Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * Deadline Scheduling Class (SCHED_DEADLINE)
   3 *
   4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
   5 *
   6 * Tasks that periodically executes their instances for less than their
   7 * runtime won't miss any of their deadlines.
   8 * Tasks that are not periodic or sporadic or that tries to execute more
   9 * than their reserved bandwidth will be slowed down (and may potentially
  10 * miss some of their deadlines), and won't affect any other task.
  11 *
  12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  13 *                    Juri Lelli <juri.lelli@gmail.com>,
  14 *                    Michael Trimarchi <michael@amarulasolutions.com>,
  15 *                    Fabio Checconi <fchecconi@gmail.com>
  16 */
  17#include "sched.h"
  18
  19#include <linux/slab.h>
  20
  21struct dl_bandwidth def_dl_bandwidth;
  22
  23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  24{
  25	return container_of(dl_se, struct task_struct, dl);
  26}
  27
  28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  29{
  30	return container_of(dl_rq, struct rq, dl);
  31}
  32
  33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  34{
  35	struct task_struct *p = dl_task_of(dl_se);
  36	struct rq *rq = task_rq(p);
  37
  38	return &rq->dl;
  39}
  40
  41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  42{
  43	return !RB_EMPTY_NODE(&dl_se->rb_node);
  44}
  45
  46static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
  47{
  48	struct sched_dl_entity *dl_se = &p->dl;
  49
  50	return dl_rq->rb_leftmost == &dl_se->rb_node;
  51}
  52
  53void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
  54{
  55	raw_spin_lock_init(&dl_b->dl_runtime_lock);
  56	dl_b->dl_period = period;
  57	dl_b->dl_runtime = runtime;
  58}
  59
  60void init_dl_bw(struct dl_bw *dl_b)
  61{
  62	raw_spin_lock_init(&dl_b->lock);
  63	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
  64	if (global_rt_runtime() == RUNTIME_INF)
  65		dl_b->bw = -1;
  66	else
  67		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
  68	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
  69	dl_b->total_bw = 0;
  70}
  71
  72void init_dl_rq(struct dl_rq *dl_rq)
  73{
  74	dl_rq->rb_root = RB_ROOT;
  75
  76#ifdef CONFIG_SMP
  77	/* zero means no -deadline tasks */
  78	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
  79
  80	dl_rq->dl_nr_migratory = 0;
  81	dl_rq->overloaded = 0;
  82	dl_rq->pushable_dl_tasks_root = RB_ROOT;
  83#else
  84	init_dl_bw(&dl_rq->dl_bw);
  85#endif
  86}
  87
  88#ifdef CONFIG_SMP
  89
  90static inline int dl_overloaded(struct rq *rq)
  91{
  92	return atomic_read(&rq->rd->dlo_count);
  93}
  94
  95static inline void dl_set_overload(struct rq *rq)
  96{
  97	if (!rq->online)
  98		return;
  99
 100	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 101	/*
 102	 * Must be visible before the overload count is
 103	 * set (as in sched_rt.c).
 104	 *
 105	 * Matched by the barrier in pull_dl_task().
 106	 */
 107	smp_wmb();
 108	atomic_inc(&rq->rd->dlo_count);
 109}
 110
 111static inline void dl_clear_overload(struct rq *rq)
 112{
 113	if (!rq->online)
 114		return;
 115
 116	atomic_dec(&rq->rd->dlo_count);
 117	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 118}
 119
 120static void update_dl_migration(struct dl_rq *dl_rq)
 121{
 122	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
 123		if (!dl_rq->overloaded) {
 124			dl_set_overload(rq_of_dl_rq(dl_rq));
 125			dl_rq->overloaded = 1;
 126		}
 127	} else if (dl_rq->overloaded) {
 128		dl_clear_overload(rq_of_dl_rq(dl_rq));
 129		dl_rq->overloaded = 0;
 130	}
 131}
 132
 133static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 134{
 135	struct task_struct *p = dl_task_of(dl_se);
 136
 137	if (tsk_nr_cpus_allowed(p) > 1)
 138		dl_rq->dl_nr_migratory++;
 139
 140	update_dl_migration(dl_rq);
 141}
 142
 143static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 144{
 145	struct task_struct *p = dl_task_of(dl_se);
 146
 147	if (tsk_nr_cpus_allowed(p) > 1)
 148		dl_rq->dl_nr_migratory--;
 149
 150	update_dl_migration(dl_rq);
 151}
 152
 153/*
 154 * The list of pushable -deadline task is not a plist, like in
 155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 156 */
 157static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 158{
 159	struct dl_rq *dl_rq = &rq->dl;
 160	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
 161	struct rb_node *parent = NULL;
 162	struct task_struct *entry;
 163	int leftmost = 1;
 164
 165	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 166
 167	while (*link) {
 168		parent = *link;
 169		entry = rb_entry(parent, struct task_struct,
 170				 pushable_dl_tasks);
 171		if (dl_entity_preempt(&p->dl, &entry->dl))
 172			link = &parent->rb_left;
 173		else {
 174			link = &parent->rb_right;
 175			leftmost = 0;
 176		}
 177	}
 178
 179	if (leftmost) {
 180		dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
 181		dl_rq->earliest_dl.next = p->dl.deadline;
 182	}
 183
 184	rb_link_node(&p->pushable_dl_tasks, parent, link);
 185	rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 186}
 187
 188static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 189{
 190	struct dl_rq *dl_rq = &rq->dl;
 191
 192	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 193		return;
 194
 195	if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
 196		struct rb_node *next_node;
 197
 198		next_node = rb_next(&p->pushable_dl_tasks);
 199		dl_rq->pushable_dl_tasks_leftmost = next_node;
 200		if (next_node) {
 201			dl_rq->earliest_dl.next = rb_entry(next_node,
 202				struct task_struct, pushable_dl_tasks)->dl.deadline;
 203		}
 204	}
 205
 206	rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 207	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 208}
 209
 210static inline int has_pushable_dl_tasks(struct rq *rq)
 211{
 212	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
 213}
 214
 215static int push_dl_task(struct rq *rq);
 216
 217static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 218{
 219	return dl_task(prev);
 220}
 221
 222static DEFINE_PER_CPU(struct callback_head, dl_push_head);
 223static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
 224
 225static void push_dl_tasks(struct rq *);
 226static void pull_dl_task(struct rq *);
 227
 228static inline void queue_push_tasks(struct rq *rq)
 229{
 230	if (!has_pushable_dl_tasks(rq))
 231		return;
 232
 233	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 234}
 235
 236static inline void queue_pull_task(struct rq *rq)
 237{
 238	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 239}
 240
 241static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 242
 243static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 244{
 245	struct rq *later_rq = NULL;
 246
 247	later_rq = find_lock_later_rq(p, rq);
 248	if (!later_rq) {
 249		int cpu;
 250
 251		/*
 252		 * If we cannot preempt any rq, fall back to pick any
 253		 * online cpu.
 254		 */
 255		cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
 256		if (cpu >= nr_cpu_ids) {
 257			/*
 258			 * Fail to find any suitable cpu.
 259			 * The task will never come back!
 260			 */
 261			BUG_ON(dl_bandwidth_enabled());
 262
 263			/*
 264			 * If admission control is disabled we
 265			 * try a little harder to let the task
 266			 * run.
 267			 */
 268			cpu = cpumask_any(cpu_active_mask);
 269		}
 270		later_rq = cpu_rq(cpu);
 271		double_lock_balance(rq, later_rq);
 272	}
 273
 274	set_task_cpu(p, later_rq->cpu);
 275	double_unlock_balance(later_rq, rq);
 276
 277	return later_rq;
 278}
 279
 280#else
 281
 282static inline
 283void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 284{
 285}
 286
 287static inline
 288void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 289{
 290}
 291
 292static inline
 293void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 294{
 295}
 296
 297static inline
 298void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 299{
 300}
 301
 302static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 303{
 304	return false;
 305}
 306
 307static inline void pull_dl_task(struct rq *rq)
 308{
 309}
 310
 311static inline void queue_push_tasks(struct rq *rq)
 312{
 313}
 314
 315static inline void queue_pull_task(struct rq *rq)
 316{
 317}
 318#endif /* CONFIG_SMP */
 319
 320static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 321static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 322static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
 323				  int flags);
 324
 325/*
 326 * We are being explicitly informed that a new instance is starting,
 327 * and this means that:
 328 *  - the absolute deadline of the entity has to be placed at
 329 *    current time + relative deadline;
 330 *  - the runtime of the entity has to be set to the maximum value.
 331 *
 332 * The capability of specifying such event is useful whenever a -deadline
 333 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 334 * one, and to (try to!) reconcile itself with its own scheduling
 335 * parameters.
 336 */
 337static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
 338{
 339	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 340	struct rq *rq = rq_of_dl_rq(dl_rq);
 341
 342	WARN_ON(dl_se->dl_boosted);
 343	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 344
 345	/*
 346	 * We are racing with the deadline timer. So, do nothing because
 347	 * the deadline timer handler will take care of properly recharging
 348	 * the runtime and postponing the deadline
 349	 */
 350	if (dl_se->dl_throttled)
 351		return;
 352
 353	/*
 354	 * We use the regular wall clock time to set deadlines in the
 355	 * future; in fact, we must consider execution overheads (time
 356	 * spent on hardirq context, etc.).
 357	 */
 358	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
 359	dl_se->runtime = dl_se->dl_runtime;
 360}
 361
 362/*
 363 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 364 * possibility of a entity lasting more than what it declared, and thus
 365 * exhausting its runtime.
 366 *
 367 * Here we are interested in making runtime overrun possible, but we do
 368 * not want a entity which is misbehaving to affect the scheduling of all
 369 * other entities.
 370 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 371 * is used, in order to confine each entity within its own bandwidth.
 372 *
 373 * This function deals exactly with that, and ensures that when the runtime
 374 * of a entity is replenished, its deadline is also postponed. That ensures
 375 * the overrunning entity can't interfere with other entity in the system and
 376 * can't make them miss their deadlines. Reasons why this kind of overruns
 377 * could happen are, typically, a entity voluntarily trying to overcome its
 378 * runtime, or it just underestimated it during sched_setattr().
 379 */
 380static void replenish_dl_entity(struct sched_dl_entity *dl_se,
 381				struct sched_dl_entity *pi_se)
 382{
 383	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 384	struct rq *rq = rq_of_dl_rq(dl_rq);
 385
 386	BUG_ON(pi_se->dl_runtime <= 0);
 387
 388	/*
 389	 * This could be the case for a !-dl task that is boosted.
 390	 * Just go with full inherited parameters.
 391	 */
 392	if (dl_se->dl_deadline == 0) {
 393		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 394		dl_se->runtime = pi_se->dl_runtime;
 395	}
 396
 397	if (dl_se->dl_yielded && dl_se->runtime > 0)
 398		dl_se->runtime = 0;
 399
 400	/*
 401	 * We keep moving the deadline away until we get some
 402	 * available runtime for the entity. This ensures correct
 403	 * handling of situations where the runtime overrun is
 404	 * arbitrary large.
 405	 */
 406	while (dl_se->runtime <= 0) {
 407		dl_se->deadline += pi_se->dl_period;
 408		dl_se->runtime += pi_se->dl_runtime;
 409	}
 410
 411	/*
 412	 * At this point, the deadline really should be "in
 413	 * the future" with respect to rq->clock. If it's
 414	 * not, we are, for some reason, lagging too much!
 415	 * Anyway, after having warn userspace abut that,
 416	 * we still try to keep the things running by
 417	 * resetting the deadline and the budget of the
 418	 * entity.
 419	 */
 420	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 421		printk_deferred_once("sched: DL replenish lagged too much\n");
 422		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 423		dl_se->runtime = pi_se->dl_runtime;
 424	}
 425
 426	if (dl_se->dl_yielded)
 427		dl_se->dl_yielded = 0;
 428	if (dl_se->dl_throttled)
 429		dl_se->dl_throttled = 0;
 430}
 431
 432/*
 433 * Here we check if --at time t-- an entity (which is probably being
 434 * [re]activated or, in general, enqueued) can use its remaining runtime
 435 * and its current deadline _without_ exceeding the bandwidth it is
 436 * assigned (function returns true if it can't). We are in fact applying
 437 * one of the CBS rules: when a task wakes up, if the residual runtime
 438 * over residual deadline fits within the allocated bandwidth, then we
 439 * can keep the current (absolute) deadline and residual budget without
 440 * disrupting the schedulability of the system. Otherwise, we should
 441 * refill the runtime and set the deadline a period in the future,
 442 * because keeping the current (absolute) deadline of the task would
 443 * result in breaking guarantees promised to other tasks (refer to
 444 * Documentation/scheduler/sched-deadline.txt for more informations).
 445 *
 446 * This function returns true if:
 447 *
 448 *   runtime / (deadline - t) > dl_runtime / dl_period ,
 449 *
 450 * IOW we can't recycle current parameters.
 451 *
 452 * Notice that the bandwidth check is done against the period. For
 453 * task with deadline equal to period this is the same of using
 454 * dl_deadline instead of dl_period in the equation above.
 455 */
 456static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
 457			       struct sched_dl_entity *pi_se, u64 t)
 458{
 459	u64 left, right;
 460
 461	/*
 462	 * left and right are the two sides of the equation above,
 463	 * after a bit of shuffling to use multiplications instead
 464	 * of divisions.
 465	 *
 466	 * Note that none of the time values involved in the two
 467	 * multiplications are absolute: dl_deadline and dl_runtime
 468	 * are the relative deadline and the maximum runtime of each
 469	 * instance, runtime is the runtime left for the last instance
 470	 * and (deadline - t), since t is rq->clock, is the time left
 471	 * to the (absolute) deadline. Even if overflowing the u64 type
 472	 * is very unlikely to occur in both cases, here we scale down
 473	 * as we want to avoid that risk at all. Scaling down by 10
 474	 * means that we reduce granularity to 1us. We are fine with it,
 475	 * since this is only a true/false check and, anyway, thinking
 476	 * of anything below microseconds resolution is actually fiction
 477	 * (but still we want to give the user that illusion >;).
 478	 */
 479	left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 480	right = ((dl_se->deadline - t) >> DL_SCALE) *
 481		(pi_se->dl_runtime >> DL_SCALE);
 482
 483	return dl_time_before(right, left);
 484}
 485
 486/*
 487 * When a -deadline entity is queued back on the runqueue, its runtime and
 488 * deadline might need updating.
 489 *
 490 * The policy here is that we update the deadline of the entity only if:
 491 *  - the current deadline is in the past,
 492 *  - using the remaining runtime with the current deadline would make
 493 *    the entity exceed its bandwidth.
 494 */
 495static void update_dl_entity(struct sched_dl_entity *dl_se,
 496			     struct sched_dl_entity *pi_se)
 497{
 498	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 499	struct rq *rq = rq_of_dl_rq(dl_rq);
 500
 501	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
 502	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
 503		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 504		dl_se->runtime = pi_se->dl_runtime;
 505	}
 506}
 507
 508/*
 509 * If the entity depleted all its runtime, and if we want it to sleep
 510 * while waiting for some new execution time to become available, we
 511 * set the bandwidth enforcement timer to the replenishment instant
 512 * and try to activate it.
 513 *
 514 * Notice that it is important for the caller to know if the timer
 515 * actually started or not (i.e., the replenishment instant is in
 516 * the future or in the past).
 517 */
 518static int start_dl_timer(struct task_struct *p)
 519{
 520	struct sched_dl_entity *dl_se = &p->dl;
 521	struct hrtimer *timer = &dl_se->dl_timer;
 522	struct rq *rq = task_rq(p);
 523	ktime_t now, act;
 524	s64 delta;
 525
 526	lockdep_assert_held(&rq->lock);
 527
 528	/*
 529	 * We want the timer to fire at the deadline, but considering
 530	 * that it is actually coming from rq->clock and not from
 531	 * hrtimer's time base reading.
 532	 */
 533	act = ns_to_ktime(dl_se->deadline);
 534	now = hrtimer_cb_get_time(timer);
 535	delta = ktime_to_ns(now) - rq_clock(rq);
 536	act = ktime_add_ns(act, delta);
 537
 538	/*
 539	 * If the expiry time already passed, e.g., because the value
 540	 * chosen as the deadline is too small, don't even try to
 541	 * start the timer in the past!
 542	 */
 543	if (ktime_us_delta(act, now) < 0)
 544		return 0;
 545
 546	/*
 547	 * !enqueued will guarantee another callback; even if one is already in
 548	 * progress. This ensures a balanced {get,put}_task_struct().
 549	 *
 550	 * The race against __run_timer() clearing the enqueued state is
 551	 * harmless because we're holding task_rq()->lock, therefore the timer
 552	 * expiring after we've done the check will wait on its task_rq_lock()
 553	 * and observe our state.
 554	 */
 555	if (!hrtimer_is_queued(timer)) {
 556		get_task_struct(p);
 557		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
 558	}
 559
 560	return 1;
 561}
 562
 563/*
 564 * This is the bandwidth enforcement timer callback. If here, we know
 565 * a task is not on its dl_rq, since the fact that the timer was running
 566 * means the task is throttled and needs a runtime replenishment.
 567 *
 568 * However, what we actually do depends on the fact the task is active,
 569 * (it is on its rq) or has been removed from there by a call to
 570 * dequeue_task_dl(). In the former case we must issue the runtime
 571 * replenishment and add the task back to the dl_rq; in the latter, we just
 572 * do nothing but clearing dl_throttled, so that runtime and deadline
 573 * updating (and the queueing back to dl_rq) will be done by the
 574 * next call to enqueue_task_dl().
 575 */
 576static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
 577{
 578	struct sched_dl_entity *dl_se = container_of(timer,
 579						     struct sched_dl_entity,
 580						     dl_timer);
 581	struct task_struct *p = dl_task_of(dl_se);
 582	struct rq_flags rf;
 583	struct rq *rq;
 584
 585	rq = task_rq_lock(p, &rf);
 586
 587	/*
 588	 * The task might have changed its scheduling policy to something
 589	 * different than SCHED_DEADLINE (through switched_from_dl()).
 590	 */
 591	if (!dl_task(p)) {
 592		__dl_clear_params(p);
 593		goto unlock;
 594	}
 595
 596	/*
 597	 * The task might have been boosted by someone else and might be in the
 598	 * boosting/deboosting path, its not throttled.
 599	 */
 600	if (dl_se->dl_boosted)
 601		goto unlock;
 602
 603	/*
 604	 * Spurious timer due to start_dl_timer() race; or we already received
 605	 * a replenishment from rt_mutex_setprio().
 606	 */
 607	if (!dl_se->dl_throttled)
 608		goto unlock;
 609
 610	sched_clock_tick();
 611	update_rq_clock(rq);
 612
 613	/*
 614	 * If the throttle happened during sched-out; like:
 615	 *
 616	 *   schedule()
 617	 *     deactivate_task()
 618	 *       dequeue_task_dl()
 619	 *         update_curr_dl()
 620	 *           start_dl_timer()
 621	 *         __dequeue_task_dl()
 622	 *     prev->on_rq = 0;
 623	 *
 624	 * We can be both throttled and !queued. Replenish the counter
 625	 * but do not enqueue -- wait for our wakeup to do that.
 626	 */
 627	if (!task_on_rq_queued(p)) {
 628		replenish_dl_entity(dl_se, dl_se);
 629		goto unlock;
 630	}
 631
 632#ifdef CONFIG_SMP
 633	if (unlikely(!rq->online)) {
 634		/*
 635		 * If the runqueue is no longer available, migrate the
 636		 * task elsewhere. This necessarily changes rq.
 637		 */
 638		lockdep_unpin_lock(&rq->lock, rf.cookie);
 639		rq = dl_task_offline_migration(rq, p);
 640		rf.cookie = lockdep_pin_lock(&rq->lock);
 641
 642		/*
 643		 * Now that the task has been migrated to the new RQ and we
 644		 * have that locked, proceed as normal and enqueue the task
 645		 * there.
 646		 */
 647	}
 648#endif
 649
 650	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
 651	if (dl_task(rq->curr))
 652		check_preempt_curr_dl(rq, p, 0);
 653	else
 654		resched_curr(rq);
 655
 656#ifdef CONFIG_SMP
 657	/*
 658	 * Queueing this task back might have overloaded rq, check if we need
 659	 * to kick someone away.
 660	 */
 661	if (has_pushable_dl_tasks(rq)) {
 662		/*
 663		 * Nothing relies on rq->lock after this, so its safe to drop
 664		 * rq->lock.
 665		 */
 666		lockdep_unpin_lock(&rq->lock, rf.cookie);
 667		push_dl_task(rq);
 668		lockdep_repin_lock(&rq->lock, rf.cookie);
 669	}
 670#endif
 671
 672unlock:
 673	task_rq_unlock(rq, p, &rf);
 674
 675	/*
 676	 * This can free the task_struct, including this hrtimer, do not touch
 677	 * anything related to that after this.
 678	 */
 679	put_task_struct(p);
 680
 681	return HRTIMER_NORESTART;
 682}
 683
 684void init_dl_task_timer(struct sched_dl_entity *dl_se)
 685{
 686	struct hrtimer *timer = &dl_se->dl_timer;
 687
 688	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 689	timer->function = dl_task_timer;
 690}
 691
 692static
 693int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
 694{
 695	return (dl_se->runtime <= 0);
 696}
 697
 698extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
 699
 700/*
 701 * Update the current task's runtime statistics (provided it is still
 702 * a -deadline task and has not been removed from the dl_rq).
 703 */
 704static void update_curr_dl(struct rq *rq)
 705{
 706	struct task_struct *curr = rq->curr;
 707	struct sched_dl_entity *dl_se = &curr->dl;
 708	u64 delta_exec;
 709
 710	if (!dl_task(curr) || !on_dl_rq(dl_se))
 711		return;
 712
 713	/*
 714	 * Consumed budget is computed considering the time as
 715	 * observed by schedulable tasks (excluding time spent
 716	 * in hardirq context, etc.). Deadlines are instead
 717	 * computed using hard walltime. This seems to be the more
 718	 * natural solution, but the full ramifications of this
 719	 * approach need further study.
 720	 */
 721	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
 722	if (unlikely((s64)delta_exec <= 0)) {
 723		if (unlikely(dl_se->dl_yielded))
 724			goto throttle;
 725		return;
 726	}
 727
 728	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 729	cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_DL);
 730
 731	schedstat_set(curr->se.statistics.exec_max,
 732		      max(curr->se.statistics.exec_max, delta_exec));
 733
 734	curr->se.sum_exec_runtime += delta_exec;
 735	account_group_exec_runtime(curr, delta_exec);
 736
 737	curr->se.exec_start = rq_clock_task(rq);
 738	cpuacct_charge(curr, delta_exec);
 739
 740	sched_rt_avg_update(rq, delta_exec);
 741
 742	dl_se->runtime -= delta_exec;
 743
 744throttle:
 745	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
 746		dl_se->dl_throttled = 1;
 747		__dequeue_task_dl(rq, curr, 0);
 748		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
 749			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
 750
 751		if (!is_leftmost(curr, &rq->dl))
 752			resched_curr(rq);
 753	}
 754
 755	/*
 756	 * Because -- for now -- we share the rt bandwidth, we need to
 757	 * account our runtime there too, otherwise actual rt tasks
 758	 * would be able to exceed the shared quota.
 759	 *
 760	 * Account to the root rt group for now.
 761	 *
 762	 * The solution we're working towards is having the RT groups scheduled
 763	 * using deadline servers -- however there's a few nasties to figure
 764	 * out before that can happen.
 765	 */
 766	if (rt_bandwidth_enabled()) {
 767		struct rt_rq *rt_rq = &rq->rt;
 768
 769		raw_spin_lock(&rt_rq->rt_runtime_lock);
 770		/*
 771		 * We'll let actual RT tasks worry about the overflow here, we
 772		 * have our own CBS to keep us inline; only account when RT
 773		 * bandwidth is relevant.
 774		 */
 775		if (sched_rt_bandwidth_account(rt_rq))
 776			rt_rq->rt_time += delta_exec;
 777		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 778	}
 779}
 780
 781#ifdef CONFIG_SMP
 782
 783static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
 784{
 785	struct rq *rq = rq_of_dl_rq(dl_rq);
 786
 787	if (dl_rq->earliest_dl.curr == 0 ||
 788	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
 789		dl_rq->earliest_dl.curr = deadline;
 790		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
 791	}
 792}
 793
 794static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
 795{
 796	struct rq *rq = rq_of_dl_rq(dl_rq);
 797
 798	/*
 799	 * Since we may have removed our earliest (and/or next earliest)
 800	 * task we must recompute them.
 801	 */
 802	if (!dl_rq->dl_nr_running) {
 803		dl_rq->earliest_dl.curr = 0;
 804		dl_rq->earliest_dl.next = 0;
 805		cpudl_clear(&rq->rd->cpudl, rq->cpu);
 806	} else {
 807		struct rb_node *leftmost = dl_rq->rb_leftmost;
 808		struct sched_dl_entity *entry;
 809
 810		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
 811		dl_rq->earliest_dl.curr = entry->deadline;
 812		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
 813	}
 814}
 815
 816#else
 817
 818static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
 819static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
 820
 821#endif /* CONFIG_SMP */
 822
 823static inline
 824void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 825{
 826	int prio = dl_task_of(dl_se)->prio;
 827	u64 deadline = dl_se->deadline;
 828
 829	WARN_ON(!dl_prio(prio));
 830	dl_rq->dl_nr_running++;
 831	add_nr_running(rq_of_dl_rq(dl_rq), 1);
 832
 833	inc_dl_deadline(dl_rq, deadline);
 834	inc_dl_migration(dl_se, dl_rq);
 835}
 836
 837static inline
 838void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 839{
 840	int prio = dl_task_of(dl_se)->prio;
 841
 842	WARN_ON(!dl_prio(prio));
 843	WARN_ON(!dl_rq->dl_nr_running);
 844	dl_rq->dl_nr_running--;
 845	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
 846
 847	dec_dl_deadline(dl_rq, dl_se->deadline);
 848	dec_dl_migration(dl_se, dl_rq);
 849}
 850
 851static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
 852{
 853	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 854	struct rb_node **link = &dl_rq->rb_root.rb_node;
 855	struct rb_node *parent = NULL;
 856	struct sched_dl_entity *entry;
 857	int leftmost = 1;
 858
 859	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
 860
 861	while (*link) {
 862		parent = *link;
 863		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
 864		if (dl_time_before(dl_se->deadline, entry->deadline))
 865			link = &parent->rb_left;
 866		else {
 867			link = &parent->rb_right;
 868			leftmost = 0;
 869		}
 870	}
 871
 872	if (leftmost)
 873		dl_rq->rb_leftmost = &dl_se->rb_node;
 874
 875	rb_link_node(&dl_se->rb_node, parent, link);
 876	rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
 877
 878	inc_dl_tasks(dl_se, dl_rq);
 879}
 880
 881static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
 882{
 883	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 884
 885	if (RB_EMPTY_NODE(&dl_se->rb_node))
 886		return;
 887
 888	if (dl_rq->rb_leftmost == &dl_se->rb_node) {
 889		struct rb_node *next_node;
 890
 891		next_node = rb_next(&dl_se->rb_node);
 892		dl_rq->rb_leftmost = next_node;
 893	}
 894
 895	rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
 896	RB_CLEAR_NODE(&dl_se->rb_node);
 897
 898	dec_dl_tasks(dl_se, dl_rq);
 899}
 900
 901static void
 902enqueue_dl_entity(struct sched_dl_entity *dl_se,
 903		  struct sched_dl_entity *pi_se, int flags)
 904{
 905	BUG_ON(on_dl_rq(dl_se));
 906
 907	/*
 908	 * If this is a wakeup or a new instance, the scheduling
 909	 * parameters of the task might need updating. Otherwise,
 910	 * we want a replenishment of its runtime.
 911	 */
 912	if (flags & ENQUEUE_WAKEUP)
 913		update_dl_entity(dl_se, pi_se);
 914	else if (flags & ENQUEUE_REPLENISH)
 915		replenish_dl_entity(dl_se, pi_se);
 916
 917	__enqueue_dl_entity(dl_se);
 918}
 919
 920static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
 921{
 922	__dequeue_dl_entity(dl_se);
 923}
 924
 925static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
 926{
 927	struct task_struct *pi_task = rt_mutex_get_top_task(p);
 928	struct sched_dl_entity *pi_se = &p->dl;
 929
 930	/*
 931	 * Use the scheduling parameters of the top pi-waiter
 932	 * task if we have one and its (absolute) deadline is
 933	 * smaller than our one... OTW we keep our runtime and
 934	 * deadline.
 935	 */
 936	if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
 937		pi_se = &pi_task->dl;
 938	} else if (!dl_prio(p->normal_prio)) {
 939		/*
 940		 * Special case in which we have a !SCHED_DEADLINE task
 941		 * that is going to be deboosted, but exceedes its
 942		 * runtime while doing so. No point in replenishing
 943		 * it, as it's going to return back to its original
 944		 * scheduling class after this.
 945		 */
 946		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
 947		return;
 948	}
 949
 950	/*
 951	 * If p is throttled, we do nothing. In fact, if it exhausted
 952	 * its budget it needs a replenishment and, since it now is on
 953	 * its rq, the bandwidth timer callback (which clearly has not
 954	 * run yet) will take care of this.
 955	 */
 956	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
 957		return;
 958
 959	enqueue_dl_entity(&p->dl, pi_se, flags);
 960
 961	if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
 962		enqueue_pushable_dl_task(rq, p);
 963}
 964
 965static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
 966{
 967	dequeue_dl_entity(&p->dl);
 968	dequeue_pushable_dl_task(rq, p);
 969}
 970
 971static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
 972{
 973	update_curr_dl(rq);
 974	__dequeue_task_dl(rq, p, flags);
 975}
 976
 977/*
 978 * Yield task semantic for -deadline tasks is:
 979 *
 980 *   get off from the CPU until our next instance, with
 981 *   a new runtime. This is of little use now, since we
 982 *   don't have a bandwidth reclaiming mechanism. Anyway,
 983 *   bandwidth reclaiming is planned for the future, and
 984 *   yield_task_dl will indicate that some spare budget
 985 *   is available for other task instances to use it.
 986 */
 987static void yield_task_dl(struct rq *rq)
 988{
 989	/*
 990	 * We make the task go to sleep until its current deadline by
 991	 * forcing its runtime to zero. This way, update_curr_dl() stops
 992	 * it and the bandwidth timer will wake it up and will give it
 993	 * new scheduling parameters (thanks to dl_yielded=1).
 994	 */
 995	rq->curr->dl.dl_yielded = 1;
 996
 997	update_rq_clock(rq);
 998	update_curr_dl(rq);
 999	/*
1000	 * Tell update_rq_clock() that we've just updated,
1001	 * so we don't do microscopic update in schedule()
1002	 * and double the fastpath cost.
1003	 */
1004	rq_clock_skip_update(rq, true);
1005}
1006
1007#ifdef CONFIG_SMP
1008
1009static int find_later_rq(struct task_struct *task);
1010
1011static int
1012select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1013{
1014	struct task_struct *curr;
1015	struct rq *rq;
1016
1017	if (sd_flag != SD_BALANCE_WAKE)
1018		goto out;
1019
1020	rq = cpu_rq(cpu);
1021
1022	rcu_read_lock();
1023	curr = READ_ONCE(rq->curr); /* unlocked access */
1024
1025	/*
1026	 * If we are dealing with a -deadline task, we must
1027	 * decide where to wake it up.
1028	 * If it has a later deadline and the current task
1029	 * on this rq can't move (provided the waking task
1030	 * can!) we prefer to send it somewhere else. On the
1031	 * other hand, if it has a shorter deadline, we
1032	 * try to make it stay here, it might be important.
1033	 */
1034	if (unlikely(dl_task(curr)) &&
1035	    (tsk_nr_cpus_allowed(curr) < 2 ||
1036	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1037	    (tsk_nr_cpus_allowed(p) > 1)) {
1038		int target = find_later_rq(p);
1039
1040		if (target != -1 &&
1041				(dl_time_before(p->dl.deadline,
1042					cpu_rq(target)->dl.earliest_dl.curr) ||
1043				(cpu_rq(target)->dl.dl_nr_running == 0)))
1044			cpu = target;
1045	}
1046	rcu_read_unlock();
1047
1048out:
1049	return cpu;
1050}
1051
1052static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1053{
1054	/*
1055	 * Current can't be migrated, useless to reschedule,
1056	 * let's hope p can move out.
1057	 */
1058	if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
1059	    cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1060		return;
1061
1062	/*
1063	 * p is migratable, so let's not schedule it and
1064	 * see if it is pushed or pulled somewhere else.
1065	 */
1066	if (tsk_nr_cpus_allowed(p) != 1 &&
1067	    cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1068		return;
1069
1070	resched_curr(rq);
1071}
1072
1073#endif /* CONFIG_SMP */
1074
1075/*
1076 * Only called when both the current and waking task are -deadline
1077 * tasks.
1078 */
1079static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1080				  int flags)
1081{
1082	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1083		resched_curr(rq);
1084		return;
1085	}
1086
1087#ifdef CONFIG_SMP
1088	/*
1089	 * In the unlikely case current and p have the same deadline
1090	 * let us try to decide what's the best thing to do...
1091	 */
1092	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1093	    !test_tsk_need_resched(rq->curr))
1094		check_preempt_equal_dl(rq, p);
1095#endif /* CONFIG_SMP */
1096}
1097
1098#ifdef CONFIG_SCHED_HRTICK
1099static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1100{
1101	hrtick_start(rq, p->dl.runtime);
1102}
1103#else /* !CONFIG_SCHED_HRTICK */
1104static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1105{
1106}
1107#endif
1108
1109static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1110						   struct dl_rq *dl_rq)
1111{
1112	struct rb_node *left = dl_rq->rb_leftmost;
1113
1114	if (!left)
1115		return NULL;
1116
1117	return rb_entry(left, struct sched_dl_entity, rb_node);
1118}
1119
1120struct task_struct *
1121pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
1122{
1123	struct sched_dl_entity *dl_se;
1124	struct task_struct *p;
1125	struct dl_rq *dl_rq;
1126
1127	dl_rq = &rq->dl;
1128
1129	if (need_pull_dl_task(rq, prev)) {
1130		/*
1131		 * This is OK, because current is on_cpu, which avoids it being
1132		 * picked for load-balance and preemption/IRQs are still
1133		 * disabled avoiding further scheduler activity on it and we're
1134		 * being very careful to re-start the picking loop.
1135		 */
1136		lockdep_unpin_lock(&rq->lock, cookie);
1137		pull_dl_task(rq);
1138		lockdep_repin_lock(&rq->lock, cookie);
1139		/*
1140		 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1141		 * means a stop task can slip in, in which case we need to
1142		 * re-start task selection.
1143		 */
1144		if (rq->stop && task_on_rq_queued(rq->stop))
1145			return RETRY_TASK;
1146	}
1147
1148	/*
1149	 * When prev is DL, we may throttle it in put_prev_task().
1150	 * So, we update time before we check for dl_nr_running.
1151	 */
1152	if (prev->sched_class == &dl_sched_class)
1153		update_curr_dl(rq);
1154
1155	if (unlikely(!dl_rq->dl_nr_running))
1156		return NULL;
1157
1158	put_prev_task(rq, prev);
1159
1160	dl_se = pick_next_dl_entity(rq, dl_rq);
1161	BUG_ON(!dl_se);
1162
1163	p = dl_task_of(dl_se);
1164	p->se.exec_start = rq_clock_task(rq);
1165
1166	/* Running task will never be pushed. */
1167       dequeue_pushable_dl_task(rq, p);
1168
1169	if (hrtick_enabled(rq))
1170		start_hrtick_dl(rq, p);
1171
1172	queue_push_tasks(rq);
1173
1174	return p;
1175}
1176
1177static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1178{
1179	update_curr_dl(rq);
1180
1181	if (on_dl_rq(&p->dl) && tsk_nr_cpus_allowed(p) > 1)
1182		enqueue_pushable_dl_task(rq, p);
1183}
1184
1185static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1186{
1187	update_curr_dl(rq);
1188
1189	/*
1190	 * Even when we have runtime, update_curr_dl() might have resulted in us
1191	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1192	 * be set and schedule() will start a new hrtick for the next task.
1193	 */
1194	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1195	    is_leftmost(p, &rq->dl))
1196		start_hrtick_dl(rq, p);
1197}
1198
1199static void task_fork_dl(struct task_struct *p)
1200{
1201	/*
1202	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1203	 * sched_fork()
1204	 */
1205}
1206
1207static void task_dead_dl(struct task_struct *p)
1208{
1209	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1210
1211	/*
1212	 * Since we are TASK_DEAD we won't slip out of the domain!
1213	 */
1214	raw_spin_lock_irq(&dl_b->lock);
1215	/* XXX we should retain the bw until 0-lag */
1216	dl_b->total_bw -= p->dl.dl_bw;
1217	raw_spin_unlock_irq(&dl_b->lock);
1218}
1219
1220static void set_curr_task_dl(struct rq *rq)
1221{
1222	struct task_struct *p = rq->curr;
1223
1224	p->se.exec_start = rq_clock_task(rq);
1225
1226	/* You can't push away the running task */
1227	dequeue_pushable_dl_task(rq, p);
1228}
1229
1230#ifdef CONFIG_SMP
1231
1232/* Only try algorithms three times */
1233#define DL_MAX_TRIES 3
1234
1235static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1236{
1237	if (!task_running(rq, p) &&
1238	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1239		return 1;
1240	return 0;
1241}
1242
1243/*
1244 * Return the earliest pushable rq's task, which is suitable to be executed
1245 * on the CPU, NULL otherwise:
1246 */
1247static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1248{
1249	struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1250	struct task_struct *p = NULL;
1251
1252	if (!has_pushable_dl_tasks(rq))
1253		return NULL;
1254
1255next_node:
1256	if (next_node) {
1257		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1258
1259		if (pick_dl_task(rq, p, cpu))
1260			return p;
1261
1262		next_node = rb_next(next_node);
1263		goto next_node;
1264	}
1265
1266	return NULL;
1267}
1268
1269static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1270
1271static int find_later_rq(struct task_struct *task)
1272{
1273	struct sched_domain *sd;
1274	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1275	int this_cpu = smp_processor_id();
1276	int best_cpu, cpu = task_cpu(task);
1277
1278	/* Make sure the mask is initialized first */
1279	if (unlikely(!later_mask))
1280		return -1;
1281
1282	if (tsk_nr_cpus_allowed(task) == 1)
1283		return -1;
1284
1285	/*
1286	 * We have to consider system topology and task affinity
1287	 * first, then we can look for a suitable cpu.
1288	 */
1289	best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1290			task, later_mask);
1291	if (best_cpu == -1)
1292		return -1;
1293
1294	/*
1295	 * If we are here, some target has been found,
1296	 * the most suitable of which is cached in best_cpu.
1297	 * This is, among the runqueues where the current tasks
1298	 * have later deadlines than the task's one, the rq
1299	 * with the latest possible one.
1300	 *
1301	 * Now we check how well this matches with task's
1302	 * affinity and system topology.
1303	 *
1304	 * The last cpu where the task run is our first
1305	 * guess, since it is most likely cache-hot there.
1306	 */
1307	if (cpumask_test_cpu(cpu, later_mask))
1308		return cpu;
1309	/*
1310	 * Check if this_cpu is to be skipped (i.e., it is
1311	 * not in the mask) or not.
1312	 */
1313	if (!cpumask_test_cpu(this_cpu, later_mask))
1314		this_cpu = -1;
1315
1316	rcu_read_lock();
1317	for_each_domain(cpu, sd) {
1318		if (sd->flags & SD_WAKE_AFFINE) {
1319
1320			/*
1321			 * If possible, preempting this_cpu is
1322			 * cheaper than migrating.
1323			 */
1324			if (this_cpu != -1 &&
1325			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1326				rcu_read_unlock();
1327				return this_cpu;
1328			}
1329
1330			/*
1331			 * Last chance: if best_cpu is valid and is
1332			 * in the mask, that becomes our choice.
1333			 */
1334			if (best_cpu < nr_cpu_ids &&
1335			    cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1336				rcu_read_unlock();
1337				return best_cpu;
1338			}
1339		}
1340	}
1341	rcu_read_unlock();
1342
1343	/*
1344	 * At this point, all our guesses failed, we just return
1345	 * 'something', and let the caller sort the things out.
1346	 */
1347	if (this_cpu != -1)
1348		return this_cpu;
1349
1350	cpu = cpumask_any(later_mask);
1351	if (cpu < nr_cpu_ids)
1352		return cpu;
1353
1354	return -1;
1355}
1356
1357/* Locks the rq it finds */
1358static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1359{
1360	struct rq *later_rq = NULL;
1361	int tries;
1362	int cpu;
1363
1364	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1365		cpu = find_later_rq(task);
1366
1367		if ((cpu == -1) || (cpu == rq->cpu))
1368			break;
1369
1370		later_rq = cpu_rq(cpu);
1371
1372		if (later_rq->dl.dl_nr_running &&
1373		    !dl_time_before(task->dl.deadline,
1374					later_rq->dl.earliest_dl.curr)) {
1375			/*
1376			 * Target rq has tasks of equal or earlier deadline,
1377			 * retrying does not release any lock and is unlikely
1378			 * to yield a different result.
1379			 */
1380			later_rq = NULL;
1381			break;
1382		}
1383
1384		/* Retry if something changed. */
1385		if (double_lock_balance(rq, later_rq)) {
1386			if (unlikely(task_rq(task) != rq ||
1387				     !cpumask_test_cpu(later_rq->cpu,
1388						       tsk_cpus_allowed(task)) ||
1389				     task_running(rq, task) ||
1390				     !dl_task(task) ||
1391				     !task_on_rq_queued(task))) {
1392				double_unlock_balance(rq, later_rq);
1393				later_rq = NULL;
1394				break;
1395			}
1396		}
1397
1398		/*
1399		 * If the rq we found has no -deadline task, or
1400		 * its earliest one has a later deadline than our
1401		 * task, the rq is a good one.
1402		 */
1403		if (!later_rq->dl.dl_nr_running ||
1404		    dl_time_before(task->dl.deadline,
1405				   later_rq->dl.earliest_dl.curr))
1406			break;
1407
1408		/* Otherwise we try again. */
1409		double_unlock_balance(rq, later_rq);
1410		later_rq = NULL;
1411	}
1412
1413	return later_rq;
1414}
1415
1416static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1417{
1418	struct task_struct *p;
1419
1420	if (!has_pushable_dl_tasks(rq))
1421		return NULL;
1422
1423	p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1424		     struct task_struct, pushable_dl_tasks);
1425
1426	BUG_ON(rq->cpu != task_cpu(p));
1427	BUG_ON(task_current(rq, p));
1428	BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
1429
1430	BUG_ON(!task_on_rq_queued(p));
1431	BUG_ON(!dl_task(p));
1432
1433	return p;
1434}
1435
1436/*
1437 * See if the non running -deadline tasks on this rq
1438 * can be sent to some other CPU where they can preempt
1439 * and start executing.
1440 */
1441static int push_dl_task(struct rq *rq)
1442{
1443	struct task_struct *next_task;
1444	struct rq *later_rq;
1445	int ret = 0;
1446
1447	if (!rq->dl.overloaded)
1448		return 0;
1449
1450	next_task = pick_next_pushable_dl_task(rq);
1451	if (!next_task)
1452		return 0;
1453
1454retry:
1455	if (unlikely(next_task == rq->curr)) {
1456		WARN_ON(1);
1457		return 0;
1458	}
1459
1460	/*
1461	 * If next_task preempts rq->curr, and rq->curr
1462	 * can move away, it makes sense to just reschedule
1463	 * without going further in pushing next_task.
1464	 */
1465	if (dl_task(rq->curr) &&
1466	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1467	    tsk_nr_cpus_allowed(rq->curr) > 1) {
1468		resched_curr(rq);
1469		return 0;
1470	}
1471
1472	/* We might release rq lock */
1473	get_task_struct(next_task);
1474
1475	/* Will lock the rq it'll find */
1476	later_rq = find_lock_later_rq(next_task, rq);
1477	if (!later_rq) {
1478		struct task_struct *task;
1479
1480		/*
1481		 * We must check all this again, since
1482		 * find_lock_later_rq releases rq->lock and it is
1483		 * then possible that next_task has migrated.
1484		 */
1485		task = pick_next_pushable_dl_task(rq);
1486		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1487			/*
1488			 * The task is still there. We don't try
1489			 * again, some other cpu will pull it when ready.
1490			 */
1491			goto out;
1492		}
1493
1494		if (!task)
1495			/* No more tasks */
1496			goto out;
1497
1498		put_task_struct(next_task);
1499		next_task = task;
1500		goto retry;
1501	}
1502
1503	deactivate_task(rq, next_task, 0);
1504	set_task_cpu(next_task, later_rq->cpu);
1505	activate_task(later_rq, next_task, 0);
1506	ret = 1;
1507
1508	resched_curr(later_rq);
1509
1510	double_unlock_balance(rq, later_rq);
1511
1512out:
1513	put_task_struct(next_task);
1514
1515	return ret;
1516}
1517
1518static void push_dl_tasks(struct rq *rq)
1519{
1520	/* push_dl_task() will return true if it moved a -deadline task */
1521	while (push_dl_task(rq))
1522		;
1523}
1524
1525static void pull_dl_task(struct rq *this_rq)
1526{
1527	int this_cpu = this_rq->cpu, cpu;
1528	struct task_struct *p;
1529	bool resched = false;
1530	struct rq *src_rq;
1531	u64 dmin = LONG_MAX;
1532
1533	if (likely(!dl_overloaded(this_rq)))
1534		return;
1535
1536	/*
1537	 * Match the barrier from dl_set_overloaded; this guarantees that if we
1538	 * see overloaded we must also see the dlo_mask bit.
1539	 */
1540	smp_rmb();
1541
1542	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1543		if (this_cpu == cpu)
1544			continue;
1545
1546		src_rq = cpu_rq(cpu);
1547
1548		/*
1549		 * It looks racy, abd it is! However, as in sched_rt.c,
1550		 * we are fine with this.
1551		 */
1552		if (this_rq->dl.dl_nr_running &&
1553		    dl_time_before(this_rq->dl.earliest_dl.curr,
1554				   src_rq->dl.earliest_dl.next))
1555			continue;
1556
1557		/* Might drop this_rq->lock */
1558		double_lock_balance(this_rq, src_rq);
1559
1560		/*
1561		 * If there are no more pullable tasks on the
1562		 * rq, we're done with it.
1563		 */
1564		if (src_rq->dl.dl_nr_running <= 1)
1565			goto skip;
1566
1567		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1568
1569		/*
1570		 * We found a task to be pulled if:
1571		 *  - it preempts our current (if there's one),
1572		 *  - it will preempt the last one we pulled (if any).
1573		 */
1574		if (p && dl_time_before(p->dl.deadline, dmin) &&
1575		    (!this_rq->dl.dl_nr_running ||
1576		     dl_time_before(p->dl.deadline,
1577				    this_rq->dl.earliest_dl.curr))) {
1578			WARN_ON(p == src_rq->curr);
1579			WARN_ON(!task_on_rq_queued(p));
1580
1581			/*
1582			 * Then we pull iff p has actually an earlier
1583			 * deadline than the current task of its runqueue.
1584			 */
1585			if (dl_time_before(p->dl.deadline,
1586					   src_rq->curr->dl.deadline))
1587				goto skip;
1588
1589			resched = true;
1590
1591			deactivate_task(src_rq, p, 0);
1592			set_task_cpu(p, this_cpu);
1593			activate_task(this_rq, p, 0);
1594			dmin = p->dl.deadline;
1595
1596			/* Is there any other task even earlier? */
1597		}
1598skip:
1599		double_unlock_balance(this_rq, src_rq);
1600	}
1601
1602	if (resched)
1603		resched_curr(this_rq);
1604}
1605
1606/*
1607 * Since the task is not running and a reschedule is not going to happen
1608 * anytime soon on its runqueue, we try pushing it away now.
1609 */
1610static void task_woken_dl(struct rq *rq, struct task_struct *p)
1611{
1612	if (!task_running(rq, p) &&
1613	    !test_tsk_need_resched(rq->curr) &&
1614	    tsk_nr_cpus_allowed(p) > 1 &&
1615	    dl_task(rq->curr) &&
1616	    (tsk_nr_cpus_allowed(rq->curr) < 2 ||
1617	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1618		push_dl_tasks(rq);
1619	}
1620}
1621
1622static void set_cpus_allowed_dl(struct task_struct *p,
1623				const struct cpumask *new_mask)
1624{
1625	struct root_domain *src_rd;
1626	struct rq *rq;
1627
1628	BUG_ON(!dl_task(p));
1629
1630	rq = task_rq(p);
1631	src_rd = rq->rd;
1632	/*
1633	 * Migrating a SCHED_DEADLINE task between exclusive
1634	 * cpusets (different root_domains) entails a bandwidth
1635	 * update. We already made space for us in the destination
1636	 * domain (see cpuset_can_attach()).
1637	 */
1638	if (!cpumask_intersects(src_rd->span, new_mask)) {
1639		struct dl_bw *src_dl_b;
1640
1641		src_dl_b = dl_bw_of(cpu_of(rq));
1642		/*
1643		 * We now free resources of the root_domain we are migrating
1644		 * off. In the worst case, sched_setattr() may temporary fail
1645		 * until we complete the update.
1646		 */
1647		raw_spin_lock(&src_dl_b->lock);
1648		__dl_clear(src_dl_b, p->dl.dl_bw);
1649		raw_spin_unlock(&src_dl_b->lock);
1650	}
1651
1652	set_cpus_allowed_common(p, new_mask);
1653}
1654
1655/* Assumes rq->lock is held */
1656static void rq_online_dl(struct rq *rq)
1657{
1658	if (rq->dl.overloaded)
1659		dl_set_overload(rq);
1660
1661	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1662	if (rq->dl.dl_nr_running > 0)
1663		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
1664}
1665
1666/* Assumes rq->lock is held */
1667static void rq_offline_dl(struct rq *rq)
1668{
1669	if (rq->dl.overloaded)
1670		dl_clear_overload(rq);
1671
1672	cpudl_clear(&rq->rd->cpudl, rq->cpu);
1673	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1674}
1675
1676void __init init_sched_dl_class(void)
1677{
1678	unsigned int i;
1679
1680	for_each_possible_cpu(i)
1681		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1682					GFP_KERNEL, cpu_to_node(i));
1683}
1684
1685#endif /* CONFIG_SMP */
1686
1687static void switched_from_dl(struct rq *rq, struct task_struct *p)
1688{
1689	/*
1690	 * Start the deadline timer; if we switch back to dl before this we'll
1691	 * continue consuming our current CBS slice. If we stay outside of
1692	 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1693	 * task.
1694	 */
1695	if (!start_dl_timer(p))
1696		__dl_clear_params(p);
1697
1698	/*
1699	 * Since this might be the only -deadline task on the rq,
1700	 * this is the right place to try to pull some other one
1701	 * from an overloaded cpu, if any.
1702	 */
1703	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1704		return;
1705
1706	queue_pull_task(rq);
1707}
1708
1709/*
1710 * When switching to -deadline, we may overload the rq, then
1711 * we try to push someone off, if possible.
1712 */
1713static void switched_to_dl(struct rq *rq, struct task_struct *p)
1714{
1715
1716	/* If p is not queued we will update its parameters at next wakeup. */
1717	if (!task_on_rq_queued(p))
1718		return;
1719
1720	/*
1721	 * If p is boosted we already updated its params in
1722	 * rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH),
1723	 * p's deadline being now already after rq_clock(rq).
1724	 */
1725	if (dl_time_before(p->dl.deadline, rq_clock(rq)))
1726		setup_new_dl_entity(&p->dl);
1727
1728	if (rq->curr != p) {
1729#ifdef CONFIG_SMP
1730		if (tsk_nr_cpus_allowed(p) > 1 && rq->dl.overloaded)
1731			queue_push_tasks(rq);
1732#endif
1733		if (dl_task(rq->curr))
1734			check_preempt_curr_dl(rq, p, 0);
1735		else
1736			resched_curr(rq);
1737	}
1738}
1739
1740/*
1741 * If the scheduling parameters of a -deadline task changed,
1742 * a push or pull operation might be needed.
1743 */
1744static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1745			    int oldprio)
1746{
1747	if (task_on_rq_queued(p) || rq->curr == p) {
1748#ifdef CONFIG_SMP
1749		/*
1750		 * This might be too much, but unfortunately
1751		 * we don't have the old deadline value, and
1752		 * we can't argue if the task is increasing
1753		 * or lowering its prio, so...
1754		 */
1755		if (!rq->dl.overloaded)
1756			queue_pull_task(rq);
1757
1758		/*
1759		 * If we now have a earlier deadline task than p,
1760		 * then reschedule, provided p is still on this
1761		 * runqueue.
1762		 */
1763		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1764			resched_curr(rq);
1765#else
1766		/*
1767		 * Again, we don't know if p has a earlier
1768		 * or later deadline, so let's blindly set a
1769		 * (maybe not needed) rescheduling point.
1770		 */
1771		resched_curr(rq);
1772#endif /* CONFIG_SMP */
1773	}
1774}
1775
1776const struct sched_class dl_sched_class = {
1777	.next			= &rt_sched_class,
1778	.enqueue_task		= enqueue_task_dl,
1779	.dequeue_task		= dequeue_task_dl,
1780	.yield_task		= yield_task_dl,
1781
1782	.check_preempt_curr	= check_preempt_curr_dl,
1783
1784	.pick_next_task		= pick_next_task_dl,
1785	.put_prev_task		= put_prev_task_dl,
1786
1787#ifdef CONFIG_SMP
1788	.select_task_rq		= select_task_rq_dl,
1789	.set_cpus_allowed       = set_cpus_allowed_dl,
1790	.rq_online              = rq_online_dl,
1791	.rq_offline             = rq_offline_dl,
1792	.task_woken		= task_woken_dl,
1793#endif
1794
1795	.set_curr_task		= set_curr_task_dl,
1796	.task_tick		= task_tick_dl,
1797	.task_fork              = task_fork_dl,
1798	.task_dead		= task_dead_dl,
1799
1800	.prio_changed           = prio_changed_dl,
1801	.switched_from		= switched_from_dl,
1802	.switched_to		= switched_to_dl,
1803
1804	.update_curr		= update_curr_dl,
1805};
1806
1807#ifdef CONFIG_SCHED_DEBUG
1808extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1809
1810void print_dl_stats(struct seq_file *m, int cpu)
1811{
1812	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1813}
1814#endif /* CONFIG_SCHED_DEBUG */