Loading...
1/*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/export.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm-generic/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <asm/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61/*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65#ifndef kprobe_lookup_name
66#define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68#endif
69
70static int kprobes_initialized;
71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74/* NOTE: change this value only with kprobe_mutex held */
75static bool kprobes_all_disarmed;
76
77/* This protects kprobe_table and optimizing_list */
78static DEFINE_MUTEX(kprobe_mutex);
79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80static struct {
81 raw_spinlock_t lock ____cacheline_aligned_in_smp;
82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85{
86 return &(kretprobe_table_locks[hash].lock);
87}
88
89/*
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
93 *
94 * For such cases, we now have a blacklist
95 */
96static struct kprobe_blackpoint kprobe_blacklist[] = {
97 {"preempt_schedule",},
98 {"native_get_debugreg",},
99 {"irq_entries_start",},
100 {"common_interrupt",},
101 {"mcount",}, /* mcount can be called from everywhere */
102 {NULL} /* Terminator */
103};
104
105#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106/*
107 * kprobe->ainsn.insn points to the copy of the instruction to be
108 * single-stepped. x86_64, POWER4 and above have no-exec support and
109 * stepping on the instruction on a vmalloced/kmalloced/data page
110 * is a recipe for disaster
111 */
112struct kprobe_insn_page {
113 struct list_head list;
114 kprobe_opcode_t *insns; /* Page of instruction slots */
115 int nused;
116 int ngarbage;
117 char slot_used[];
118};
119
120#define KPROBE_INSN_PAGE_SIZE(slots) \
121 (offsetof(struct kprobe_insn_page, slot_used) + \
122 (sizeof(char) * (slots)))
123
124struct kprobe_insn_cache {
125 struct list_head pages; /* list of kprobe_insn_page */
126 size_t insn_size; /* size of instruction slot */
127 int nr_garbage;
128};
129
130static int slots_per_page(struct kprobe_insn_cache *c)
131{
132 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133}
134
135enum kprobe_slot_state {
136 SLOT_CLEAN = 0,
137 SLOT_DIRTY = 1,
138 SLOT_USED = 2,
139};
140
141static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
142static struct kprobe_insn_cache kprobe_insn_slots = {
143 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144 .insn_size = MAX_INSN_SIZE,
145 .nr_garbage = 0,
146};
147static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148
149/**
150 * __get_insn_slot() - Find a slot on an executable page for an instruction.
151 * We allocate an executable page if there's no room on existing ones.
152 */
153static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154{
155 struct kprobe_insn_page *kip;
156
157 retry:
158 list_for_each_entry(kip, &c->pages, list) {
159 if (kip->nused < slots_per_page(c)) {
160 int i;
161 for (i = 0; i < slots_per_page(c); i++) {
162 if (kip->slot_used[i] == SLOT_CLEAN) {
163 kip->slot_used[i] = SLOT_USED;
164 kip->nused++;
165 return kip->insns + (i * c->insn_size);
166 }
167 }
168 /* kip->nused is broken. Fix it. */
169 kip->nused = slots_per_page(c);
170 WARN_ON(1);
171 }
172 }
173
174 /* If there are any garbage slots, collect it and try again. */
175 if (c->nr_garbage && collect_garbage_slots(c) == 0)
176 goto retry;
177
178 /* All out of space. Need to allocate a new page. */
179 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180 if (!kip)
181 return NULL;
182
183 /*
184 * Use module_alloc so this page is within +/- 2GB of where the
185 * kernel image and loaded module images reside. This is required
186 * so x86_64 can correctly handle the %rip-relative fixups.
187 */
188 kip->insns = module_alloc(PAGE_SIZE);
189 if (!kip->insns) {
190 kfree(kip);
191 return NULL;
192 }
193 INIT_LIST_HEAD(&kip->list);
194 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195 kip->slot_used[0] = SLOT_USED;
196 kip->nused = 1;
197 kip->ngarbage = 0;
198 list_add(&kip->list, &c->pages);
199 return kip->insns;
200}
201
202
203kprobe_opcode_t __kprobes *get_insn_slot(void)
204{
205 kprobe_opcode_t *ret = NULL;
206
207 mutex_lock(&kprobe_insn_mutex);
208 ret = __get_insn_slot(&kprobe_insn_slots);
209 mutex_unlock(&kprobe_insn_mutex);
210
211 return ret;
212}
213
214/* Return 1 if all garbages are collected, otherwise 0. */
215static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216{
217 kip->slot_used[idx] = SLOT_CLEAN;
218 kip->nused--;
219 if (kip->nused == 0) {
220 /*
221 * Page is no longer in use. Free it unless
222 * it's the last one. We keep the last one
223 * so as not to have to set it up again the
224 * next time somebody inserts a probe.
225 */
226 if (!list_is_singular(&kip->list)) {
227 list_del(&kip->list);
228 module_free(NULL, kip->insns);
229 kfree(kip);
230 }
231 return 1;
232 }
233 return 0;
234}
235
236static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237{
238 struct kprobe_insn_page *kip, *next;
239
240 /* Ensure no-one is interrupted on the garbages */
241 synchronize_sched();
242
243 list_for_each_entry_safe(kip, next, &c->pages, list) {
244 int i;
245 if (kip->ngarbage == 0)
246 continue;
247 kip->ngarbage = 0; /* we will collect all garbages */
248 for (i = 0; i < slots_per_page(c); i++) {
249 if (kip->slot_used[i] == SLOT_DIRTY &&
250 collect_one_slot(kip, i))
251 break;
252 }
253 }
254 c->nr_garbage = 0;
255 return 0;
256}
257
258static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259 kprobe_opcode_t *slot, int dirty)
260{
261 struct kprobe_insn_page *kip;
262
263 list_for_each_entry(kip, &c->pages, list) {
264 long idx = ((long)slot - (long)kip->insns) /
265 (c->insn_size * sizeof(kprobe_opcode_t));
266 if (idx >= 0 && idx < slots_per_page(c)) {
267 WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 if (dirty) {
269 kip->slot_used[idx] = SLOT_DIRTY;
270 kip->ngarbage++;
271 if (++c->nr_garbage > slots_per_page(c))
272 collect_garbage_slots(c);
273 } else
274 collect_one_slot(kip, idx);
275 return;
276 }
277 }
278 /* Could not free this slot. */
279 WARN_ON(1);
280}
281
282void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283{
284 mutex_lock(&kprobe_insn_mutex);
285 __free_insn_slot(&kprobe_insn_slots, slot, dirty);
286 mutex_unlock(&kprobe_insn_mutex);
287}
288#ifdef CONFIG_OPTPROBES
289/* For optimized_kprobe buffer */
290static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291static struct kprobe_insn_cache kprobe_optinsn_slots = {
292 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293 /* .insn_size is initialized later */
294 .nr_garbage = 0,
295};
296/* Get a slot for optimized_kprobe buffer */
297kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298{
299 kprobe_opcode_t *ret = NULL;
300
301 mutex_lock(&kprobe_optinsn_mutex);
302 ret = __get_insn_slot(&kprobe_optinsn_slots);
303 mutex_unlock(&kprobe_optinsn_mutex);
304
305 return ret;
306}
307
308void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309{
310 mutex_lock(&kprobe_optinsn_mutex);
311 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312 mutex_unlock(&kprobe_optinsn_mutex);
313}
314#endif
315#endif
316
317/* We have preemption disabled.. so it is safe to use __ versions */
318static inline void set_kprobe_instance(struct kprobe *kp)
319{
320 __this_cpu_write(kprobe_instance, kp);
321}
322
323static inline void reset_kprobe_instance(void)
324{
325 __this_cpu_write(kprobe_instance, NULL);
326}
327
328/*
329 * This routine is called either:
330 * - under the kprobe_mutex - during kprobe_[un]register()
331 * OR
332 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
333 */
334struct kprobe __kprobes *get_kprobe(void *addr)
335{
336 struct hlist_head *head;
337 struct hlist_node *node;
338 struct kprobe *p;
339
340 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341 hlist_for_each_entry_rcu(p, node, head, hlist) {
342 if (p->addr == addr)
343 return p;
344 }
345
346 return NULL;
347}
348
349static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350
351/* Return true if the kprobe is an aggregator */
352static inline int kprobe_aggrprobe(struct kprobe *p)
353{
354 return p->pre_handler == aggr_pre_handler;
355}
356
357/* Return true(!0) if the kprobe is unused */
358static inline int kprobe_unused(struct kprobe *p)
359{
360 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
361 list_empty(&p->list);
362}
363
364/*
365 * Keep all fields in the kprobe consistent
366 */
367static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
368{
369 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
370 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
371}
372
373#ifdef CONFIG_OPTPROBES
374/* NOTE: change this value only with kprobe_mutex held */
375static bool kprobes_allow_optimization;
376
377/*
378 * Call all pre_handler on the list, but ignores its return value.
379 * This must be called from arch-dep optimized caller.
380 */
381void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
382{
383 struct kprobe *kp;
384
385 list_for_each_entry_rcu(kp, &p->list, list) {
386 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
387 set_kprobe_instance(kp);
388 kp->pre_handler(kp, regs);
389 }
390 reset_kprobe_instance();
391 }
392}
393
394/* Free optimized instructions and optimized_kprobe */
395static __kprobes void free_aggr_kprobe(struct kprobe *p)
396{
397 struct optimized_kprobe *op;
398
399 op = container_of(p, struct optimized_kprobe, kp);
400 arch_remove_optimized_kprobe(op);
401 arch_remove_kprobe(p);
402 kfree(op);
403}
404
405/* Return true(!0) if the kprobe is ready for optimization. */
406static inline int kprobe_optready(struct kprobe *p)
407{
408 struct optimized_kprobe *op;
409
410 if (kprobe_aggrprobe(p)) {
411 op = container_of(p, struct optimized_kprobe, kp);
412 return arch_prepared_optinsn(&op->optinsn);
413 }
414
415 return 0;
416}
417
418/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
419static inline int kprobe_disarmed(struct kprobe *p)
420{
421 struct optimized_kprobe *op;
422
423 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
424 if (!kprobe_aggrprobe(p))
425 return kprobe_disabled(p);
426
427 op = container_of(p, struct optimized_kprobe, kp);
428
429 return kprobe_disabled(p) && list_empty(&op->list);
430}
431
432/* Return true(!0) if the probe is queued on (un)optimizing lists */
433static int __kprobes kprobe_queued(struct kprobe *p)
434{
435 struct optimized_kprobe *op;
436
437 if (kprobe_aggrprobe(p)) {
438 op = container_of(p, struct optimized_kprobe, kp);
439 if (!list_empty(&op->list))
440 return 1;
441 }
442 return 0;
443}
444
445/*
446 * Return an optimized kprobe whose optimizing code replaces
447 * instructions including addr (exclude breakpoint).
448 */
449static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
450{
451 int i;
452 struct kprobe *p = NULL;
453 struct optimized_kprobe *op;
454
455 /* Don't check i == 0, since that is a breakpoint case. */
456 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
457 p = get_kprobe((void *)(addr - i));
458
459 if (p && kprobe_optready(p)) {
460 op = container_of(p, struct optimized_kprobe, kp);
461 if (arch_within_optimized_kprobe(op, addr))
462 return p;
463 }
464
465 return NULL;
466}
467
468/* Optimization staging list, protected by kprobe_mutex */
469static LIST_HEAD(optimizing_list);
470static LIST_HEAD(unoptimizing_list);
471
472static void kprobe_optimizer(struct work_struct *work);
473static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
474static DECLARE_COMPLETION(optimizer_comp);
475#define OPTIMIZE_DELAY 5
476
477/*
478 * Optimize (replace a breakpoint with a jump) kprobes listed on
479 * optimizing_list.
480 */
481static __kprobes void do_optimize_kprobes(void)
482{
483 /* Optimization never be done when disarmed */
484 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
485 list_empty(&optimizing_list))
486 return;
487
488 /*
489 * The optimization/unoptimization refers online_cpus via
490 * stop_machine() and cpu-hotplug modifies online_cpus.
491 * And same time, text_mutex will be held in cpu-hotplug and here.
492 * This combination can cause a deadlock (cpu-hotplug try to lock
493 * text_mutex but stop_machine can not be done because online_cpus
494 * has been changed)
495 * To avoid this deadlock, we need to call get_online_cpus()
496 * for preventing cpu-hotplug outside of text_mutex locking.
497 */
498 get_online_cpus();
499 mutex_lock(&text_mutex);
500 arch_optimize_kprobes(&optimizing_list);
501 mutex_unlock(&text_mutex);
502 put_online_cpus();
503}
504
505/*
506 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
507 * if need) kprobes listed on unoptimizing_list.
508 */
509static __kprobes void do_unoptimize_kprobes(struct list_head *free_list)
510{
511 struct optimized_kprobe *op, *tmp;
512
513 /* Unoptimization must be done anytime */
514 if (list_empty(&unoptimizing_list))
515 return;
516
517 /* Ditto to do_optimize_kprobes */
518 get_online_cpus();
519 mutex_lock(&text_mutex);
520 arch_unoptimize_kprobes(&unoptimizing_list, free_list);
521 /* Loop free_list for disarming */
522 list_for_each_entry_safe(op, tmp, free_list, list) {
523 /* Disarm probes if marked disabled */
524 if (kprobe_disabled(&op->kp))
525 arch_disarm_kprobe(&op->kp);
526 if (kprobe_unused(&op->kp)) {
527 /*
528 * Remove unused probes from hash list. After waiting
529 * for synchronization, these probes are reclaimed.
530 * (reclaiming is done by do_free_cleaned_kprobes.)
531 */
532 hlist_del_rcu(&op->kp.hlist);
533 } else
534 list_del_init(&op->list);
535 }
536 mutex_unlock(&text_mutex);
537 put_online_cpus();
538}
539
540/* Reclaim all kprobes on the free_list */
541static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list)
542{
543 struct optimized_kprobe *op, *tmp;
544
545 list_for_each_entry_safe(op, tmp, free_list, list) {
546 BUG_ON(!kprobe_unused(&op->kp));
547 list_del_init(&op->list);
548 free_aggr_kprobe(&op->kp);
549 }
550}
551
552/* Start optimizer after OPTIMIZE_DELAY passed */
553static __kprobes void kick_kprobe_optimizer(void)
554{
555 if (!delayed_work_pending(&optimizing_work))
556 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
557}
558
559/* Kprobe jump optimizer */
560static __kprobes void kprobe_optimizer(struct work_struct *work)
561{
562 LIST_HEAD(free_list);
563
564 /* Lock modules while optimizing kprobes */
565 mutex_lock(&module_mutex);
566 mutex_lock(&kprobe_mutex);
567
568 /*
569 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
570 * kprobes before waiting for quiesence period.
571 */
572 do_unoptimize_kprobes(&free_list);
573
574 /*
575 * Step 2: Wait for quiesence period to ensure all running interrupts
576 * are done. Because optprobe may modify multiple instructions
577 * there is a chance that Nth instruction is interrupted. In that
578 * case, running interrupt can return to 2nd-Nth byte of jump
579 * instruction. This wait is for avoiding it.
580 */
581 synchronize_sched();
582
583 /* Step 3: Optimize kprobes after quiesence period */
584 do_optimize_kprobes();
585
586 /* Step 4: Free cleaned kprobes after quiesence period */
587 do_free_cleaned_kprobes(&free_list);
588
589 mutex_unlock(&kprobe_mutex);
590 mutex_unlock(&module_mutex);
591
592 /* Step 5: Kick optimizer again if needed */
593 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
594 kick_kprobe_optimizer();
595 else
596 /* Wake up all waiters */
597 complete_all(&optimizer_comp);
598}
599
600/* Wait for completing optimization and unoptimization */
601static __kprobes void wait_for_kprobe_optimizer(void)
602{
603 if (delayed_work_pending(&optimizing_work))
604 wait_for_completion(&optimizer_comp);
605}
606
607/* Optimize kprobe if p is ready to be optimized */
608static __kprobes void optimize_kprobe(struct kprobe *p)
609{
610 struct optimized_kprobe *op;
611
612 /* Check if the kprobe is disabled or not ready for optimization. */
613 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
614 (kprobe_disabled(p) || kprobes_all_disarmed))
615 return;
616
617 /* Both of break_handler and post_handler are not supported. */
618 if (p->break_handler || p->post_handler)
619 return;
620
621 op = container_of(p, struct optimized_kprobe, kp);
622
623 /* Check there is no other kprobes at the optimized instructions */
624 if (arch_check_optimized_kprobe(op) < 0)
625 return;
626
627 /* Check if it is already optimized. */
628 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
629 return;
630 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
631
632 if (!list_empty(&op->list))
633 /* This is under unoptimizing. Just dequeue the probe */
634 list_del_init(&op->list);
635 else {
636 list_add(&op->list, &optimizing_list);
637 kick_kprobe_optimizer();
638 }
639}
640
641/* Short cut to direct unoptimizing */
642static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
643{
644 get_online_cpus();
645 arch_unoptimize_kprobe(op);
646 put_online_cpus();
647 if (kprobe_disabled(&op->kp))
648 arch_disarm_kprobe(&op->kp);
649}
650
651/* Unoptimize a kprobe if p is optimized */
652static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
653{
654 struct optimized_kprobe *op;
655
656 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
657 return; /* This is not an optprobe nor optimized */
658
659 op = container_of(p, struct optimized_kprobe, kp);
660 if (!kprobe_optimized(p)) {
661 /* Unoptimized or unoptimizing case */
662 if (force && !list_empty(&op->list)) {
663 /*
664 * Only if this is unoptimizing kprobe and forced,
665 * forcibly unoptimize it. (No need to unoptimize
666 * unoptimized kprobe again :)
667 */
668 list_del_init(&op->list);
669 force_unoptimize_kprobe(op);
670 }
671 return;
672 }
673
674 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
675 if (!list_empty(&op->list)) {
676 /* Dequeue from the optimization queue */
677 list_del_init(&op->list);
678 return;
679 }
680 /* Optimized kprobe case */
681 if (force)
682 /* Forcibly update the code: this is a special case */
683 force_unoptimize_kprobe(op);
684 else {
685 list_add(&op->list, &unoptimizing_list);
686 kick_kprobe_optimizer();
687 }
688}
689
690/* Cancel unoptimizing for reusing */
691static void reuse_unused_kprobe(struct kprobe *ap)
692{
693 struct optimized_kprobe *op;
694
695 BUG_ON(!kprobe_unused(ap));
696 /*
697 * Unused kprobe MUST be on the way of delayed unoptimizing (means
698 * there is still a relative jump) and disabled.
699 */
700 op = container_of(ap, struct optimized_kprobe, kp);
701 if (unlikely(list_empty(&op->list)))
702 printk(KERN_WARNING "Warning: found a stray unused "
703 "aggrprobe@%p\n", ap->addr);
704 /* Enable the probe again */
705 ap->flags &= ~KPROBE_FLAG_DISABLED;
706 /* Optimize it again (remove from op->list) */
707 BUG_ON(!kprobe_optready(ap));
708 optimize_kprobe(ap);
709}
710
711/* Remove optimized instructions */
712static void __kprobes kill_optimized_kprobe(struct kprobe *p)
713{
714 struct optimized_kprobe *op;
715
716 op = container_of(p, struct optimized_kprobe, kp);
717 if (!list_empty(&op->list))
718 /* Dequeue from the (un)optimization queue */
719 list_del_init(&op->list);
720
721 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722 /* Don't touch the code, because it is already freed. */
723 arch_remove_optimized_kprobe(op);
724}
725
726/* Try to prepare optimized instructions */
727static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
728{
729 struct optimized_kprobe *op;
730
731 op = container_of(p, struct optimized_kprobe, kp);
732 arch_prepare_optimized_kprobe(op);
733}
734
735/* Allocate new optimized_kprobe and try to prepare optimized instructions */
736static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
737{
738 struct optimized_kprobe *op;
739
740 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
741 if (!op)
742 return NULL;
743
744 INIT_LIST_HEAD(&op->list);
745 op->kp.addr = p->addr;
746 arch_prepare_optimized_kprobe(op);
747
748 return &op->kp;
749}
750
751static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
752
753/*
754 * Prepare an optimized_kprobe and optimize it
755 * NOTE: p must be a normal registered kprobe
756 */
757static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
758{
759 struct kprobe *ap;
760 struct optimized_kprobe *op;
761
762 ap = alloc_aggr_kprobe(p);
763 if (!ap)
764 return;
765
766 op = container_of(ap, struct optimized_kprobe, kp);
767 if (!arch_prepared_optinsn(&op->optinsn)) {
768 /* If failed to setup optimizing, fallback to kprobe */
769 arch_remove_optimized_kprobe(op);
770 kfree(op);
771 return;
772 }
773
774 init_aggr_kprobe(ap, p);
775 optimize_kprobe(ap);
776}
777
778#ifdef CONFIG_SYSCTL
779/* This should be called with kprobe_mutex locked */
780static void __kprobes optimize_all_kprobes(void)
781{
782 struct hlist_head *head;
783 struct hlist_node *node;
784 struct kprobe *p;
785 unsigned int i;
786
787 /* If optimization is already allowed, just return */
788 if (kprobes_allow_optimization)
789 return;
790
791 kprobes_allow_optimization = true;
792 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
793 head = &kprobe_table[i];
794 hlist_for_each_entry_rcu(p, node, head, hlist)
795 if (!kprobe_disabled(p))
796 optimize_kprobe(p);
797 }
798 printk(KERN_INFO "Kprobes globally optimized\n");
799}
800
801/* This should be called with kprobe_mutex locked */
802static void __kprobes unoptimize_all_kprobes(void)
803{
804 struct hlist_head *head;
805 struct hlist_node *node;
806 struct kprobe *p;
807 unsigned int i;
808
809 /* If optimization is already prohibited, just return */
810 if (!kprobes_allow_optimization)
811 return;
812
813 kprobes_allow_optimization = false;
814 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
815 head = &kprobe_table[i];
816 hlist_for_each_entry_rcu(p, node, head, hlist) {
817 if (!kprobe_disabled(p))
818 unoptimize_kprobe(p, false);
819 }
820 }
821 /* Wait for unoptimizing completion */
822 wait_for_kprobe_optimizer();
823 printk(KERN_INFO "Kprobes globally unoptimized\n");
824}
825
826int sysctl_kprobes_optimization;
827int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
828 void __user *buffer, size_t *length,
829 loff_t *ppos)
830{
831 int ret;
832
833 mutex_lock(&kprobe_mutex);
834 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
835 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
836
837 if (sysctl_kprobes_optimization)
838 optimize_all_kprobes();
839 else
840 unoptimize_all_kprobes();
841 mutex_unlock(&kprobe_mutex);
842
843 return ret;
844}
845#endif /* CONFIG_SYSCTL */
846
847/* Put a breakpoint for a probe. Must be called with text_mutex locked */
848static void __kprobes __arm_kprobe(struct kprobe *p)
849{
850 struct kprobe *_p;
851
852 /* Check collision with other optimized kprobes */
853 _p = get_optimized_kprobe((unsigned long)p->addr);
854 if (unlikely(_p))
855 /* Fallback to unoptimized kprobe */
856 unoptimize_kprobe(_p, true);
857
858 arch_arm_kprobe(p);
859 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
860}
861
862/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
863static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
864{
865 struct kprobe *_p;
866
867 unoptimize_kprobe(p, false); /* Try to unoptimize */
868
869 if (!kprobe_queued(p)) {
870 arch_disarm_kprobe(p);
871 /* If another kprobe was blocked, optimize it. */
872 _p = get_optimized_kprobe((unsigned long)p->addr);
873 if (unlikely(_p) && reopt)
874 optimize_kprobe(_p);
875 }
876 /* TODO: reoptimize others after unoptimized this probe */
877}
878
879#else /* !CONFIG_OPTPROBES */
880
881#define optimize_kprobe(p) do {} while (0)
882#define unoptimize_kprobe(p, f) do {} while (0)
883#define kill_optimized_kprobe(p) do {} while (0)
884#define prepare_optimized_kprobe(p) do {} while (0)
885#define try_to_optimize_kprobe(p) do {} while (0)
886#define __arm_kprobe(p) arch_arm_kprobe(p)
887#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
888#define kprobe_disarmed(p) kprobe_disabled(p)
889#define wait_for_kprobe_optimizer() do {} while (0)
890
891/* There should be no unused kprobes can be reused without optimization */
892static void reuse_unused_kprobe(struct kprobe *ap)
893{
894 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
895 BUG_ON(kprobe_unused(ap));
896}
897
898static __kprobes void free_aggr_kprobe(struct kprobe *p)
899{
900 arch_remove_kprobe(p);
901 kfree(p);
902}
903
904static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
905{
906 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
907}
908#endif /* CONFIG_OPTPROBES */
909
910/* Arm a kprobe with text_mutex */
911static void __kprobes arm_kprobe(struct kprobe *kp)
912{
913 /*
914 * Here, since __arm_kprobe() doesn't use stop_machine(),
915 * this doesn't cause deadlock on text_mutex. So, we don't
916 * need get_online_cpus().
917 */
918 mutex_lock(&text_mutex);
919 __arm_kprobe(kp);
920 mutex_unlock(&text_mutex);
921}
922
923/* Disarm a kprobe with text_mutex */
924static void __kprobes disarm_kprobe(struct kprobe *kp)
925{
926 /* Ditto */
927 mutex_lock(&text_mutex);
928 __disarm_kprobe(kp, true);
929 mutex_unlock(&text_mutex);
930}
931
932/*
933 * Aggregate handlers for multiple kprobes support - these handlers
934 * take care of invoking the individual kprobe handlers on p->list
935 */
936static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
937{
938 struct kprobe *kp;
939
940 list_for_each_entry_rcu(kp, &p->list, list) {
941 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
942 set_kprobe_instance(kp);
943 if (kp->pre_handler(kp, regs))
944 return 1;
945 }
946 reset_kprobe_instance();
947 }
948 return 0;
949}
950
951static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
952 unsigned long flags)
953{
954 struct kprobe *kp;
955
956 list_for_each_entry_rcu(kp, &p->list, list) {
957 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
958 set_kprobe_instance(kp);
959 kp->post_handler(kp, regs, flags);
960 reset_kprobe_instance();
961 }
962 }
963}
964
965static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
966 int trapnr)
967{
968 struct kprobe *cur = __this_cpu_read(kprobe_instance);
969
970 /*
971 * if we faulted "during" the execution of a user specified
972 * probe handler, invoke just that probe's fault handler
973 */
974 if (cur && cur->fault_handler) {
975 if (cur->fault_handler(cur, regs, trapnr))
976 return 1;
977 }
978 return 0;
979}
980
981static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
982{
983 struct kprobe *cur = __this_cpu_read(kprobe_instance);
984 int ret = 0;
985
986 if (cur && cur->break_handler) {
987 if (cur->break_handler(cur, regs))
988 ret = 1;
989 }
990 reset_kprobe_instance();
991 return ret;
992}
993
994/* Walks the list and increments nmissed count for multiprobe case */
995void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
996{
997 struct kprobe *kp;
998 if (!kprobe_aggrprobe(p)) {
999 p->nmissed++;
1000 } else {
1001 list_for_each_entry_rcu(kp, &p->list, list)
1002 kp->nmissed++;
1003 }
1004 return;
1005}
1006
1007void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1008 struct hlist_head *head)
1009{
1010 struct kretprobe *rp = ri->rp;
1011
1012 /* remove rp inst off the rprobe_inst_table */
1013 hlist_del(&ri->hlist);
1014 INIT_HLIST_NODE(&ri->hlist);
1015 if (likely(rp)) {
1016 raw_spin_lock(&rp->lock);
1017 hlist_add_head(&ri->hlist, &rp->free_instances);
1018 raw_spin_unlock(&rp->lock);
1019 } else
1020 /* Unregistering */
1021 hlist_add_head(&ri->hlist, head);
1022}
1023
1024void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1025 struct hlist_head **head, unsigned long *flags)
1026__acquires(hlist_lock)
1027{
1028 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1029 raw_spinlock_t *hlist_lock;
1030
1031 *head = &kretprobe_inst_table[hash];
1032 hlist_lock = kretprobe_table_lock_ptr(hash);
1033 raw_spin_lock_irqsave(hlist_lock, *flags);
1034}
1035
1036static void __kprobes kretprobe_table_lock(unsigned long hash,
1037 unsigned long *flags)
1038__acquires(hlist_lock)
1039{
1040 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1041 raw_spin_lock_irqsave(hlist_lock, *flags);
1042}
1043
1044void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1045 unsigned long *flags)
1046__releases(hlist_lock)
1047{
1048 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1049 raw_spinlock_t *hlist_lock;
1050
1051 hlist_lock = kretprobe_table_lock_ptr(hash);
1052 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1053}
1054
1055static void __kprobes kretprobe_table_unlock(unsigned long hash,
1056 unsigned long *flags)
1057__releases(hlist_lock)
1058{
1059 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1060 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1061}
1062
1063/*
1064 * This function is called from finish_task_switch when task tk becomes dead,
1065 * so that we can recycle any function-return probe instances associated
1066 * with this task. These left over instances represent probed functions
1067 * that have been called but will never return.
1068 */
1069void __kprobes kprobe_flush_task(struct task_struct *tk)
1070{
1071 struct kretprobe_instance *ri;
1072 struct hlist_head *head, empty_rp;
1073 struct hlist_node *node, *tmp;
1074 unsigned long hash, flags = 0;
1075
1076 if (unlikely(!kprobes_initialized))
1077 /* Early boot. kretprobe_table_locks not yet initialized. */
1078 return;
1079
1080 INIT_HLIST_HEAD(&empty_rp);
1081 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1082 head = &kretprobe_inst_table[hash];
1083 kretprobe_table_lock(hash, &flags);
1084 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
1085 if (ri->task == tk)
1086 recycle_rp_inst(ri, &empty_rp);
1087 }
1088 kretprobe_table_unlock(hash, &flags);
1089 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
1090 hlist_del(&ri->hlist);
1091 kfree(ri);
1092 }
1093}
1094
1095static inline void free_rp_inst(struct kretprobe *rp)
1096{
1097 struct kretprobe_instance *ri;
1098 struct hlist_node *pos, *next;
1099
1100 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
1101 hlist_del(&ri->hlist);
1102 kfree(ri);
1103 }
1104}
1105
1106static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1107{
1108 unsigned long flags, hash;
1109 struct kretprobe_instance *ri;
1110 struct hlist_node *pos, *next;
1111 struct hlist_head *head;
1112
1113 /* No race here */
1114 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1115 kretprobe_table_lock(hash, &flags);
1116 head = &kretprobe_inst_table[hash];
1117 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
1118 if (ri->rp == rp)
1119 ri->rp = NULL;
1120 }
1121 kretprobe_table_unlock(hash, &flags);
1122 }
1123 free_rp_inst(rp);
1124}
1125
1126/*
1127* Add the new probe to ap->list. Fail if this is the
1128* second jprobe at the address - two jprobes can't coexist
1129*/
1130static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1131{
1132 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1133
1134 if (p->break_handler || p->post_handler)
1135 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1136
1137 if (p->break_handler) {
1138 if (ap->break_handler)
1139 return -EEXIST;
1140 list_add_tail_rcu(&p->list, &ap->list);
1141 ap->break_handler = aggr_break_handler;
1142 } else
1143 list_add_rcu(&p->list, &ap->list);
1144 if (p->post_handler && !ap->post_handler)
1145 ap->post_handler = aggr_post_handler;
1146
1147 if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
1148 ap->flags &= ~KPROBE_FLAG_DISABLED;
1149 if (!kprobes_all_disarmed)
1150 /* Arm the breakpoint again. */
1151 __arm_kprobe(ap);
1152 }
1153 return 0;
1154}
1155
1156/*
1157 * Fill in the required fields of the "manager kprobe". Replace the
1158 * earlier kprobe in the hlist with the manager kprobe
1159 */
1160static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1161{
1162 /* Copy p's insn slot to ap */
1163 copy_kprobe(p, ap);
1164 flush_insn_slot(ap);
1165 ap->addr = p->addr;
1166 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1167 ap->pre_handler = aggr_pre_handler;
1168 ap->fault_handler = aggr_fault_handler;
1169 /* We don't care the kprobe which has gone. */
1170 if (p->post_handler && !kprobe_gone(p))
1171 ap->post_handler = aggr_post_handler;
1172 if (p->break_handler && !kprobe_gone(p))
1173 ap->break_handler = aggr_break_handler;
1174
1175 INIT_LIST_HEAD(&ap->list);
1176 INIT_HLIST_NODE(&ap->hlist);
1177
1178 list_add_rcu(&p->list, &ap->list);
1179 hlist_replace_rcu(&p->hlist, &ap->hlist);
1180}
1181
1182/*
1183 * This is the second or subsequent kprobe at the address - handle
1184 * the intricacies
1185 */
1186static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1187 struct kprobe *p)
1188{
1189 int ret = 0;
1190 struct kprobe *ap = orig_p;
1191
1192 if (!kprobe_aggrprobe(orig_p)) {
1193 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1194 ap = alloc_aggr_kprobe(orig_p);
1195 if (!ap)
1196 return -ENOMEM;
1197 init_aggr_kprobe(ap, orig_p);
1198 } else if (kprobe_unused(ap))
1199 /* This probe is going to die. Rescue it */
1200 reuse_unused_kprobe(ap);
1201
1202 if (kprobe_gone(ap)) {
1203 /*
1204 * Attempting to insert new probe at the same location that
1205 * had a probe in the module vaddr area which already
1206 * freed. So, the instruction slot has already been
1207 * released. We need a new slot for the new probe.
1208 */
1209 ret = arch_prepare_kprobe(ap);
1210 if (ret)
1211 /*
1212 * Even if fail to allocate new slot, don't need to
1213 * free aggr_probe. It will be used next time, or
1214 * freed by unregister_kprobe.
1215 */
1216 return ret;
1217
1218 /* Prepare optimized instructions if possible. */
1219 prepare_optimized_kprobe(ap);
1220
1221 /*
1222 * Clear gone flag to prevent allocating new slot again, and
1223 * set disabled flag because it is not armed yet.
1224 */
1225 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1226 | KPROBE_FLAG_DISABLED;
1227 }
1228
1229 /* Copy ap's insn slot to p */
1230 copy_kprobe(ap, p);
1231 return add_new_kprobe(ap, p);
1232}
1233
1234static int __kprobes in_kprobes_functions(unsigned long addr)
1235{
1236 struct kprobe_blackpoint *kb;
1237
1238 if (addr >= (unsigned long)__kprobes_text_start &&
1239 addr < (unsigned long)__kprobes_text_end)
1240 return -EINVAL;
1241 /*
1242 * If there exists a kprobe_blacklist, verify and
1243 * fail any probe registration in the prohibited area
1244 */
1245 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1246 if (kb->start_addr) {
1247 if (addr >= kb->start_addr &&
1248 addr < (kb->start_addr + kb->range))
1249 return -EINVAL;
1250 }
1251 }
1252 return 0;
1253}
1254
1255/*
1256 * If we have a symbol_name argument, look it up and add the offset field
1257 * to it. This way, we can specify a relative address to a symbol.
1258 * This returns encoded errors if it fails to look up symbol or invalid
1259 * combination of parameters.
1260 */
1261static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1262{
1263 kprobe_opcode_t *addr = p->addr;
1264
1265 if ((p->symbol_name && p->addr) ||
1266 (!p->symbol_name && !p->addr))
1267 goto invalid;
1268
1269 if (p->symbol_name) {
1270 kprobe_lookup_name(p->symbol_name, addr);
1271 if (!addr)
1272 return ERR_PTR(-ENOENT);
1273 }
1274
1275 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1276 if (addr)
1277 return addr;
1278
1279invalid:
1280 return ERR_PTR(-EINVAL);
1281}
1282
1283/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1284static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1285{
1286 struct kprobe *ap, *list_p;
1287
1288 ap = get_kprobe(p->addr);
1289 if (unlikely(!ap))
1290 return NULL;
1291
1292 if (p != ap) {
1293 list_for_each_entry_rcu(list_p, &ap->list, list)
1294 if (list_p == p)
1295 /* kprobe p is a valid probe */
1296 goto valid;
1297 return NULL;
1298 }
1299valid:
1300 return ap;
1301}
1302
1303/* Return error if the kprobe is being re-registered */
1304static inline int check_kprobe_rereg(struct kprobe *p)
1305{
1306 int ret = 0;
1307
1308 mutex_lock(&kprobe_mutex);
1309 if (__get_valid_kprobe(p))
1310 ret = -EINVAL;
1311 mutex_unlock(&kprobe_mutex);
1312
1313 return ret;
1314}
1315
1316int __kprobes register_kprobe(struct kprobe *p)
1317{
1318 int ret = 0;
1319 struct kprobe *old_p;
1320 struct module *probed_mod;
1321 kprobe_opcode_t *addr;
1322
1323 addr = kprobe_addr(p);
1324 if (IS_ERR(addr))
1325 return PTR_ERR(addr);
1326 p->addr = addr;
1327
1328 ret = check_kprobe_rereg(p);
1329 if (ret)
1330 return ret;
1331
1332 jump_label_lock();
1333 preempt_disable();
1334 if (!kernel_text_address((unsigned long) p->addr) ||
1335 in_kprobes_functions((unsigned long) p->addr) ||
1336 ftrace_text_reserved(p->addr, p->addr) ||
1337 jump_label_text_reserved(p->addr, p->addr)) {
1338 ret = -EINVAL;
1339 goto cannot_probe;
1340 }
1341
1342 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1343 p->flags &= KPROBE_FLAG_DISABLED;
1344
1345 /*
1346 * Check if are we probing a module.
1347 */
1348 probed_mod = __module_text_address((unsigned long) p->addr);
1349 if (probed_mod) {
1350 /* Return -ENOENT if fail. */
1351 ret = -ENOENT;
1352 /*
1353 * We must hold a refcount of the probed module while updating
1354 * its code to prohibit unexpected unloading.
1355 */
1356 if (unlikely(!try_module_get(probed_mod)))
1357 goto cannot_probe;
1358
1359 /*
1360 * If the module freed .init.text, we couldn't insert
1361 * kprobes in there.
1362 */
1363 if (within_module_init((unsigned long)p->addr, probed_mod) &&
1364 probed_mod->state != MODULE_STATE_COMING) {
1365 module_put(probed_mod);
1366 goto cannot_probe;
1367 }
1368 /* ret will be updated by following code */
1369 }
1370 preempt_enable();
1371 jump_label_unlock();
1372
1373 p->nmissed = 0;
1374 INIT_LIST_HEAD(&p->list);
1375 mutex_lock(&kprobe_mutex);
1376
1377 jump_label_lock(); /* needed to call jump_label_text_reserved() */
1378
1379 get_online_cpus(); /* For avoiding text_mutex deadlock. */
1380 mutex_lock(&text_mutex);
1381
1382 old_p = get_kprobe(p->addr);
1383 if (old_p) {
1384 /* Since this may unoptimize old_p, locking text_mutex. */
1385 ret = register_aggr_kprobe(old_p, p);
1386 goto out;
1387 }
1388
1389 ret = arch_prepare_kprobe(p);
1390 if (ret)
1391 goto out;
1392
1393 INIT_HLIST_NODE(&p->hlist);
1394 hlist_add_head_rcu(&p->hlist,
1395 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1396
1397 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1398 __arm_kprobe(p);
1399
1400 /* Try to optimize kprobe */
1401 try_to_optimize_kprobe(p);
1402
1403out:
1404 mutex_unlock(&text_mutex);
1405 put_online_cpus();
1406 jump_label_unlock();
1407 mutex_unlock(&kprobe_mutex);
1408
1409 if (probed_mod)
1410 module_put(probed_mod);
1411
1412 return ret;
1413
1414cannot_probe:
1415 preempt_enable();
1416 jump_label_unlock();
1417 return ret;
1418}
1419EXPORT_SYMBOL_GPL(register_kprobe);
1420
1421/* Check if all probes on the aggrprobe are disabled */
1422static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1423{
1424 struct kprobe *kp;
1425
1426 list_for_each_entry_rcu(kp, &ap->list, list)
1427 if (!kprobe_disabled(kp))
1428 /*
1429 * There is an active probe on the list.
1430 * We can't disable this ap.
1431 */
1432 return 0;
1433
1434 return 1;
1435}
1436
1437/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1438static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1439{
1440 struct kprobe *orig_p;
1441
1442 /* Get an original kprobe for return */
1443 orig_p = __get_valid_kprobe(p);
1444 if (unlikely(orig_p == NULL))
1445 return NULL;
1446
1447 if (!kprobe_disabled(p)) {
1448 /* Disable probe if it is a child probe */
1449 if (p != orig_p)
1450 p->flags |= KPROBE_FLAG_DISABLED;
1451
1452 /* Try to disarm and disable this/parent probe */
1453 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1454 disarm_kprobe(orig_p);
1455 orig_p->flags |= KPROBE_FLAG_DISABLED;
1456 }
1457 }
1458
1459 return orig_p;
1460}
1461
1462/*
1463 * Unregister a kprobe without a scheduler synchronization.
1464 */
1465static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1466{
1467 struct kprobe *ap, *list_p;
1468
1469 /* Disable kprobe. This will disarm it if needed. */
1470 ap = __disable_kprobe(p);
1471 if (ap == NULL)
1472 return -EINVAL;
1473
1474 if (ap == p)
1475 /*
1476 * This probe is an independent(and non-optimized) kprobe
1477 * (not an aggrprobe). Remove from the hash list.
1478 */
1479 goto disarmed;
1480
1481 /* Following process expects this probe is an aggrprobe */
1482 WARN_ON(!kprobe_aggrprobe(ap));
1483
1484 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1485 /*
1486 * !disarmed could be happen if the probe is under delayed
1487 * unoptimizing.
1488 */
1489 goto disarmed;
1490 else {
1491 /* If disabling probe has special handlers, update aggrprobe */
1492 if (p->break_handler && !kprobe_gone(p))
1493 ap->break_handler = NULL;
1494 if (p->post_handler && !kprobe_gone(p)) {
1495 list_for_each_entry_rcu(list_p, &ap->list, list) {
1496 if ((list_p != p) && (list_p->post_handler))
1497 goto noclean;
1498 }
1499 ap->post_handler = NULL;
1500 }
1501noclean:
1502 /*
1503 * Remove from the aggrprobe: this path will do nothing in
1504 * __unregister_kprobe_bottom().
1505 */
1506 list_del_rcu(&p->list);
1507 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1508 /*
1509 * Try to optimize this probe again, because post
1510 * handler may have been changed.
1511 */
1512 optimize_kprobe(ap);
1513 }
1514 return 0;
1515
1516disarmed:
1517 BUG_ON(!kprobe_disarmed(ap));
1518 hlist_del_rcu(&ap->hlist);
1519 return 0;
1520}
1521
1522static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1523{
1524 struct kprobe *ap;
1525
1526 if (list_empty(&p->list))
1527 /* This is an independent kprobe */
1528 arch_remove_kprobe(p);
1529 else if (list_is_singular(&p->list)) {
1530 /* This is the last child of an aggrprobe */
1531 ap = list_entry(p->list.next, struct kprobe, list);
1532 list_del(&p->list);
1533 free_aggr_kprobe(ap);
1534 }
1535 /* Otherwise, do nothing. */
1536}
1537
1538int __kprobes register_kprobes(struct kprobe **kps, int num)
1539{
1540 int i, ret = 0;
1541
1542 if (num <= 0)
1543 return -EINVAL;
1544 for (i = 0; i < num; i++) {
1545 ret = register_kprobe(kps[i]);
1546 if (ret < 0) {
1547 if (i > 0)
1548 unregister_kprobes(kps, i);
1549 break;
1550 }
1551 }
1552 return ret;
1553}
1554EXPORT_SYMBOL_GPL(register_kprobes);
1555
1556void __kprobes unregister_kprobe(struct kprobe *p)
1557{
1558 unregister_kprobes(&p, 1);
1559}
1560EXPORT_SYMBOL_GPL(unregister_kprobe);
1561
1562void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1563{
1564 int i;
1565
1566 if (num <= 0)
1567 return;
1568 mutex_lock(&kprobe_mutex);
1569 for (i = 0; i < num; i++)
1570 if (__unregister_kprobe_top(kps[i]) < 0)
1571 kps[i]->addr = NULL;
1572 mutex_unlock(&kprobe_mutex);
1573
1574 synchronize_sched();
1575 for (i = 0; i < num; i++)
1576 if (kps[i]->addr)
1577 __unregister_kprobe_bottom(kps[i]);
1578}
1579EXPORT_SYMBOL_GPL(unregister_kprobes);
1580
1581static struct notifier_block kprobe_exceptions_nb = {
1582 .notifier_call = kprobe_exceptions_notify,
1583 .priority = 0x7fffffff /* we need to be notified first */
1584};
1585
1586unsigned long __weak arch_deref_entry_point(void *entry)
1587{
1588 return (unsigned long)entry;
1589}
1590
1591int __kprobes register_jprobes(struct jprobe **jps, int num)
1592{
1593 struct jprobe *jp;
1594 int ret = 0, i;
1595
1596 if (num <= 0)
1597 return -EINVAL;
1598 for (i = 0; i < num; i++) {
1599 unsigned long addr, offset;
1600 jp = jps[i];
1601 addr = arch_deref_entry_point(jp->entry);
1602
1603 /* Verify probepoint is a function entry point */
1604 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1605 offset == 0) {
1606 jp->kp.pre_handler = setjmp_pre_handler;
1607 jp->kp.break_handler = longjmp_break_handler;
1608 ret = register_kprobe(&jp->kp);
1609 } else
1610 ret = -EINVAL;
1611
1612 if (ret < 0) {
1613 if (i > 0)
1614 unregister_jprobes(jps, i);
1615 break;
1616 }
1617 }
1618 return ret;
1619}
1620EXPORT_SYMBOL_GPL(register_jprobes);
1621
1622int __kprobes register_jprobe(struct jprobe *jp)
1623{
1624 return register_jprobes(&jp, 1);
1625}
1626EXPORT_SYMBOL_GPL(register_jprobe);
1627
1628void __kprobes unregister_jprobe(struct jprobe *jp)
1629{
1630 unregister_jprobes(&jp, 1);
1631}
1632EXPORT_SYMBOL_GPL(unregister_jprobe);
1633
1634void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1635{
1636 int i;
1637
1638 if (num <= 0)
1639 return;
1640 mutex_lock(&kprobe_mutex);
1641 for (i = 0; i < num; i++)
1642 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1643 jps[i]->kp.addr = NULL;
1644 mutex_unlock(&kprobe_mutex);
1645
1646 synchronize_sched();
1647 for (i = 0; i < num; i++) {
1648 if (jps[i]->kp.addr)
1649 __unregister_kprobe_bottom(&jps[i]->kp);
1650 }
1651}
1652EXPORT_SYMBOL_GPL(unregister_jprobes);
1653
1654#ifdef CONFIG_KRETPROBES
1655/*
1656 * This kprobe pre_handler is registered with every kretprobe. When probe
1657 * hits it will set up the return probe.
1658 */
1659static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1660 struct pt_regs *regs)
1661{
1662 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1663 unsigned long hash, flags = 0;
1664 struct kretprobe_instance *ri;
1665
1666 /*TODO: consider to only swap the RA after the last pre_handler fired */
1667 hash = hash_ptr(current, KPROBE_HASH_BITS);
1668 raw_spin_lock_irqsave(&rp->lock, flags);
1669 if (!hlist_empty(&rp->free_instances)) {
1670 ri = hlist_entry(rp->free_instances.first,
1671 struct kretprobe_instance, hlist);
1672 hlist_del(&ri->hlist);
1673 raw_spin_unlock_irqrestore(&rp->lock, flags);
1674
1675 ri->rp = rp;
1676 ri->task = current;
1677
1678 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1679 raw_spin_lock_irqsave(&rp->lock, flags);
1680 hlist_add_head(&ri->hlist, &rp->free_instances);
1681 raw_spin_unlock_irqrestore(&rp->lock, flags);
1682 return 0;
1683 }
1684
1685 arch_prepare_kretprobe(ri, regs);
1686
1687 /* XXX(hch): why is there no hlist_move_head? */
1688 INIT_HLIST_NODE(&ri->hlist);
1689 kretprobe_table_lock(hash, &flags);
1690 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1691 kretprobe_table_unlock(hash, &flags);
1692 } else {
1693 rp->nmissed++;
1694 raw_spin_unlock_irqrestore(&rp->lock, flags);
1695 }
1696 return 0;
1697}
1698
1699int __kprobes register_kretprobe(struct kretprobe *rp)
1700{
1701 int ret = 0;
1702 struct kretprobe_instance *inst;
1703 int i;
1704 void *addr;
1705
1706 if (kretprobe_blacklist_size) {
1707 addr = kprobe_addr(&rp->kp);
1708 if (IS_ERR(addr))
1709 return PTR_ERR(addr);
1710
1711 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1712 if (kretprobe_blacklist[i].addr == addr)
1713 return -EINVAL;
1714 }
1715 }
1716
1717 rp->kp.pre_handler = pre_handler_kretprobe;
1718 rp->kp.post_handler = NULL;
1719 rp->kp.fault_handler = NULL;
1720 rp->kp.break_handler = NULL;
1721
1722 /* Pre-allocate memory for max kretprobe instances */
1723 if (rp->maxactive <= 0) {
1724#ifdef CONFIG_PREEMPT
1725 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1726#else
1727 rp->maxactive = num_possible_cpus();
1728#endif
1729 }
1730 raw_spin_lock_init(&rp->lock);
1731 INIT_HLIST_HEAD(&rp->free_instances);
1732 for (i = 0; i < rp->maxactive; i++) {
1733 inst = kmalloc(sizeof(struct kretprobe_instance) +
1734 rp->data_size, GFP_KERNEL);
1735 if (inst == NULL) {
1736 free_rp_inst(rp);
1737 return -ENOMEM;
1738 }
1739 INIT_HLIST_NODE(&inst->hlist);
1740 hlist_add_head(&inst->hlist, &rp->free_instances);
1741 }
1742
1743 rp->nmissed = 0;
1744 /* Establish function entry probe point */
1745 ret = register_kprobe(&rp->kp);
1746 if (ret != 0)
1747 free_rp_inst(rp);
1748 return ret;
1749}
1750EXPORT_SYMBOL_GPL(register_kretprobe);
1751
1752int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1753{
1754 int ret = 0, i;
1755
1756 if (num <= 0)
1757 return -EINVAL;
1758 for (i = 0; i < num; i++) {
1759 ret = register_kretprobe(rps[i]);
1760 if (ret < 0) {
1761 if (i > 0)
1762 unregister_kretprobes(rps, i);
1763 break;
1764 }
1765 }
1766 return ret;
1767}
1768EXPORT_SYMBOL_GPL(register_kretprobes);
1769
1770void __kprobes unregister_kretprobe(struct kretprobe *rp)
1771{
1772 unregister_kretprobes(&rp, 1);
1773}
1774EXPORT_SYMBOL_GPL(unregister_kretprobe);
1775
1776void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1777{
1778 int i;
1779
1780 if (num <= 0)
1781 return;
1782 mutex_lock(&kprobe_mutex);
1783 for (i = 0; i < num; i++)
1784 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1785 rps[i]->kp.addr = NULL;
1786 mutex_unlock(&kprobe_mutex);
1787
1788 synchronize_sched();
1789 for (i = 0; i < num; i++) {
1790 if (rps[i]->kp.addr) {
1791 __unregister_kprobe_bottom(&rps[i]->kp);
1792 cleanup_rp_inst(rps[i]);
1793 }
1794 }
1795}
1796EXPORT_SYMBOL_GPL(unregister_kretprobes);
1797
1798#else /* CONFIG_KRETPROBES */
1799int __kprobes register_kretprobe(struct kretprobe *rp)
1800{
1801 return -ENOSYS;
1802}
1803EXPORT_SYMBOL_GPL(register_kretprobe);
1804
1805int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1806{
1807 return -ENOSYS;
1808}
1809EXPORT_SYMBOL_GPL(register_kretprobes);
1810
1811void __kprobes unregister_kretprobe(struct kretprobe *rp)
1812{
1813}
1814EXPORT_SYMBOL_GPL(unregister_kretprobe);
1815
1816void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1817{
1818}
1819EXPORT_SYMBOL_GPL(unregister_kretprobes);
1820
1821static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1822 struct pt_regs *regs)
1823{
1824 return 0;
1825}
1826
1827#endif /* CONFIG_KRETPROBES */
1828
1829/* Set the kprobe gone and remove its instruction buffer. */
1830static void __kprobes kill_kprobe(struct kprobe *p)
1831{
1832 struct kprobe *kp;
1833
1834 p->flags |= KPROBE_FLAG_GONE;
1835 if (kprobe_aggrprobe(p)) {
1836 /*
1837 * If this is an aggr_kprobe, we have to list all the
1838 * chained probes and mark them GONE.
1839 */
1840 list_for_each_entry_rcu(kp, &p->list, list)
1841 kp->flags |= KPROBE_FLAG_GONE;
1842 p->post_handler = NULL;
1843 p->break_handler = NULL;
1844 kill_optimized_kprobe(p);
1845 }
1846 /*
1847 * Here, we can remove insn_slot safely, because no thread calls
1848 * the original probed function (which will be freed soon) any more.
1849 */
1850 arch_remove_kprobe(p);
1851}
1852
1853/* Disable one kprobe */
1854int __kprobes disable_kprobe(struct kprobe *kp)
1855{
1856 int ret = 0;
1857
1858 mutex_lock(&kprobe_mutex);
1859
1860 /* Disable this kprobe */
1861 if (__disable_kprobe(kp) == NULL)
1862 ret = -EINVAL;
1863
1864 mutex_unlock(&kprobe_mutex);
1865 return ret;
1866}
1867EXPORT_SYMBOL_GPL(disable_kprobe);
1868
1869/* Enable one kprobe */
1870int __kprobes enable_kprobe(struct kprobe *kp)
1871{
1872 int ret = 0;
1873 struct kprobe *p;
1874
1875 mutex_lock(&kprobe_mutex);
1876
1877 /* Check whether specified probe is valid. */
1878 p = __get_valid_kprobe(kp);
1879 if (unlikely(p == NULL)) {
1880 ret = -EINVAL;
1881 goto out;
1882 }
1883
1884 if (kprobe_gone(kp)) {
1885 /* This kprobe has gone, we couldn't enable it. */
1886 ret = -EINVAL;
1887 goto out;
1888 }
1889
1890 if (p != kp)
1891 kp->flags &= ~KPROBE_FLAG_DISABLED;
1892
1893 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1894 p->flags &= ~KPROBE_FLAG_DISABLED;
1895 arm_kprobe(p);
1896 }
1897out:
1898 mutex_unlock(&kprobe_mutex);
1899 return ret;
1900}
1901EXPORT_SYMBOL_GPL(enable_kprobe);
1902
1903void __kprobes dump_kprobe(struct kprobe *kp)
1904{
1905 printk(KERN_WARNING "Dumping kprobe:\n");
1906 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1907 kp->symbol_name, kp->addr, kp->offset);
1908}
1909
1910/* Module notifier call back, checking kprobes on the module */
1911static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1912 unsigned long val, void *data)
1913{
1914 struct module *mod = data;
1915 struct hlist_head *head;
1916 struct hlist_node *node;
1917 struct kprobe *p;
1918 unsigned int i;
1919 int checkcore = (val == MODULE_STATE_GOING);
1920
1921 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1922 return NOTIFY_DONE;
1923
1924 /*
1925 * When MODULE_STATE_GOING was notified, both of module .text and
1926 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1927 * notified, only .init.text section would be freed. We need to
1928 * disable kprobes which have been inserted in the sections.
1929 */
1930 mutex_lock(&kprobe_mutex);
1931 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1932 head = &kprobe_table[i];
1933 hlist_for_each_entry_rcu(p, node, head, hlist)
1934 if (within_module_init((unsigned long)p->addr, mod) ||
1935 (checkcore &&
1936 within_module_core((unsigned long)p->addr, mod))) {
1937 /*
1938 * The vaddr this probe is installed will soon
1939 * be vfreed buy not synced to disk. Hence,
1940 * disarming the breakpoint isn't needed.
1941 */
1942 kill_kprobe(p);
1943 }
1944 }
1945 mutex_unlock(&kprobe_mutex);
1946 return NOTIFY_DONE;
1947}
1948
1949static struct notifier_block kprobe_module_nb = {
1950 .notifier_call = kprobes_module_callback,
1951 .priority = 0
1952};
1953
1954static int __init init_kprobes(void)
1955{
1956 int i, err = 0;
1957 unsigned long offset = 0, size = 0;
1958 char *modname, namebuf[128];
1959 const char *symbol_name;
1960 void *addr;
1961 struct kprobe_blackpoint *kb;
1962
1963 /* FIXME allocate the probe table, currently defined statically */
1964 /* initialize all list heads */
1965 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1966 INIT_HLIST_HEAD(&kprobe_table[i]);
1967 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1968 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
1969 }
1970
1971 /*
1972 * Lookup and populate the kprobe_blacklist.
1973 *
1974 * Unlike the kretprobe blacklist, we'll need to determine
1975 * the range of addresses that belong to the said functions,
1976 * since a kprobe need not necessarily be at the beginning
1977 * of a function.
1978 */
1979 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1980 kprobe_lookup_name(kb->name, addr);
1981 if (!addr)
1982 continue;
1983
1984 kb->start_addr = (unsigned long)addr;
1985 symbol_name = kallsyms_lookup(kb->start_addr,
1986 &size, &offset, &modname, namebuf);
1987 if (!symbol_name)
1988 kb->range = 0;
1989 else
1990 kb->range = size;
1991 }
1992
1993 if (kretprobe_blacklist_size) {
1994 /* lookup the function address from its name */
1995 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1996 kprobe_lookup_name(kretprobe_blacklist[i].name,
1997 kretprobe_blacklist[i].addr);
1998 if (!kretprobe_blacklist[i].addr)
1999 printk("kretprobe: lookup failed: %s\n",
2000 kretprobe_blacklist[i].name);
2001 }
2002 }
2003
2004#if defined(CONFIG_OPTPROBES)
2005#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2006 /* Init kprobe_optinsn_slots */
2007 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2008#endif
2009 /* By default, kprobes can be optimized */
2010 kprobes_allow_optimization = true;
2011#endif
2012
2013 /* By default, kprobes are armed */
2014 kprobes_all_disarmed = false;
2015
2016 err = arch_init_kprobes();
2017 if (!err)
2018 err = register_die_notifier(&kprobe_exceptions_nb);
2019 if (!err)
2020 err = register_module_notifier(&kprobe_module_nb);
2021
2022 kprobes_initialized = (err == 0);
2023
2024 if (!err)
2025 init_test_probes();
2026 return err;
2027}
2028
2029#ifdef CONFIG_DEBUG_FS
2030static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2031 const char *sym, int offset, char *modname, struct kprobe *pp)
2032{
2033 char *kprobe_type;
2034
2035 if (p->pre_handler == pre_handler_kretprobe)
2036 kprobe_type = "r";
2037 else if (p->pre_handler == setjmp_pre_handler)
2038 kprobe_type = "j";
2039 else
2040 kprobe_type = "k";
2041
2042 if (sym)
2043 seq_printf(pi, "%p %s %s+0x%x %s ",
2044 p->addr, kprobe_type, sym, offset,
2045 (modname ? modname : " "));
2046 else
2047 seq_printf(pi, "%p %s %p ",
2048 p->addr, kprobe_type, p->addr);
2049
2050 if (!pp)
2051 pp = p;
2052 seq_printf(pi, "%s%s%s\n",
2053 (kprobe_gone(p) ? "[GONE]" : ""),
2054 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2055 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
2056}
2057
2058static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2059{
2060 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2061}
2062
2063static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2064{
2065 (*pos)++;
2066 if (*pos >= KPROBE_TABLE_SIZE)
2067 return NULL;
2068 return pos;
2069}
2070
2071static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2072{
2073 /* Nothing to do */
2074}
2075
2076static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2077{
2078 struct hlist_head *head;
2079 struct hlist_node *node;
2080 struct kprobe *p, *kp;
2081 const char *sym = NULL;
2082 unsigned int i = *(loff_t *) v;
2083 unsigned long offset = 0;
2084 char *modname, namebuf[128];
2085
2086 head = &kprobe_table[i];
2087 preempt_disable();
2088 hlist_for_each_entry_rcu(p, node, head, hlist) {
2089 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2090 &offset, &modname, namebuf);
2091 if (kprobe_aggrprobe(p)) {
2092 list_for_each_entry_rcu(kp, &p->list, list)
2093 report_probe(pi, kp, sym, offset, modname, p);
2094 } else
2095 report_probe(pi, p, sym, offset, modname, NULL);
2096 }
2097 preempt_enable();
2098 return 0;
2099}
2100
2101static const struct seq_operations kprobes_seq_ops = {
2102 .start = kprobe_seq_start,
2103 .next = kprobe_seq_next,
2104 .stop = kprobe_seq_stop,
2105 .show = show_kprobe_addr
2106};
2107
2108static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2109{
2110 return seq_open(filp, &kprobes_seq_ops);
2111}
2112
2113static const struct file_operations debugfs_kprobes_operations = {
2114 .open = kprobes_open,
2115 .read = seq_read,
2116 .llseek = seq_lseek,
2117 .release = seq_release,
2118};
2119
2120static void __kprobes arm_all_kprobes(void)
2121{
2122 struct hlist_head *head;
2123 struct hlist_node *node;
2124 struct kprobe *p;
2125 unsigned int i;
2126
2127 mutex_lock(&kprobe_mutex);
2128
2129 /* If kprobes are armed, just return */
2130 if (!kprobes_all_disarmed)
2131 goto already_enabled;
2132
2133 /* Arming kprobes doesn't optimize kprobe itself */
2134 mutex_lock(&text_mutex);
2135 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2136 head = &kprobe_table[i];
2137 hlist_for_each_entry_rcu(p, node, head, hlist)
2138 if (!kprobe_disabled(p))
2139 __arm_kprobe(p);
2140 }
2141 mutex_unlock(&text_mutex);
2142
2143 kprobes_all_disarmed = false;
2144 printk(KERN_INFO "Kprobes globally enabled\n");
2145
2146already_enabled:
2147 mutex_unlock(&kprobe_mutex);
2148 return;
2149}
2150
2151static void __kprobes disarm_all_kprobes(void)
2152{
2153 struct hlist_head *head;
2154 struct hlist_node *node;
2155 struct kprobe *p;
2156 unsigned int i;
2157
2158 mutex_lock(&kprobe_mutex);
2159
2160 /* If kprobes are already disarmed, just return */
2161 if (kprobes_all_disarmed) {
2162 mutex_unlock(&kprobe_mutex);
2163 return;
2164 }
2165
2166 kprobes_all_disarmed = true;
2167 printk(KERN_INFO "Kprobes globally disabled\n");
2168
2169 mutex_lock(&text_mutex);
2170 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2171 head = &kprobe_table[i];
2172 hlist_for_each_entry_rcu(p, node, head, hlist) {
2173 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2174 __disarm_kprobe(p, false);
2175 }
2176 }
2177 mutex_unlock(&text_mutex);
2178 mutex_unlock(&kprobe_mutex);
2179
2180 /* Wait for disarming all kprobes by optimizer */
2181 wait_for_kprobe_optimizer();
2182}
2183
2184/*
2185 * XXX: The debugfs bool file interface doesn't allow for callbacks
2186 * when the bool state is switched. We can reuse that facility when
2187 * available
2188 */
2189static ssize_t read_enabled_file_bool(struct file *file,
2190 char __user *user_buf, size_t count, loff_t *ppos)
2191{
2192 char buf[3];
2193
2194 if (!kprobes_all_disarmed)
2195 buf[0] = '1';
2196 else
2197 buf[0] = '0';
2198 buf[1] = '\n';
2199 buf[2] = 0x00;
2200 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2201}
2202
2203static ssize_t write_enabled_file_bool(struct file *file,
2204 const char __user *user_buf, size_t count, loff_t *ppos)
2205{
2206 char buf[32];
2207 size_t buf_size;
2208
2209 buf_size = min(count, (sizeof(buf)-1));
2210 if (copy_from_user(buf, user_buf, buf_size))
2211 return -EFAULT;
2212
2213 switch (buf[0]) {
2214 case 'y':
2215 case 'Y':
2216 case '1':
2217 arm_all_kprobes();
2218 break;
2219 case 'n':
2220 case 'N':
2221 case '0':
2222 disarm_all_kprobes();
2223 break;
2224 }
2225
2226 return count;
2227}
2228
2229static const struct file_operations fops_kp = {
2230 .read = read_enabled_file_bool,
2231 .write = write_enabled_file_bool,
2232 .llseek = default_llseek,
2233};
2234
2235static int __kprobes debugfs_kprobe_init(void)
2236{
2237 struct dentry *dir, *file;
2238 unsigned int value = 1;
2239
2240 dir = debugfs_create_dir("kprobes", NULL);
2241 if (!dir)
2242 return -ENOMEM;
2243
2244 file = debugfs_create_file("list", 0444, dir, NULL,
2245 &debugfs_kprobes_operations);
2246 if (!file) {
2247 debugfs_remove(dir);
2248 return -ENOMEM;
2249 }
2250
2251 file = debugfs_create_file("enabled", 0600, dir,
2252 &value, &fops_kp);
2253 if (!file) {
2254 debugfs_remove(dir);
2255 return -ENOMEM;
2256 }
2257
2258 return 0;
2259}
2260
2261late_initcall(debugfs_kprobe_init);
2262#endif /* CONFIG_DEBUG_FS */
2263
2264module_init(init_kprobes);
2265
2266/* defined in arch/.../kernel/kprobes.c */
2267EXPORT_SYMBOL_GPL(jprobe_return);
1/*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/export.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <linux/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61/*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65#ifndef kprobe_lookup_name
66#define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68#endif
69
70static int kprobes_initialized;
71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74/* NOTE: change this value only with kprobe_mutex held */
75static bool kprobes_all_disarmed;
76
77/* This protects kprobe_table and optimizing_list */
78static DEFINE_MUTEX(kprobe_mutex);
79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80static struct {
81 raw_spinlock_t lock ____cacheline_aligned_in_smp;
82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85{
86 return &(kretprobe_table_locks[hash].lock);
87}
88
89/* Blacklist -- list of struct kprobe_blacklist_entry */
90static LIST_HEAD(kprobe_blacklist);
91
92#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
93/*
94 * kprobe->ainsn.insn points to the copy of the instruction to be
95 * single-stepped. x86_64, POWER4 and above have no-exec support and
96 * stepping on the instruction on a vmalloced/kmalloced/data page
97 * is a recipe for disaster
98 */
99struct kprobe_insn_page {
100 struct list_head list;
101 kprobe_opcode_t *insns; /* Page of instruction slots */
102 struct kprobe_insn_cache *cache;
103 int nused;
104 int ngarbage;
105 char slot_used[];
106};
107
108#define KPROBE_INSN_PAGE_SIZE(slots) \
109 (offsetof(struct kprobe_insn_page, slot_used) + \
110 (sizeof(char) * (slots)))
111
112static int slots_per_page(struct kprobe_insn_cache *c)
113{
114 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
115}
116
117enum kprobe_slot_state {
118 SLOT_CLEAN = 0,
119 SLOT_DIRTY = 1,
120 SLOT_USED = 2,
121};
122
123static void *alloc_insn_page(void)
124{
125 return module_alloc(PAGE_SIZE);
126}
127
128static void free_insn_page(void *page)
129{
130 module_memfree(page);
131}
132
133struct kprobe_insn_cache kprobe_insn_slots = {
134 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
135 .alloc = alloc_insn_page,
136 .free = free_insn_page,
137 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
138 .insn_size = MAX_INSN_SIZE,
139 .nr_garbage = 0,
140};
141static int collect_garbage_slots(struct kprobe_insn_cache *c);
142
143/**
144 * __get_insn_slot() - Find a slot on an executable page for an instruction.
145 * We allocate an executable page if there's no room on existing ones.
146 */
147kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
148{
149 struct kprobe_insn_page *kip;
150 kprobe_opcode_t *slot = NULL;
151
152 mutex_lock(&c->mutex);
153 retry:
154 list_for_each_entry(kip, &c->pages, list) {
155 if (kip->nused < slots_per_page(c)) {
156 int i;
157 for (i = 0; i < slots_per_page(c); i++) {
158 if (kip->slot_used[i] == SLOT_CLEAN) {
159 kip->slot_used[i] = SLOT_USED;
160 kip->nused++;
161 slot = kip->insns + (i * c->insn_size);
162 goto out;
163 }
164 }
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
168 }
169 }
170
171 /* If there are any garbage slots, collect it and try again. */
172 if (c->nr_garbage && collect_garbage_slots(c) == 0)
173 goto retry;
174
175 /* All out of space. Need to allocate a new page. */
176 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
177 if (!kip)
178 goto out;
179
180 /*
181 * Use module_alloc so this page is within +/- 2GB of where the
182 * kernel image and loaded module images reside. This is required
183 * so x86_64 can correctly handle the %rip-relative fixups.
184 */
185 kip->insns = c->alloc();
186 if (!kip->insns) {
187 kfree(kip);
188 goto out;
189 }
190 INIT_LIST_HEAD(&kip->list);
191 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
192 kip->slot_used[0] = SLOT_USED;
193 kip->nused = 1;
194 kip->ngarbage = 0;
195 kip->cache = c;
196 list_add(&kip->list, &c->pages);
197 slot = kip->insns;
198out:
199 mutex_unlock(&c->mutex);
200 return slot;
201}
202
203/* Return 1 if all garbages are collected, otherwise 0. */
204static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
205{
206 kip->slot_used[idx] = SLOT_CLEAN;
207 kip->nused--;
208 if (kip->nused == 0) {
209 /*
210 * Page is no longer in use. Free it unless
211 * it's the last one. We keep the last one
212 * so as not to have to set it up again the
213 * next time somebody inserts a probe.
214 */
215 if (!list_is_singular(&kip->list)) {
216 list_del(&kip->list);
217 kip->cache->free(kip->insns);
218 kfree(kip);
219 }
220 return 1;
221 }
222 return 0;
223}
224
225static int collect_garbage_slots(struct kprobe_insn_cache *c)
226{
227 struct kprobe_insn_page *kip, *next;
228
229 /* Ensure no-one is interrupted on the garbages */
230 synchronize_sched();
231
232 list_for_each_entry_safe(kip, next, &c->pages, list) {
233 int i;
234 if (kip->ngarbage == 0)
235 continue;
236 kip->ngarbage = 0; /* we will collect all garbages */
237 for (i = 0; i < slots_per_page(c); i++) {
238 if (kip->slot_used[i] == SLOT_DIRTY &&
239 collect_one_slot(kip, i))
240 break;
241 }
242 }
243 c->nr_garbage = 0;
244 return 0;
245}
246
247void __free_insn_slot(struct kprobe_insn_cache *c,
248 kprobe_opcode_t *slot, int dirty)
249{
250 struct kprobe_insn_page *kip;
251
252 mutex_lock(&c->mutex);
253 list_for_each_entry(kip, &c->pages, list) {
254 long idx = ((long)slot - (long)kip->insns) /
255 (c->insn_size * sizeof(kprobe_opcode_t));
256 if (idx >= 0 && idx < slots_per_page(c)) {
257 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 if (dirty) {
259 kip->slot_used[idx] = SLOT_DIRTY;
260 kip->ngarbage++;
261 if (++c->nr_garbage > slots_per_page(c))
262 collect_garbage_slots(c);
263 } else
264 collect_one_slot(kip, idx);
265 goto out;
266 }
267 }
268 /* Could not free this slot. */
269 WARN_ON(1);
270out:
271 mutex_unlock(&c->mutex);
272}
273
274#ifdef CONFIG_OPTPROBES
275/* For optimized_kprobe buffer */
276struct kprobe_insn_cache kprobe_optinsn_slots = {
277 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
278 .alloc = alloc_insn_page,
279 .free = free_insn_page,
280 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
281 /* .insn_size is initialized later */
282 .nr_garbage = 0,
283};
284#endif
285#endif
286
287/* We have preemption disabled.. so it is safe to use __ versions */
288static inline void set_kprobe_instance(struct kprobe *kp)
289{
290 __this_cpu_write(kprobe_instance, kp);
291}
292
293static inline void reset_kprobe_instance(void)
294{
295 __this_cpu_write(kprobe_instance, NULL);
296}
297
298/*
299 * This routine is called either:
300 * - under the kprobe_mutex - during kprobe_[un]register()
301 * OR
302 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
303 */
304struct kprobe *get_kprobe(void *addr)
305{
306 struct hlist_head *head;
307 struct kprobe *p;
308
309 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
310 hlist_for_each_entry_rcu(p, head, hlist) {
311 if (p->addr == addr)
312 return p;
313 }
314
315 return NULL;
316}
317NOKPROBE_SYMBOL(get_kprobe);
318
319static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
320
321/* Return true if the kprobe is an aggregator */
322static inline int kprobe_aggrprobe(struct kprobe *p)
323{
324 return p->pre_handler == aggr_pre_handler;
325}
326
327/* Return true(!0) if the kprobe is unused */
328static inline int kprobe_unused(struct kprobe *p)
329{
330 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
331 list_empty(&p->list);
332}
333
334/*
335 * Keep all fields in the kprobe consistent
336 */
337static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
338{
339 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
340 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
341}
342
343#ifdef CONFIG_OPTPROBES
344/* NOTE: change this value only with kprobe_mutex held */
345static bool kprobes_allow_optimization;
346
347/*
348 * Call all pre_handler on the list, but ignores its return value.
349 * This must be called from arch-dep optimized caller.
350 */
351void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
352{
353 struct kprobe *kp;
354
355 list_for_each_entry_rcu(kp, &p->list, list) {
356 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
357 set_kprobe_instance(kp);
358 kp->pre_handler(kp, regs);
359 }
360 reset_kprobe_instance();
361 }
362}
363NOKPROBE_SYMBOL(opt_pre_handler);
364
365/* Free optimized instructions and optimized_kprobe */
366static void free_aggr_kprobe(struct kprobe *p)
367{
368 struct optimized_kprobe *op;
369
370 op = container_of(p, struct optimized_kprobe, kp);
371 arch_remove_optimized_kprobe(op);
372 arch_remove_kprobe(p);
373 kfree(op);
374}
375
376/* Return true(!0) if the kprobe is ready for optimization. */
377static inline int kprobe_optready(struct kprobe *p)
378{
379 struct optimized_kprobe *op;
380
381 if (kprobe_aggrprobe(p)) {
382 op = container_of(p, struct optimized_kprobe, kp);
383 return arch_prepared_optinsn(&op->optinsn);
384 }
385
386 return 0;
387}
388
389/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
390static inline int kprobe_disarmed(struct kprobe *p)
391{
392 struct optimized_kprobe *op;
393
394 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
395 if (!kprobe_aggrprobe(p))
396 return kprobe_disabled(p);
397
398 op = container_of(p, struct optimized_kprobe, kp);
399
400 return kprobe_disabled(p) && list_empty(&op->list);
401}
402
403/* Return true(!0) if the probe is queued on (un)optimizing lists */
404static int kprobe_queued(struct kprobe *p)
405{
406 struct optimized_kprobe *op;
407
408 if (kprobe_aggrprobe(p)) {
409 op = container_of(p, struct optimized_kprobe, kp);
410 if (!list_empty(&op->list))
411 return 1;
412 }
413 return 0;
414}
415
416/*
417 * Return an optimized kprobe whose optimizing code replaces
418 * instructions including addr (exclude breakpoint).
419 */
420static struct kprobe *get_optimized_kprobe(unsigned long addr)
421{
422 int i;
423 struct kprobe *p = NULL;
424 struct optimized_kprobe *op;
425
426 /* Don't check i == 0, since that is a breakpoint case. */
427 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
428 p = get_kprobe((void *)(addr - i));
429
430 if (p && kprobe_optready(p)) {
431 op = container_of(p, struct optimized_kprobe, kp);
432 if (arch_within_optimized_kprobe(op, addr))
433 return p;
434 }
435
436 return NULL;
437}
438
439/* Optimization staging list, protected by kprobe_mutex */
440static LIST_HEAD(optimizing_list);
441static LIST_HEAD(unoptimizing_list);
442static LIST_HEAD(freeing_list);
443
444static void kprobe_optimizer(struct work_struct *work);
445static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
446#define OPTIMIZE_DELAY 5
447
448/*
449 * Optimize (replace a breakpoint with a jump) kprobes listed on
450 * optimizing_list.
451 */
452static void do_optimize_kprobes(void)
453{
454 /* Optimization never be done when disarmed */
455 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
456 list_empty(&optimizing_list))
457 return;
458
459 /*
460 * The optimization/unoptimization refers online_cpus via
461 * stop_machine() and cpu-hotplug modifies online_cpus.
462 * And same time, text_mutex will be held in cpu-hotplug and here.
463 * This combination can cause a deadlock (cpu-hotplug try to lock
464 * text_mutex but stop_machine can not be done because online_cpus
465 * has been changed)
466 * To avoid this deadlock, we need to call get_online_cpus()
467 * for preventing cpu-hotplug outside of text_mutex locking.
468 */
469 get_online_cpus();
470 mutex_lock(&text_mutex);
471 arch_optimize_kprobes(&optimizing_list);
472 mutex_unlock(&text_mutex);
473 put_online_cpus();
474}
475
476/*
477 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
478 * if need) kprobes listed on unoptimizing_list.
479 */
480static void do_unoptimize_kprobes(void)
481{
482 struct optimized_kprobe *op, *tmp;
483
484 /* Unoptimization must be done anytime */
485 if (list_empty(&unoptimizing_list))
486 return;
487
488 /* Ditto to do_optimize_kprobes */
489 get_online_cpus();
490 mutex_lock(&text_mutex);
491 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
492 /* Loop free_list for disarming */
493 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
494 /* Disarm probes if marked disabled */
495 if (kprobe_disabled(&op->kp))
496 arch_disarm_kprobe(&op->kp);
497 if (kprobe_unused(&op->kp)) {
498 /*
499 * Remove unused probes from hash list. After waiting
500 * for synchronization, these probes are reclaimed.
501 * (reclaiming is done by do_free_cleaned_kprobes.)
502 */
503 hlist_del_rcu(&op->kp.hlist);
504 } else
505 list_del_init(&op->list);
506 }
507 mutex_unlock(&text_mutex);
508 put_online_cpus();
509}
510
511/* Reclaim all kprobes on the free_list */
512static void do_free_cleaned_kprobes(void)
513{
514 struct optimized_kprobe *op, *tmp;
515
516 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
517 BUG_ON(!kprobe_unused(&op->kp));
518 list_del_init(&op->list);
519 free_aggr_kprobe(&op->kp);
520 }
521}
522
523/* Start optimizer after OPTIMIZE_DELAY passed */
524static void kick_kprobe_optimizer(void)
525{
526 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
527}
528
529/* Kprobe jump optimizer */
530static void kprobe_optimizer(struct work_struct *work)
531{
532 mutex_lock(&kprobe_mutex);
533 /* Lock modules while optimizing kprobes */
534 mutex_lock(&module_mutex);
535
536 /*
537 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
538 * kprobes before waiting for quiesence period.
539 */
540 do_unoptimize_kprobes();
541
542 /*
543 * Step 2: Wait for quiesence period to ensure all running interrupts
544 * are done. Because optprobe may modify multiple instructions
545 * there is a chance that Nth instruction is interrupted. In that
546 * case, running interrupt can return to 2nd-Nth byte of jump
547 * instruction. This wait is for avoiding it.
548 */
549 synchronize_sched();
550
551 /* Step 3: Optimize kprobes after quiesence period */
552 do_optimize_kprobes();
553
554 /* Step 4: Free cleaned kprobes after quiesence period */
555 do_free_cleaned_kprobes();
556
557 mutex_unlock(&module_mutex);
558 mutex_unlock(&kprobe_mutex);
559
560 /* Step 5: Kick optimizer again if needed */
561 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
562 kick_kprobe_optimizer();
563}
564
565/* Wait for completing optimization and unoptimization */
566static void wait_for_kprobe_optimizer(void)
567{
568 mutex_lock(&kprobe_mutex);
569
570 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
571 mutex_unlock(&kprobe_mutex);
572
573 /* this will also make optimizing_work execute immmediately */
574 flush_delayed_work(&optimizing_work);
575 /* @optimizing_work might not have been queued yet, relax */
576 cpu_relax();
577
578 mutex_lock(&kprobe_mutex);
579 }
580
581 mutex_unlock(&kprobe_mutex);
582}
583
584/* Optimize kprobe if p is ready to be optimized */
585static void optimize_kprobe(struct kprobe *p)
586{
587 struct optimized_kprobe *op;
588
589 /* Check if the kprobe is disabled or not ready for optimization. */
590 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
591 (kprobe_disabled(p) || kprobes_all_disarmed))
592 return;
593
594 /* Both of break_handler and post_handler are not supported. */
595 if (p->break_handler || p->post_handler)
596 return;
597
598 op = container_of(p, struct optimized_kprobe, kp);
599
600 /* Check there is no other kprobes at the optimized instructions */
601 if (arch_check_optimized_kprobe(op) < 0)
602 return;
603
604 /* Check if it is already optimized. */
605 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
606 return;
607 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
608
609 if (!list_empty(&op->list))
610 /* This is under unoptimizing. Just dequeue the probe */
611 list_del_init(&op->list);
612 else {
613 list_add(&op->list, &optimizing_list);
614 kick_kprobe_optimizer();
615 }
616}
617
618/* Short cut to direct unoptimizing */
619static void force_unoptimize_kprobe(struct optimized_kprobe *op)
620{
621 get_online_cpus();
622 arch_unoptimize_kprobe(op);
623 put_online_cpus();
624 if (kprobe_disabled(&op->kp))
625 arch_disarm_kprobe(&op->kp);
626}
627
628/* Unoptimize a kprobe if p is optimized */
629static void unoptimize_kprobe(struct kprobe *p, bool force)
630{
631 struct optimized_kprobe *op;
632
633 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
634 return; /* This is not an optprobe nor optimized */
635
636 op = container_of(p, struct optimized_kprobe, kp);
637 if (!kprobe_optimized(p)) {
638 /* Unoptimized or unoptimizing case */
639 if (force && !list_empty(&op->list)) {
640 /*
641 * Only if this is unoptimizing kprobe and forced,
642 * forcibly unoptimize it. (No need to unoptimize
643 * unoptimized kprobe again :)
644 */
645 list_del_init(&op->list);
646 force_unoptimize_kprobe(op);
647 }
648 return;
649 }
650
651 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
652 if (!list_empty(&op->list)) {
653 /* Dequeue from the optimization queue */
654 list_del_init(&op->list);
655 return;
656 }
657 /* Optimized kprobe case */
658 if (force)
659 /* Forcibly update the code: this is a special case */
660 force_unoptimize_kprobe(op);
661 else {
662 list_add(&op->list, &unoptimizing_list);
663 kick_kprobe_optimizer();
664 }
665}
666
667/* Cancel unoptimizing for reusing */
668static void reuse_unused_kprobe(struct kprobe *ap)
669{
670 struct optimized_kprobe *op;
671
672 BUG_ON(!kprobe_unused(ap));
673 /*
674 * Unused kprobe MUST be on the way of delayed unoptimizing (means
675 * there is still a relative jump) and disabled.
676 */
677 op = container_of(ap, struct optimized_kprobe, kp);
678 if (unlikely(list_empty(&op->list)))
679 printk(KERN_WARNING "Warning: found a stray unused "
680 "aggrprobe@%p\n", ap->addr);
681 /* Enable the probe again */
682 ap->flags &= ~KPROBE_FLAG_DISABLED;
683 /* Optimize it again (remove from op->list) */
684 BUG_ON(!kprobe_optready(ap));
685 optimize_kprobe(ap);
686}
687
688/* Remove optimized instructions */
689static void kill_optimized_kprobe(struct kprobe *p)
690{
691 struct optimized_kprobe *op;
692
693 op = container_of(p, struct optimized_kprobe, kp);
694 if (!list_empty(&op->list))
695 /* Dequeue from the (un)optimization queue */
696 list_del_init(&op->list);
697 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
698
699 if (kprobe_unused(p)) {
700 /* Enqueue if it is unused */
701 list_add(&op->list, &freeing_list);
702 /*
703 * Remove unused probes from the hash list. After waiting
704 * for synchronization, this probe is reclaimed.
705 * (reclaiming is done by do_free_cleaned_kprobes().)
706 */
707 hlist_del_rcu(&op->kp.hlist);
708 }
709
710 /* Don't touch the code, because it is already freed. */
711 arch_remove_optimized_kprobe(op);
712}
713
714/* Try to prepare optimized instructions */
715static void prepare_optimized_kprobe(struct kprobe *p)
716{
717 struct optimized_kprobe *op;
718
719 op = container_of(p, struct optimized_kprobe, kp);
720 arch_prepare_optimized_kprobe(op, p);
721}
722
723/* Allocate new optimized_kprobe and try to prepare optimized instructions */
724static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
725{
726 struct optimized_kprobe *op;
727
728 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
729 if (!op)
730 return NULL;
731
732 INIT_LIST_HEAD(&op->list);
733 op->kp.addr = p->addr;
734 arch_prepare_optimized_kprobe(op, p);
735
736 return &op->kp;
737}
738
739static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
740
741/*
742 * Prepare an optimized_kprobe and optimize it
743 * NOTE: p must be a normal registered kprobe
744 */
745static void try_to_optimize_kprobe(struct kprobe *p)
746{
747 struct kprobe *ap;
748 struct optimized_kprobe *op;
749
750 /* Impossible to optimize ftrace-based kprobe */
751 if (kprobe_ftrace(p))
752 return;
753
754 /* For preparing optimization, jump_label_text_reserved() is called */
755 jump_label_lock();
756 mutex_lock(&text_mutex);
757
758 ap = alloc_aggr_kprobe(p);
759 if (!ap)
760 goto out;
761
762 op = container_of(ap, struct optimized_kprobe, kp);
763 if (!arch_prepared_optinsn(&op->optinsn)) {
764 /* If failed to setup optimizing, fallback to kprobe */
765 arch_remove_optimized_kprobe(op);
766 kfree(op);
767 goto out;
768 }
769
770 init_aggr_kprobe(ap, p);
771 optimize_kprobe(ap); /* This just kicks optimizer thread */
772
773out:
774 mutex_unlock(&text_mutex);
775 jump_label_unlock();
776}
777
778#ifdef CONFIG_SYSCTL
779static void optimize_all_kprobes(void)
780{
781 struct hlist_head *head;
782 struct kprobe *p;
783 unsigned int i;
784
785 mutex_lock(&kprobe_mutex);
786 /* If optimization is already allowed, just return */
787 if (kprobes_allow_optimization)
788 goto out;
789
790 kprobes_allow_optimization = true;
791 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
792 head = &kprobe_table[i];
793 hlist_for_each_entry_rcu(p, head, hlist)
794 if (!kprobe_disabled(p))
795 optimize_kprobe(p);
796 }
797 printk(KERN_INFO "Kprobes globally optimized\n");
798out:
799 mutex_unlock(&kprobe_mutex);
800}
801
802static void unoptimize_all_kprobes(void)
803{
804 struct hlist_head *head;
805 struct kprobe *p;
806 unsigned int i;
807
808 mutex_lock(&kprobe_mutex);
809 /* If optimization is already prohibited, just return */
810 if (!kprobes_allow_optimization) {
811 mutex_unlock(&kprobe_mutex);
812 return;
813 }
814
815 kprobes_allow_optimization = false;
816 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
817 head = &kprobe_table[i];
818 hlist_for_each_entry_rcu(p, head, hlist) {
819 if (!kprobe_disabled(p))
820 unoptimize_kprobe(p, false);
821 }
822 }
823 mutex_unlock(&kprobe_mutex);
824
825 /* Wait for unoptimizing completion */
826 wait_for_kprobe_optimizer();
827 printk(KERN_INFO "Kprobes globally unoptimized\n");
828}
829
830static DEFINE_MUTEX(kprobe_sysctl_mutex);
831int sysctl_kprobes_optimization;
832int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
833 void __user *buffer, size_t *length,
834 loff_t *ppos)
835{
836 int ret;
837
838 mutex_lock(&kprobe_sysctl_mutex);
839 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
840 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
841
842 if (sysctl_kprobes_optimization)
843 optimize_all_kprobes();
844 else
845 unoptimize_all_kprobes();
846 mutex_unlock(&kprobe_sysctl_mutex);
847
848 return ret;
849}
850#endif /* CONFIG_SYSCTL */
851
852/* Put a breakpoint for a probe. Must be called with text_mutex locked */
853static void __arm_kprobe(struct kprobe *p)
854{
855 struct kprobe *_p;
856
857 /* Check collision with other optimized kprobes */
858 _p = get_optimized_kprobe((unsigned long)p->addr);
859 if (unlikely(_p))
860 /* Fallback to unoptimized kprobe */
861 unoptimize_kprobe(_p, true);
862
863 arch_arm_kprobe(p);
864 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
865}
866
867/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
868static void __disarm_kprobe(struct kprobe *p, bool reopt)
869{
870 struct kprobe *_p;
871
872 /* Try to unoptimize */
873 unoptimize_kprobe(p, kprobes_all_disarmed);
874
875 if (!kprobe_queued(p)) {
876 arch_disarm_kprobe(p);
877 /* If another kprobe was blocked, optimize it. */
878 _p = get_optimized_kprobe((unsigned long)p->addr);
879 if (unlikely(_p) && reopt)
880 optimize_kprobe(_p);
881 }
882 /* TODO: reoptimize others after unoptimized this probe */
883}
884
885#else /* !CONFIG_OPTPROBES */
886
887#define optimize_kprobe(p) do {} while (0)
888#define unoptimize_kprobe(p, f) do {} while (0)
889#define kill_optimized_kprobe(p) do {} while (0)
890#define prepare_optimized_kprobe(p) do {} while (0)
891#define try_to_optimize_kprobe(p) do {} while (0)
892#define __arm_kprobe(p) arch_arm_kprobe(p)
893#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
894#define kprobe_disarmed(p) kprobe_disabled(p)
895#define wait_for_kprobe_optimizer() do {} while (0)
896
897/* There should be no unused kprobes can be reused without optimization */
898static void reuse_unused_kprobe(struct kprobe *ap)
899{
900 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
901 BUG_ON(kprobe_unused(ap));
902}
903
904static void free_aggr_kprobe(struct kprobe *p)
905{
906 arch_remove_kprobe(p);
907 kfree(p);
908}
909
910static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
911{
912 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
913}
914#endif /* CONFIG_OPTPROBES */
915
916#ifdef CONFIG_KPROBES_ON_FTRACE
917static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
918 .func = kprobe_ftrace_handler,
919 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
920};
921static int kprobe_ftrace_enabled;
922
923/* Must ensure p->addr is really on ftrace */
924static int prepare_kprobe(struct kprobe *p)
925{
926 if (!kprobe_ftrace(p))
927 return arch_prepare_kprobe(p);
928
929 return arch_prepare_kprobe_ftrace(p);
930}
931
932/* Caller must lock kprobe_mutex */
933static void arm_kprobe_ftrace(struct kprobe *p)
934{
935 int ret;
936
937 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
938 (unsigned long)p->addr, 0, 0);
939 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
940 kprobe_ftrace_enabled++;
941 if (kprobe_ftrace_enabled == 1) {
942 ret = register_ftrace_function(&kprobe_ftrace_ops);
943 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
944 }
945}
946
947/* Caller must lock kprobe_mutex */
948static void disarm_kprobe_ftrace(struct kprobe *p)
949{
950 int ret;
951
952 kprobe_ftrace_enabled--;
953 if (kprobe_ftrace_enabled == 0) {
954 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
955 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
956 }
957 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
958 (unsigned long)p->addr, 1, 0);
959 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
960}
961#else /* !CONFIG_KPROBES_ON_FTRACE */
962#define prepare_kprobe(p) arch_prepare_kprobe(p)
963#define arm_kprobe_ftrace(p) do {} while (0)
964#define disarm_kprobe_ftrace(p) do {} while (0)
965#endif
966
967/* Arm a kprobe with text_mutex */
968static void arm_kprobe(struct kprobe *kp)
969{
970 if (unlikely(kprobe_ftrace(kp))) {
971 arm_kprobe_ftrace(kp);
972 return;
973 }
974 /*
975 * Here, since __arm_kprobe() doesn't use stop_machine(),
976 * this doesn't cause deadlock on text_mutex. So, we don't
977 * need get_online_cpus().
978 */
979 mutex_lock(&text_mutex);
980 __arm_kprobe(kp);
981 mutex_unlock(&text_mutex);
982}
983
984/* Disarm a kprobe with text_mutex */
985static void disarm_kprobe(struct kprobe *kp, bool reopt)
986{
987 if (unlikely(kprobe_ftrace(kp))) {
988 disarm_kprobe_ftrace(kp);
989 return;
990 }
991 /* Ditto */
992 mutex_lock(&text_mutex);
993 __disarm_kprobe(kp, reopt);
994 mutex_unlock(&text_mutex);
995}
996
997/*
998 * Aggregate handlers for multiple kprobes support - these handlers
999 * take care of invoking the individual kprobe handlers on p->list
1000 */
1001static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1002{
1003 struct kprobe *kp;
1004
1005 list_for_each_entry_rcu(kp, &p->list, list) {
1006 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1007 set_kprobe_instance(kp);
1008 if (kp->pre_handler(kp, regs))
1009 return 1;
1010 }
1011 reset_kprobe_instance();
1012 }
1013 return 0;
1014}
1015NOKPROBE_SYMBOL(aggr_pre_handler);
1016
1017static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1018 unsigned long flags)
1019{
1020 struct kprobe *kp;
1021
1022 list_for_each_entry_rcu(kp, &p->list, list) {
1023 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1024 set_kprobe_instance(kp);
1025 kp->post_handler(kp, regs, flags);
1026 reset_kprobe_instance();
1027 }
1028 }
1029}
1030NOKPROBE_SYMBOL(aggr_post_handler);
1031
1032static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1033 int trapnr)
1034{
1035 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1036
1037 /*
1038 * if we faulted "during" the execution of a user specified
1039 * probe handler, invoke just that probe's fault handler
1040 */
1041 if (cur && cur->fault_handler) {
1042 if (cur->fault_handler(cur, regs, trapnr))
1043 return 1;
1044 }
1045 return 0;
1046}
1047NOKPROBE_SYMBOL(aggr_fault_handler);
1048
1049static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1050{
1051 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1052 int ret = 0;
1053
1054 if (cur && cur->break_handler) {
1055 if (cur->break_handler(cur, regs))
1056 ret = 1;
1057 }
1058 reset_kprobe_instance();
1059 return ret;
1060}
1061NOKPROBE_SYMBOL(aggr_break_handler);
1062
1063/* Walks the list and increments nmissed count for multiprobe case */
1064void kprobes_inc_nmissed_count(struct kprobe *p)
1065{
1066 struct kprobe *kp;
1067 if (!kprobe_aggrprobe(p)) {
1068 p->nmissed++;
1069 } else {
1070 list_for_each_entry_rcu(kp, &p->list, list)
1071 kp->nmissed++;
1072 }
1073 return;
1074}
1075NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1076
1077void recycle_rp_inst(struct kretprobe_instance *ri,
1078 struct hlist_head *head)
1079{
1080 struct kretprobe *rp = ri->rp;
1081
1082 /* remove rp inst off the rprobe_inst_table */
1083 hlist_del(&ri->hlist);
1084 INIT_HLIST_NODE(&ri->hlist);
1085 if (likely(rp)) {
1086 raw_spin_lock(&rp->lock);
1087 hlist_add_head(&ri->hlist, &rp->free_instances);
1088 raw_spin_unlock(&rp->lock);
1089 } else
1090 /* Unregistering */
1091 hlist_add_head(&ri->hlist, head);
1092}
1093NOKPROBE_SYMBOL(recycle_rp_inst);
1094
1095void kretprobe_hash_lock(struct task_struct *tsk,
1096 struct hlist_head **head, unsigned long *flags)
1097__acquires(hlist_lock)
1098{
1099 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1100 raw_spinlock_t *hlist_lock;
1101
1102 *head = &kretprobe_inst_table[hash];
1103 hlist_lock = kretprobe_table_lock_ptr(hash);
1104 raw_spin_lock_irqsave(hlist_lock, *flags);
1105}
1106NOKPROBE_SYMBOL(kretprobe_hash_lock);
1107
1108static void kretprobe_table_lock(unsigned long hash,
1109 unsigned long *flags)
1110__acquires(hlist_lock)
1111{
1112 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1113 raw_spin_lock_irqsave(hlist_lock, *flags);
1114}
1115NOKPROBE_SYMBOL(kretprobe_table_lock);
1116
1117void kretprobe_hash_unlock(struct task_struct *tsk,
1118 unsigned long *flags)
1119__releases(hlist_lock)
1120{
1121 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1122 raw_spinlock_t *hlist_lock;
1123
1124 hlist_lock = kretprobe_table_lock_ptr(hash);
1125 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1126}
1127NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1128
1129static void kretprobe_table_unlock(unsigned long hash,
1130 unsigned long *flags)
1131__releases(hlist_lock)
1132{
1133 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1134 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1135}
1136NOKPROBE_SYMBOL(kretprobe_table_unlock);
1137
1138/*
1139 * This function is called from finish_task_switch when task tk becomes dead,
1140 * so that we can recycle any function-return probe instances associated
1141 * with this task. These left over instances represent probed functions
1142 * that have been called but will never return.
1143 */
1144void kprobe_flush_task(struct task_struct *tk)
1145{
1146 struct kretprobe_instance *ri;
1147 struct hlist_head *head, empty_rp;
1148 struct hlist_node *tmp;
1149 unsigned long hash, flags = 0;
1150
1151 if (unlikely(!kprobes_initialized))
1152 /* Early boot. kretprobe_table_locks not yet initialized. */
1153 return;
1154
1155 INIT_HLIST_HEAD(&empty_rp);
1156 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1157 head = &kretprobe_inst_table[hash];
1158 kretprobe_table_lock(hash, &flags);
1159 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1160 if (ri->task == tk)
1161 recycle_rp_inst(ri, &empty_rp);
1162 }
1163 kretprobe_table_unlock(hash, &flags);
1164 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1165 hlist_del(&ri->hlist);
1166 kfree(ri);
1167 }
1168}
1169NOKPROBE_SYMBOL(kprobe_flush_task);
1170
1171static inline void free_rp_inst(struct kretprobe *rp)
1172{
1173 struct kretprobe_instance *ri;
1174 struct hlist_node *next;
1175
1176 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1177 hlist_del(&ri->hlist);
1178 kfree(ri);
1179 }
1180}
1181
1182static void cleanup_rp_inst(struct kretprobe *rp)
1183{
1184 unsigned long flags, hash;
1185 struct kretprobe_instance *ri;
1186 struct hlist_node *next;
1187 struct hlist_head *head;
1188
1189 /* No race here */
1190 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1191 kretprobe_table_lock(hash, &flags);
1192 head = &kretprobe_inst_table[hash];
1193 hlist_for_each_entry_safe(ri, next, head, hlist) {
1194 if (ri->rp == rp)
1195 ri->rp = NULL;
1196 }
1197 kretprobe_table_unlock(hash, &flags);
1198 }
1199 free_rp_inst(rp);
1200}
1201NOKPROBE_SYMBOL(cleanup_rp_inst);
1202
1203/*
1204* Add the new probe to ap->list. Fail if this is the
1205* second jprobe at the address - two jprobes can't coexist
1206*/
1207static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1208{
1209 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1210
1211 if (p->break_handler || p->post_handler)
1212 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1213
1214 if (p->break_handler) {
1215 if (ap->break_handler)
1216 return -EEXIST;
1217 list_add_tail_rcu(&p->list, &ap->list);
1218 ap->break_handler = aggr_break_handler;
1219 } else
1220 list_add_rcu(&p->list, &ap->list);
1221 if (p->post_handler && !ap->post_handler)
1222 ap->post_handler = aggr_post_handler;
1223
1224 return 0;
1225}
1226
1227/*
1228 * Fill in the required fields of the "manager kprobe". Replace the
1229 * earlier kprobe in the hlist with the manager kprobe
1230 */
1231static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1232{
1233 /* Copy p's insn slot to ap */
1234 copy_kprobe(p, ap);
1235 flush_insn_slot(ap);
1236 ap->addr = p->addr;
1237 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1238 ap->pre_handler = aggr_pre_handler;
1239 ap->fault_handler = aggr_fault_handler;
1240 /* We don't care the kprobe which has gone. */
1241 if (p->post_handler && !kprobe_gone(p))
1242 ap->post_handler = aggr_post_handler;
1243 if (p->break_handler && !kprobe_gone(p))
1244 ap->break_handler = aggr_break_handler;
1245
1246 INIT_LIST_HEAD(&ap->list);
1247 INIT_HLIST_NODE(&ap->hlist);
1248
1249 list_add_rcu(&p->list, &ap->list);
1250 hlist_replace_rcu(&p->hlist, &ap->hlist);
1251}
1252
1253/*
1254 * This is the second or subsequent kprobe at the address - handle
1255 * the intricacies
1256 */
1257static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1258{
1259 int ret = 0;
1260 struct kprobe *ap = orig_p;
1261
1262 /* For preparing optimization, jump_label_text_reserved() is called */
1263 jump_label_lock();
1264 /*
1265 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1266 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1267 */
1268 get_online_cpus();
1269 mutex_lock(&text_mutex);
1270
1271 if (!kprobe_aggrprobe(orig_p)) {
1272 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1273 ap = alloc_aggr_kprobe(orig_p);
1274 if (!ap) {
1275 ret = -ENOMEM;
1276 goto out;
1277 }
1278 init_aggr_kprobe(ap, orig_p);
1279 } else if (kprobe_unused(ap))
1280 /* This probe is going to die. Rescue it */
1281 reuse_unused_kprobe(ap);
1282
1283 if (kprobe_gone(ap)) {
1284 /*
1285 * Attempting to insert new probe at the same location that
1286 * had a probe in the module vaddr area which already
1287 * freed. So, the instruction slot has already been
1288 * released. We need a new slot for the new probe.
1289 */
1290 ret = arch_prepare_kprobe(ap);
1291 if (ret)
1292 /*
1293 * Even if fail to allocate new slot, don't need to
1294 * free aggr_probe. It will be used next time, or
1295 * freed by unregister_kprobe.
1296 */
1297 goto out;
1298
1299 /* Prepare optimized instructions if possible. */
1300 prepare_optimized_kprobe(ap);
1301
1302 /*
1303 * Clear gone flag to prevent allocating new slot again, and
1304 * set disabled flag because it is not armed yet.
1305 */
1306 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1307 | KPROBE_FLAG_DISABLED;
1308 }
1309
1310 /* Copy ap's insn slot to p */
1311 copy_kprobe(ap, p);
1312 ret = add_new_kprobe(ap, p);
1313
1314out:
1315 mutex_unlock(&text_mutex);
1316 put_online_cpus();
1317 jump_label_unlock();
1318
1319 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1320 ap->flags &= ~KPROBE_FLAG_DISABLED;
1321 if (!kprobes_all_disarmed)
1322 /* Arm the breakpoint again. */
1323 arm_kprobe(ap);
1324 }
1325 return ret;
1326}
1327
1328bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1329{
1330 /* The __kprobes marked functions and entry code must not be probed */
1331 return addr >= (unsigned long)__kprobes_text_start &&
1332 addr < (unsigned long)__kprobes_text_end;
1333}
1334
1335bool within_kprobe_blacklist(unsigned long addr)
1336{
1337 struct kprobe_blacklist_entry *ent;
1338
1339 if (arch_within_kprobe_blacklist(addr))
1340 return true;
1341 /*
1342 * If there exists a kprobe_blacklist, verify and
1343 * fail any probe registration in the prohibited area
1344 */
1345 list_for_each_entry(ent, &kprobe_blacklist, list) {
1346 if (addr >= ent->start_addr && addr < ent->end_addr)
1347 return true;
1348 }
1349
1350 return false;
1351}
1352
1353/*
1354 * If we have a symbol_name argument, look it up and add the offset field
1355 * to it. This way, we can specify a relative address to a symbol.
1356 * This returns encoded errors if it fails to look up symbol or invalid
1357 * combination of parameters.
1358 */
1359static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1360{
1361 kprobe_opcode_t *addr = p->addr;
1362
1363 if ((p->symbol_name && p->addr) ||
1364 (!p->symbol_name && !p->addr))
1365 goto invalid;
1366
1367 if (p->symbol_name) {
1368 kprobe_lookup_name(p->symbol_name, addr);
1369 if (!addr)
1370 return ERR_PTR(-ENOENT);
1371 }
1372
1373 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1374 if (addr)
1375 return addr;
1376
1377invalid:
1378 return ERR_PTR(-EINVAL);
1379}
1380
1381/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1382static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1383{
1384 struct kprobe *ap, *list_p;
1385
1386 ap = get_kprobe(p->addr);
1387 if (unlikely(!ap))
1388 return NULL;
1389
1390 if (p != ap) {
1391 list_for_each_entry_rcu(list_p, &ap->list, list)
1392 if (list_p == p)
1393 /* kprobe p is a valid probe */
1394 goto valid;
1395 return NULL;
1396 }
1397valid:
1398 return ap;
1399}
1400
1401/* Return error if the kprobe is being re-registered */
1402static inline int check_kprobe_rereg(struct kprobe *p)
1403{
1404 int ret = 0;
1405
1406 mutex_lock(&kprobe_mutex);
1407 if (__get_valid_kprobe(p))
1408 ret = -EINVAL;
1409 mutex_unlock(&kprobe_mutex);
1410
1411 return ret;
1412}
1413
1414int __weak arch_check_ftrace_location(struct kprobe *p)
1415{
1416 unsigned long ftrace_addr;
1417
1418 ftrace_addr = ftrace_location((unsigned long)p->addr);
1419 if (ftrace_addr) {
1420#ifdef CONFIG_KPROBES_ON_FTRACE
1421 /* Given address is not on the instruction boundary */
1422 if ((unsigned long)p->addr != ftrace_addr)
1423 return -EILSEQ;
1424 p->flags |= KPROBE_FLAG_FTRACE;
1425#else /* !CONFIG_KPROBES_ON_FTRACE */
1426 return -EINVAL;
1427#endif
1428 }
1429 return 0;
1430}
1431
1432static int check_kprobe_address_safe(struct kprobe *p,
1433 struct module **probed_mod)
1434{
1435 int ret;
1436
1437 ret = arch_check_ftrace_location(p);
1438 if (ret)
1439 return ret;
1440 jump_label_lock();
1441 preempt_disable();
1442
1443 /* Ensure it is not in reserved area nor out of text */
1444 if (!kernel_text_address((unsigned long) p->addr) ||
1445 within_kprobe_blacklist((unsigned long) p->addr) ||
1446 jump_label_text_reserved(p->addr, p->addr)) {
1447 ret = -EINVAL;
1448 goto out;
1449 }
1450
1451 /* Check if are we probing a module */
1452 *probed_mod = __module_text_address((unsigned long) p->addr);
1453 if (*probed_mod) {
1454 /*
1455 * We must hold a refcount of the probed module while updating
1456 * its code to prohibit unexpected unloading.
1457 */
1458 if (unlikely(!try_module_get(*probed_mod))) {
1459 ret = -ENOENT;
1460 goto out;
1461 }
1462
1463 /*
1464 * If the module freed .init.text, we couldn't insert
1465 * kprobes in there.
1466 */
1467 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1468 (*probed_mod)->state != MODULE_STATE_COMING) {
1469 module_put(*probed_mod);
1470 *probed_mod = NULL;
1471 ret = -ENOENT;
1472 }
1473 }
1474out:
1475 preempt_enable();
1476 jump_label_unlock();
1477
1478 return ret;
1479}
1480
1481int register_kprobe(struct kprobe *p)
1482{
1483 int ret;
1484 struct kprobe *old_p;
1485 struct module *probed_mod;
1486 kprobe_opcode_t *addr;
1487
1488 /* Adjust probe address from symbol */
1489 addr = kprobe_addr(p);
1490 if (IS_ERR(addr))
1491 return PTR_ERR(addr);
1492 p->addr = addr;
1493
1494 ret = check_kprobe_rereg(p);
1495 if (ret)
1496 return ret;
1497
1498 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1499 p->flags &= KPROBE_FLAG_DISABLED;
1500 p->nmissed = 0;
1501 INIT_LIST_HEAD(&p->list);
1502
1503 ret = check_kprobe_address_safe(p, &probed_mod);
1504 if (ret)
1505 return ret;
1506
1507 mutex_lock(&kprobe_mutex);
1508
1509 old_p = get_kprobe(p->addr);
1510 if (old_p) {
1511 /* Since this may unoptimize old_p, locking text_mutex. */
1512 ret = register_aggr_kprobe(old_p, p);
1513 goto out;
1514 }
1515
1516 mutex_lock(&text_mutex); /* Avoiding text modification */
1517 ret = prepare_kprobe(p);
1518 mutex_unlock(&text_mutex);
1519 if (ret)
1520 goto out;
1521
1522 INIT_HLIST_NODE(&p->hlist);
1523 hlist_add_head_rcu(&p->hlist,
1524 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1525
1526 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1527 arm_kprobe(p);
1528
1529 /* Try to optimize kprobe */
1530 try_to_optimize_kprobe(p);
1531
1532out:
1533 mutex_unlock(&kprobe_mutex);
1534
1535 if (probed_mod)
1536 module_put(probed_mod);
1537
1538 return ret;
1539}
1540EXPORT_SYMBOL_GPL(register_kprobe);
1541
1542/* Check if all probes on the aggrprobe are disabled */
1543static int aggr_kprobe_disabled(struct kprobe *ap)
1544{
1545 struct kprobe *kp;
1546
1547 list_for_each_entry_rcu(kp, &ap->list, list)
1548 if (!kprobe_disabled(kp))
1549 /*
1550 * There is an active probe on the list.
1551 * We can't disable this ap.
1552 */
1553 return 0;
1554
1555 return 1;
1556}
1557
1558/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1559static struct kprobe *__disable_kprobe(struct kprobe *p)
1560{
1561 struct kprobe *orig_p;
1562
1563 /* Get an original kprobe for return */
1564 orig_p = __get_valid_kprobe(p);
1565 if (unlikely(orig_p == NULL))
1566 return NULL;
1567
1568 if (!kprobe_disabled(p)) {
1569 /* Disable probe if it is a child probe */
1570 if (p != orig_p)
1571 p->flags |= KPROBE_FLAG_DISABLED;
1572
1573 /* Try to disarm and disable this/parent probe */
1574 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1575 /*
1576 * If kprobes_all_disarmed is set, orig_p
1577 * should have already been disarmed, so
1578 * skip unneed disarming process.
1579 */
1580 if (!kprobes_all_disarmed)
1581 disarm_kprobe(orig_p, true);
1582 orig_p->flags |= KPROBE_FLAG_DISABLED;
1583 }
1584 }
1585
1586 return orig_p;
1587}
1588
1589/*
1590 * Unregister a kprobe without a scheduler synchronization.
1591 */
1592static int __unregister_kprobe_top(struct kprobe *p)
1593{
1594 struct kprobe *ap, *list_p;
1595
1596 /* Disable kprobe. This will disarm it if needed. */
1597 ap = __disable_kprobe(p);
1598 if (ap == NULL)
1599 return -EINVAL;
1600
1601 if (ap == p)
1602 /*
1603 * This probe is an independent(and non-optimized) kprobe
1604 * (not an aggrprobe). Remove from the hash list.
1605 */
1606 goto disarmed;
1607
1608 /* Following process expects this probe is an aggrprobe */
1609 WARN_ON(!kprobe_aggrprobe(ap));
1610
1611 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1612 /*
1613 * !disarmed could be happen if the probe is under delayed
1614 * unoptimizing.
1615 */
1616 goto disarmed;
1617 else {
1618 /* If disabling probe has special handlers, update aggrprobe */
1619 if (p->break_handler && !kprobe_gone(p))
1620 ap->break_handler = NULL;
1621 if (p->post_handler && !kprobe_gone(p)) {
1622 list_for_each_entry_rcu(list_p, &ap->list, list) {
1623 if ((list_p != p) && (list_p->post_handler))
1624 goto noclean;
1625 }
1626 ap->post_handler = NULL;
1627 }
1628noclean:
1629 /*
1630 * Remove from the aggrprobe: this path will do nothing in
1631 * __unregister_kprobe_bottom().
1632 */
1633 list_del_rcu(&p->list);
1634 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1635 /*
1636 * Try to optimize this probe again, because post
1637 * handler may have been changed.
1638 */
1639 optimize_kprobe(ap);
1640 }
1641 return 0;
1642
1643disarmed:
1644 BUG_ON(!kprobe_disarmed(ap));
1645 hlist_del_rcu(&ap->hlist);
1646 return 0;
1647}
1648
1649static void __unregister_kprobe_bottom(struct kprobe *p)
1650{
1651 struct kprobe *ap;
1652
1653 if (list_empty(&p->list))
1654 /* This is an independent kprobe */
1655 arch_remove_kprobe(p);
1656 else if (list_is_singular(&p->list)) {
1657 /* This is the last child of an aggrprobe */
1658 ap = list_entry(p->list.next, struct kprobe, list);
1659 list_del(&p->list);
1660 free_aggr_kprobe(ap);
1661 }
1662 /* Otherwise, do nothing. */
1663}
1664
1665int register_kprobes(struct kprobe **kps, int num)
1666{
1667 int i, ret = 0;
1668
1669 if (num <= 0)
1670 return -EINVAL;
1671 for (i = 0; i < num; i++) {
1672 ret = register_kprobe(kps[i]);
1673 if (ret < 0) {
1674 if (i > 0)
1675 unregister_kprobes(kps, i);
1676 break;
1677 }
1678 }
1679 return ret;
1680}
1681EXPORT_SYMBOL_GPL(register_kprobes);
1682
1683void unregister_kprobe(struct kprobe *p)
1684{
1685 unregister_kprobes(&p, 1);
1686}
1687EXPORT_SYMBOL_GPL(unregister_kprobe);
1688
1689void unregister_kprobes(struct kprobe **kps, int num)
1690{
1691 int i;
1692
1693 if (num <= 0)
1694 return;
1695 mutex_lock(&kprobe_mutex);
1696 for (i = 0; i < num; i++)
1697 if (__unregister_kprobe_top(kps[i]) < 0)
1698 kps[i]->addr = NULL;
1699 mutex_unlock(&kprobe_mutex);
1700
1701 synchronize_sched();
1702 for (i = 0; i < num; i++)
1703 if (kps[i]->addr)
1704 __unregister_kprobe_bottom(kps[i]);
1705}
1706EXPORT_SYMBOL_GPL(unregister_kprobes);
1707
1708static struct notifier_block kprobe_exceptions_nb = {
1709 .notifier_call = kprobe_exceptions_notify,
1710 .priority = 0x7fffffff /* we need to be notified first */
1711};
1712
1713unsigned long __weak arch_deref_entry_point(void *entry)
1714{
1715 return (unsigned long)entry;
1716}
1717
1718int register_jprobes(struct jprobe **jps, int num)
1719{
1720 struct jprobe *jp;
1721 int ret = 0, i;
1722
1723 if (num <= 0)
1724 return -EINVAL;
1725 for (i = 0; i < num; i++) {
1726 unsigned long addr, offset;
1727 jp = jps[i];
1728 addr = arch_deref_entry_point(jp->entry);
1729
1730 /* Verify probepoint is a function entry point */
1731 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1732 offset == 0) {
1733 jp->kp.pre_handler = setjmp_pre_handler;
1734 jp->kp.break_handler = longjmp_break_handler;
1735 ret = register_kprobe(&jp->kp);
1736 } else
1737 ret = -EINVAL;
1738
1739 if (ret < 0) {
1740 if (i > 0)
1741 unregister_jprobes(jps, i);
1742 break;
1743 }
1744 }
1745 return ret;
1746}
1747EXPORT_SYMBOL_GPL(register_jprobes);
1748
1749int register_jprobe(struct jprobe *jp)
1750{
1751 return register_jprobes(&jp, 1);
1752}
1753EXPORT_SYMBOL_GPL(register_jprobe);
1754
1755void unregister_jprobe(struct jprobe *jp)
1756{
1757 unregister_jprobes(&jp, 1);
1758}
1759EXPORT_SYMBOL_GPL(unregister_jprobe);
1760
1761void unregister_jprobes(struct jprobe **jps, int num)
1762{
1763 int i;
1764
1765 if (num <= 0)
1766 return;
1767 mutex_lock(&kprobe_mutex);
1768 for (i = 0; i < num; i++)
1769 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1770 jps[i]->kp.addr = NULL;
1771 mutex_unlock(&kprobe_mutex);
1772
1773 synchronize_sched();
1774 for (i = 0; i < num; i++) {
1775 if (jps[i]->kp.addr)
1776 __unregister_kprobe_bottom(&jps[i]->kp);
1777 }
1778}
1779EXPORT_SYMBOL_GPL(unregister_jprobes);
1780
1781#ifdef CONFIG_KRETPROBES
1782/*
1783 * This kprobe pre_handler is registered with every kretprobe. When probe
1784 * hits it will set up the return probe.
1785 */
1786static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1787{
1788 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1789 unsigned long hash, flags = 0;
1790 struct kretprobe_instance *ri;
1791
1792 /*
1793 * To avoid deadlocks, prohibit return probing in NMI contexts,
1794 * just skip the probe and increase the (inexact) 'nmissed'
1795 * statistical counter, so that the user is informed that
1796 * something happened:
1797 */
1798 if (unlikely(in_nmi())) {
1799 rp->nmissed++;
1800 return 0;
1801 }
1802
1803 /* TODO: consider to only swap the RA after the last pre_handler fired */
1804 hash = hash_ptr(current, KPROBE_HASH_BITS);
1805 raw_spin_lock_irqsave(&rp->lock, flags);
1806 if (!hlist_empty(&rp->free_instances)) {
1807 ri = hlist_entry(rp->free_instances.first,
1808 struct kretprobe_instance, hlist);
1809 hlist_del(&ri->hlist);
1810 raw_spin_unlock_irqrestore(&rp->lock, flags);
1811
1812 ri->rp = rp;
1813 ri->task = current;
1814
1815 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1816 raw_spin_lock_irqsave(&rp->lock, flags);
1817 hlist_add_head(&ri->hlist, &rp->free_instances);
1818 raw_spin_unlock_irqrestore(&rp->lock, flags);
1819 return 0;
1820 }
1821
1822 arch_prepare_kretprobe(ri, regs);
1823
1824 /* XXX(hch): why is there no hlist_move_head? */
1825 INIT_HLIST_NODE(&ri->hlist);
1826 kretprobe_table_lock(hash, &flags);
1827 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1828 kretprobe_table_unlock(hash, &flags);
1829 } else {
1830 rp->nmissed++;
1831 raw_spin_unlock_irqrestore(&rp->lock, flags);
1832 }
1833 return 0;
1834}
1835NOKPROBE_SYMBOL(pre_handler_kretprobe);
1836
1837int register_kretprobe(struct kretprobe *rp)
1838{
1839 int ret = 0;
1840 struct kretprobe_instance *inst;
1841 int i;
1842 void *addr;
1843
1844 if (kretprobe_blacklist_size) {
1845 addr = kprobe_addr(&rp->kp);
1846 if (IS_ERR(addr))
1847 return PTR_ERR(addr);
1848
1849 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1850 if (kretprobe_blacklist[i].addr == addr)
1851 return -EINVAL;
1852 }
1853 }
1854
1855 rp->kp.pre_handler = pre_handler_kretprobe;
1856 rp->kp.post_handler = NULL;
1857 rp->kp.fault_handler = NULL;
1858 rp->kp.break_handler = NULL;
1859
1860 /* Pre-allocate memory for max kretprobe instances */
1861 if (rp->maxactive <= 0) {
1862#ifdef CONFIG_PREEMPT
1863 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1864#else
1865 rp->maxactive = num_possible_cpus();
1866#endif
1867 }
1868 raw_spin_lock_init(&rp->lock);
1869 INIT_HLIST_HEAD(&rp->free_instances);
1870 for (i = 0; i < rp->maxactive; i++) {
1871 inst = kmalloc(sizeof(struct kretprobe_instance) +
1872 rp->data_size, GFP_KERNEL);
1873 if (inst == NULL) {
1874 free_rp_inst(rp);
1875 return -ENOMEM;
1876 }
1877 INIT_HLIST_NODE(&inst->hlist);
1878 hlist_add_head(&inst->hlist, &rp->free_instances);
1879 }
1880
1881 rp->nmissed = 0;
1882 /* Establish function entry probe point */
1883 ret = register_kprobe(&rp->kp);
1884 if (ret != 0)
1885 free_rp_inst(rp);
1886 return ret;
1887}
1888EXPORT_SYMBOL_GPL(register_kretprobe);
1889
1890int register_kretprobes(struct kretprobe **rps, int num)
1891{
1892 int ret = 0, i;
1893
1894 if (num <= 0)
1895 return -EINVAL;
1896 for (i = 0; i < num; i++) {
1897 ret = register_kretprobe(rps[i]);
1898 if (ret < 0) {
1899 if (i > 0)
1900 unregister_kretprobes(rps, i);
1901 break;
1902 }
1903 }
1904 return ret;
1905}
1906EXPORT_SYMBOL_GPL(register_kretprobes);
1907
1908void unregister_kretprobe(struct kretprobe *rp)
1909{
1910 unregister_kretprobes(&rp, 1);
1911}
1912EXPORT_SYMBOL_GPL(unregister_kretprobe);
1913
1914void unregister_kretprobes(struct kretprobe **rps, int num)
1915{
1916 int i;
1917
1918 if (num <= 0)
1919 return;
1920 mutex_lock(&kprobe_mutex);
1921 for (i = 0; i < num; i++)
1922 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1923 rps[i]->kp.addr = NULL;
1924 mutex_unlock(&kprobe_mutex);
1925
1926 synchronize_sched();
1927 for (i = 0; i < num; i++) {
1928 if (rps[i]->kp.addr) {
1929 __unregister_kprobe_bottom(&rps[i]->kp);
1930 cleanup_rp_inst(rps[i]);
1931 }
1932 }
1933}
1934EXPORT_SYMBOL_GPL(unregister_kretprobes);
1935
1936#else /* CONFIG_KRETPROBES */
1937int register_kretprobe(struct kretprobe *rp)
1938{
1939 return -ENOSYS;
1940}
1941EXPORT_SYMBOL_GPL(register_kretprobe);
1942
1943int register_kretprobes(struct kretprobe **rps, int num)
1944{
1945 return -ENOSYS;
1946}
1947EXPORT_SYMBOL_GPL(register_kretprobes);
1948
1949void unregister_kretprobe(struct kretprobe *rp)
1950{
1951}
1952EXPORT_SYMBOL_GPL(unregister_kretprobe);
1953
1954void unregister_kretprobes(struct kretprobe **rps, int num)
1955{
1956}
1957EXPORT_SYMBOL_GPL(unregister_kretprobes);
1958
1959static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1960{
1961 return 0;
1962}
1963NOKPROBE_SYMBOL(pre_handler_kretprobe);
1964
1965#endif /* CONFIG_KRETPROBES */
1966
1967/* Set the kprobe gone and remove its instruction buffer. */
1968static void kill_kprobe(struct kprobe *p)
1969{
1970 struct kprobe *kp;
1971
1972 p->flags |= KPROBE_FLAG_GONE;
1973 if (kprobe_aggrprobe(p)) {
1974 /*
1975 * If this is an aggr_kprobe, we have to list all the
1976 * chained probes and mark them GONE.
1977 */
1978 list_for_each_entry_rcu(kp, &p->list, list)
1979 kp->flags |= KPROBE_FLAG_GONE;
1980 p->post_handler = NULL;
1981 p->break_handler = NULL;
1982 kill_optimized_kprobe(p);
1983 }
1984 /*
1985 * Here, we can remove insn_slot safely, because no thread calls
1986 * the original probed function (which will be freed soon) any more.
1987 */
1988 arch_remove_kprobe(p);
1989}
1990
1991/* Disable one kprobe */
1992int disable_kprobe(struct kprobe *kp)
1993{
1994 int ret = 0;
1995
1996 mutex_lock(&kprobe_mutex);
1997
1998 /* Disable this kprobe */
1999 if (__disable_kprobe(kp) == NULL)
2000 ret = -EINVAL;
2001
2002 mutex_unlock(&kprobe_mutex);
2003 return ret;
2004}
2005EXPORT_SYMBOL_GPL(disable_kprobe);
2006
2007/* Enable one kprobe */
2008int enable_kprobe(struct kprobe *kp)
2009{
2010 int ret = 0;
2011 struct kprobe *p;
2012
2013 mutex_lock(&kprobe_mutex);
2014
2015 /* Check whether specified probe is valid. */
2016 p = __get_valid_kprobe(kp);
2017 if (unlikely(p == NULL)) {
2018 ret = -EINVAL;
2019 goto out;
2020 }
2021
2022 if (kprobe_gone(kp)) {
2023 /* This kprobe has gone, we couldn't enable it. */
2024 ret = -EINVAL;
2025 goto out;
2026 }
2027
2028 if (p != kp)
2029 kp->flags &= ~KPROBE_FLAG_DISABLED;
2030
2031 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2032 p->flags &= ~KPROBE_FLAG_DISABLED;
2033 arm_kprobe(p);
2034 }
2035out:
2036 mutex_unlock(&kprobe_mutex);
2037 return ret;
2038}
2039EXPORT_SYMBOL_GPL(enable_kprobe);
2040
2041void dump_kprobe(struct kprobe *kp)
2042{
2043 printk(KERN_WARNING "Dumping kprobe:\n");
2044 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2045 kp->symbol_name, kp->addr, kp->offset);
2046}
2047NOKPROBE_SYMBOL(dump_kprobe);
2048
2049/*
2050 * Lookup and populate the kprobe_blacklist.
2051 *
2052 * Unlike the kretprobe blacklist, we'll need to determine
2053 * the range of addresses that belong to the said functions,
2054 * since a kprobe need not necessarily be at the beginning
2055 * of a function.
2056 */
2057static int __init populate_kprobe_blacklist(unsigned long *start,
2058 unsigned long *end)
2059{
2060 unsigned long *iter;
2061 struct kprobe_blacklist_entry *ent;
2062 unsigned long entry, offset = 0, size = 0;
2063
2064 for (iter = start; iter < end; iter++) {
2065 entry = arch_deref_entry_point((void *)*iter);
2066
2067 if (!kernel_text_address(entry) ||
2068 !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2069 pr_err("Failed to find blacklist at %p\n",
2070 (void *)entry);
2071 continue;
2072 }
2073
2074 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2075 if (!ent)
2076 return -ENOMEM;
2077 ent->start_addr = entry;
2078 ent->end_addr = entry + size;
2079 INIT_LIST_HEAD(&ent->list);
2080 list_add_tail(&ent->list, &kprobe_blacklist);
2081 }
2082 return 0;
2083}
2084
2085/* Module notifier call back, checking kprobes on the module */
2086static int kprobes_module_callback(struct notifier_block *nb,
2087 unsigned long val, void *data)
2088{
2089 struct module *mod = data;
2090 struct hlist_head *head;
2091 struct kprobe *p;
2092 unsigned int i;
2093 int checkcore = (val == MODULE_STATE_GOING);
2094
2095 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2096 return NOTIFY_DONE;
2097
2098 /*
2099 * When MODULE_STATE_GOING was notified, both of module .text and
2100 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2101 * notified, only .init.text section would be freed. We need to
2102 * disable kprobes which have been inserted in the sections.
2103 */
2104 mutex_lock(&kprobe_mutex);
2105 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2106 head = &kprobe_table[i];
2107 hlist_for_each_entry_rcu(p, head, hlist)
2108 if (within_module_init((unsigned long)p->addr, mod) ||
2109 (checkcore &&
2110 within_module_core((unsigned long)p->addr, mod))) {
2111 /*
2112 * The vaddr this probe is installed will soon
2113 * be vfreed buy not synced to disk. Hence,
2114 * disarming the breakpoint isn't needed.
2115 */
2116 kill_kprobe(p);
2117 }
2118 }
2119 mutex_unlock(&kprobe_mutex);
2120 return NOTIFY_DONE;
2121}
2122
2123static struct notifier_block kprobe_module_nb = {
2124 .notifier_call = kprobes_module_callback,
2125 .priority = 0
2126};
2127
2128/* Markers of _kprobe_blacklist section */
2129extern unsigned long __start_kprobe_blacklist[];
2130extern unsigned long __stop_kprobe_blacklist[];
2131
2132static int __init init_kprobes(void)
2133{
2134 int i, err = 0;
2135
2136 /* FIXME allocate the probe table, currently defined statically */
2137 /* initialize all list heads */
2138 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2139 INIT_HLIST_HEAD(&kprobe_table[i]);
2140 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2141 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2142 }
2143
2144 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2145 __stop_kprobe_blacklist);
2146 if (err) {
2147 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2148 pr_err("Please take care of using kprobes.\n");
2149 }
2150
2151 if (kretprobe_blacklist_size) {
2152 /* lookup the function address from its name */
2153 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2154 kprobe_lookup_name(kretprobe_blacklist[i].name,
2155 kretprobe_blacklist[i].addr);
2156 if (!kretprobe_blacklist[i].addr)
2157 printk("kretprobe: lookup failed: %s\n",
2158 kretprobe_blacklist[i].name);
2159 }
2160 }
2161
2162#if defined(CONFIG_OPTPROBES)
2163#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2164 /* Init kprobe_optinsn_slots */
2165 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2166#endif
2167 /* By default, kprobes can be optimized */
2168 kprobes_allow_optimization = true;
2169#endif
2170
2171 /* By default, kprobes are armed */
2172 kprobes_all_disarmed = false;
2173
2174 err = arch_init_kprobes();
2175 if (!err)
2176 err = register_die_notifier(&kprobe_exceptions_nb);
2177 if (!err)
2178 err = register_module_notifier(&kprobe_module_nb);
2179
2180 kprobes_initialized = (err == 0);
2181
2182 if (!err)
2183 init_test_probes();
2184 return err;
2185}
2186
2187#ifdef CONFIG_DEBUG_FS
2188static void report_probe(struct seq_file *pi, struct kprobe *p,
2189 const char *sym, int offset, char *modname, struct kprobe *pp)
2190{
2191 char *kprobe_type;
2192
2193 if (p->pre_handler == pre_handler_kretprobe)
2194 kprobe_type = "r";
2195 else if (p->pre_handler == setjmp_pre_handler)
2196 kprobe_type = "j";
2197 else
2198 kprobe_type = "k";
2199
2200 if (sym)
2201 seq_printf(pi, "%p %s %s+0x%x %s ",
2202 p->addr, kprobe_type, sym, offset,
2203 (modname ? modname : " "));
2204 else
2205 seq_printf(pi, "%p %s %p ",
2206 p->addr, kprobe_type, p->addr);
2207
2208 if (!pp)
2209 pp = p;
2210 seq_printf(pi, "%s%s%s%s\n",
2211 (kprobe_gone(p) ? "[GONE]" : ""),
2212 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2213 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2214 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2215}
2216
2217static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2218{
2219 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2220}
2221
2222static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2223{
2224 (*pos)++;
2225 if (*pos >= KPROBE_TABLE_SIZE)
2226 return NULL;
2227 return pos;
2228}
2229
2230static void kprobe_seq_stop(struct seq_file *f, void *v)
2231{
2232 /* Nothing to do */
2233}
2234
2235static int show_kprobe_addr(struct seq_file *pi, void *v)
2236{
2237 struct hlist_head *head;
2238 struct kprobe *p, *kp;
2239 const char *sym = NULL;
2240 unsigned int i = *(loff_t *) v;
2241 unsigned long offset = 0;
2242 char *modname, namebuf[KSYM_NAME_LEN];
2243
2244 head = &kprobe_table[i];
2245 preempt_disable();
2246 hlist_for_each_entry_rcu(p, head, hlist) {
2247 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2248 &offset, &modname, namebuf);
2249 if (kprobe_aggrprobe(p)) {
2250 list_for_each_entry_rcu(kp, &p->list, list)
2251 report_probe(pi, kp, sym, offset, modname, p);
2252 } else
2253 report_probe(pi, p, sym, offset, modname, NULL);
2254 }
2255 preempt_enable();
2256 return 0;
2257}
2258
2259static const struct seq_operations kprobes_seq_ops = {
2260 .start = kprobe_seq_start,
2261 .next = kprobe_seq_next,
2262 .stop = kprobe_seq_stop,
2263 .show = show_kprobe_addr
2264};
2265
2266static int kprobes_open(struct inode *inode, struct file *filp)
2267{
2268 return seq_open(filp, &kprobes_seq_ops);
2269}
2270
2271static const struct file_operations debugfs_kprobes_operations = {
2272 .open = kprobes_open,
2273 .read = seq_read,
2274 .llseek = seq_lseek,
2275 .release = seq_release,
2276};
2277
2278/* kprobes/blacklist -- shows which functions can not be probed */
2279static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2280{
2281 return seq_list_start(&kprobe_blacklist, *pos);
2282}
2283
2284static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2285{
2286 return seq_list_next(v, &kprobe_blacklist, pos);
2287}
2288
2289static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2290{
2291 struct kprobe_blacklist_entry *ent =
2292 list_entry(v, struct kprobe_blacklist_entry, list);
2293
2294 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2295 (void *)ent->end_addr, (void *)ent->start_addr);
2296 return 0;
2297}
2298
2299static const struct seq_operations kprobe_blacklist_seq_ops = {
2300 .start = kprobe_blacklist_seq_start,
2301 .next = kprobe_blacklist_seq_next,
2302 .stop = kprobe_seq_stop, /* Reuse void function */
2303 .show = kprobe_blacklist_seq_show,
2304};
2305
2306static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2307{
2308 return seq_open(filp, &kprobe_blacklist_seq_ops);
2309}
2310
2311static const struct file_operations debugfs_kprobe_blacklist_ops = {
2312 .open = kprobe_blacklist_open,
2313 .read = seq_read,
2314 .llseek = seq_lseek,
2315 .release = seq_release,
2316};
2317
2318static void arm_all_kprobes(void)
2319{
2320 struct hlist_head *head;
2321 struct kprobe *p;
2322 unsigned int i;
2323
2324 mutex_lock(&kprobe_mutex);
2325
2326 /* If kprobes are armed, just return */
2327 if (!kprobes_all_disarmed)
2328 goto already_enabled;
2329
2330 /*
2331 * optimize_kprobe() called by arm_kprobe() checks
2332 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2333 * arm_kprobe.
2334 */
2335 kprobes_all_disarmed = false;
2336 /* Arming kprobes doesn't optimize kprobe itself */
2337 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2338 head = &kprobe_table[i];
2339 hlist_for_each_entry_rcu(p, head, hlist)
2340 if (!kprobe_disabled(p))
2341 arm_kprobe(p);
2342 }
2343
2344 printk(KERN_INFO "Kprobes globally enabled\n");
2345
2346already_enabled:
2347 mutex_unlock(&kprobe_mutex);
2348 return;
2349}
2350
2351static void disarm_all_kprobes(void)
2352{
2353 struct hlist_head *head;
2354 struct kprobe *p;
2355 unsigned int i;
2356
2357 mutex_lock(&kprobe_mutex);
2358
2359 /* If kprobes are already disarmed, just return */
2360 if (kprobes_all_disarmed) {
2361 mutex_unlock(&kprobe_mutex);
2362 return;
2363 }
2364
2365 kprobes_all_disarmed = true;
2366 printk(KERN_INFO "Kprobes globally disabled\n");
2367
2368 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2369 head = &kprobe_table[i];
2370 hlist_for_each_entry_rcu(p, head, hlist) {
2371 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2372 disarm_kprobe(p, false);
2373 }
2374 }
2375 mutex_unlock(&kprobe_mutex);
2376
2377 /* Wait for disarming all kprobes by optimizer */
2378 wait_for_kprobe_optimizer();
2379}
2380
2381/*
2382 * XXX: The debugfs bool file interface doesn't allow for callbacks
2383 * when the bool state is switched. We can reuse that facility when
2384 * available
2385 */
2386static ssize_t read_enabled_file_bool(struct file *file,
2387 char __user *user_buf, size_t count, loff_t *ppos)
2388{
2389 char buf[3];
2390
2391 if (!kprobes_all_disarmed)
2392 buf[0] = '1';
2393 else
2394 buf[0] = '0';
2395 buf[1] = '\n';
2396 buf[2] = 0x00;
2397 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2398}
2399
2400static ssize_t write_enabled_file_bool(struct file *file,
2401 const char __user *user_buf, size_t count, loff_t *ppos)
2402{
2403 char buf[32];
2404 size_t buf_size;
2405
2406 buf_size = min(count, (sizeof(buf)-1));
2407 if (copy_from_user(buf, user_buf, buf_size))
2408 return -EFAULT;
2409
2410 buf[buf_size] = '\0';
2411 switch (buf[0]) {
2412 case 'y':
2413 case 'Y':
2414 case '1':
2415 arm_all_kprobes();
2416 break;
2417 case 'n':
2418 case 'N':
2419 case '0':
2420 disarm_all_kprobes();
2421 break;
2422 default:
2423 return -EINVAL;
2424 }
2425
2426 return count;
2427}
2428
2429static const struct file_operations fops_kp = {
2430 .read = read_enabled_file_bool,
2431 .write = write_enabled_file_bool,
2432 .llseek = default_llseek,
2433};
2434
2435static int __init debugfs_kprobe_init(void)
2436{
2437 struct dentry *dir, *file;
2438 unsigned int value = 1;
2439
2440 dir = debugfs_create_dir("kprobes", NULL);
2441 if (!dir)
2442 return -ENOMEM;
2443
2444 file = debugfs_create_file("list", 0444, dir, NULL,
2445 &debugfs_kprobes_operations);
2446 if (!file)
2447 goto error;
2448
2449 file = debugfs_create_file("enabled", 0600, dir,
2450 &value, &fops_kp);
2451 if (!file)
2452 goto error;
2453
2454 file = debugfs_create_file("blacklist", 0444, dir, NULL,
2455 &debugfs_kprobe_blacklist_ops);
2456 if (!file)
2457 goto error;
2458
2459 return 0;
2460
2461error:
2462 debugfs_remove(dir);
2463 return -ENOMEM;
2464}
2465
2466late_initcall(debugfs_kprobe_init);
2467#endif /* CONFIG_DEBUG_FS */
2468
2469module_init(init_kprobes);
2470
2471/* defined in arch/.../kernel/kprobes.c */
2472EXPORT_SYMBOL_GPL(jprobe_return);