_enter() when idle was interrupted to reenable the
 576 * per cpu device.
 577 */
 578void tick_check_oneshot_broadcast_this_cpu(void)
 579{
 580	if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
 581		struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 582
 583		/*
 584		 * We might be in the middle of switching over from
 585		 * periodic to oneshot. If the CPU has not yet
 586		 * switched over, leave the device alone.
 587		 */
 588		if (td->mode == TICKDEV_MODE_ONESHOT) {
 589			clockevents_switch_state(td->evtdev,
 590					      CLOCK_EVT_STATE_ONESHOT);
 591		}
 592	}
 593}
 594
 595/*
 596 * Handle oneshot mode broadcasting
 597 */
 598static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
 599{
 600	struct tick_device *td;
 601	ktime_t now, next_event;
 602	int cpu, next_cpu = 0;
 603	bool bc_local;
 604
 605	raw_spin_lock(&tick_broadcast_lock);
 606	dev->next_event = KTIME_MAX;
 607	next_event = KTIME_MAX;
 608	cpumask_clear(tmpmask);
 
 609	now = ktime_get();
 610	/* Find all expired events */
 611	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
 612		td = &per_cpu(tick_cpu_device, cpu);
 613		if (td->evtdev->next_event <= now) {
 614			cpumask_set_cpu(cpu, tmpmask);
 615			/*
 616			 * Mark the remote cpu in the pending mask, so
 617			 * it can avoid reprogramming the cpu local
 618			 * timer in tick_broadcast_oneshot_control().
 619			 */
 620			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
 621		} else if (td->evtdev->next_event < next_event) {
 622			next_event = td->evtdev->next_event;
 623			next_cpu = cpu;
 624		}
 625	}
 626
 627	/*
 628	 * Remove the current cpu from the pending mask. The event is
 629	 * delivered immediately in tick_do_broadcast() !
 630	 */
 631	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
 632
 633	/* Take care of enforced broadcast requests */
 634	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
 635	cpumask_clear(tick_broadcast_force_mask);
 636
 637	/*
 638	 * Sanity check. Catch the case where we try to broadcast to
 639	 * offline cpus.
 640	 */
 641	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
 642		cpumask_and(tmpmask, tmpmask, cpu_online_mask);
 643
 644	/*
 645	 * Wakeup the cpus which have an expired event.
 646	 */
 647	bc_local = tick_do_broadcast(tmpmask);
 648
 649	/*
 650	 * Two reasons for reprogram:
 651	 *
 652	 * - The global event did not expire any CPU local
 653	 * events. This happens in dyntick mode, as the maximum PIT
 654	 * delta is quite small.
 655	 *
 656	 * - There are pending events on sleeping CPUs which were not
 657	 * in the event mask
 658	 */
 659	if (next_event != KTIME_MAX)
 660		tick_broadcast_set_event(dev, next_cpu, next_event);
 661
 
 
 
 
 
 662	raw_spin_unlock(&tick_broadcast_lock);
 663
 664	if (bc_local) {
 665		td = this_cpu_ptr(&tick_cpu_device);
 666		td->evtdev->event_handler(td->evtdev);
 667	}
 668}
 669
 670static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
 
 
 
 
 671{
 672	if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
 673		return 0;
 674	if (bc->next_event == KTIME_MAX)
 675		return 0;
 676	return bc->bound_on == cpu ? -EBUSY : 0;
 677}
 678
 679static void broadcast_shutdown_local(struct clock_event_device *bc,
 680				     struct clock_event_device *dev)
 681{
 682	/*
 683	 * For hrtimer based broadcasting we cannot shutdown the cpu
 684	 * local device if our own event is the first one to expire or
 685	 * if we own the broadcast timer.
 686	 */
 687	if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
 688		if (broadcast_needs_cpu(bc, smp_processor_id()))
 689			return;
 690		if (dev->next_event < bc->next_event)
 691			return;
 692	}
 693	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
 694}
 695
 696int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
 697{
 698	struct clock_event_device *bc, *dev;
 699	int cpu, ret = 0;
 700	ktime_t now;
 701
 702	/*
 703	 * If there is no broadcast device, tell the caller not to go
 704	 * into deep idle.
 705	 */
 706	if (!tick_broadcast_device.evtdev)
 707		return -EBUSY;
 
 708
 709	dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
 
 710
 711	raw_spin_lock(&tick_broadcast_lock);
 712	bc = tick_broadcast_device.evtdev;
 713	cpu = smp_processor_id();
 714
 715	if (state == TICK_BROADCAST_ENTER) {
 716		/*
 717		 * If the current CPU owns the hrtimer broadcast
 718		 * mechanism, it cannot go deep idle and we do not add
 719		 * the CPU to the broadcast mask. We don't have to go
 720		 * through the EXIT path as the local timer is not
 721		 * shutdown.
 722		 */
 723		ret = broadcast_needs_cpu(bc, cpu);
 724		if (ret)
 725			goto out;
 726
 727		/*
 728		 * If the broadcast device is in periodic mode, we
 729		 * return.
 730		 */
 731		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
 732			/* If it is a hrtimer based broadcast, return busy */
 733			if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
 734				ret = -EBUSY;
 735			goto out;
 736		}
 737
 738		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
 739			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
 740
 741			/* Conditionally shut down the local timer. */
 742			broadcast_shutdown_local(bc, dev);
 743
 744			/*
 745			 * We only reprogram the broadcast timer if we
 746			 * did not mark ourself in the force mask and
 747			 * if the cpu local event is earlier than the
 748			 * broadcast event. If the current CPU is in
 749			 * the force mask, then we are going to be
 750			 * woken by the IPI right away; we return
 751			 * busy, so the CPU does not try to go deep
 752			 * idle.
 753			 */
 754			if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
 755				ret = -EBUSY;
 756			} else if (dev->next_event < bc->next_event) {
 757				tick_broadcast_set_event(bc, cpu, dev->next_event);
 758				/*
 759				 * In case of hrtimer broadcasts the
 760				 * programming might have moved the
 761				 * timer to this cpu. If yes, remove
 762				 * us from the broadcast mask and
 763				 * return busy.
 764				 */
 765				ret = broadcast_needs_cpu(bc, cpu);
 766				if (ret) {
 767					cpumask_clear_cpu(cpu,
 768						tick_broadcast_oneshot_mask);
 769				}
 770			}
 771		}
 772	} else {
 773		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
 774			clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
 775			/*
 776			 * The cpu which was handling the broadcast
 777			 * timer marked this cpu in the broadcast
 778			 * pending mask and fired the broadcast
 779			 * IPI. So we are going to handle the expired
 780			 * event anyway via the broadcast IPI
 781			 * handler. No need to reprogram the timer
 782			 * with an already expired event.
 783			 */
 784			if (cpumask_test_and_clear_cpu(cpu,
 785				       tick_broadcast_pending_mask))
 786				goto out;
 787
 788			/*
 789			 * Bail out if there is no next event.
 790			 */
 791			if (dev->next_event == KTIME_MAX)
 792				goto out;
 793			/*
 794			 * If the pending bit is not set, then we are
 795			 * either the CPU handling the broadcast
 796			 * interrupt or we got woken by something else.
 797			 *
 798			 * We are not longer in the broadcast mask, so
 799			 * if the cpu local expiry time is already
 800			 * reached, we would reprogram the cpu local
 801			 * timer with an already expired event.
 802			 *
 803			 * This can lead to a ping-pong when we return
 804			 * to idle and therefor rearm the broadcast
 805			 * timer before the cpu local timer was able
 806			 * to fire. This happens because the forced
 807			 * reprogramming makes sure that the event
 808			 * will happen in the future and depending on
 809			 * the min_delta setting this might be far
 810			 * enough out that the ping-pong starts.
 811			 *
 812			 * If the cpu local next_event has expired
 813			 * then we know that the broadcast timer
 814			 * next_event has expired as well and
 815			 * broadcast is about to be handled. So we
 816			 * avoid reprogramming and enforce that the
 817			 * broadcast handler, which did not run yet,
 818			 * will invoke the cpu local handler.
 819			 *
 820			 * We cannot call the handler directly from
 821			 * here, because we might be in a NOHZ phase
 822			 * and we did not go through the irq_enter()
 823			 * nohz fixups.
 824			 */
 825			now = ktime_get();
 826			if (dev->next_event <= now) {
 827				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
 828				goto out;
 829			}
 830			/*
 831			 * We got woken by something else. Reprogram
 832			 * the cpu local timer device.
 833			 */
 834			tick_program_event(dev->next_event, 1);
 835		}
 836	}
 837out:
 838	raw_spin_unlock(&tick_broadcast_lock);
 839	return ret;
 840}
 841
 842/*
 843 * Reset the one shot broadcast for a cpu
 844 *
 845 * Called with tick_broadcast_lock held
 846 */
 847static void tick_broadcast_clear_oneshot(int cpu)
 848{
 849	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
 850	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
 851}
 852
 853static void tick_broadcast_init_next_event(struct cpumask *mask,
 854					   ktime_t expires)
 855{
 856	struct tick_device *td;
 857	int cpu;
 858
 859	for_each_cpu(cpu, mask) {
 860		td = &per_cpu(tick_cpu_device, cpu);
 861		if (td->evtdev)
 862			td->evtdev->next_event = expires;
 863	}
 864}
 865
 866/**
 867 * tick_broadcast_setup_oneshot - setup the broadcast device
 868 */
 869void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
 870{
 871	int cpu = smp_processor_id();
 872
 873	if (!bc)
 874		return;
 875
 876	/* Set it up only once ! */
 877	if (bc->event_handler != tick_handle_oneshot_broadcast) {
 878		int was_periodic = clockevent_state_periodic(bc);
 879
 880		bc->event_handler = tick_handle_oneshot_broadcast;
 881
 
 
 
 882		/*
 883		 * We must be careful here. There might be other CPUs
 884		 * waiting for periodic broadcast. We need to set the
 885		 * oneshot_mask bits for those and program the
 886		 * broadcast device to fire.
 887		 */
 888		cpumask_copy(tmpmask, tick_broadcast_mask);
 889		cpumask_clear_cpu(cpu, tmpmask);
 890		cpumask_or(tick_broadcast_oneshot_mask,
 891			   tick_broadcast_oneshot_mask, tmpmask);
 892
 893		if (was_periodic && !cpumask_empty(tmpmask)) {
 894			clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 895			tick_broadcast_init_next_event(tmpmask,
 
 896						       tick_next_period);
 897			tick_broadcast_set_event(bc, cpu, tick_next_period);
 898		} else
 899			bc->next_event = KTIME_MAX;
 900	} else {
 901		/*
 902		 * The first cpu which switches to oneshot mode sets
 903		 * the bit for all other cpus which are in the general
 904		 * (periodic) broadcast mask. So the bit is set and
 905		 * would prevent the first broadcast enter after this
 906		 * to program the bc device.
 907		 */
 908		tick_broadcast_clear_oneshot(cpu);
 909	}
 910}
 911
 912/*
 913 * Select oneshot operating mode for the broadcast device
 914 */
 915void tick_broadcast_switch_to_oneshot(void)
 916{
 917	struct clock_event_device *bc;
 918	unsigned long flags;
 919
 920	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 921
 922	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
 923	bc = tick_broadcast_device.evtdev;
 924	if (bc)
 925		tick_broadcast_setup_oneshot(bc);
 926
 927	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 928}
 929
 930#ifdef CONFIG_HOTPLUG_CPU
 931void hotplug_cpu__broadcast_tick_pull(int deadcpu)
 932{
 933	struct clock_event_device *bc;
 934	unsigned long flags;
 935
 936	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 937	bc = tick_broadcast_device.evtdev;
 938
 939	if (bc && broadcast_needs_cpu(bc, deadcpu)) {
 940		/* This moves the broadcast assignment to this CPU: */
 941		clockevents_program_event(bc, bc->next_event, 1);
 942	}
 943	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 944}
 945
 946/*
 947 * Remove a dead CPU from broadcasting
 948 */
 949void tick_shutdown_broadcast_oneshot(unsigned int cpu)
 950{
 951	unsigned long flags;
 
 952
 953	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 954
 955	/*
 956	 * Clear the broadcast masks for the dead cpu, but do not stop
 957	 * the broadcast device!
 958	 */
 959	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
 960	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
 961	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
 962
 963	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 964}
 965#endif
 966
 967/*
 968 * Check, whether the broadcast device is in one shot mode
 969 */
 970int tick_broadcast_oneshot_active(void)
 971{
 972	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
 973}
 974
 975/*
 976 * Check whether the broadcast device supports oneshot.
 977 */
 978bool tick_broadcast_oneshot_available(void)
 979{
 980	struct clock_event_device *bc = tick_broadcast_device.evtdev;
 981
 982	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
 983}
 984
 985#else
 986int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
 987{
 988	struct clock_event_device *bc = tick_broadcast_device.evtdev;
 989
 990	if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
 991		return -EBUSY;
 992
 993	return 0;
 994}
 995#endif
 996
 997void __init tick_broadcast_init(void)
 998{
 999	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1000	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1001	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1002#ifdef CONFIG_TICK_ONESHOT
1003	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1004	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1005	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1006#endif
1007}