Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * SPI bus driver for the Topcliff PCH used by Intel SoCs
   3 *
   4 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; version 2 of the License.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
  18 */
  19
  20#include <linux/delay.h>
  21#include <linux/pci.h>
  22#include <linux/wait.h>
  23#include <linux/spi/spi.h>
  24#include <linux/interrupt.h>
  25#include <linux/sched.h>
  26#include <linux/spi/spidev.h>
  27#include <linux/module.h>
  28#include <linux/device.h>
  29#include <linux/platform_device.h>
  30
  31#include <linux/dmaengine.h>
  32#include <linux/pch_dma.h>
  33
  34/* Register offsets */
  35#define PCH_SPCR		0x00	/* SPI control register */
  36#define PCH_SPBRR		0x04	/* SPI baud rate register */
  37#define PCH_SPSR		0x08	/* SPI status register */
  38#define PCH_SPDWR		0x0C	/* SPI write data register */
  39#define PCH_SPDRR		0x10	/* SPI read data register */
  40#define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
  41#define PCH_SRST		0x1C	/* SPI reset register */
  42#define PCH_ADDRESS_SIZE	0x20
  43
  44#define PCH_SPSR_TFD		0x000007C0
  45#define PCH_SPSR_RFD		0x0000F800
  46
  47#define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
  48#define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
  49
  50#define PCH_RX_THOLD		7
  51#define PCH_RX_THOLD_MAX	15
  52
  53#define PCH_TX_THOLD		2
  54
  55#define PCH_MAX_BAUDRATE	5000000
  56#define PCH_MAX_FIFO_DEPTH	16
  57
  58#define STATUS_RUNNING		1
  59#define STATUS_EXITING		2
  60#define PCH_SLEEP_TIME		10
  61
  62#define SSN_LOW			0x02U
  63#define SSN_HIGH		0x03U
  64#define SSN_NO_CONTROL		0x00U
  65#define PCH_MAX_CS		0xFF
  66#define PCI_DEVICE_ID_GE_SPI	0x8816
  67
  68#define SPCR_SPE_BIT		(1 << 0)
  69#define SPCR_MSTR_BIT		(1 << 1)
  70#define SPCR_LSBF_BIT		(1 << 4)
  71#define SPCR_CPHA_BIT		(1 << 5)
  72#define SPCR_CPOL_BIT		(1 << 6)
  73#define SPCR_TFIE_BIT		(1 << 8)
  74#define SPCR_RFIE_BIT		(1 << 9)
  75#define SPCR_FIE_BIT		(1 << 10)
  76#define SPCR_ORIE_BIT		(1 << 11)
  77#define SPCR_MDFIE_BIT		(1 << 12)
  78#define SPCR_FICLR_BIT		(1 << 24)
  79#define SPSR_TFI_BIT		(1 << 0)
  80#define SPSR_RFI_BIT		(1 << 1)
  81#define SPSR_FI_BIT		(1 << 2)
  82#define SPSR_ORF_BIT		(1 << 3)
  83#define SPBRR_SIZE_BIT		(1 << 10)
  84
  85#define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  86				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  87
  88#define SPCR_RFIC_FIELD		20
  89#define SPCR_TFIC_FIELD		16
  90
  91#define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
  92#define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
  93#define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
  94
  95#define PCH_CLOCK_HZ		50000000
  96#define PCH_MAX_SPBR		1023
  97
  98/* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
  99#define PCI_VENDOR_ID_ROHM		0x10DB
 100#define PCI_DEVICE_ID_ML7213_SPI	0x802c
 101#define PCI_DEVICE_ID_ML7223_SPI	0x800F
 102#define PCI_DEVICE_ID_ML7831_SPI	0x8816
 103
 104/*
 105 * Set the number of SPI instance max
 106 * Intel EG20T PCH :		1ch
 107 * LAPIS Semiconductor ML7213 IOH :	2ch
 108 * LAPIS Semiconductor ML7223 IOH :	1ch
 109 * LAPIS Semiconductor ML7831 IOH :	1ch
 110*/
 111#define PCH_SPI_MAX_DEV			2
 112
 113#define PCH_BUF_SIZE		4096
 114#define PCH_DMA_TRANS_SIZE	12
 115
 116static int use_dma = 1;
 117
 118struct pch_spi_dma_ctrl {
 119	struct dma_async_tx_descriptor	*desc_tx;
 120	struct dma_async_tx_descriptor	*desc_rx;
 121	struct pch_dma_slave		param_tx;
 122	struct pch_dma_slave		param_rx;
 123	struct dma_chan		*chan_tx;
 124	struct dma_chan		*chan_rx;
 125	struct scatterlist		*sg_tx_p;
 126	struct scatterlist		*sg_rx_p;
 127	struct scatterlist		sg_tx;
 128	struct scatterlist		sg_rx;
 129	int				nent;
 130	void				*tx_buf_virt;
 131	void				*rx_buf_virt;
 132	dma_addr_t			tx_buf_dma;
 133	dma_addr_t			rx_buf_dma;
 134};
 135/**
 136 * struct pch_spi_data - Holds the SPI channel specific details
 137 * @io_remap_addr:		The remapped PCI base address
 138 * @master:			Pointer to the SPI master structure
 139 * @work:			Reference to work queue handler
 140 * @wk:				Workqueue for carrying out execution of the
 141 *				requests
 142 * @wait:			Wait queue for waking up upon receiving an
 143 *				interrupt.
 144 * @transfer_complete:		Status of SPI Transfer
 145 * @bcurrent_msg_processing:	Status flag for message processing
 146 * @lock:			Lock for protecting this structure
 147 * @queue:			SPI Message queue
 148 * @status:			Status of the SPI driver
 149 * @bpw_len:			Length of data to be transferred in bits per
 150 *				word
 151 * @transfer_active:		Flag showing active transfer
 152 * @tx_index:			Transmit data count; for bookkeeping during
 153 *				transfer
 154 * @rx_index:			Receive data count; for bookkeeping during
 155 *				transfer
 156 * @tx_buff:			Buffer for data to be transmitted
 157 * @rx_index:			Buffer for Received data
 158 * @n_curnt_chip:		The chip number that this SPI driver currently
 159 *				operates on
 160 * @current_chip:		Reference to the current chip that this SPI
 161 *				driver currently operates on
 162 * @current_msg:		The current message that this SPI driver is
 163 *				handling
 164 * @cur_trans:			The current transfer that this SPI driver is
 165 *				handling
 166 * @board_dat:			Reference to the SPI device data structure
 167 * @plat_dev:			platform_device structure
 168 * @ch:				SPI channel number
 169 * @irq_reg_sts:		Status of IRQ registration
 170 */
 171struct pch_spi_data {
 172	void __iomem *io_remap_addr;
 173	unsigned long io_base_addr;
 174	struct spi_master *master;
 175	struct work_struct work;
 176	struct workqueue_struct *wk;
 177	wait_queue_head_t wait;
 178	u8 transfer_complete;
 179	u8 bcurrent_msg_processing;
 180	spinlock_t lock;
 181	struct list_head queue;
 182	u8 status;
 183	u32 bpw_len;
 184	u8 transfer_active;
 185	u32 tx_index;
 186	u32 rx_index;
 187	u16 *pkt_tx_buff;
 188	u16 *pkt_rx_buff;
 189	u8 n_curnt_chip;
 190	struct spi_device *current_chip;
 191	struct spi_message *current_msg;
 192	struct spi_transfer *cur_trans;
 193	struct pch_spi_board_data *board_dat;
 194	struct platform_device	*plat_dev;
 195	int ch;
 196	struct pch_spi_dma_ctrl dma;
 197	int use_dma;
 198	u8 irq_reg_sts;
 199	int save_total_len;
 200};
 201
 202/**
 203 * struct pch_spi_board_data - Holds the SPI device specific details
 204 * @pdev:		Pointer to the PCI device
 205 * @suspend_sts:	Status of suspend
 206 * @num:		The number of SPI device instance
 207 */
 208struct pch_spi_board_data {
 209	struct pci_dev *pdev;
 210	u8 suspend_sts;
 211	int num;
 212};
 213
 214struct pch_pd_dev_save {
 215	int num;
 216	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
 217	struct pch_spi_board_data *board_dat;
 218};
 219
 220static DEFINE_PCI_DEVICE_TABLE(pch_spi_pcidev_id) = {
 221	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
 222	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
 223	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
 224	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
 225	{ }
 226};
 227
 228/**
 229 * pch_spi_writereg() - Performs  register writes
 230 * @master:	Pointer to struct spi_master.
 231 * @idx:	Register offset.
 232 * @val:	Value to be written to register.
 233 */
 234static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
 235{
 236	struct pch_spi_data *data = spi_master_get_devdata(master);
 237	iowrite32(val, (data->io_remap_addr + idx));
 238}
 239
 240/**
 241 * pch_spi_readreg() - Performs register reads
 242 * @master:	Pointer to struct spi_master.
 243 * @idx:	Register offset.
 244 */
 245static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
 246{
 247	struct pch_spi_data *data = spi_master_get_devdata(master);
 248	return ioread32(data->io_remap_addr + idx);
 249}
 250
 251static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
 252				      u32 set, u32 clr)
 253{
 254	u32 tmp = pch_spi_readreg(master, idx);
 255	tmp = (tmp & ~clr) | set;
 256	pch_spi_writereg(master, idx, tmp);
 257}
 258
 259static void pch_spi_set_master_mode(struct spi_master *master)
 260{
 261	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
 262}
 263
 264/**
 265 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
 266 * @master:	Pointer to struct spi_master.
 267 */
 268static void pch_spi_clear_fifo(struct spi_master *master)
 269{
 270	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
 271	pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
 272}
 273
 274static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
 275				void __iomem *io_remap_addr)
 276{
 277	u32 n_read, tx_index, rx_index, bpw_len;
 278	u16 *pkt_rx_buffer, *pkt_tx_buff;
 279	int read_cnt;
 280	u32 reg_spcr_val;
 281	void __iomem *spsr;
 282	void __iomem *spdrr;
 283	void __iomem *spdwr;
 284
 285	spsr = io_remap_addr + PCH_SPSR;
 286	iowrite32(reg_spsr_val, spsr);
 287
 288	if (data->transfer_active) {
 289		rx_index = data->rx_index;
 290		tx_index = data->tx_index;
 291		bpw_len = data->bpw_len;
 292		pkt_rx_buffer = data->pkt_rx_buff;
 293		pkt_tx_buff = data->pkt_tx_buff;
 294
 295		spdrr = io_remap_addr + PCH_SPDRR;
 296		spdwr = io_remap_addr + PCH_SPDWR;
 297
 298		n_read = PCH_READABLE(reg_spsr_val);
 299
 300		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
 301			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
 302			if (tx_index < bpw_len)
 303				iowrite32(pkt_tx_buff[tx_index++], spdwr);
 304		}
 305
 306		/* disable RFI if not needed */
 307		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
 308			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
 309			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
 310
 311			/* reset rx threshold */
 312			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
 313			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
 314
 315			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
 316		}
 317
 318		/* update counts */
 319		data->tx_index = tx_index;
 320		data->rx_index = rx_index;
 321
 322		/* if transfer complete interrupt */
 323		if (reg_spsr_val & SPSR_FI_BIT) {
 324			if ((tx_index == bpw_len) && (rx_index == tx_index)) {
 325				/* disable interrupts */
 326				pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
 327						   PCH_ALL);
 328
 329				/* transfer is completed;
 330				   inform pch_spi_process_messages */
 331				data->transfer_complete = true;
 332				data->transfer_active = false;
 333				wake_up(&data->wait);
 334			} else {
 335				dev_err(&data->master->dev,
 336					"%s : Transfer is not completed",
 337					__func__);
 338			}
 339		}
 340	}
 341}
 342
 343/**
 344 * pch_spi_handler() - Interrupt handler
 345 * @irq:	The interrupt number.
 346 * @dev_id:	Pointer to struct pch_spi_board_data.
 347 */
 348static irqreturn_t pch_spi_handler(int irq, void *dev_id)
 349{
 350	u32 reg_spsr_val;
 351	void __iomem *spsr;
 352	void __iomem *io_remap_addr;
 353	irqreturn_t ret = IRQ_NONE;
 354	struct pch_spi_data *data = dev_id;
 355	struct pch_spi_board_data *board_dat = data->board_dat;
 356
 357	if (board_dat->suspend_sts) {
 358		dev_dbg(&board_dat->pdev->dev,
 359			"%s returning due to suspend\n", __func__);
 360		return IRQ_NONE;
 361	}
 362
 363	io_remap_addr = data->io_remap_addr;
 364	spsr = io_remap_addr + PCH_SPSR;
 365
 366	reg_spsr_val = ioread32(spsr);
 367
 368	if (reg_spsr_val & SPSR_ORF_BIT) {
 369		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
 370		if (data->current_msg->complete != 0) {
 371			data->transfer_complete = true;
 372			data->current_msg->status = -EIO;
 373			data->current_msg->complete(data->current_msg->context);
 374			data->bcurrent_msg_processing = false;
 375			data->current_msg = NULL;
 376			data->cur_trans = NULL;
 377		}
 378	}
 379
 380	if (data->use_dma)
 381		return IRQ_NONE;
 382
 383	/* Check if the interrupt is for SPI device */
 384	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
 385		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
 386		ret = IRQ_HANDLED;
 387	}
 388
 389	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
 390		__func__, ret);
 391
 392	return ret;
 393}
 394
 395/**
 396 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
 397 * @master:	Pointer to struct spi_master.
 398 * @speed_hz:	Baud rate.
 399 */
 400static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
 401{
 402	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
 403
 404	/* if baud rate is less than we can support limit it */
 405	if (n_spbr > PCH_MAX_SPBR)
 406		n_spbr = PCH_MAX_SPBR;
 407
 408	pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
 409}
 410
 411/**
 412 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
 413 * @master:		Pointer to struct spi_master.
 414 * @bits_per_word:	Bits per word for SPI transfer.
 415 */
 416static void pch_spi_set_bits_per_word(struct spi_master *master,
 417				      u8 bits_per_word)
 418{
 419	if (bits_per_word == 8)
 420		pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
 421	else
 422		pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
 423}
 424
 425/**
 426 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
 427 * @spi:	Pointer to struct spi_device.
 428 */
 429static void pch_spi_setup_transfer(struct spi_device *spi)
 430{
 431	u32 flags = 0;
 432
 433	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
 434		__func__, pch_spi_readreg(spi->master, PCH_SPBRR),
 435		spi->max_speed_hz);
 436	pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
 437
 438	/* set bits per word */
 439	pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
 440
 441	if (!(spi->mode & SPI_LSB_FIRST))
 442		flags |= SPCR_LSBF_BIT;
 443	if (spi->mode & SPI_CPOL)
 444		flags |= SPCR_CPOL_BIT;
 445	if (spi->mode & SPI_CPHA)
 446		flags |= SPCR_CPHA_BIT;
 447	pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
 448			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
 449
 450	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
 451	pch_spi_clear_fifo(spi->master);
 452}
 453
 454/**
 455 * pch_spi_reset() - Clears SPI registers
 456 * @master:	Pointer to struct spi_master.
 457 */
 458static void pch_spi_reset(struct spi_master *master)
 459{
 460	/* write 1 to reset SPI */
 461	pch_spi_writereg(master, PCH_SRST, 0x1);
 462
 463	/* clear reset */
 464	pch_spi_writereg(master, PCH_SRST, 0x0);
 465}
 466
 467static int pch_spi_setup(struct spi_device *pspi)
 468{
 469	/* check bits per word */
 470	if (pspi->bits_per_word == 0) {
 471		pspi->bits_per_word = 8;
 472		dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
 473	}
 474
 475	if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
 476		dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
 477		return -EINVAL;
 478	}
 479
 480	/* Check baud rate setting */
 481	/* if baud rate of chip is greater than
 482	   max we can support,return error */
 483	if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
 484		pspi->max_speed_hz = PCH_MAX_BAUDRATE;
 485
 486	dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
 487		(pspi->mode) & (SPI_CPOL | SPI_CPHA));
 488
 489	return 0;
 490}
 491
 492static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
 493{
 494
 495	struct spi_transfer *transfer;
 496	struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
 497	int retval;
 498	unsigned long flags;
 499
 500	/* validate spi message and baud rate */
 501	if (unlikely(list_empty(&pmsg->transfers) == 1)) {
 502		dev_err(&pspi->dev, "%s list empty\n", __func__);
 503		retval = -EINVAL;
 504		goto err_out;
 505	}
 506
 507	if (unlikely(pspi->max_speed_hz == 0)) {
 508		dev_err(&pspi->dev, "%s pch_spi_tranfer maxspeed=%d\n",
 509			__func__, pspi->max_speed_hz);
 510		retval = -EINVAL;
 511		goto err_out;
 512	}
 513
 514	dev_dbg(&pspi->dev, "%s Transfer List not empty. "
 515		"Transfer Speed is set.\n", __func__);
 516
 517	spin_lock_irqsave(&data->lock, flags);
 518	/* validate Tx/Rx buffers and Transfer length */
 519	list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
 520		if (!transfer->tx_buf && !transfer->rx_buf) {
 521			dev_err(&pspi->dev,
 522				"%s Tx and Rx buffer NULL\n", __func__);
 523			retval = -EINVAL;
 524			goto err_return_spinlock;
 525		}
 526
 527		if (!transfer->len) {
 528			dev_err(&pspi->dev, "%s Transfer length invalid\n",
 529				__func__);
 530			retval = -EINVAL;
 531			goto err_return_spinlock;
 532		}
 533
 534		dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
 535			" valid\n", __func__);
 536
 537		/* if baud rate has been specified validate the same */
 538		if (transfer->speed_hz > PCH_MAX_BAUDRATE)
 539			transfer->speed_hz = PCH_MAX_BAUDRATE;
 540
 541		/* if bits per word has been specified validate the same */
 542		if (transfer->bits_per_word) {
 543			if ((transfer->bits_per_word != 8)
 544			    && (transfer->bits_per_word != 16)) {
 545				retval = -EINVAL;
 546				dev_err(&pspi->dev,
 547					"%s Invalid bits per word\n", __func__);
 548				goto err_return_spinlock;
 549			}
 550		}
 551	}
 552	spin_unlock_irqrestore(&data->lock, flags);
 553
 554	/* We won't process any messages if we have been asked to terminate */
 555	if (data->status == STATUS_EXITING) {
 556		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
 557		retval = -ESHUTDOWN;
 558		goto err_out;
 559	}
 560
 561	/* If suspended ,return -EINVAL */
 562	if (data->board_dat->suspend_sts) {
 563		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
 564		retval = -EINVAL;
 565		goto err_out;
 566	}
 567
 568	/* set status of message */
 569	pmsg->actual_length = 0;
 570	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
 571
 572	pmsg->status = -EINPROGRESS;
 573	spin_lock_irqsave(&data->lock, flags);
 574	/* add message to queue */
 575	list_add_tail(&pmsg->queue, &data->queue);
 576	spin_unlock_irqrestore(&data->lock, flags);
 577
 578	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
 579
 580	/* schedule work queue to run */
 581	queue_work(data->wk, &data->work);
 582	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
 583
 584	retval = 0;
 585
 586err_out:
 587	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
 588	return retval;
 589err_return_spinlock:
 590	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
 591	spin_unlock_irqrestore(&data->lock, flags);
 592	return retval;
 593}
 594
 595static inline void pch_spi_select_chip(struct pch_spi_data *data,
 596				       struct spi_device *pspi)
 597{
 598	if (data->current_chip != NULL) {
 599		if (pspi->chip_select != data->n_curnt_chip) {
 600			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
 601			data->current_chip = NULL;
 602		}
 603	}
 604
 605	data->current_chip = pspi;
 606
 607	data->n_curnt_chip = data->current_chip->chip_select;
 608
 609	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
 610	pch_spi_setup_transfer(pspi);
 611}
 612
 613static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
 614{
 615	int size;
 616	u32 n_writes;
 617	int j;
 618	struct spi_message *pmsg;
 619	const u8 *tx_buf;
 620	const u16 *tx_sbuf;
 621
 622	/* set baud rate if needed */
 623	if (data->cur_trans->speed_hz) {
 624		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
 625		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
 626	}
 627
 628	/* set bits per word if needed */
 629	if (data->cur_trans->bits_per_word &&
 630	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
 631		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
 632		pch_spi_set_bits_per_word(data->master,
 633					  data->cur_trans->bits_per_word);
 634		*bpw = data->cur_trans->bits_per_word;
 635	} else {
 636		*bpw = data->current_msg->spi->bits_per_word;
 637	}
 638
 639	/* reset Tx/Rx index */
 640	data->tx_index = 0;
 641	data->rx_index = 0;
 642
 643	data->bpw_len = data->cur_trans->len / (*bpw / 8);
 644
 645	/* find alloc size */
 646	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
 647
 648	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
 649	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
 650	if (data->pkt_tx_buff != NULL) {
 651		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
 652		if (!data->pkt_rx_buff)
 653			kfree(data->pkt_tx_buff);
 654	}
 655
 656	if (!data->pkt_rx_buff) {
 657		/* flush queue and set status of all transfers to -ENOMEM */
 658		dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
 659		list_for_each_entry(pmsg, data->queue.next, queue) {
 660			pmsg->status = -ENOMEM;
 661
 662			if (pmsg->complete != 0)
 663				pmsg->complete(pmsg->context);
 664
 665			/* delete from queue */
 666			list_del_init(&pmsg->queue);
 667		}
 668		return;
 669	}
 670
 671	/* copy Tx Data */
 672	if (data->cur_trans->tx_buf != NULL) {
 673		if (*bpw == 8) {
 674			tx_buf = data->cur_trans->tx_buf;
 675			for (j = 0; j < data->bpw_len; j++)
 676				data->pkt_tx_buff[j] = *tx_buf++;
 677		} else {
 678			tx_sbuf = data->cur_trans->tx_buf;
 679			for (j = 0; j < data->bpw_len; j++)
 680				data->pkt_tx_buff[j] = *tx_sbuf++;
 681		}
 682	}
 683
 684	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
 685	n_writes = data->bpw_len;
 686	if (n_writes > PCH_MAX_FIFO_DEPTH)
 687		n_writes = PCH_MAX_FIFO_DEPTH;
 688
 689	dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
 690		"0x2 to SSNXCR\n", __func__);
 691	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
 692
 693	for (j = 0; j < n_writes; j++)
 694		pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
 695
 696	/* update tx_index */
 697	data->tx_index = j;
 698
 699	/* reset transfer complete flag */
 700	data->transfer_complete = false;
 701	data->transfer_active = true;
 702}
 703
 704static void pch_spi_nomore_transfer(struct pch_spi_data *data)
 705{
 706	struct spi_message *pmsg;
 707	dev_dbg(&data->master->dev, "%s called\n", __func__);
 708	/* Invoke complete callback
 709	 * [To the spi core..indicating end of transfer] */
 710	data->current_msg->status = 0;
 711
 712	if (data->current_msg->complete != 0) {
 713		dev_dbg(&data->master->dev,
 714			"%s:Invoking callback of SPI core\n", __func__);
 715		data->current_msg->complete(data->current_msg->context);
 716	}
 717
 718	/* update status in global variable */
 719	data->bcurrent_msg_processing = false;
 720
 721	dev_dbg(&data->master->dev,
 722		"%s:data->bcurrent_msg_processing = false\n", __func__);
 723
 724	data->current_msg = NULL;
 725	data->cur_trans = NULL;
 726
 727	/* check if we have items in list and not suspending
 728	 * return 1 if list empty */
 729	if ((list_empty(&data->queue) == 0) &&
 730	    (!data->board_dat->suspend_sts) &&
 731	    (data->status != STATUS_EXITING)) {
 732		/* We have some more work to do (either there is more tranint
 733		 * bpw;sfer requests in the current message or there are
 734		 *more messages)
 735		 */
 736		dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
 737		queue_work(data->wk, &data->work);
 738	} else if (data->board_dat->suspend_sts ||
 739		   data->status == STATUS_EXITING) {
 740		dev_dbg(&data->master->dev,
 741			"%s suspend/remove initiated, flushing queue\n",
 742			__func__);
 743		list_for_each_entry(pmsg, data->queue.next, queue) {
 744			pmsg->status = -EIO;
 745
 746			if (pmsg->complete)
 747				pmsg->complete(pmsg->context);
 748
 749			/* delete from queue */
 750			list_del_init(&pmsg->queue);
 751		}
 752	}
 753}
 754
 755static void pch_spi_set_ir(struct pch_spi_data *data)
 756{
 757	/* enable interrupts, set threshold, enable SPI */
 758	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
 759		/* set receive threshold to PCH_RX_THOLD */
 760		pch_spi_setclr_reg(data->master, PCH_SPCR,
 761				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
 762				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
 763				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
 764				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 765	else
 766		/* set receive threshold to maximum */
 767		pch_spi_setclr_reg(data->master, PCH_SPCR,
 768				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
 769				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
 770				   SPCR_SPE_BIT,
 771				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 772
 773	/* Wait until the transfer completes; go to sleep after
 774				 initiating the transfer. */
 775	dev_dbg(&data->master->dev,
 776		"%s:waiting for transfer to get over\n", __func__);
 777
 778	wait_event_interruptible(data->wait, data->transfer_complete);
 779
 780	/* clear all interrupts */
 781	pch_spi_writereg(data->master, PCH_SPSR,
 782			 pch_spi_readreg(data->master, PCH_SPSR));
 783	/* Disable interrupts and SPI transfer */
 784	pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
 785	/* clear FIFO */
 786	pch_spi_clear_fifo(data->master);
 787}
 788
 789static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
 790{
 791	int j;
 792	u8 *rx_buf;
 793	u16 *rx_sbuf;
 794
 795	/* copy Rx Data */
 796	if (!data->cur_trans->rx_buf)
 797		return;
 798
 799	if (bpw == 8) {
 800		rx_buf = data->cur_trans->rx_buf;
 801		for (j = 0; j < data->bpw_len; j++)
 802			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
 803	} else {
 804		rx_sbuf = data->cur_trans->rx_buf;
 805		for (j = 0; j < data->bpw_len; j++)
 806			*rx_sbuf++ = data->pkt_rx_buff[j];
 807	}
 808}
 809
 810static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
 811{
 812	int j;
 813	u8 *rx_buf;
 814	u16 *rx_sbuf;
 815	const u8 *rx_dma_buf;
 816	const u16 *rx_dma_sbuf;
 817
 818	/* copy Rx Data */
 819	if (!data->cur_trans->rx_buf)
 820		return;
 821
 822	if (bpw == 8) {
 823		rx_buf = data->cur_trans->rx_buf;
 824		rx_dma_buf = data->dma.rx_buf_virt;
 825		for (j = 0; j < data->bpw_len; j++)
 826			*rx_buf++ = *rx_dma_buf++ & 0xFF;
 827		data->cur_trans->rx_buf = rx_buf;
 828	} else {
 829		rx_sbuf = data->cur_trans->rx_buf;
 830		rx_dma_sbuf = data->dma.rx_buf_virt;
 831		for (j = 0; j < data->bpw_len; j++)
 832			*rx_sbuf++ = *rx_dma_sbuf++;
 833		data->cur_trans->rx_buf = rx_sbuf;
 834	}
 835}
 836
 837static int pch_spi_start_transfer(struct pch_spi_data *data)
 838{
 839	struct pch_spi_dma_ctrl *dma;
 840	unsigned long flags;
 841	int rtn;
 842
 843	dma = &data->dma;
 844
 845	spin_lock_irqsave(&data->lock, flags);
 846
 847	/* disable interrupts, SPI set enable */
 848	pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
 849
 850	spin_unlock_irqrestore(&data->lock, flags);
 851
 852	/* Wait until the transfer completes; go to sleep after
 853				 initiating the transfer. */
 854	dev_dbg(&data->master->dev,
 855		"%s:waiting for transfer to get over\n", __func__);
 856	rtn = wait_event_interruptible_timeout(data->wait,
 857					       data->transfer_complete,
 858					       msecs_to_jiffies(2 * HZ));
 859	if (!rtn)
 860		dev_err(&data->master->dev,
 861			"%s wait-event timeout\n", __func__);
 862
 863	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
 864			    DMA_FROM_DEVICE);
 865
 866	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
 867			    DMA_FROM_DEVICE);
 868	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
 869
 870	async_tx_ack(dma->desc_rx);
 871	async_tx_ack(dma->desc_tx);
 872	kfree(dma->sg_tx_p);
 873	kfree(dma->sg_rx_p);
 874
 875	spin_lock_irqsave(&data->lock, flags);
 876
 877	/* clear fifo threshold, disable interrupts, disable SPI transfer */
 878	pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
 879			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
 880			   SPCR_SPE_BIT);
 881	/* clear all interrupts */
 882	pch_spi_writereg(data->master, PCH_SPSR,
 883			 pch_spi_readreg(data->master, PCH_SPSR));
 884	/* clear FIFO */
 885	pch_spi_clear_fifo(data->master);
 886
 887	spin_unlock_irqrestore(&data->lock, flags);
 888
 889	return rtn;
 890}
 891
 892static void pch_dma_rx_complete(void *arg)
 893{
 894	struct pch_spi_data *data = arg;
 895
 896	/* transfer is completed;inform pch_spi_process_messages_dma */
 897	data->transfer_complete = true;
 898	wake_up_interruptible(&data->wait);
 899}
 900
 901static bool pch_spi_filter(struct dma_chan *chan, void *slave)
 902{
 903	struct pch_dma_slave *param = slave;
 904
 905	if ((chan->chan_id == param->chan_id) &&
 906	    (param->dma_dev == chan->device->dev)) {
 907		chan->private = param;
 908		return true;
 909	} else {
 910		return false;
 911	}
 912}
 913
 914static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
 915{
 916	dma_cap_mask_t mask;
 917	struct dma_chan *chan;
 918	struct pci_dev *dma_dev;
 919	struct pch_dma_slave *param;
 920	struct pch_spi_dma_ctrl *dma;
 921	unsigned int width;
 922
 923	if (bpw == 8)
 924		width = PCH_DMA_WIDTH_1_BYTE;
 925	else
 926		width = PCH_DMA_WIDTH_2_BYTES;
 927
 928	dma = &data->dma;
 929	dma_cap_zero(mask);
 930	dma_cap_set(DMA_SLAVE, mask);
 931
 932	/* Get DMA's dev information */
 933	dma_dev = pci_get_bus_and_slot(data->board_dat->pdev->bus->number,
 934				       PCI_DEVFN(12, 0));
 935
 936	/* Set Tx DMA */
 937	param = &dma->param_tx;
 938	param->dma_dev = &dma_dev->dev;
 939	param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
 940	param->tx_reg = data->io_base_addr + PCH_SPDWR;
 941	param->width = width;
 942	chan = dma_request_channel(mask, pch_spi_filter, param);
 943	if (!chan) {
 944		dev_err(&data->master->dev,
 945			"ERROR: dma_request_channel FAILS(Tx)\n");
 946		data->use_dma = 0;
 947		return;
 948	}
 949	dma->chan_tx = chan;
 950
 951	/* Set Rx DMA */
 952	param = &dma->param_rx;
 953	param->dma_dev = &dma_dev->dev;
 954	param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
 955	param->rx_reg = data->io_base_addr + PCH_SPDRR;
 956	param->width = width;
 957	chan = dma_request_channel(mask, pch_spi_filter, param);
 958	if (!chan) {
 959		dev_err(&data->master->dev,
 960			"ERROR: dma_request_channel FAILS(Rx)\n");
 961		dma_release_channel(dma->chan_tx);
 962		dma->chan_tx = NULL;
 963		data->use_dma = 0;
 964		return;
 965	}
 966	dma->chan_rx = chan;
 967}
 968
 969static void pch_spi_release_dma(struct pch_spi_data *data)
 970{
 971	struct pch_spi_dma_ctrl *dma;
 972
 973	dma = &data->dma;
 974	if (dma->chan_tx) {
 975		dma_release_channel(dma->chan_tx);
 976		dma->chan_tx = NULL;
 977	}
 978	if (dma->chan_rx) {
 979		dma_release_channel(dma->chan_rx);
 980		dma->chan_rx = NULL;
 981	}
 982	return;
 983}
 984
 985static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
 986{
 987	const u8 *tx_buf;
 988	const u16 *tx_sbuf;
 989	u8 *tx_dma_buf;
 990	u16 *tx_dma_sbuf;
 991	struct scatterlist *sg;
 992	struct dma_async_tx_descriptor *desc_tx;
 993	struct dma_async_tx_descriptor *desc_rx;
 994	int num;
 995	int i;
 996	int size;
 997	int rem;
 998	int head;
 999	unsigned long flags;
1000	struct pch_spi_dma_ctrl *dma;
1001
1002	dma = &data->dma;
1003
1004	/* set baud rate if needed */
1005	if (data->cur_trans->speed_hz) {
1006		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
1007		spin_lock_irqsave(&data->lock, flags);
1008		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
1009		spin_unlock_irqrestore(&data->lock, flags);
1010	}
1011
1012	/* set bits per word if needed */
1013	if (data->cur_trans->bits_per_word &&
1014	    (data->current_msg->spi->bits_per_word !=
1015	     data->cur_trans->bits_per_word)) {
1016		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
1017		spin_lock_irqsave(&data->lock, flags);
1018		pch_spi_set_bits_per_word(data->master,
1019					  data->cur_trans->bits_per_word);
1020		spin_unlock_irqrestore(&data->lock, flags);
1021		*bpw = data->cur_trans->bits_per_word;
1022	} else {
1023		*bpw = data->current_msg->spi->bits_per_word;
1024	}
1025	data->bpw_len = data->cur_trans->len / (*bpw / 8);
1026
1027	if (data->bpw_len > PCH_BUF_SIZE) {
1028		data->bpw_len = PCH_BUF_SIZE;
1029		data->cur_trans->len -= PCH_BUF_SIZE;
1030	}
1031
1032	/* copy Tx Data */
1033	if (data->cur_trans->tx_buf != NULL) {
1034		if (*bpw == 8) {
1035			tx_buf = data->cur_trans->tx_buf;
1036			tx_dma_buf = dma->tx_buf_virt;
1037			for (i = 0; i < data->bpw_len; i++)
1038				*tx_dma_buf++ = *tx_buf++;
1039		} else {
1040			tx_sbuf = data->cur_trans->tx_buf;
1041			tx_dma_sbuf = dma->tx_buf_virt;
1042			for (i = 0; i < data->bpw_len; i++)
1043				*tx_dma_sbuf++ = *tx_sbuf++;
1044		}
1045	}
1046
1047	/* Calculate Rx parameter for DMA transmitting */
1048	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1049		if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
1050			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1051			rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1052		} else {
1053			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1054			rem = PCH_DMA_TRANS_SIZE;
1055		}
1056		size = PCH_DMA_TRANS_SIZE;
1057	} else {
1058		num = 1;
1059		size = data->bpw_len;
1060		rem = data->bpw_len;
1061	}
1062	dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1063		__func__, num, size, rem);
1064	spin_lock_irqsave(&data->lock, flags);
1065
1066	/* set receive fifo threshold and transmit fifo threshold */
1067	pch_spi_setclr_reg(data->master, PCH_SPCR,
1068			   ((size - 1) << SPCR_RFIC_FIELD) |
1069			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1070			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1071
1072	spin_unlock_irqrestore(&data->lock, flags);
1073
1074	/* RX */
1075	dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1076	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1077	/* offset, length setting */
1078	sg = dma->sg_rx_p;
1079	for (i = 0; i < num; i++, sg++) {
1080		if (i == (num - 2)) {
1081			sg->offset = size * i;
1082			sg->offset = sg->offset * (*bpw / 8);
1083			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1084				    sg->offset);
1085			sg_dma_len(sg) = rem;
1086		} else if (i == (num - 1)) {
1087			sg->offset = size * (i - 1) + rem;
1088			sg->offset = sg->offset * (*bpw / 8);
1089			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1090				    sg->offset);
1091			sg_dma_len(sg) = size;
1092		} else {
1093			sg->offset = size * i;
1094			sg->offset = sg->offset * (*bpw / 8);
1095			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1096				    sg->offset);
1097			sg_dma_len(sg) = size;
1098		}
1099		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1100	}
1101	sg = dma->sg_rx_p;
1102	desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1103					num, DMA_DEV_TO_MEM,
1104					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1105	if (!desc_rx) {
1106		dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1107			__func__);
1108		return;
1109	}
1110	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1111	desc_rx->callback = pch_dma_rx_complete;
1112	desc_rx->callback_param = data;
1113	dma->nent = num;
1114	dma->desc_rx = desc_rx;
1115
1116	/* Calculate Tx parameter for DMA transmitting */
1117	if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1118		head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1119		if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1120			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1121			rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1122		} else {
1123			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1124			rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1125			      PCH_DMA_TRANS_SIZE - head;
1126		}
1127		size = PCH_DMA_TRANS_SIZE;
1128	} else {
1129		num = 1;
1130		size = data->bpw_len;
1131		rem = data->bpw_len;
1132		head = 0;
1133	}
1134
1135	dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1136	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1137	/* offset, length setting */
1138	sg = dma->sg_tx_p;
1139	for (i = 0; i < num; i++, sg++) {
1140		if (i == 0) {
1141			sg->offset = 0;
1142			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1143				    sg->offset);
1144			sg_dma_len(sg) = size + head;
1145		} else if (i == (num - 1)) {
1146			sg->offset = head + size * i;
1147			sg->offset = sg->offset * (*bpw / 8);
1148			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1149				    sg->offset);
1150			sg_dma_len(sg) = rem;
1151		} else {
1152			sg->offset = head + size * i;
1153			sg->offset = sg->offset * (*bpw / 8);
1154			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1155				    sg->offset);
1156			sg_dma_len(sg) = size;
1157		}
1158		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1159	}
1160	sg = dma->sg_tx_p;
1161	desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1162					sg, num, DMA_MEM_TO_DEV,
1163					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1164	if (!desc_tx) {
1165		dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1166			__func__);
1167		return;
1168	}
1169	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1170	desc_tx->callback = NULL;
1171	desc_tx->callback_param = data;
1172	dma->nent = num;
1173	dma->desc_tx = desc_tx;
1174
1175	dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1176		"0x2 to SSNXCR\n", __func__);
1177
1178	spin_lock_irqsave(&data->lock, flags);
1179	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1180	desc_rx->tx_submit(desc_rx);
1181	desc_tx->tx_submit(desc_tx);
1182	spin_unlock_irqrestore(&data->lock, flags);
1183
1184	/* reset transfer complete flag */
1185	data->transfer_complete = false;
1186}
1187
1188static void pch_spi_process_messages(struct work_struct *pwork)
1189{
1190	struct spi_message *pmsg;
1191	struct pch_spi_data *data;
1192	int bpw;
1193
1194	data = container_of(pwork, struct pch_spi_data, work);
1195	dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1196
1197	spin_lock(&data->lock);
1198	/* check if suspend has been initiated;if yes flush queue */
1199	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1200		dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
1201			"flushing queue\n", __func__);
1202		list_for_each_entry(pmsg, data->queue.next, queue) {
1203			pmsg->status = -EIO;
1204
1205			if (pmsg->complete != 0) {
1206				spin_unlock(&data->lock);
1207				pmsg->complete(pmsg->context);
1208				spin_lock(&data->lock);
1209			}
1210
1211			/* delete from queue */
1212			list_del_init(&pmsg->queue);
1213		}
1214
1215		spin_unlock(&data->lock);
1216		return;
1217	}
1218
1219	data->bcurrent_msg_processing = true;
1220	dev_dbg(&data->master->dev,
1221		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1222
1223	/* Get the message from the queue and delete it from there. */
1224	data->current_msg = list_entry(data->queue.next, struct spi_message,
1225					queue);
1226
1227	list_del_init(&data->current_msg->queue);
1228
1229	data->current_msg->status = 0;
1230
1231	pch_spi_select_chip(data, data->current_msg->spi);
1232
1233	spin_unlock(&data->lock);
1234
1235	if (data->use_dma)
1236		pch_spi_request_dma(data,
1237				    data->current_msg->spi->bits_per_word);
1238	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1239	do {
1240		int cnt;
1241		/* If we are already processing a message get the next
1242		transfer structure from the message otherwise retrieve
1243		the 1st transfer request from the message. */
1244		spin_lock(&data->lock);
1245		if (data->cur_trans == NULL) {
1246			data->cur_trans =
1247				list_entry(data->current_msg->transfers.next,
1248					   struct spi_transfer, transfer_list);
1249			dev_dbg(&data->master->dev, "%s "
1250				":Getting 1st transfer message\n", __func__);
1251		} else {
1252			data->cur_trans =
1253				list_entry(data->cur_trans->transfer_list.next,
1254					   struct spi_transfer, transfer_list);
1255			dev_dbg(&data->master->dev, "%s "
1256				":Getting next transfer message\n", __func__);
1257		}
1258		spin_unlock(&data->lock);
1259
1260		if (!data->cur_trans->len)
1261			goto out;
1262		cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1263		data->save_total_len = data->cur_trans->len;
1264		if (data->use_dma) {
1265			int i;
1266			char *save_rx_buf = data->cur_trans->rx_buf;
1267			for (i = 0; i < cnt; i ++) {
1268				pch_spi_handle_dma(data, &bpw);
1269				if (!pch_spi_start_transfer(data)) {
1270					data->transfer_complete = true;
1271					data->current_msg->status = -EIO;
1272					data->current_msg->complete
1273						   (data->current_msg->context);
1274					data->bcurrent_msg_processing = false;
1275					data->current_msg = NULL;
1276					data->cur_trans = NULL;
1277					goto out;
1278				}
1279				pch_spi_copy_rx_data_for_dma(data, bpw);
1280			}
1281			data->cur_trans->rx_buf = save_rx_buf;
1282		} else {
1283			pch_spi_set_tx(data, &bpw);
1284			pch_spi_set_ir(data);
1285			pch_spi_copy_rx_data(data, bpw);
1286			kfree(data->pkt_rx_buff);
1287			data->pkt_rx_buff = NULL;
1288			kfree(data->pkt_tx_buff);
1289			data->pkt_tx_buff = NULL;
1290		}
1291		/* increment message count */
1292		data->cur_trans->len = data->save_total_len;
1293		data->current_msg->actual_length += data->cur_trans->len;
1294
1295		dev_dbg(&data->master->dev,
1296			"%s:data->current_msg->actual_length=%d\n",
1297			__func__, data->current_msg->actual_length);
1298
1299		/* check for delay */
1300		if (data->cur_trans->delay_usecs) {
1301			dev_dbg(&data->master->dev, "%s:"
1302				"delay in usec=%d\n", __func__,
1303				data->cur_trans->delay_usecs);
1304			udelay(data->cur_trans->delay_usecs);
1305		}
1306
1307		spin_lock(&data->lock);
1308
1309		/* No more transfer in this message. */
1310		if ((data->cur_trans->transfer_list.next) ==
1311		    &(data->current_msg->transfers)) {
1312			pch_spi_nomore_transfer(data);
1313		}
1314
1315		spin_unlock(&data->lock);
1316
1317	} while (data->cur_trans != NULL);
1318
1319out:
1320	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1321	if (data->use_dma)
1322		pch_spi_release_dma(data);
1323}
1324
1325static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1326				   struct pch_spi_data *data)
1327{
1328	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1329
1330	/* free workqueue */
1331	if (data->wk != NULL) {
1332		destroy_workqueue(data->wk);
1333		data->wk = NULL;
1334		dev_dbg(&board_dat->pdev->dev,
1335			"%s destroy_workqueue invoked successfully\n",
1336			__func__);
1337	}
1338}
1339
1340static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1341				 struct pch_spi_data *data)
1342{
1343	int retval = 0;
1344
1345	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1346
1347	/* create workqueue */
1348	data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1349	if (!data->wk) {
1350		dev_err(&board_dat->pdev->dev,
1351			"%s create_singlet hread_workqueue failed\n", __func__);
1352		retval = -EBUSY;
1353		goto err_return;
1354	}
1355
1356	/* reset PCH SPI h/w */
1357	pch_spi_reset(data->master);
1358	dev_dbg(&board_dat->pdev->dev,
1359		"%s pch_spi_reset invoked successfully\n", __func__);
1360
1361	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1362
1363err_return:
1364	if (retval != 0) {
1365		dev_err(&board_dat->pdev->dev,
1366			"%s FAIL:invoking pch_spi_free_resources\n", __func__);
1367		pch_spi_free_resources(board_dat, data);
1368	}
1369
1370	dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1371
1372	return retval;
1373}
1374
1375static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1376			     struct pch_spi_data *data)
1377{
1378	struct pch_spi_dma_ctrl *dma;
1379
1380	dma = &data->dma;
1381	if (dma->tx_buf_dma)
1382		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1383				  dma->tx_buf_virt, dma->tx_buf_dma);
1384	if (dma->rx_buf_dma)
1385		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1386				  dma->rx_buf_virt, dma->rx_buf_dma);
1387	return;
1388}
1389
1390static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1391			      struct pch_spi_data *data)
1392{
1393	struct pch_spi_dma_ctrl *dma;
1394
1395	dma = &data->dma;
1396	/* Get Consistent memory for Tx DMA */
1397	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1398				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1399	/* Get Consistent memory for Rx DMA */
1400	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1401				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1402}
1403
1404static int __devinit pch_spi_pd_probe(struct platform_device *plat_dev)
1405{
1406	int ret;
1407	struct spi_master *master;
1408	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1409	struct pch_spi_data *data;
1410
1411	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1412
1413	master = spi_alloc_master(&board_dat->pdev->dev,
1414				  sizeof(struct pch_spi_data));
1415	if (!master) {
1416		dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1417			plat_dev->id);
1418		return -ENOMEM;
1419	}
1420
1421	data = spi_master_get_devdata(master);
1422	data->master = master;
1423
1424	platform_set_drvdata(plat_dev, data);
1425
1426	/* baseaddress + address offset) */
1427	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1428					 PCH_ADDRESS_SIZE * plat_dev->id;
1429	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
1430					 PCH_ADDRESS_SIZE * plat_dev->id;
1431	if (!data->io_remap_addr) {
1432		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1433		ret = -ENOMEM;
1434		goto err_pci_iomap;
1435	}
 
1436
1437	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1438		plat_dev->id, data->io_remap_addr);
1439
1440	/* initialize members of SPI master */
1441	master->num_chipselect = PCH_MAX_CS;
1442	master->setup = pch_spi_setup;
1443	master->transfer = pch_spi_transfer;
1444	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
 
 
1445
1446	data->board_dat = board_dat;
1447	data->plat_dev = plat_dev;
1448	data->n_curnt_chip = 255;
1449	data->status = STATUS_RUNNING;
1450	data->ch = plat_dev->id;
1451	data->use_dma = use_dma;
1452
1453	INIT_LIST_HEAD(&data->queue);
1454	spin_lock_init(&data->lock);
1455	INIT_WORK(&data->work, pch_spi_process_messages);
1456	init_waitqueue_head(&data->wait);
1457
1458	ret = pch_spi_get_resources(board_dat, data);
1459	if (ret) {
1460		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1461		goto err_spi_get_resources;
1462	}
1463
1464	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1465			  IRQF_SHARED, KBUILD_MODNAME, data);
1466	if (ret) {
1467		dev_err(&plat_dev->dev,
1468			"%s request_irq failed\n", __func__);
1469		goto err_request_irq;
1470	}
1471	data->irq_reg_sts = true;
1472
1473	pch_spi_set_master_mode(master);
1474
 
 
 
 
 
1475	ret = spi_register_master(master);
1476	if (ret != 0) {
1477		dev_err(&plat_dev->dev,
1478			"%s spi_register_master FAILED\n", __func__);
1479		goto err_spi_register_master;
1480	}
1481
1482	if (use_dma) {
1483		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1484		pch_alloc_dma_buf(board_dat, data);
1485	}
1486
1487	return 0;
1488
1489err_spi_register_master:
1490	free_irq(board_dat->pdev->irq, board_dat);
 
1491err_request_irq:
1492	pch_spi_free_resources(board_dat, data);
1493err_spi_get_resources:
1494	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1495err_pci_iomap:
1496	spi_master_put(master);
1497
1498	return ret;
1499}
1500
1501static int __devexit pch_spi_pd_remove(struct platform_device *plat_dev)
1502{
1503	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1504	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1505	int count;
1506	unsigned long flags;
1507
1508	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1509		__func__, plat_dev->id, board_dat->pdev->irq);
1510
1511	if (use_dma)
1512		pch_free_dma_buf(board_dat, data);
1513
1514	/* check for any pending messages; no action is taken if the queue
1515	 * is still full; but at least we tried.  Unload anyway */
1516	count = 500;
1517	spin_lock_irqsave(&data->lock, flags);
1518	data->status = STATUS_EXITING;
1519	while ((list_empty(&data->queue) == 0) && --count) {
1520		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1521			__func__);
1522		spin_unlock_irqrestore(&data->lock, flags);
1523		msleep(PCH_SLEEP_TIME);
1524		spin_lock_irqsave(&data->lock, flags);
1525	}
1526	spin_unlock_irqrestore(&data->lock, flags);
1527
1528	pch_spi_free_resources(board_dat, data);
1529	/* disable interrupts & free IRQ */
1530	if (data->irq_reg_sts) {
1531		/* disable interrupts */
1532		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1533		data->irq_reg_sts = false;
1534		free_irq(board_dat->pdev->irq, data);
1535	}
1536
1537	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1538	spi_unregister_master(data->master);
1539	spi_master_put(data->master);
1540	platform_set_drvdata(plat_dev, NULL);
1541
1542	return 0;
1543}
1544#ifdef CONFIG_PM
1545static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1546			      pm_message_t state)
1547{
1548	u8 count;
1549	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1550	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1551
1552	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1553
1554	if (!board_dat) {
1555		dev_err(&pd_dev->dev,
1556			"%s pci_get_drvdata returned NULL\n", __func__);
1557		return -EFAULT;
1558	}
1559
1560	/* check if the current message is processed:
1561	   Only after thats done the transfer will be suspended */
1562	count = 255;
1563	while ((--count) > 0) {
1564		if (!(data->bcurrent_msg_processing))
1565			break;
1566		msleep(PCH_SLEEP_TIME);
1567	}
1568
1569	/* Free IRQ */
1570	if (data->irq_reg_sts) {
1571		/* disable all interrupts */
1572		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1573		pch_spi_reset(data->master);
1574		free_irq(board_dat->pdev->irq, data);
1575
1576		data->irq_reg_sts = false;
1577		dev_dbg(&pd_dev->dev,
1578			"%s free_irq invoked successfully.\n", __func__);
1579	}
1580
1581	return 0;
1582}
1583
1584static int pch_spi_pd_resume(struct platform_device *pd_dev)
1585{
1586	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1587	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1588	int retval;
1589
1590	if (!board_dat) {
1591		dev_err(&pd_dev->dev,
1592			"%s pci_get_drvdata returned NULL\n", __func__);
1593		return -EFAULT;
1594	}
1595
1596	if (!data->irq_reg_sts) {
1597		/* register IRQ */
1598		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1599				     IRQF_SHARED, KBUILD_MODNAME, data);
1600		if (retval < 0) {
1601			dev_err(&pd_dev->dev,
1602				"%s request_irq failed\n", __func__);
1603			return retval;
1604		}
1605
1606		/* reset PCH SPI h/w */
1607		pch_spi_reset(data->master);
1608		pch_spi_set_master_mode(data->master);
1609		data->irq_reg_sts = true;
1610	}
1611	return 0;
1612}
1613#else
1614#define pch_spi_pd_suspend NULL
1615#define pch_spi_pd_resume NULL
1616#endif
1617
1618static struct platform_driver pch_spi_pd_driver = {
1619	.driver = {
1620		.name = "pch-spi",
1621		.owner = THIS_MODULE,
1622	},
1623	.probe = pch_spi_pd_probe,
1624	.remove = __devexit_p(pch_spi_pd_remove),
1625	.suspend = pch_spi_pd_suspend,
1626	.resume = pch_spi_pd_resume
1627};
1628
1629static int __devinit pch_spi_probe(struct pci_dev *pdev,
1630				   const struct pci_device_id *id)
1631{
1632	struct pch_spi_board_data *board_dat;
1633	struct platform_device *pd_dev = NULL;
1634	int retval;
1635	int i;
1636	struct pch_pd_dev_save *pd_dev_save;
1637
1638	pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1639	if (!pd_dev_save) {
1640		dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1641		return -ENOMEM;
1642	}
1643
1644	board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1645	if (!board_dat) {
1646		dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1647		retval = -ENOMEM;
1648		goto err_no_mem;
1649	}
1650
1651	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1652	if (retval) {
1653		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1654		goto pci_request_regions;
1655	}
1656
1657	board_dat->pdev = pdev;
1658	board_dat->num = id->driver_data;
1659	pd_dev_save->num = id->driver_data;
1660	pd_dev_save->board_dat = board_dat;
1661
1662	retval = pci_enable_device(pdev);
1663	if (retval) {
1664		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1665		goto pci_enable_device;
1666	}
1667
1668	for (i = 0; i < board_dat->num; i++) {
1669		pd_dev = platform_device_alloc("pch-spi", i);
1670		if (!pd_dev) {
1671			dev_err(&pdev->dev, "platform_device_alloc failed\n");
 
1672			goto err_platform_device;
1673		}
1674		pd_dev_save->pd_save[i] = pd_dev;
1675		pd_dev->dev.parent = &pdev->dev;
1676
1677		retval = platform_device_add_data(pd_dev, board_dat,
1678						  sizeof(*board_dat));
1679		if (retval) {
1680			dev_err(&pdev->dev,
1681				"platform_device_add_data failed\n");
1682			platform_device_put(pd_dev);
1683			goto err_platform_device;
1684		}
1685
1686		retval = platform_device_add(pd_dev);
1687		if (retval) {
1688			dev_err(&pdev->dev, "platform_device_add failed\n");
1689			platform_device_put(pd_dev);
1690			goto err_platform_device;
1691		}
1692	}
1693
1694	pci_set_drvdata(pdev, pd_dev_save);
1695
1696	return 0;
1697
1698err_platform_device:
 
 
1699	pci_disable_device(pdev);
1700pci_enable_device:
1701	pci_release_regions(pdev);
1702pci_request_regions:
1703	kfree(board_dat);
1704err_no_mem:
1705	kfree(pd_dev_save);
1706
1707	return retval;
1708}
1709
1710static void __devexit pch_spi_remove(struct pci_dev *pdev)
1711{
1712	int i;
1713	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1714
1715	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1716
1717	for (i = 0; i < pd_dev_save->num; i++)
1718		platform_device_unregister(pd_dev_save->pd_save[i]);
1719
1720	pci_disable_device(pdev);
1721	pci_release_regions(pdev);
1722	kfree(pd_dev_save->board_dat);
1723	kfree(pd_dev_save);
1724}
1725
1726#ifdef CONFIG_PM
1727static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1728{
1729	int retval;
1730	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1731
1732	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1733
1734	pd_dev_save->board_dat->suspend_sts = true;
1735
1736	/* save config space */
1737	retval = pci_save_state(pdev);
1738	if (retval == 0) {
1739		pci_enable_wake(pdev, PCI_D3hot, 0);
1740		pci_disable_device(pdev);
1741		pci_set_power_state(pdev, PCI_D3hot);
1742	} else {
1743		dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1744	}
1745
1746	return retval;
1747}
1748
1749static int pch_spi_resume(struct pci_dev *pdev)
1750{
1751	int retval;
1752	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1753	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1754
1755	pci_set_power_state(pdev, PCI_D0);
1756	pci_restore_state(pdev);
1757
1758	retval = pci_enable_device(pdev);
1759	if (retval < 0) {
1760		dev_err(&pdev->dev,
1761			"%s pci_enable_device failed\n", __func__);
1762	} else {
1763		pci_enable_wake(pdev, PCI_D3hot, 0);
1764
1765		/* set suspend status to false */
1766		pd_dev_save->board_dat->suspend_sts = false;
1767	}
1768
1769	return retval;
1770}
1771#else
1772#define pch_spi_suspend NULL
1773#define pch_spi_resume NULL
1774
1775#endif
1776
1777static struct pci_driver pch_spi_pcidev_driver = {
1778	.name = "pch_spi",
1779	.id_table = pch_spi_pcidev_id,
1780	.probe = pch_spi_probe,
1781	.remove = __devexit_p(pch_spi_remove),
1782	.suspend = pch_spi_suspend,
1783	.resume = pch_spi_resume,
1784};
1785
1786static int __init pch_spi_init(void)
1787{
1788	int ret;
1789	ret = platform_driver_register(&pch_spi_pd_driver);
1790	if (ret)
1791		return ret;
1792
1793	ret = pci_register_driver(&pch_spi_pcidev_driver);
1794	if (ret)
 
1795		return ret;
 
1796
1797	return 0;
1798}
1799module_init(pch_spi_init);
1800
1801static void __exit pch_spi_exit(void)
1802{
1803	pci_unregister_driver(&pch_spi_pcidev_driver);
1804	platform_driver_unregister(&pch_spi_pd_driver);
1805}
1806module_exit(pch_spi_exit);
1807
1808module_param(use_dma, int, 0644);
1809MODULE_PARM_DESC(use_dma,
1810		 "to use DMA for data transfers pass 1 else 0; default 1");
1811
1812MODULE_LICENSE("GPL");
1813MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
v4.10.11
   1/*
   2 * SPI bus driver for the Topcliff PCH used by Intel SoCs
   3 *
   4 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; version 2 of the License.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
 
 
 
 
  14 */
  15
  16#include <linux/delay.h>
  17#include <linux/pci.h>
  18#include <linux/wait.h>
  19#include <linux/spi/spi.h>
  20#include <linux/interrupt.h>
  21#include <linux/sched.h>
  22#include <linux/spi/spidev.h>
  23#include <linux/module.h>
  24#include <linux/device.h>
  25#include <linux/platform_device.h>
  26
  27#include <linux/dmaengine.h>
  28#include <linux/pch_dma.h>
  29
  30/* Register offsets */
  31#define PCH_SPCR		0x00	/* SPI control register */
  32#define PCH_SPBRR		0x04	/* SPI baud rate register */
  33#define PCH_SPSR		0x08	/* SPI status register */
  34#define PCH_SPDWR		0x0C	/* SPI write data register */
  35#define PCH_SPDRR		0x10	/* SPI read data register */
  36#define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
  37#define PCH_SRST		0x1C	/* SPI reset register */
  38#define PCH_ADDRESS_SIZE	0x20
  39
  40#define PCH_SPSR_TFD		0x000007C0
  41#define PCH_SPSR_RFD		0x0000F800
  42
  43#define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
  44#define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
  45
  46#define PCH_RX_THOLD		7
  47#define PCH_RX_THOLD_MAX	15
  48
  49#define PCH_TX_THOLD		2
  50
  51#define PCH_MAX_BAUDRATE	5000000
  52#define PCH_MAX_FIFO_DEPTH	16
  53
  54#define STATUS_RUNNING		1
  55#define STATUS_EXITING		2
  56#define PCH_SLEEP_TIME		10
  57
  58#define SSN_LOW			0x02U
  59#define SSN_HIGH		0x03U
  60#define SSN_NO_CONTROL		0x00U
  61#define PCH_MAX_CS		0xFF
  62#define PCI_DEVICE_ID_GE_SPI	0x8816
  63
  64#define SPCR_SPE_BIT		(1 << 0)
  65#define SPCR_MSTR_BIT		(1 << 1)
  66#define SPCR_LSBF_BIT		(1 << 4)
  67#define SPCR_CPHA_BIT		(1 << 5)
  68#define SPCR_CPOL_BIT		(1 << 6)
  69#define SPCR_TFIE_BIT		(1 << 8)
  70#define SPCR_RFIE_BIT		(1 << 9)
  71#define SPCR_FIE_BIT		(1 << 10)
  72#define SPCR_ORIE_BIT		(1 << 11)
  73#define SPCR_MDFIE_BIT		(1 << 12)
  74#define SPCR_FICLR_BIT		(1 << 24)
  75#define SPSR_TFI_BIT		(1 << 0)
  76#define SPSR_RFI_BIT		(1 << 1)
  77#define SPSR_FI_BIT		(1 << 2)
  78#define SPSR_ORF_BIT		(1 << 3)
  79#define SPBRR_SIZE_BIT		(1 << 10)
  80
  81#define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  82				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  83
  84#define SPCR_RFIC_FIELD		20
  85#define SPCR_TFIC_FIELD		16
  86
  87#define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
  88#define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
  89#define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
  90
  91#define PCH_CLOCK_HZ		50000000
  92#define PCH_MAX_SPBR		1023
  93
  94/* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
  95#define PCI_VENDOR_ID_ROHM		0x10DB
  96#define PCI_DEVICE_ID_ML7213_SPI	0x802c
  97#define PCI_DEVICE_ID_ML7223_SPI	0x800F
  98#define PCI_DEVICE_ID_ML7831_SPI	0x8816
  99
 100/*
 101 * Set the number of SPI instance max
 102 * Intel EG20T PCH :		1ch
 103 * LAPIS Semiconductor ML7213 IOH :	2ch
 104 * LAPIS Semiconductor ML7223 IOH :	1ch
 105 * LAPIS Semiconductor ML7831 IOH :	1ch
 106*/
 107#define PCH_SPI_MAX_DEV			2
 108
 109#define PCH_BUF_SIZE		4096
 110#define PCH_DMA_TRANS_SIZE	12
 111
 112static int use_dma = 1;
 113
 114struct pch_spi_dma_ctrl {
 115	struct dma_async_tx_descriptor	*desc_tx;
 116	struct dma_async_tx_descriptor	*desc_rx;
 117	struct pch_dma_slave		param_tx;
 118	struct pch_dma_slave		param_rx;
 119	struct dma_chan		*chan_tx;
 120	struct dma_chan		*chan_rx;
 121	struct scatterlist		*sg_tx_p;
 122	struct scatterlist		*sg_rx_p;
 123	struct scatterlist		sg_tx;
 124	struct scatterlist		sg_rx;
 125	int				nent;
 126	void				*tx_buf_virt;
 127	void				*rx_buf_virt;
 128	dma_addr_t			tx_buf_dma;
 129	dma_addr_t			rx_buf_dma;
 130};
 131/**
 132 * struct pch_spi_data - Holds the SPI channel specific details
 133 * @io_remap_addr:		The remapped PCI base address
 134 * @master:			Pointer to the SPI master structure
 135 * @work:			Reference to work queue handler
 
 
 136 * @wait:			Wait queue for waking up upon receiving an
 137 *				interrupt.
 138 * @transfer_complete:		Status of SPI Transfer
 139 * @bcurrent_msg_processing:	Status flag for message processing
 140 * @lock:			Lock for protecting this structure
 141 * @queue:			SPI Message queue
 142 * @status:			Status of the SPI driver
 143 * @bpw_len:			Length of data to be transferred in bits per
 144 *				word
 145 * @transfer_active:		Flag showing active transfer
 146 * @tx_index:			Transmit data count; for bookkeeping during
 147 *				transfer
 148 * @rx_index:			Receive data count; for bookkeeping during
 149 *				transfer
 150 * @tx_buff:			Buffer for data to be transmitted
 151 * @rx_index:			Buffer for Received data
 152 * @n_curnt_chip:		The chip number that this SPI driver currently
 153 *				operates on
 154 * @current_chip:		Reference to the current chip that this SPI
 155 *				driver currently operates on
 156 * @current_msg:		The current message that this SPI driver is
 157 *				handling
 158 * @cur_trans:			The current transfer that this SPI driver is
 159 *				handling
 160 * @board_dat:			Reference to the SPI device data structure
 161 * @plat_dev:			platform_device structure
 162 * @ch:				SPI channel number
 163 * @irq_reg_sts:		Status of IRQ registration
 164 */
 165struct pch_spi_data {
 166	void __iomem *io_remap_addr;
 167	unsigned long io_base_addr;
 168	struct spi_master *master;
 169	struct work_struct work;
 
 170	wait_queue_head_t wait;
 171	u8 transfer_complete;
 172	u8 bcurrent_msg_processing;
 173	spinlock_t lock;
 174	struct list_head queue;
 175	u8 status;
 176	u32 bpw_len;
 177	u8 transfer_active;
 178	u32 tx_index;
 179	u32 rx_index;
 180	u16 *pkt_tx_buff;
 181	u16 *pkt_rx_buff;
 182	u8 n_curnt_chip;
 183	struct spi_device *current_chip;
 184	struct spi_message *current_msg;
 185	struct spi_transfer *cur_trans;
 186	struct pch_spi_board_data *board_dat;
 187	struct platform_device	*plat_dev;
 188	int ch;
 189	struct pch_spi_dma_ctrl dma;
 190	int use_dma;
 191	u8 irq_reg_sts;
 192	int save_total_len;
 193};
 194
 195/**
 196 * struct pch_spi_board_data - Holds the SPI device specific details
 197 * @pdev:		Pointer to the PCI device
 198 * @suspend_sts:	Status of suspend
 199 * @num:		The number of SPI device instance
 200 */
 201struct pch_spi_board_data {
 202	struct pci_dev *pdev;
 203	u8 suspend_sts;
 204	int num;
 205};
 206
 207struct pch_pd_dev_save {
 208	int num;
 209	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
 210	struct pch_spi_board_data *board_dat;
 211};
 212
 213static const struct pci_device_id pch_spi_pcidev_id[] = {
 214	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
 215	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
 216	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
 217	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
 218	{ }
 219};
 220
 221/**
 222 * pch_spi_writereg() - Performs  register writes
 223 * @master:	Pointer to struct spi_master.
 224 * @idx:	Register offset.
 225 * @val:	Value to be written to register.
 226 */
 227static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
 228{
 229	struct pch_spi_data *data = spi_master_get_devdata(master);
 230	iowrite32(val, (data->io_remap_addr + idx));
 231}
 232
 233/**
 234 * pch_spi_readreg() - Performs register reads
 235 * @master:	Pointer to struct spi_master.
 236 * @idx:	Register offset.
 237 */
 238static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
 239{
 240	struct pch_spi_data *data = spi_master_get_devdata(master);
 241	return ioread32(data->io_remap_addr + idx);
 242}
 243
 244static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
 245				      u32 set, u32 clr)
 246{
 247	u32 tmp = pch_spi_readreg(master, idx);
 248	tmp = (tmp & ~clr) | set;
 249	pch_spi_writereg(master, idx, tmp);
 250}
 251
 252static void pch_spi_set_master_mode(struct spi_master *master)
 253{
 254	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
 255}
 256
 257/**
 258 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
 259 * @master:	Pointer to struct spi_master.
 260 */
 261static void pch_spi_clear_fifo(struct spi_master *master)
 262{
 263	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
 264	pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
 265}
 266
 267static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
 268				void __iomem *io_remap_addr)
 269{
 270	u32 n_read, tx_index, rx_index, bpw_len;
 271	u16 *pkt_rx_buffer, *pkt_tx_buff;
 272	int read_cnt;
 273	u32 reg_spcr_val;
 274	void __iomem *spsr;
 275	void __iomem *spdrr;
 276	void __iomem *spdwr;
 277
 278	spsr = io_remap_addr + PCH_SPSR;
 279	iowrite32(reg_spsr_val, spsr);
 280
 281	if (data->transfer_active) {
 282		rx_index = data->rx_index;
 283		tx_index = data->tx_index;
 284		bpw_len = data->bpw_len;
 285		pkt_rx_buffer = data->pkt_rx_buff;
 286		pkt_tx_buff = data->pkt_tx_buff;
 287
 288		spdrr = io_remap_addr + PCH_SPDRR;
 289		spdwr = io_remap_addr + PCH_SPDWR;
 290
 291		n_read = PCH_READABLE(reg_spsr_val);
 292
 293		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
 294			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
 295			if (tx_index < bpw_len)
 296				iowrite32(pkt_tx_buff[tx_index++], spdwr);
 297		}
 298
 299		/* disable RFI if not needed */
 300		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
 301			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
 302			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
 303
 304			/* reset rx threshold */
 305			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
 306			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
 307
 308			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
 309		}
 310
 311		/* update counts */
 312		data->tx_index = tx_index;
 313		data->rx_index = rx_index;
 314
 315		/* if transfer complete interrupt */
 316		if (reg_spsr_val & SPSR_FI_BIT) {
 317			if ((tx_index == bpw_len) && (rx_index == tx_index)) {
 318				/* disable interrupts */
 319				pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
 320						   PCH_ALL);
 321
 322				/* transfer is completed;
 323				   inform pch_spi_process_messages */
 324				data->transfer_complete = true;
 325				data->transfer_active = false;
 326				wake_up(&data->wait);
 327			} else {
 328				dev_vdbg(&data->master->dev,
 329					"%s : Transfer is not completed",
 330					__func__);
 331			}
 332		}
 333	}
 334}
 335
 336/**
 337 * pch_spi_handler() - Interrupt handler
 338 * @irq:	The interrupt number.
 339 * @dev_id:	Pointer to struct pch_spi_board_data.
 340 */
 341static irqreturn_t pch_spi_handler(int irq, void *dev_id)
 342{
 343	u32 reg_spsr_val;
 344	void __iomem *spsr;
 345	void __iomem *io_remap_addr;
 346	irqreturn_t ret = IRQ_NONE;
 347	struct pch_spi_data *data = dev_id;
 348	struct pch_spi_board_data *board_dat = data->board_dat;
 349
 350	if (board_dat->suspend_sts) {
 351		dev_dbg(&board_dat->pdev->dev,
 352			"%s returning due to suspend\n", __func__);
 353		return IRQ_NONE;
 354	}
 355
 356	io_remap_addr = data->io_remap_addr;
 357	spsr = io_remap_addr + PCH_SPSR;
 358
 359	reg_spsr_val = ioread32(spsr);
 360
 361	if (reg_spsr_val & SPSR_ORF_BIT) {
 362		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
 363		if (data->current_msg->complete) {
 364			data->transfer_complete = true;
 365			data->current_msg->status = -EIO;
 366			data->current_msg->complete(data->current_msg->context);
 367			data->bcurrent_msg_processing = false;
 368			data->current_msg = NULL;
 369			data->cur_trans = NULL;
 370		}
 371	}
 372
 373	if (data->use_dma)
 374		return IRQ_NONE;
 375
 376	/* Check if the interrupt is for SPI device */
 377	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
 378		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
 379		ret = IRQ_HANDLED;
 380	}
 381
 382	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
 383		__func__, ret);
 384
 385	return ret;
 386}
 387
 388/**
 389 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
 390 * @master:	Pointer to struct spi_master.
 391 * @speed_hz:	Baud rate.
 392 */
 393static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
 394{
 395	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
 396
 397	/* if baud rate is less than we can support limit it */
 398	if (n_spbr > PCH_MAX_SPBR)
 399		n_spbr = PCH_MAX_SPBR;
 400
 401	pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
 402}
 403
 404/**
 405 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
 406 * @master:		Pointer to struct spi_master.
 407 * @bits_per_word:	Bits per word for SPI transfer.
 408 */
 409static void pch_spi_set_bits_per_word(struct spi_master *master,
 410				      u8 bits_per_word)
 411{
 412	if (bits_per_word == 8)
 413		pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
 414	else
 415		pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
 416}
 417
 418/**
 419 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
 420 * @spi:	Pointer to struct spi_device.
 421 */
 422static void pch_spi_setup_transfer(struct spi_device *spi)
 423{
 424	u32 flags = 0;
 425
 426	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
 427		__func__, pch_spi_readreg(spi->master, PCH_SPBRR),
 428		spi->max_speed_hz);
 429	pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
 430
 431	/* set bits per word */
 432	pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
 433
 434	if (!(spi->mode & SPI_LSB_FIRST))
 435		flags |= SPCR_LSBF_BIT;
 436	if (spi->mode & SPI_CPOL)
 437		flags |= SPCR_CPOL_BIT;
 438	if (spi->mode & SPI_CPHA)
 439		flags |= SPCR_CPHA_BIT;
 440	pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
 441			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
 442
 443	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
 444	pch_spi_clear_fifo(spi->master);
 445}
 446
 447/**
 448 * pch_spi_reset() - Clears SPI registers
 449 * @master:	Pointer to struct spi_master.
 450 */
 451static void pch_spi_reset(struct spi_master *master)
 452{
 453	/* write 1 to reset SPI */
 454	pch_spi_writereg(master, PCH_SRST, 0x1);
 455
 456	/* clear reset */
 457	pch_spi_writereg(master, PCH_SRST, 0x0);
 458}
 459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
 461{
 462
 463	struct spi_transfer *transfer;
 464	struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
 465	int retval;
 466	unsigned long flags;
 467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 468	spin_lock_irqsave(&data->lock, flags);
 469	/* validate Tx/Rx buffers and Transfer length */
 470	list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
 471		if (!transfer->tx_buf && !transfer->rx_buf) {
 472			dev_err(&pspi->dev,
 473				"%s Tx and Rx buffer NULL\n", __func__);
 474			retval = -EINVAL;
 475			goto err_return_spinlock;
 476		}
 477
 478		if (!transfer->len) {
 479			dev_err(&pspi->dev, "%s Transfer length invalid\n",
 480				__func__);
 481			retval = -EINVAL;
 482			goto err_return_spinlock;
 483		}
 484
 485		dev_dbg(&pspi->dev,
 486			"%s Tx/Rx buffer valid. Transfer length valid\n",
 487			__func__);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 488	}
 489	spin_unlock_irqrestore(&data->lock, flags);
 490
 491	/* We won't process any messages if we have been asked to terminate */
 492	if (data->status == STATUS_EXITING) {
 493		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
 494		retval = -ESHUTDOWN;
 495		goto err_out;
 496	}
 497
 498	/* If suspended ,return -EINVAL */
 499	if (data->board_dat->suspend_sts) {
 500		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
 501		retval = -EINVAL;
 502		goto err_out;
 503	}
 504
 505	/* set status of message */
 506	pmsg->actual_length = 0;
 507	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
 508
 509	pmsg->status = -EINPROGRESS;
 510	spin_lock_irqsave(&data->lock, flags);
 511	/* add message to queue */
 512	list_add_tail(&pmsg->queue, &data->queue);
 513	spin_unlock_irqrestore(&data->lock, flags);
 514
 515	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
 516
 517	schedule_work(&data->work);
 
 518	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
 519
 520	retval = 0;
 521
 522err_out:
 523	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
 524	return retval;
 525err_return_spinlock:
 526	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
 527	spin_unlock_irqrestore(&data->lock, flags);
 528	return retval;
 529}
 530
 531static inline void pch_spi_select_chip(struct pch_spi_data *data,
 532				       struct spi_device *pspi)
 533{
 534	if (data->current_chip != NULL) {
 535		if (pspi->chip_select != data->n_curnt_chip) {
 536			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
 537			data->current_chip = NULL;
 538		}
 539	}
 540
 541	data->current_chip = pspi;
 542
 543	data->n_curnt_chip = data->current_chip->chip_select;
 544
 545	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
 546	pch_spi_setup_transfer(pspi);
 547}
 548
 549static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
 550{
 551	int size;
 552	u32 n_writes;
 553	int j;
 554	struct spi_message *pmsg, *tmp;
 555	const u8 *tx_buf;
 556	const u16 *tx_sbuf;
 557
 558	/* set baud rate if needed */
 559	if (data->cur_trans->speed_hz) {
 560		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
 561		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
 562	}
 563
 564	/* set bits per word if needed */
 565	if (data->cur_trans->bits_per_word &&
 566	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
 567		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
 568		pch_spi_set_bits_per_word(data->master,
 569					  data->cur_trans->bits_per_word);
 570		*bpw = data->cur_trans->bits_per_word;
 571	} else {
 572		*bpw = data->current_msg->spi->bits_per_word;
 573	}
 574
 575	/* reset Tx/Rx index */
 576	data->tx_index = 0;
 577	data->rx_index = 0;
 578
 579	data->bpw_len = data->cur_trans->len / (*bpw / 8);
 580
 581	/* find alloc size */
 582	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
 583
 584	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
 585	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
 586	if (data->pkt_tx_buff != NULL) {
 587		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
 588		if (!data->pkt_rx_buff)
 589			kfree(data->pkt_tx_buff);
 590	}
 591
 592	if (!data->pkt_rx_buff) {
 593		/* flush queue and set status of all transfers to -ENOMEM */
 594		dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
 595		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
 596			pmsg->status = -ENOMEM;
 597
 598			if (pmsg->complete)
 599				pmsg->complete(pmsg->context);
 600
 601			/* delete from queue */
 602			list_del_init(&pmsg->queue);
 603		}
 604		return;
 605	}
 606
 607	/* copy Tx Data */
 608	if (data->cur_trans->tx_buf != NULL) {
 609		if (*bpw == 8) {
 610			tx_buf = data->cur_trans->tx_buf;
 611			for (j = 0; j < data->bpw_len; j++)
 612				data->pkt_tx_buff[j] = *tx_buf++;
 613		} else {
 614			tx_sbuf = data->cur_trans->tx_buf;
 615			for (j = 0; j < data->bpw_len; j++)
 616				data->pkt_tx_buff[j] = *tx_sbuf++;
 617		}
 618	}
 619
 620	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
 621	n_writes = data->bpw_len;
 622	if (n_writes > PCH_MAX_FIFO_DEPTH)
 623		n_writes = PCH_MAX_FIFO_DEPTH;
 624
 625	dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
 626		"0x2 to SSNXCR\n", __func__);
 627	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
 628
 629	for (j = 0; j < n_writes; j++)
 630		pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
 631
 632	/* update tx_index */
 633	data->tx_index = j;
 634
 635	/* reset transfer complete flag */
 636	data->transfer_complete = false;
 637	data->transfer_active = true;
 638}
 639
 640static void pch_spi_nomore_transfer(struct pch_spi_data *data)
 641{
 642	struct spi_message *pmsg, *tmp;
 643	dev_dbg(&data->master->dev, "%s called\n", __func__);
 644	/* Invoke complete callback
 645	 * [To the spi core..indicating end of transfer] */
 646	data->current_msg->status = 0;
 647
 648	if (data->current_msg->complete) {
 649		dev_dbg(&data->master->dev,
 650			"%s:Invoking callback of SPI core\n", __func__);
 651		data->current_msg->complete(data->current_msg->context);
 652	}
 653
 654	/* update status in global variable */
 655	data->bcurrent_msg_processing = false;
 656
 657	dev_dbg(&data->master->dev,
 658		"%s:data->bcurrent_msg_processing = false\n", __func__);
 659
 660	data->current_msg = NULL;
 661	data->cur_trans = NULL;
 662
 663	/* check if we have items in list and not suspending
 664	 * return 1 if list empty */
 665	if ((list_empty(&data->queue) == 0) &&
 666	    (!data->board_dat->suspend_sts) &&
 667	    (data->status != STATUS_EXITING)) {
 668		/* We have some more work to do (either there is more tranint
 669		 * bpw;sfer requests in the current message or there are
 670		 *more messages)
 671		 */
 672		dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
 673		schedule_work(&data->work);
 674	} else if (data->board_dat->suspend_sts ||
 675		   data->status == STATUS_EXITING) {
 676		dev_dbg(&data->master->dev,
 677			"%s suspend/remove initiated, flushing queue\n",
 678			__func__);
 679		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
 680			pmsg->status = -EIO;
 681
 682			if (pmsg->complete)
 683				pmsg->complete(pmsg->context);
 684
 685			/* delete from queue */
 686			list_del_init(&pmsg->queue);
 687		}
 688	}
 689}
 690
 691static void pch_spi_set_ir(struct pch_spi_data *data)
 692{
 693	/* enable interrupts, set threshold, enable SPI */
 694	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
 695		/* set receive threshold to PCH_RX_THOLD */
 696		pch_spi_setclr_reg(data->master, PCH_SPCR,
 697				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
 698				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
 699				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
 700				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 701	else
 702		/* set receive threshold to maximum */
 703		pch_spi_setclr_reg(data->master, PCH_SPCR,
 704				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
 705				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
 706				   SPCR_SPE_BIT,
 707				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 708
 709	/* Wait until the transfer completes; go to sleep after
 710				 initiating the transfer. */
 711	dev_dbg(&data->master->dev,
 712		"%s:waiting for transfer to get over\n", __func__);
 713
 714	wait_event_interruptible(data->wait, data->transfer_complete);
 715
 716	/* clear all interrupts */
 717	pch_spi_writereg(data->master, PCH_SPSR,
 718			 pch_spi_readreg(data->master, PCH_SPSR));
 719	/* Disable interrupts and SPI transfer */
 720	pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
 721	/* clear FIFO */
 722	pch_spi_clear_fifo(data->master);
 723}
 724
 725static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
 726{
 727	int j;
 728	u8 *rx_buf;
 729	u16 *rx_sbuf;
 730
 731	/* copy Rx Data */
 732	if (!data->cur_trans->rx_buf)
 733		return;
 734
 735	if (bpw == 8) {
 736		rx_buf = data->cur_trans->rx_buf;
 737		for (j = 0; j < data->bpw_len; j++)
 738			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
 739	} else {
 740		rx_sbuf = data->cur_trans->rx_buf;
 741		for (j = 0; j < data->bpw_len; j++)
 742			*rx_sbuf++ = data->pkt_rx_buff[j];
 743	}
 744}
 745
 746static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
 747{
 748	int j;
 749	u8 *rx_buf;
 750	u16 *rx_sbuf;
 751	const u8 *rx_dma_buf;
 752	const u16 *rx_dma_sbuf;
 753
 754	/* copy Rx Data */
 755	if (!data->cur_trans->rx_buf)
 756		return;
 757
 758	if (bpw == 8) {
 759		rx_buf = data->cur_trans->rx_buf;
 760		rx_dma_buf = data->dma.rx_buf_virt;
 761		for (j = 0; j < data->bpw_len; j++)
 762			*rx_buf++ = *rx_dma_buf++ & 0xFF;
 763		data->cur_trans->rx_buf = rx_buf;
 764	} else {
 765		rx_sbuf = data->cur_trans->rx_buf;
 766		rx_dma_sbuf = data->dma.rx_buf_virt;
 767		for (j = 0; j < data->bpw_len; j++)
 768			*rx_sbuf++ = *rx_dma_sbuf++;
 769		data->cur_trans->rx_buf = rx_sbuf;
 770	}
 771}
 772
 773static int pch_spi_start_transfer(struct pch_spi_data *data)
 774{
 775	struct pch_spi_dma_ctrl *dma;
 776	unsigned long flags;
 777	int rtn;
 778
 779	dma = &data->dma;
 780
 781	spin_lock_irqsave(&data->lock, flags);
 782
 783	/* disable interrupts, SPI set enable */
 784	pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
 785
 786	spin_unlock_irqrestore(&data->lock, flags);
 787
 788	/* Wait until the transfer completes; go to sleep after
 789				 initiating the transfer. */
 790	dev_dbg(&data->master->dev,
 791		"%s:waiting for transfer to get over\n", __func__);
 792	rtn = wait_event_interruptible_timeout(data->wait,
 793					       data->transfer_complete,
 794					       msecs_to_jiffies(2 * HZ));
 795	if (!rtn)
 796		dev_err(&data->master->dev,
 797			"%s wait-event timeout\n", __func__);
 798
 799	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
 800			    DMA_FROM_DEVICE);
 801
 802	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
 803			    DMA_FROM_DEVICE);
 804	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
 805
 806	async_tx_ack(dma->desc_rx);
 807	async_tx_ack(dma->desc_tx);
 808	kfree(dma->sg_tx_p);
 809	kfree(dma->sg_rx_p);
 810
 811	spin_lock_irqsave(&data->lock, flags);
 812
 813	/* clear fifo threshold, disable interrupts, disable SPI transfer */
 814	pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
 815			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
 816			   SPCR_SPE_BIT);
 817	/* clear all interrupts */
 818	pch_spi_writereg(data->master, PCH_SPSR,
 819			 pch_spi_readreg(data->master, PCH_SPSR));
 820	/* clear FIFO */
 821	pch_spi_clear_fifo(data->master);
 822
 823	spin_unlock_irqrestore(&data->lock, flags);
 824
 825	return rtn;
 826}
 827
 828static void pch_dma_rx_complete(void *arg)
 829{
 830	struct pch_spi_data *data = arg;
 831
 832	/* transfer is completed;inform pch_spi_process_messages_dma */
 833	data->transfer_complete = true;
 834	wake_up_interruptible(&data->wait);
 835}
 836
 837static bool pch_spi_filter(struct dma_chan *chan, void *slave)
 838{
 839	struct pch_dma_slave *param = slave;
 840
 841	if ((chan->chan_id == param->chan_id) &&
 842	    (param->dma_dev == chan->device->dev)) {
 843		chan->private = param;
 844		return true;
 845	} else {
 846		return false;
 847	}
 848}
 849
 850static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
 851{
 852	dma_cap_mask_t mask;
 853	struct dma_chan *chan;
 854	struct pci_dev *dma_dev;
 855	struct pch_dma_slave *param;
 856	struct pch_spi_dma_ctrl *dma;
 857	unsigned int width;
 858
 859	if (bpw == 8)
 860		width = PCH_DMA_WIDTH_1_BYTE;
 861	else
 862		width = PCH_DMA_WIDTH_2_BYTES;
 863
 864	dma = &data->dma;
 865	dma_cap_zero(mask);
 866	dma_cap_set(DMA_SLAVE, mask);
 867
 868	/* Get DMA's dev information */
 869	dma_dev = pci_get_slot(data->board_dat->pdev->bus,
 870			PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
 871
 872	/* Set Tx DMA */
 873	param = &dma->param_tx;
 874	param->dma_dev = &dma_dev->dev;
 875	param->chan_id = data->ch * 2; /* Tx = 0, 2 */;
 876	param->tx_reg = data->io_base_addr + PCH_SPDWR;
 877	param->width = width;
 878	chan = dma_request_channel(mask, pch_spi_filter, param);
 879	if (!chan) {
 880		dev_err(&data->master->dev,
 881			"ERROR: dma_request_channel FAILS(Tx)\n");
 882		data->use_dma = 0;
 883		return;
 884	}
 885	dma->chan_tx = chan;
 886
 887	/* Set Rx DMA */
 888	param = &dma->param_rx;
 889	param->dma_dev = &dma_dev->dev;
 890	param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */;
 891	param->rx_reg = data->io_base_addr + PCH_SPDRR;
 892	param->width = width;
 893	chan = dma_request_channel(mask, pch_spi_filter, param);
 894	if (!chan) {
 895		dev_err(&data->master->dev,
 896			"ERROR: dma_request_channel FAILS(Rx)\n");
 897		dma_release_channel(dma->chan_tx);
 898		dma->chan_tx = NULL;
 899		data->use_dma = 0;
 900		return;
 901	}
 902	dma->chan_rx = chan;
 903}
 904
 905static void pch_spi_release_dma(struct pch_spi_data *data)
 906{
 907	struct pch_spi_dma_ctrl *dma;
 908
 909	dma = &data->dma;
 910	if (dma->chan_tx) {
 911		dma_release_channel(dma->chan_tx);
 912		dma->chan_tx = NULL;
 913	}
 914	if (dma->chan_rx) {
 915		dma_release_channel(dma->chan_rx);
 916		dma->chan_rx = NULL;
 917	}
 918	return;
 919}
 920
 921static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
 922{
 923	const u8 *tx_buf;
 924	const u16 *tx_sbuf;
 925	u8 *tx_dma_buf;
 926	u16 *tx_dma_sbuf;
 927	struct scatterlist *sg;
 928	struct dma_async_tx_descriptor *desc_tx;
 929	struct dma_async_tx_descriptor *desc_rx;
 930	int num;
 931	int i;
 932	int size;
 933	int rem;
 934	int head;
 935	unsigned long flags;
 936	struct pch_spi_dma_ctrl *dma;
 937
 938	dma = &data->dma;
 939
 940	/* set baud rate if needed */
 941	if (data->cur_trans->speed_hz) {
 942		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
 943		spin_lock_irqsave(&data->lock, flags);
 944		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
 945		spin_unlock_irqrestore(&data->lock, flags);
 946	}
 947
 948	/* set bits per word if needed */
 949	if (data->cur_trans->bits_per_word &&
 950	    (data->current_msg->spi->bits_per_word !=
 951	     data->cur_trans->bits_per_word)) {
 952		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
 953		spin_lock_irqsave(&data->lock, flags);
 954		pch_spi_set_bits_per_word(data->master,
 955					  data->cur_trans->bits_per_word);
 956		spin_unlock_irqrestore(&data->lock, flags);
 957		*bpw = data->cur_trans->bits_per_word;
 958	} else {
 959		*bpw = data->current_msg->spi->bits_per_word;
 960	}
 961	data->bpw_len = data->cur_trans->len / (*bpw / 8);
 962
 963	if (data->bpw_len > PCH_BUF_SIZE) {
 964		data->bpw_len = PCH_BUF_SIZE;
 965		data->cur_trans->len -= PCH_BUF_SIZE;
 966	}
 967
 968	/* copy Tx Data */
 969	if (data->cur_trans->tx_buf != NULL) {
 970		if (*bpw == 8) {
 971			tx_buf = data->cur_trans->tx_buf;
 972			tx_dma_buf = dma->tx_buf_virt;
 973			for (i = 0; i < data->bpw_len; i++)
 974				*tx_dma_buf++ = *tx_buf++;
 975		} else {
 976			tx_sbuf = data->cur_trans->tx_buf;
 977			tx_dma_sbuf = dma->tx_buf_virt;
 978			for (i = 0; i < data->bpw_len; i++)
 979				*tx_dma_sbuf++ = *tx_sbuf++;
 980		}
 981	}
 982
 983	/* Calculate Rx parameter for DMA transmitting */
 984	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
 985		if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
 986			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
 987			rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
 988		} else {
 989			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
 990			rem = PCH_DMA_TRANS_SIZE;
 991		}
 992		size = PCH_DMA_TRANS_SIZE;
 993	} else {
 994		num = 1;
 995		size = data->bpw_len;
 996		rem = data->bpw_len;
 997	}
 998	dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
 999		__func__, num, size, rem);
1000	spin_lock_irqsave(&data->lock, flags);
1001
1002	/* set receive fifo threshold and transmit fifo threshold */
1003	pch_spi_setclr_reg(data->master, PCH_SPCR,
1004			   ((size - 1) << SPCR_RFIC_FIELD) |
1005			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1006			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1007
1008	spin_unlock_irqrestore(&data->lock, flags);
1009
1010	/* RX */
1011	dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1012	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1013	/* offset, length setting */
1014	sg = dma->sg_rx_p;
1015	for (i = 0; i < num; i++, sg++) {
1016		if (i == (num - 2)) {
1017			sg->offset = size * i;
1018			sg->offset = sg->offset * (*bpw / 8);
1019			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1020				    sg->offset);
1021			sg_dma_len(sg) = rem;
1022		} else if (i == (num - 1)) {
1023			sg->offset = size * (i - 1) + rem;
1024			sg->offset = sg->offset * (*bpw / 8);
1025			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1026				    sg->offset);
1027			sg_dma_len(sg) = size;
1028		} else {
1029			sg->offset = size * i;
1030			sg->offset = sg->offset * (*bpw / 8);
1031			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1032				    sg->offset);
1033			sg_dma_len(sg) = size;
1034		}
1035		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1036	}
1037	sg = dma->sg_rx_p;
1038	desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1039					num, DMA_DEV_TO_MEM,
1040					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1041	if (!desc_rx) {
1042		dev_err(&data->master->dev,
1043			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1044		return;
1045	}
1046	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1047	desc_rx->callback = pch_dma_rx_complete;
1048	desc_rx->callback_param = data;
1049	dma->nent = num;
1050	dma->desc_rx = desc_rx;
1051
1052	/* Calculate Tx parameter for DMA transmitting */
1053	if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1054		head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1055		if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1056			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1057			rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1058		} else {
1059			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1060			rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1061			      PCH_DMA_TRANS_SIZE - head;
1062		}
1063		size = PCH_DMA_TRANS_SIZE;
1064	} else {
1065		num = 1;
1066		size = data->bpw_len;
1067		rem = data->bpw_len;
1068		head = 0;
1069	}
1070
1071	dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1072	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1073	/* offset, length setting */
1074	sg = dma->sg_tx_p;
1075	for (i = 0; i < num; i++, sg++) {
1076		if (i == 0) {
1077			sg->offset = 0;
1078			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1079				    sg->offset);
1080			sg_dma_len(sg) = size + head;
1081		} else if (i == (num - 1)) {
1082			sg->offset = head + size * i;
1083			sg->offset = sg->offset * (*bpw / 8);
1084			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1085				    sg->offset);
1086			sg_dma_len(sg) = rem;
1087		} else {
1088			sg->offset = head + size * i;
1089			sg->offset = sg->offset * (*bpw / 8);
1090			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1091				    sg->offset);
1092			sg_dma_len(sg) = size;
1093		}
1094		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1095	}
1096	sg = dma->sg_tx_p;
1097	desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1098					sg, num, DMA_MEM_TO_DEV,
1099					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1100	if (!desc_tx) {
1101		dev_err(&data->master->dev,
1102			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1103		return;
1104	}
1105	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1106	desc_tx->callback = NULL;
1107	desc_tx->callback_param = data;
1108	dma->nent = num;
1109	dma->desc_tx = desc_tx;
1110
1111	dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
 
1112
1113	spin_lock_irqsave(&data->lock, flags);
1114	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1115	desc_rx->tx_submit(desc_rx);
1116	desc_tx->tx_submit(desc_tx);
1117	spin_unlock_irqrestore(&data->lock, flags);
1118
1119	/* reset transfer complete flag */
1120	data->transfer_complete = false;
1121}
1122
1123static void pch_spi_process_messages(struct work_struct *pwork)
1124{
1125	struct spi_message *pmsg, *tmp;
1126	struct pch_spi_data *data;
1127	int bpw;
1128
1129	data = container_of(pwork, struct pch_spi_data, work);
1130	dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1131
1132	spin_lock(&data->lock);
1133	/* check if suspend has been initiated;if yes flush queue */
1134	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1135		dev_dbg(&data->master->dev,
1136			"%s suspend/remove initiated, flushing queue\n", __func__);
1137		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1138			pmsg->status = -EIO;
1139
1140			if (pmsg->complete) {
1141				spin_unlock(&data->lock);
1142				pmsg->complete(pmsg->context);
1143				spin_lock(&data->lock);
1144			}
1145
1146			/* delete from queue */
1147			list_del_init(&pmsg->queue);
1148		}
1149
1150		spin_unlock(&data->lock);
1151		return;
1152	}
1153
1154	data->bcurrent_msg_processing = true;
1155	dev_dbg(&data->master->dev,
1156		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1157
1158	/* Get the message from the queue and delete it from there. */
1159	data->current_msg = list_entry(data->queue.next, struct spi_message,
1160					queue);
1161
1162	list_del_init(&data->current_msg->queue);
1163
1164	data->current_msg->status = 0;
1165
1166	pch_spi_select_chip(data, data->current_msg->spi);
1167
1168	spin_unlock(&data->lock);
1169
1170	if (data->use_dma)
1171		pch_spi_request_dma(data,
1172				    data->current_msg->spi->bits_per_word);
1173	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1174	do {
1175		int cnt;
1176		/* If we are already processing a message get the next
1177		transfer structure from the message otherwise retrieve
1178		the 1st transfer request from the message. */
1179		spin_lock(&data->lock);
1180		if (data->cur_trans == NULL) {
1181			data->cur_trans =
1182				list_entry(data->current_msg->transfers.next,
1183					   struct spi_transfer, transfer_list);
1184			dev_dbg(&data->master->dev, "%s "
1185				":Getting 1st transfer message\n", __func__);
1186		} else {
1187			data->cur_trans =
1188				list_entry(data->cur_trans->transfer_list.next,
1189					   struct spi_transfer, transfer_list);
1190			dev_dbg(&data->master->dev, "%s "
1191				":Getting next transfer message\n", __func__);
1192		}
1193		spin_unlock(&data->lock);
1194
1195		if (!data->cur_trans->len)
1196			goto out;
1197		cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1198		data->save_total_len = data->cur_trans->len;
1199		if (data->use_dma) {
1200			int i;
1201			char *save_rx_buf = data->cur_trans->rx_buf;
1202			for (i = 0; i < cnt; i ++) {
1203				pch_spi_handle_dma(data, &bpw);
1204				if (!pch_spi_start_transfer(data)) {
1205					data->transfer_complete = true;
1206					data->current_msg->status = -EIO;
1207					data->current_msg->complete
1208						   (data->current_msg->context);
1209					data->bcurrent_msg_processing = false;
1210					data->current_msg = NULL;
1211					data->cur_trans = NULL;
1212					goto out;
1213				}
1214				pch_spi_copy_rx_data_for_dma(data, bpw);
1215			}
1216			data->cur_trans->rx_buf = save_rx_buf;
1217		} else {
1218			pch_spi_set_tx(data, &bpw);
1219			pch_spi_set_ir(data);
1220			pch_spi_copy_rx_data(data, bpw);
1221			kfree(data->pkt_rx_buff);
1222			data->pkt_rx_buff = NULL;
1223			kfree(data->pkt_tx_buff);
1224			data->pkt_tx_buff = NULL;
1225		}
1226		/* increment message count */
1227		data->cur_trans->len = data->save_total_len;
1228		data->current_msg->actual_length += data->cur_trans->len;
1229
1230		dev_dbg(&data->master->dev,
1231			"%s:data->current_msg->actual_length=%d\n",
1232			__func__, data->current_msg->actual_length);
1233
1234		/* check for delay */
1235		if (data->cur_trans->delay_usecs) {
1236			dev_dbg(&data->master->dev, "%s:"
1237				"delay in usec=%d\n", __func__,
1238				data->cur_trans->delay_usecs);
1239			udelay(data->cur_trans->delay_usecs);
1240		}
1241
1242		spin_lock(&data->lock);
1243
1244		/* No more transfer in this message. */
1245		if ((data->cur_trans->transfer_list.next) ==
1246		    &(data->current_msg->transfers)) {
1247			pch_spi_nomore_transfer(data);
1248		}
1249
1250		spin_unlock(&data->lock);
1251
1252	} while (data->cur_trans != NULL);
1253
1254out:
1255	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1256	if (data->use_dma)
1257		pch_spi_release_dma(data);
1258}
1259
1260static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1261				   struct pch_spi_data *data)
1262{
1263	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1264
1265	flush_work(&data->work);
 
 
 
 
 
 
 
1266}
1267
1268static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1269				 struct pch_spi_data *data)
1270{
 
 
1271	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1272
 
 
 
 
 
 
 
 
 
1273	/* reset PCH SPI h/w */
1274	pch_spi_reset(data->master);
1275	dev_dbg(&board_dat->pdev->dev,
1276		"%s pch_spi_reset invoked successfully\n", __func__);
1277
1278	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1279
1280	return 0;
 
 
 
 
 
 
 
 
 
1281}
1282
1283static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1284			     struct pch_spi_data *data)
1285{
1286	struct pch_spi_dma_ctrl *dma;
1287
1288	dma = &data->dma;
1289	if (dma->tx_buf_dma)
1290		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1291				  dma->tx_buf_virt, dma->tx_buf_dma);
1292	if (dma->rx_buf_dma)
1293		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1294				  dma->rx_buf_virt, dma->rx_buf_dma);
1295	return;
1296}
1297
1298static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1299			      struct pch_spi_data *data)
1300{
1301	struct pch_spi_dma_ctrl *dma;
1302
1303	dma = &data->dma;
1304	/* Get Consistent memory for Tx DMA */
1305	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1306				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1307	/* Get Consistent memory for Rx DMA */
1308	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1309				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1310}
1311
1312static int pch_spi_pd_probe(struct platform_device *plat_dev)
1313{
1314	int ret;
1315	struct spi_master *master;
1316	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1317	struct pch_spi_data *data;
1318
1319	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1320
1321	master = spi_alloc_master(&board_dat->pdev->dev,
1322				  sizeof(struct pch_spi_data));
1323	if (!master) {
1324		dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1325			plat_dev->id);
1326		return -ENOMEM;
1327	}
1328
1329	data = spi_master_get_devdata(master);
1330	data->master = master;
1331
1332	platform_set_drvdata(plat_dev, data);
1333
1334	/* baseaddress + address offset) */
1335	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1336					 PCH_ADDRESS_SIZE * plat_dev->id;
1337	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
 
1338	if (!data->io_remap_addr) {
1339		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1340		ret = -ENOMEM;
1341		goto err_pci_iomap;
1342	}
1343	data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1344
1345	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1346		plat_dev->id, data->io_remap_addr);
1347
1348	/* initialize members of SPI master */
1349	master->num_chipselect = PCH_MAX_CS;
 
1350	master->transfer = pch_spi_transfer;
1351	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1352	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1353	master->max_speed_hz = PCH_MAX_BAUDRATE;
1354
1355	data->board_dat = board_dat;
1356	data->plat_dev = plat_dev;
1357	data->n_curnt_chip = 255;
1358	data->status = STATUS_RUNNING;
1359	data->ch = plat_dev->id;
1360	data->use_dma = use_dma;
1361
1362	INIT_LIST_HEAD(&data->queue);
1363	spin_lock_init(&data->lock);
1364	INIT_WORK(&data->work, pch_spi_process_messages);
1365	init_waitqueue_head(&data->wait);
1366
1367	ret = pch_spi_get_resources(board_dat, data);
1368	if (ret) {
1369		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1370		goto err_spi_get_resources;
1371	}
1372
1373	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1374			  IRQF_SHARED, KBUILD_MODNAME, data);
1375	if (ret) {
1376		dev_err(&plat_dev->dev,
1377			"%s request_irq failed\n", __func__);
1378		goto err_request_irq;
1379	}
1380	data->irq_reg_sts = true;
1381
1382	pch_spi_set_master_mode(master);
1383
1384	if (use_dma) {
1385		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1386		pch_alloc_dma_buf(board_dat, data);
1387	}
1388
1389	ret = spi_register_master(master);
1390	if (ret != 0) {
1391		dev_err(&plat_dev->dev,
1392			"%s spi_register_master FAILED\n", __func__);
1393		goto err_spi_register_master;
1394	}
1395
 
 
 
 
 
1396	return 0;
1397
1398err_spi_register_master:
1399	pch_free_dma_buf(board_dat, data);
1400	free_irq(board_dat->pdev->irq, data);
1401err_request_irq:
1402	pch_spi_free_resources(board_dat, data);
1403err_spi_get_resources:
1404	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1405err_pci_iomap:
1406	spi_master_put(master);
1407
1408	return ret;
1409}
1410
1411static int pch_spi_pd_remove(struct platform_device *plat_dev)
1412{
1413	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1414	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1415	int count;
1416	unsigned long flags;
1417
1418	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1419		__func__, plat_dev->id, board_dat->pdev->irq);
1420
1421	if (use_dma)
1422		pch_free_dma_buf(board_dat, data);
1423
1424	/* check for any pending messages; no action is taken if the queue
1425	 * is still full; but at least we tried.  Unload anyway */
1426	count = 500;
1427	spin_lock_irqsave(&data->lock, flags);
1428	data->status = STATUS_EXITING;
1429	while ((list_empty(&data->queue) == 0) && --count) {
1430		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1431			__func__);
1432		spin_unlock_irqrestore(&data->lock, flags);
1433		msleep(PCH_SLEEP_TIME);
1434		spin_lock_irqsave(&data->lock, flags);
1435	}
1436	spin_unlock_irqrestore(&data->lock, flags);
1437
1438	pch_spi_free_resources(board_dat, data);
1439	/* disable interrupts & free IRQ */
1440	if (data->irq_reg_sts) {
1441		/* disable interrupts */
1442		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1443		data->irq_reg_sts = false;
1444		free_irq(board_dat->pdev->irq, data);
1445	}
1446
1447	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1448	spi_unregister_master(data->master);
 
 
1449
1450	return 0;
1451}
1452#ifdef CONFIG_PM
1453static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1454			      pm_message_t state)
1455{
1456	u8 count;
1457	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1458	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1459
1460	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1461
1462	if (!board_dat) {
1463		dev_err(&pd_dev->dev,
1464			"%s pci_get_drvdata returned NULL\n", __func__);
1465		return -EFAULT;
1466	}
1467
1468	/* check if the current message is processed:
1469	   Only after thats done the transfer will be suspended */
1470	count = 255;
1471	while ((--count) > 0) {
1472		if (!(data->bcurrent_msg_processing))
1473			break;
1474		msleep(PCH_SLEEP_TIME);
1475	}
1476
1477	/* Free IRQ */
1478	if (data->irq_reg_sts) {
1479		/* disable all interrupts */
1480		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1481		pch_spi_reset(data->master);
1482		free_irq(board_dat->pdev->irq, data);
1483
1484		data->irq_reg_sts = false;
1485		dev_dbg(&pd_dev->dev,
1486			"%s free_irq invoked successfully.\n", __func__);
1487	}
1488
1489	return 0;
1490}
1491
1492static int pch_spi_pd_resume(struct platform_device *pd_dev)
1493{
1494	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1495	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1496	int retval;
1497
1498	if (!board_dat) {
1499		dev_err(&pd_dev->dev,
1500			"%s pci_get_drvdata returned NULL\n", __func__);
1501		return -EFAULT;
1502	}
1503
1504	if (!data->irq_reg_sts) {
1505		/* register IRQ */
1506		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1507				     IRQF_SHARED, KBUILD_MODNAME, data);
1508		if (retval < 0) {
1509			dev_err(&pd_dev->dev,
1510				"%s request_irq failed\n", __func__);
1511			return retval;
1512		}
1513
1514		/* reset PCH SPI h/w */
1515		pch_spi_reset(data->master);
1516		pch_spi_set_master_mode(data->master);
1517		data->irq_reg_sts = true;
1518	}
1519	return 0;
1520}
1521#else
1522#define pch_spi_pd_suspend NULL
1523#define pch_spi_pd_resume NULL
1524#endif
1525
1526static struct platform_driver pch_spi_pd_driver = {
1527	.driver = {
1528		.name = "pch-spi",
 
1529	},
1530	.probe = pch_spi_pd_probe,
1531	.remove = pch_spi_pd_remove,
1532	.suspend = pch_spi_pd_suspend,
1533	.resume = pch_spi_pd_resume
1534};
1535
1536static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
 
1537{
1538	struct pch_spi_board_data *board_dat;
1539	struct platform_device *pd_dev = NULL;
1540	int retval;
1541	int i;
1542	struct pch_pd_dev_save *pd_dev_save;
1543
1544	pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1545	if (!pd_dev_save)
 
1546		return -ENOMEM;
 
1547
1548	board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1549	if (!board_dat) {
 
1550		retval = -ENOMEM;
1551		goto err_no_mem;
1552	}
1553
1554	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1555	if (retval) {
1556		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1557		goto pci_request_regions;
1558	}
1559
1560	board_dat->pdev = pdev;
1561	board_dat->num = id->driver_data;
1562	pd_dev_save->num = id->driver_data;
1563	pd_dev_save->board_dat = board_dat;
1564
1565	retval = pci_enable_device(pdev);
1566	if (retval) {
1567		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1568		goto pci_enable_device;
1569	}
1570
1571	for (i = 0; i < board_dat->num; i++) {
1572		pd_dev = platform_device_alloc("pch-spi", i);
1573		if (!pd_dev) {
1574			dev_err(&pdev->dev, "platform_device_alloc failed\n");
1575			retval = -ENOMEM;
1576			goto err_platform_device;
1577		}
1578		pd_dev_save->pd_save[i] = pd_dev;
1579		pd_dev->dev.parent = &pdev->dev;
1580
1581		retval = platform_device_add_data(pd_dev, board_dat,
1582						  sizeof(*board_dat));
1583		if (retval) {
1584			dev_err(&pdev->dev,
1585				"platform_device_add_data failed\n");
1586			platform_device_put(pd_dev);
1587			goto err_platform_device;
1588		}
1589
1590		retval = platform_device_add(pd_dev);
1591		if (retval) {
1592			dev_err(&pdev->dev, "platform_device_add failed\n");
1593			platform_device_put(pd_dev);
1594			goto err_platform_device;
1595		}
1596	}
1597
1598	pci_set_drvdata(pdev, pd_dev_save);
1599
1600	return 0;
1601
1602err_platform_device:
1603	while (--i >= 0)
1604		platform_device_unregister(pd_dev_save->pd_save[i]);
1605	pci_disable_device(pdev);
1606pci_enable_device:
1607	pci_release_regions(pdev);
1608pci_request_regions:
1609	kfree(board_dat);
1610err_no_mem:
1611	kfree(pd_dev_save);
1612
1613	return retval;
1614}
1615
1616static void pch_spi_remove(struct pci_dev *pdev)
1617{
1618	int i;
1619	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1620
1621	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1622
1623	for (i = 0; i < pd_dev_save->num; i++)
1624		platform_device_unregister(pd_dev_save->pd_save[i]);
1625
1626	pci_disable_device(pdev);
1627	pci_release_regions(pdev);
1628	kfree(pd_dev_save->board_dat);
1629	kfree(pd_dev_save);
1630}
1631
1632#ifdef CONFIG_PM
1633static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1634{
1635	int retval;
1636	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1637
1638	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1639
1640	pd_dev_save->board_dat->suspend_sts = true;
1641
1642	/* save config space */
1643	retval = pci_save_state(pdev);
1644	if (retval == 0) {
1645		pci_enable_wake(pdev, PCI_D3hot, 0);
1646		pci_disable_device(pdev);
1647		pci_set_power_state(pdev, PCI_D3hot);
1648	} else {
1649		dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1650	}
1651
1652	return retval;
1653}
1654
1655static int pch_spi_resume(struct pci_dev *pdev)
1656{
1657	int retval;
1658	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1659	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1660
1661	pci_set_power_state(pdev, PCI_D0);
1662	pci_restore_state(pdev);
1663
1664	retval = pci_enable_device(pdev);
1665	if (retval < 0) {
1666		dev_err(&pdev->dev,
1667			"%s pci_enable_device failed\n", __func__);
1668	} else {
1669		pci_enable_wake(pdev, PCI_D3hot, 0);
1670
1671		/* set suspend status to false */
1672		pd_dev_save->board_dat->suspend_sts = false;
1673	}
1674
1675	return retval;
1676}
1677#else
1678#define pch_spi_suspend NULL
1679#define pch_spi_resume NULL
1680
1681#endif
1682
1683static struct pci_driver pch_spi_pcidev_driver = {
1684	.name = "pch_spi",
1685	.id_table = pch_spi_pcidev_id,
1686	.probe = pch_spi_probe,
1687	.remove = pch_spi_remove,
1688	.suspend = pch_spi_suspend,
1689	.resume = pch_spi_resume,
1690};
1691
1692static int __init pch_spi_init(void)
1693{
1694	int ret;
1695	ret = platform_driver_register(&pch_spi_pd_driver);
1696	if (ret)
1697		return ret;
1698
1699	ret = pci_register_driver(&pch_spi_pcidev_driver);
1700	if (ret) {
1701		platform_driver_unregister(&pch_spi_pd_driver);
1702		return ret;
1703	}
1704
1705	return 0;
1706}
1707module_init(pch_spi_init);
1708
1709static void __exit pch_spi_exit(void)
1710{
1711	pci_unregister_driver(&pch_spi_pcidev_driver);
1712	platform_driver_unregister(&pch_spi_pd_driver);
1713}
1714module_exit(pch_spi_exit);
1715
1716module_param(use_dma, int, 0644);
1717MODULE_PARM_DESC(use_dma,
1718		 "to use DMA for data transfers pass 1 else 0; default 1");
1719
1720MODULE_LICENSE("GPL");
1721MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1722MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1723