Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * kernel/power/main.c - PM subsystem core functionality.
  3 *
  4 * Copyright (c) 2003 Patrick Mochel
  5 * Copyright (c) 2003 Open Source Development Lab
  6 *
  7 * This file is released under the GPLv2
  8 *
  9 */
 10
 11#include <linux/export.h>
 12#include <linux/kobject.h>
 13#include <linux/string.h>
 14#include <linux/resume-trace.h>
 15#include <linux/workqueue.h>
 16#include <linux/debugfs.h>
 17#include <linux/seq_file.h>
 18
 19#include "power.h"
 20
 21DEFINE_MUTEX(pm_mutex);
 22
 23#ifdef CONFIG_PM_SLEEP
 24
 25/* Routines for PM-transition notifications */
 26
 27static BLOCKING_NOTIFIER_HEAD(pm_chain_head);
 28
 29int register_pm_notifier(struct notifier_block *nb)
 30{
 31	return blocking_notifier_chain_register(&pm_chain_head, nb);
 32}
 33EXPORT_SYMBOL_GPL(register_pm_notifier);
 34
 35int unregister_pm_notifier(struct notifier_block *nb)
 36{
 37	return blocking_notifier_chain_unregister(&pm_chain_head, nb);
 38}
 39EXPORT_SYMBOL_GPL(unregister_pm_notifier);
 40
 41int pm_notifier_call_chain(unsigned long val)
 42{
 43	int ret = blocking_notifier_call_chain(&pm_chain_head, val, NULL);
 
 
 
 44
 45	return notifier_to_errno(ret);
 46}
 
 
 
 
 47
 48/* If set, devices may be suspended and resumed asynchronously. */
 49int pm_async_enabled = 1;
 50
 51static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr,
 52			     char *buf)
 53{
 54	return sprintf(buf, "%d\n", pm_async_enabled);
 55}
 56
 57static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr,
 58			      const char *buf, size_t n)
 59{
 60	unsigned long val;
 61
 62	if (strict_strtoul(buf, 10, &val))
 63		return -EINVAL;
 64
 65	if (val > 1)
 66		return -EINVAL;
 67
 68	pm_async_enabled = val;
 69	return n;
 70}
 71
 72power_attr(pm_async);
 73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74#ifdef CONFIG_PM_DEBUG
 75int pm_test_level = TEST_NONE;
 76
 77static const char * const pm_tests[__TEST_AFTER_LAST] = {
 78	[TEST_NONE] = "none",
 79	[TEST_CORE] = "core",
 80	[TEST_CPUS] = "processors",
 81	[TEST_PLATFORM] = "platform",
 82	[TEST_DEVICES] = "devices",
 83	[TEST_FREEZER] = "freezer",
 84};
 85
 86static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr,
 87				char *buf)
 88{
 89	char *s = buf;
 90	int level;
 91
 92	for (level = TEST_FIRST; level <= TEST_MAX; level++)
 93		if (pm_tests[level]) {
 94			if (level == pm_test_level)
 95				s += sprintf(s, "[%s] ", pm_tests[level]);
 96			else
 97				s += sprintf(s, "%s ", pm_tests[level]);
 98		}
 99
100	if (s != buf)
101		/* convert the last space to a newline */
102		*(s-1) = '\n';
103
104	return (s - buf);
105}
106
107static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr,
108				const char *buf, size_t n)
109{
110	const char * const *s;
111	int level;
112	char *p;
113	int len;
114	int error = -EINVAL;
115
116	p = memchr(buf, '\n', n);
117	len = p ? p - buf : n;
118
119	lock_system_sleep();
120
121	level = TEST_FIRST;
122	for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++)
123		if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
124			pm_test_level = level;
125			error = 0;
126			break;
127		}
128
129	unlock_system_sleep();
130
131	return error ? error : n;
132}
133
134power_attr(pm_test);
135#endif /* CONFIG_PM_DEBUG */
136
137#ifdef CONFIG_DEBUG_FS
138static char *suspend_step_name(enum suspend_stat_step step)
139{
140	switch (step) {
141	case SUSPEND_FREEZE:
142		return "freeze";
143	case SUSPEND_PREPARE:
144		return "prepare";
145	case SUSPEND_SUSPEND:
146		return "suspend";
147	case SUSPEND_SUSPEND_NOIRQ:
148		return "suspend_noirq";
149	case SUSPEND_RESUME_NOIRQ:
150		return "resume_noirq";
151	case SUSPEND_RESUME:
152		return "resume";
153	default:
154		return "";
155	}
156}
157
158static int suspend_stats_show(struct seq_file *s, void *unused)
159{
160	int i, index, last_dev, last_errno, last_step;
161
162	last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
163	last_dev %= REC_FAILED_NUM;
164	last_errno = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
165	last_errno %= REC_FAILED_NUM;
166	last_step = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
167	last_step %= REC_FAILED_NUM;
168	seq_printf(s, "%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n"
169			"%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n",
170			"success", suspend_stats.success,
171			"fail", suspend_stats.fail,
172			"failed_freeze", suspend_stats.failed_freeze,
173			"failed_prepare", suspend_stats.failed_prepare,
174			"failed_suspend", suspend_stats.failed_suspend,
175			"failed_suspend_late",
176				suspend_stats.failed_suspend_late,
177			"failed_suspend_noirq",
178				suspend_stats.failed_suspend_noirq,
179			"failed_resume", suspend_stats.failed_resume,
180			"failed_resume_early",
181				suspend_stats.failed_resume_early,
182			"failed_resume_noirq",
183				suspend_stats.failed_resume_noirq);
184	seq_printf(s,	"failures:\n  last_failed_dev:\t%-s\n",
185			suspend_stats.failed_devs[last_dev]);
186	for (i = 1; i < REC_FAILED_NUM; i++) {
187		index = last_dev + REC_FAILED_NUM - i;
188		index %= REC_FAILED_NUM;
189		seq_printf(s, "\t\t\t%-s\n",
190			suspend_stats.failed_devs[index]);
191	}
192	seq_printf(s,	"  last_failed_errno:\t%-d\n",
193			suspend_stats.errno[last_errno]);
194	for (i = 1; i < REC_FAILED_NUM; i++) {
195		index = last_errno + REC_FAILED_NUM - i;
196		index %= REC_FAILED_NUM;
197		seq_printf(s, "\t\t\t%-d\n",
198			suspend_stats.errno[index]);
199	}
200	seq_printf(s,	"  last_failed_step:\t%-s\n",
201			suspend_step_name(
202				suspend_stats.failed_steps[last_step]));
203	for (i = 1; i < REC_FAILED_NUM; i++) {
204		index = last_step + REC_FAILED_NUM - i;
205		index %= REC_FAILED_NUM;
206		seq_printf(s, "\t\t\t%-s\n",
207			suspend_step_name(
208				suspend_stats.failed_steps[index]));
209	}
210
211	return 0;
212}
213
214static int suspend_stats_open(struct inode *inode, struct file *file)
215{
216	return single_open(file, suspend_stats_show, NULL);
217}
218
219static const struct file_operations suspend_stats_operations = {
220	.open           = suspend_stats_open,
221	.read           = seq_read,
222	.llseek         = seq_lseek,
223	.release        = single_release,
224};
225
226static int __init pm_debugfs_init(void)
227{
228	debugfs_create_file("suspend_stats", S_IFREG | S_IRUGO,
229			NULL, NULL, &suspend_stats_operations);
230	return 0;
231}
232
233late_initcall(pm_debugfs_init);
234#endif /* CONFIG_DEBUG_FS */
235
236#endif /* CONFIG_PM_SLEEP */
237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238struct kobject *power_kobj;
239
240/**
241 *	state - control system power state.
242 *
243 *	show() returns what states are supported, which is hard-coded to
244 *	'standby' (Power-On Suspend), 'mem' (Suspend-to-RAM), and
245 *	'disk' (Suspend-to-Disk).
246 *
247 *	store() accepts one of those strings, translates it into the
248 *	proper enumerated value, and initiates a suspend transition.
249 */
250static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
251			  char *buf)
252{
253	char *s = buf;
254#ifdef CONFIG_SUSPEND
255	int i;
256
257	for (i = 0; i < PM_SUSPEND_MAX; i++) {
258		if (pm_states[i] && valid_state(i))
259			s += sprintf(s,"%s ", pm_states[i]);
260	}
261#endif
262#ifdef CONFIG_HIBERNATION
263	s += sprintf(s, "%s\n", "disk");
264#else
265	if (s != buf)
266		/* convert the last space to a newline */
267		*(s-1) = '\n';
268#endif
269	return (s - buf);
270}
271
272static suspend_state_t decode_state(const char *buf, size_t n)
273{
274#ifdef CONFIG_SUSPEND
275	suspend_state_t state = PM_SUSPEND_STANDBY;
276	const char * const *s;
277#endif
278	char *p;
279	int len;
280
281	p = memchr(buf, '\n', n);
282	len = p ? p - buf : n;
283
284	/* Check hibernation first. */
285	if (len == 4 && !strncmp(buf, "disk", len))
286		return PM_SUSPEND_MAX;
287
288#ifdef CONFIG_SUSPEND
289	for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++)
290		if (*s && len == strlen(*s) && !strncmp(buf, *s, len))
 
 
291			return state;
 
292#endif
293
294	return PM_SUSPEND_ON;
295}
296
297static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
298			   const char *buf, size_t n)
299{
300	suspend_state_t state;
301	int error;
302
303	error = pm_autosleep_lock();
304	if (error)
305		return error;
306
307	if (pm_autosleep_state() > PM_SUSPEND_ON) {
308		error = -EBUSY;
309		goto out;
310	}
311
312	state = decode_state(buf, n);
313	if (state < PM_SUSPEND_MAX)
 
 
 
314		error = pm_suspend(state);
315	else if (state == PM_SUSPEND_MAX)
316		error = hibernate();
317	else
318		error = -EINVAL;
 
319
320 out:
321	pm_autosleep_unlock();
322	return error ? error : n;
323}
324
325power_attr(state);
326
327#ifdef CONFIG_PM_SLEEP
328/*
329 * The 'wakeup_count' attribute, along with the functions defined in
330 * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
331 * handled in a non-racy way.
332 *
333 * If a wakeup event occurs when the system is in a sleep state, it simply is
334 * woken up.  In turn, if an event that would wake the system up from a sleep
335 * state occurs when it is undergoing a transition to that sleep state, the
336 * transition should be aborted.  Moreover, if such an event occurs when the
337 * system is in the working state, an attempt to start a transition to the
338 * given sleep state should fail during certain period after the detection of
339 * the event.  Using the 'state' attribute alone is not sufficient to satisfy
340 * these requirements, because a wakeup event may occur exactly when 'state'
341 * is being written to and may be delivered to user space right before it is
342 * frozen, so the event will remain only partially processed until the system is
343 * woken up by another event.  In particular, it won't cause the transition to
344 * a sleep state to be aborted.
345 *
346 * This difficulty may be overcome if user space uses 'wakeup_count' before
347 * writing to 'state'.  It first should read from 'wakeup_count' and store
348 * the read value.  Then, after carrying out its own preparations for the system
349 * transition to a sleep state, it should write the stored value to
350 * 'wakeup_count'.  If that fails, at least one wakeup event has occurred since
351 * 'wakeup_count' was read and 'state' should not be written to.  Otherwise, it
352 * is allowed to write to 'state', but the transition will be aborted if there
353 * are any wakeup events detected after 'wakeup_count' was written to.
354 */
355
356static ssize_t wakeup_count_show(struct kobject *kobj,
357				struct kobj_attribute *attr,
358				char *buf)
359{
360	unsigned int val;
361
362	return pm_get_wakeup_count(&val, true) ?
363		sprintf(buf, "%u\n", val) : -EINTR;
364}
365
366static ssize_t wakeup_count_store(struct kobject *kobj,
367				struct kobj_attribute *attr,
368				const char *buf, size_t n)
369{
370	unsigned int val;
371	int error;
372
373	error = pm_autosleep_lock();
374	if (error)
375		return error;
376
377	if (pm_autosleep_state() > PM_SUSPEND_ON) {
378		error = -EBUSY;
379		goto out;
380	}
381
382	error = -EINVAL;
383	if (sscanf(buf, "%u", &val) == 1) {
384		if (pm_save_wakeup_count(val))
385			error = n;
 
 
386	}
387
388 out:
389	pm_autosleep_unlock();
390	return error;
391}
392
393power_attr(wakeup_count);
394
395#ifdef CONFIG_PM_AUTOSLEEP
396static ssize_t autosleep_show(struct kobject *kobj,
397			      struct kobj_attribute *attr,
398			      char *buf)
399{
400	suspend_state_t state = pm_autosleep_state();
401
402	if (state == PM_SUSPEND_ON)
403		return sprintf(buf, "off\n");
404
405#ifdef CONFIG_SUSPEND
406	if (state < PM_SUSPEND_MAX)
407		return sprintf(buf, "%s\n", valid_state(state) ?
408						pm_states[state] : "error");
409#endif
410#ifdef CONFIG_HIBERNATION
411	return sprintf(buf, "disk\n");
412#else
413	return sprintf(buf, "error");
414#endif
415}
416
417static ssize_t autosleep_store(struct kobject *kobj,
418			       struct kobj_attribute *attr,
419			       const char *buf, size_t n)
420{
421	suspend_state_t state = decode_state(buf, n);
422	int error;
423
424	if (state == PM_SUSPEND_ON
425	    && strcmp(buf, "off") && strcmp(buf, "off\n"))
426		return -EINVAL;
427
 
 
 
428	error = pm_autosleep_set_state(state);
429	return error ? error : n;
430}
431
432power_attr(autosleep);
433#endif /* CONFIG_PM_AUTOSLEEP */
434
435#ifdef CONFIG_PM_WAKELOCKS
436static ssize_t wake_lock_show(struct kobject *kobj,
437			      struct kobj_attribute *attr,
438			      char *buf)
439{
440	return pm_show_wakelocks(buf, true);
441}
442
443static ssize_t wake_lock_store(struct kobject *kobj,
444			       struct kobj_attribute *attr,
445			       const char *buf, size_t n)
446{
447	int error = pm_wake_lock(buf);
448	return error ? error : n;
449}
450
451power_attr(wake_lock);
452
453static ssize_t wake_unlock_show(struct kobject *kobj,
454				struct kobj_attribute *attr,
455				char *buf)
456{
457	return pm_show_wakelocks(buf, false);
458}
459
460static ssize_t wake_unlock_store(struct kobject *kobj,
461				 struct kobj_attribute *attr,
462				 const char *buf, size_t n)
463{
464	int error = pm_wake_unlock(buf);
465	return error ? error : n;
466}
467
468power_attr(wake_unlock);
469
470#endif /* CONFIG_PM_WAKELOCKS */
471#endif /* CONFIG_PM_SLEEP */
472
473#ifdef CONFIG_PM_TRACE
474int pm_trace_enabled;
475
476static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr,
477			     char *buf)
478{
479	return sprintf(buf, "%d\n", pm_trace_enabled);
480}
481
482static ssize_t
483pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr,
484	       const char *buf, size_t n)
485{
486	int val;
487
488	if (sscanf(buf, "%d", &val) == 1) {
489		pm_trace_enabled = !!val;
 
 
 
 
490		return n;
491	}
492	return -EINVAL;
493}
494
495power_attr(pm_trace);
496
497static ssize_t pm_trace_dev_match_show(struct kobject *kobj,
498				       struct kobj_attribute *attr,
499				       char *buf)
500{
501	return show_trace_dev_match(buf, PAGE_SIZE);
502}
503
504static ssize_t
505pm_trace_dev_match_store(struct kobject *kobj, struct kobj_attribute *attr,
506			 const char *buf, size_t n)
 
 
 
 
507{
508	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
509}
510
511power_attr(pm_trace_dev_match);
512
513#endif /* CONFIG_PM_TRACE */
514
515static struct attribute * g[] = {
516	&state_attr.attr,
517#ifdef CONFIG_PM_TRACE
518	&pm_trace_attr.attr,
519	&pm_trace_dev_match_attr.attr,
520#endif
521#ifdef CONFIG_PM_SLEEP
522	&pm_async_attr.attr,
523	&wakeup_count_attr.attr,
 
 
 
524#ifdef CONFIG_PM_AUTOSLEEP
525	&autosleep_attr.attr,
526#endif
527#ifdef CONFIG_PM_WAKELOCKS
528	&wake_lock_attr.attr,
529	&wake_unlock_attr.attr,
530#endif
531#ifdef CONFIG_PM_DEBUG
532	&pm_test_attr.attr,
533#endif
 
 
 
 
 
 
 
534#endif
535	NULL,
536};
537
538static struct attribute_group attr_group = {
539	.attrs = g,
540};
541
542#ifdef CONFIG_PM_RUNTIME
543struct workqueue_struct *pm_wq;
544EXPORT_SYMBOL_GPL(pm_wq);
545
546static int __init pm_start_workqueue(void)
547{
548	pm_wq = alloc_workqueue("pm", WQ_FREEZABLE, 0);
549
550	return pm_wq ? 0 : -ENOMEM;
551}
552#else
553static inline int pm_start_workqueue(void) { return 0; }
554#endif
555
556static int __init pm_init(void)
557{
558	int error = pm_start_workqueue();
559	if (error)
560		return error;
561	hibernate_image_size_init();
562	hibernate_reserved_size_init();
 
563	power_kobj = kobject_create_and_add("power", NULL);
564	if (!power_kobj)
565		return -ENOMEM;
566	error = sysfs_create_group(power_kobj, &attr_group);
567	if (error)
568		return error;
 
569	return pm_autosleep_init();
570}
571
572core_initcall(pm_init);
v4.10.11
  1/*
  2 * kernel/power/main.c - PM subsystem core functionality.
  3 *
  4 * Copyright (c) 2003 Patrick Mochel
  5 * Copyright (c) 2003 Open Source Development Lab
  6 *
  7 * This file is released under the GPLv2
  8 *
  9 */
 10
 11#include <linux/export.h>
 12#include <linux/kobject.h>
 13#include <linux/string.h>
 14#include <linux/pm-trace.h>
 15#include <linux/workqueue.h>
 16#include <linux/debugfs.h>
 17#include <linux/seq_file.h>
 18
 19#include "power.h"
 20
 21DEFINE_MUTEX(pm_mutex);
 22
 23#ifdef CONFIG_PM_SLEEP
 24
 25/* Routines for PM-transition notifications */
 26
 27static BLOCKING_NOTIFIER_HEAD(pm_chain_head);
 28
 29int register_pm_notifier(struct notifier_block *nb)
 30{
 31	return blocking_notifier_chain_register(&pm_chain_head, nb);
 32}
 33EXPORT_SYMBOL_GPL(register_pm_notifier);
 34
 35int unregister_pm_notifier(struct notifier_block *nb)
 36{
 37	return blocking_notifier_chain_unregister(&pm_chain_head, nb);
 38}
 39EXPORT_SYMBOL_GPL(unregister_pm_notifier);
 40
 41int __pm_notifier_call_chain(unsigned long val, int nr_to_call, int *nr_calls)
 42{
 43	int ret;
 44
 45	ret = __blocking_notifier_call_chain(&pm_chain_head, val, NULL,
 46						nr_to_call, nr_calls);
 47
 48	return notifier_to_errno(ret);
 49}
 50int pm_notifier_call_chain(unsigned long val)
 51{
 52	return __pm_notifier_call_chain(val, -1, NULL);
 53}
 54
 55/* If set, devices may be suspended and resumed asynchronously. */
 56int pm_async_enabled = 1;
 57
 58static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr,
 59			     char *buf)
 60{
 61	return sprintf(buf, "%d\n", pm_async_enabled);
 62}
 63
 64static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr,
 65			      const char *buf, size_t n)
 66{
 67	unsigned long val;
 68
 69	if (kstrtoul(buf, 10, &val))
 70		return -EINVAL;
 71
 72	if (val > 1)
 73		return -EINVAL;
 74
 75	pm_async_enabled = val;
 76	return n;
 77}
 78
 79power_attr(pm_async);
 80
 81#ifdef CONFIG_SUSPEND
 82static ssize_t mem_sleep_show(struct kobject *kobj, struct kobj_attribute *attr,
 83			      char *buf)
 84{
 85	char *s = buf;
 86	suspend_state_t i;
 87
 88	for (i = PM_SUSPEND_MIN; i < PM_SUSPEND_MAX; i++)
 89		if (mem_sleep_states[i]) {
 90			const char *label = mem_sleep_states[i];
 91
 92			if (mem_sleep_current == i)
 93				s += sprintf(s, "[%s] ", label);
 94			else
 95				s += sprintf(s, "%s ", label);
 96		}
 97
 98	/* Convert the last space to a newline if needed. */
 99	if (s != buf)
100		*(s-1) = '\n';
101
102	return (s - buf);
103}
104
105static suspend_state_t decode_suspend_state(const char *buf, size_t n)
106{
107	suspend_state_t state;
108	char *p;
109	int len;
110
111	p = memchr(buf, '\n', n);
112	len = p ? p - buf : n;
113
114	for (state = PM_SUSPEND_MIN; state < PM_SUSPEND_MAX; state++) {
115		const char *label = mem_sleep_states[state];
116
117		if (label && len == strlen(label) && !strncmp(buf, label, len))
118			return state;
119	}
120
121	return PM_SUSPEND_ON;
122}
123
124static ssize_t mem_sleep_store(struct kobject *kobj, struct kobj_attribute *attr,
125			       const char *buf, size_t n)
126{
127	suspend_state_t state;
128	int error;
129
130	error = pm_autosleep_lock();
131	if (error)
132		return error;
133
134	if (pm_autosleep_state() > PM_SUSPEND_ON) {
135		error = -EBUSY;
136		goto out;
137	}
138
139	state = decode_suspend_state(buf, n);
140	if (state < PM_SUSPEND_MAX && state > PM_SUSPEND_ON)
141		mem_sleep_current = state;
142	else
143		error = -EINVAL;
144
145 out:
146	pm_autosleep_unlock();
147	return error ? error : n;
148}
149
150power_attr(mem_sleep);
151#endif /* CONFIG_SUSPEND */
152
153#ifdef CONFIG_PM_DEBUG
154int pm_test_level = TEST_NONE;
155
156static const char * const pm_tests[__TEST_AFTER_LAST] = {
157	[TEST_NONE] = "none",
158	[TEST_CORE] = "core",
159	[TEST_CPUS] = "processors",
160	[TEST_PLATFORM] = "platform",
161	[TEST_DEVICES] = "devices",
162	[TEST_FREEZER] = "freezer",
163};
164
165static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr,
166				char *buf)
167{
168	char *s = buf;
169	int level;
170
171	for (level = TEST_FIRST; level <= TEST_MAX; level++)
172		if (pm_tests[level]) {
173			if (level == pm_test_level)
174				s += sprintf(s, "[%s] ", pm_tests[level]);
175			else
176				s += sprintf(s, "%s ", pm_tests[level]);
177		}
178
179	if (s != buf)
180		/* convert the last space to a newline */
181		*(s-1) = '\n';
182
183	return (s - buf);
184}
185
186static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr,
187				const char *buf, size_t n)
188{
189	const char * const *s;
190	int level;
191	char *p;
192	int len;
193	int error = -EINVAL;
194
195	p = memchr(buf, '\n', n);
196	len = p ? p - buf : n;
197
198	lock_system_sleep();
199
200	level = TEST_FIRST;
201	for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++)
202		if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
203			pm_test_level = level;
204			error = 0;
205			break;
206		}
207
208	unlock_system_sleep();
209
210	return error ? error : n;
211}
212
213power_attr(pm_test);
214#endif /* CONFIG_PM_DEBUG */
215
216#ifdef CONFIG_DEBUG_FS
217static char *suspend_step_name(enum suspend_stat_step step)
218{
219	switch (step) {
220	case SUSPEND_FREEZE:
221		return "freeze";
222	case SUSPEND_PREPARE:
223		return "prepare";
224	case SUSPEND_SUSPEND:
225		return "suspend";
226	case SUSPEND_SUSPEND_NOIRQ:
227		return "suspend_noirq";
228	case SUSPEND_RESUME_NOIRQ:
229		return "resume_noirq";
230	case SUSPEND_RESUME:
231		return "resume";
232	default:
233		return "";
234	}
235}
236
237static int suspend_stats_show(struct seq_file *s, void *unused)
238{
239	int i, index, last_dev, last_errno, last_step;
240
241	last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
242	last_dev %= REC_FAILED_NUM;
243	last_errno = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
244	last_errno %= REC_FAILED_NUM;
245	last_step = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
246	last_step %= REC_FAILED_NUM;
247	seq_printf(s, "%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n"
248			"%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n",
249			"success", suspend_stats.success,
250			"fail", suspend_stats.fail,
251			"failed_freeze", suspend_stats.failed_freeze,
252			"failed_prepare", suspend_stats.failed_prepare,
253			"failed_suspend", suspend_stats.failed_suspend,
254			"failed_suspend_late",
255				suspend_stats.failed_suspend_late,
256			"failed_suspend_noirq",
257				suspend_stats.failed_suspend_noirq,
258			"failed_resume", suspend_stats.failed_resume,
259			"failed_resume_early",
260				suspend_stats.failed_resume_early,
261			"failed_resume_noirq",
262				suspend_stats.failed_resume_noirq);
263	seq_printf(s,	"failures:\n  last_failed_dev:\t%-s\n",
264			suspend_stats.failed_devs[last_dev]);
265	for (i = 1; i < REC_FAILED_NUM; i++) {
266		index = last_dev + REC_FAILED_NUM - i;
267		index %= REC_FAILED_NUM;
268		seq_printf(s, "\t\t\t%-s\n",
269			suspend_stats.failed_devs[index]);
270	}
271	seq_printf(s,	"  last_failed_errno:\t%-d\n",
272			suspend_stats.errno[last_errno]);
273	for (i = 1; i < REC_FAILED_NUM; i++) {
274		index = last_errno + REC_FAILED_NUM - i;
275		index %= REC_FAILED_NUM;
276		seq_printf(s, "\t\t\t%-d\n",
277			suspend_stats.errno[index]);
278	}
279	seq_printf(s,	"  last_failed_step:\t%-s\n",
280			suspend_step_name(
281				suspend_stats.failed_steps[last_step]));
282	for (i = 1; i < REC_FAILED_NUM; i++) {
283		index = last_step + REC_FAILED_NUM - i;
284		index %= REC_FAILED_NUM;
285		seq_printf(s, "\t\t\t%-s\n",
286			suspend_step_name(
287				suspend_stats.failed_steps[index]));
288	}
289
290	return 0;
291}
292
293static int suspend_stats_open(struct inode *inode, struct file *file)
294{
295	return single_open(file, suspend_stats_show, NULL);
296}
297
298static const struct file_operations suspend_stats_operations = {
299	.open           = suspend_stats_open,
300	.read           = seq_read,
301	.llseek         = seq_lseek,
302	.release        = single_release,
303};
304
305static int __init pm_debugfs_init(void)
306{
307	debugfs_create_file("suspend_stats", S_IFREG | S_IRUGO,
308			NULL, NULL, &suspend_stats_operations);
309	return 0;
310}
311
312late_initcall(pm_debugfs_init);
313#endif /* CONFIG_DEBUG_FS */
314
315#endif /* CONFIG_PM_SLEEP */
316
317#ifdef CONFIG_PM_SLEEP_DEBUG
318/*
319 * pm_print_times: print time taken by devices to suspend and resume.
320 *
321 * show() returns whether printing of suspend and resume times is enabled.
322 * store() accepts 0 or 1.  0 disables printing and 1 enables it.
323 */
324bool pm_print_times_enabled;
325
326static ssize_t pm_print_times_show(struct kobject *kobj,
327				   struct kobj_attribute *attr, char *buf)
328{
329	return sprintf(buf, "%d\n", pm_print_times_enabled);
330}
331
332static ssize_t pm_print_times_store(struct kobject *kobj,
333				    struct kobj_attribute *attr,
334				    const char *buf, size_t n)
335{
336	unsigned long val;
337
338	if (kstrtoul(buf, 10, &val))
339		return -EINVAL;
340
341	if (val > 1)
342		return -EINVAL;
343
344	pm_print_times_enabled = !!val;
345	return n;
346}
347
348power_attr(pm_print_times);
349
350static inline void pm_print_times_init(void)
351{
352	pm_print_times_enabled = !!initcall_debug;
353}
354
355static ssize_t pm_wakeup_irq_show(struct kobject *kobj,
356					struct kobj_attribute *attr,
357					char *buf)
358{
359	return pm_wakeup_irq ? sprintf(buf, "%u\n", pm_wakeup_irq) : -ENODATA;
360}
361
362power_attr_ro(pm_wakeup_irq);
363
364#else /* !CONFIG_PM_SLEEP_DEBUG */
365static inline void pm_print_times_init(void) {}
366#endif /* CONFIG_PM_SLEEP_DEBUG */
367
368struct kobject *power_kobj;
369
370/**
371 * state - control system sleep states.
372 *
373 * show() returns available sleep state labels, which may be "mem", "standby",
374 * "freeze" and "disk" (hibernation).  See Documentation/power/states.txt for a
375 * description of what they mean.
376 *
377 * store() accepts one of those strings, translates it into the proper
378 * enumerated value, and initiates a suspend transition.
379 */
380static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
381			  char *buf)
382{
383	char *s = buf;
384#ifdef CONFIG_SUSPEND
385	suspend_state_t i;
386
387	for (i = PM_SUSPEND_MIN; i < PM_SUSPEND_MAX; i++)
388		if (pm_states[i])
389			s += sprintf(s,"%s ", pm_states[i]);
390
391#endif
392	if (hibernation_available())
393		s += sprintf(s, "disk ");
 
394	if (s != buf)
395		/* convert the last space to a newline */
396		*(s-1) = '\n';
 
397	return (s - buf);
398}
399
400static suspend_state_t decode_state(const char *buf, size_t n)
401{
402#ifdef CONFIG_SUSPEND
403	suspend_state_t state;
 
404#endif
405	char *p;
406	int len;
407
408	p = memchr(buf, '\n', n);
409	len = p ? p - buf : n;
410
411	/* Check hibernation first. */
412	if (len == 4 && !strncmp(buf, "disk", len))
413		return PM_SUSPEND_MAX;
414
415#ifdef CONFIG_SUSPEND
416	for (state = PM_SUSPEND_MIN; state < PM_SUSPEND_MAX; state++) {
417		const char *label = pm_states[state];
418
419		if (label && len == strlen(label) && !strncmp(buf, label, len))
420			return state;
421	}
422#endif
423
424	return PM_SUSPEND_ON;
425}
426
427static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
428			   const char *buf, size_t n)
429{
430	suspend_state_t state;
431	int error;
432
433	error = pm_autosleep_lock();
434	if (error)
435		return error;
436
437	if (pm_autosleep_state() > PM_SUSPEND_ON) {
438		error = -EBUSY;
439		goto out;
440	}
441
442	state = decode_state(buf, n);
443	if (state < PM_SUSPEND_MAX) {
444		if (state == PM_SUSPEND_MEM)
445			state = mem_sleep_current;
446
447		error = pm_suspend(state);
448	} else if (state == PM_SUSPEND_MAX) {
449		error = hibernate();
450	} else {
451		error = -EINVAL;
452	}
453
454 out:
455	pm_autosleep_unlock();
456	return error ? error : n;
457}
458
459power_attr(state);
460
461#ifdef CONFIG_PM_SLEEP
462/*
463 * The 'wakeup_count' attribute, along with the functions defined in
464 * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
465 * handled in a non-racy way.
466 *
467 * If a wakeup event occurs when the system is in a sleep state, it simply is
468 * woken up.  In turn, if an event that would wake the system up from a sleep
469 * state occurs when it is undergoing a transition to that sleep state, the
470 * transition should be aborted.  Moreover, if such an event occurs when the
471 * system is in the working state, an attempt to start a transition to the
472 * given sleep state should fail during certain period after the detection of
473 * the event.  Using the 'state' attribute alone is not sufficient to satisfy
474 * these requirements, because a wakeup event may occur exactly when 'state'
475 * is being written to and may be delivered to user space right before it is
476 * frozen, so the event will remain only partially processed until the system is
477 * woken up by another event.  In particular, it won't cause the transition to
478 * a sleep state to be aborted.
479 *
480 * This difficulty may be overcome if user space uses 'wakeup_count' before
481 * writing to 'state'.  It first should read from 'wakeup_count' and store
482 * the read value.  Then, after carrying out its own preparations for the system
483 * transition to a sleep state, it should write the stored value to
484 * 'wakeup_count'.  If that fails, at least one wakeup event has occurred since
485 * 'wakeup_count' was read and 'state' should not be written to.  Otherwise, it
486 * is allowed to write to 'state', but the transition will be aborted if there
487 * are any wakeup events detected after 'wakeup_count' was written to.
488 */
489
490static ssize_t wakeup_count_show(struct kobject *kobj,
491				struct kobj_attribute *attr,
492				char *buf)
493{
494	unsigned int val;
495
496	return pm_get_wakeup_count(&val, true) ?
497		sprintf(buf, "%u\n", val) : -EINTR;
498}
499
500static ssize_t wakeup_count_store(struct kobject *kobj,
501				struct kobj_attribute *attr,
502				const char *buf, size_t n)
503{
504	unsigned int val;
505	int error;
506
507	error = pm_autosleep_lock();
508	if (error)
509		return error;
510
511	if (pm_autosleep_state() > PM_SUSPEND_ON) {
512		error = -EBUSY;
513		goto out;
514	}
515
516	error = -EINVAL;
517	if (sscanf(buf, "%u", &val) == 1) {
518		if (pm_save_wakeup_count(val))
519			error = n;
520		else
521			pm_print_active_wakeup_sources();
522	}
523
524 out:
525	pm_autosleep_unlock();
526	return error;
527}
528
529power_attr(wakeup_count);
530
531#ifdef CONFIG_PM_AUTOSLEEP
532static ssize_t autosleep_show(struct kobject *kobj,
533			      struct kobj_attribute *attr,
534			      char *buf)
535{
536	suspend_state_t state = pm_autosleep_state();
537
538	if (state == PM_SUSPEND_ON)
539		return sprintf(buf, "off\n");
540
541#ifdef CONFIG_SUSPEND
542	if (state < PM_SUSPEND_MAX)
543		return sprintf(buf, "%s\n", pm_states[state] ?
544					pm_states[state] : "error");
545#endif
546#ifdef CONFIG_HIBERNATION
547	return sprintf(buf, "disk\n");
548#else
549	return sprintf(buf, "error");
550#endif
551}
552
553static ssize_t autosleep_store(struct kobject *kobj,
554			       struct kobj_attribute *attr,
555			       const char *buf, size_t n)
556{
557	suspend_state_t state = decode_state(buf, n);
558	int error;
559
560	if (state == PM_SUSPEND_ON
561	    && strcmp(buf, "off") && strcmp(buf, "off\n"))
562		return -EINVAL;
563
564	if (state == PM_SUSPEND_MEM)
565		state = mem_sleep_current;
566
567	error = pm_autosleep_set_state(state);
568	return error ? error : n;
569}
570
571power_attr(autosleep);
572#endif /* CONFIG_PM_AUTOSLEEP */
573
574#ifdef CONFIG_PM_WAKELOCKS
575static ssize_t wake_lock_show(struct kobject *kobj,
576			      struct kobj_attribute *attr,
577			      char *buf)
578{
579	return pm_show_wakelocks(buf, true);
580}
581
582static ssize_t wake_lock_store(struct kobject *kobj,
583			       struct kobj_attribute *attr,
584			       const char *buf, size_t n)
585{
586	int error = pm_wake_lock(buf);
587	return error ? error : n;
588}
589
590power_attr(wake_lock);
591
592static ssize_t wake_unlock_show(struct kobject *kobj,
593				struct kobj_attribute *attr,
594				char *buf)
595{
596	return pm_show_wakelocks(buf, false);
597}
598
599static ssize_t wake_unlock_store(struct kobject *kobj,
600				 struct kobj_attribute *attr,
601				 const char *buf, size_t n)
602{
603	int error = pm_wake_unlock(buf);
604	return error ? error : n;
605}
606
607power_attr(wake_unlock);
608
609#endif /* CONFIG_PM_WAKELOCKS */
610#endif /* CONFIG_PM_SLEEP */
611
612#ifdef CONFIG_PM_TRACE
613int pm_trace_enabled;
614
615static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr,
616			     char *buf)
617{
618	return sprintf(buf, "%d\n", pm_trace_enabled);
619}
620
621static ssize_t
622pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr,
623	       const char *buf, size_t n)
624{
625	int val;
626
627	if (sscanf(buf, "%d", &val) == 1) {
628		pm_trace_enabled = !!val;
629		if (pm_trace_enabled) {
630			pr_warn("PM: Enabling pm_trace changes system date and time during resume.\n"
631				"PM: Correct system time has to be restored manually after resume.\n");
632		}
633		return n;
634	}
635	return -EINVAL;
636}
637
638power_attr(pm_trace);
639
640static ssize_t pm_trace_dev_match_show(struct kobject *kobj,
641				       struct kobj_attribute *attr,
642				       char *buf)
643{
644	return show_trace_dev_match(buf, PAGE_SIZE);
645}
646
647power_attr_ro(pm_trace_dev_match);
648
649#endif /* CONFIG_PM_TRACE */
650
651#ifdef CONFIG_FREEZER
652static ssize_t pm_freeze_timeout_show(struct kobject *kobj,
653				      struct kobj_attribute *attr, char *buf)
654{
655	return sprintf(buf, "%u\n", freeze_timeout_msecs);
656}
657
658static ssize_t pm_freeze_timeout_store(struct kobject *kobj,
659				       struct kobj_attribute *attr,
660				       const char *buf, size_t n)
661{
662	unsigned long val;
663
664	if (kstrtoul(buf, 10, &val))
665		return -EINVAL;
666
667	freeze_timeout_msecs = val;
668	return n;
669}
670
671power_attr(pm_freeze_timeout);
672
673#endif	/* CONFIG_FREEZER*/
674
675static struct attribute * g[] = {
676	&state_attr.attr,
677#ifdef CONFIG_PM_TRACE
678	&pm_trace_attr.attr,
679	&pm_trace_dev_match_attr.attr,
680#endif
681#ifdef CONFIG_PM_SLEEP
682	&pm_async_attr.attr,
683	&wakeup_count_attr.attr,
684#ifdef CONFIG_SUSPEND
685	&mem_sleep_attr.attr,
686#endif
687#ifdef CONFIG_PM_AUTOSLEEP
688	&autosleep_attr.attr,
689#endif
690#ifdef CONFIG_PM_WAKELOCKS
691	&wake_lock_attr.attr,
692	&wake_unlock_attr.attr,
693#endif
694#ifdef CONFIG_PM_DEBUG
695	&pm_test_attr.attr,
696#endif
697#ifdef CONFIG_PM_SLEEP_DEBUG
698	&pm_print_times_attr.attr,
699	&pm_wakeup_irq_attr.attr,
700#endif
701#endif
702#ifdef CONFIG_FREEZER
703	&pm_freeze_timeout_attr.attr,
704#endif
705	NULL,
706};
707
708static struct attribute_group attr_group = {
709	.attrs = g,
710};
711
 
712struct workqueue_struct *pm_wq;
713EXPORT_SYMBOL_GPL(pm_wq);
714
715static int __init pm_start_workqueue(void)
716{
717	pm_wq = alloc_workqueue("pm", WQ_FREEZABLE, 0);
718
719	return pm_wq ? 0 : -ENOMEM;
720}
 
 
 
721
722static int __init pm_init(void)
723{
724	int error = pm_start_workqueue();
725	if (error)
726		return error;
727	hibernate_image_size_init();
728	hibernate_reserved_size_init();
729	pm_states_init();
730	power_kobj = kobject_create_and_add("power", NULL);
731	if (!power_kobj)
732		return -ENOMEM;
733	error = sysfs_create_group(power_kobj, &attr_group);
734	if (error)
735		return error;
736	pm_print_times_init();
737	return pm_autosleep_init();
738}
739
740core_initcall(pm_init);