Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Xilinx Axi Ethernet device driver
   3 *
   4 * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
   5 * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
   6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
   7 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
   8 * Copyright (c) 2010 - 2011 PetaLogix
   9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
  10 *
  11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
  12 * and Spartan6.
  13 *
  14 * TODO:
  15 *  - Add Axi Fifo support.
  16 *  - Factor out Axi DMA code into separate driver.
  17 *  - Test and fix basic multicast filtering.
  18 *  - Add support for extended multicast filtering.
  19 *  - Test basic VLAN support.
  20 *  - Add support for extended VLAN support.
  21 */
  22
  23#include <linux/delay.h>
  24#include <linux/etherdevice.h>
  25#include <linux/init.h>
  26#include <linux/module.h>
  27#include <linux/netdevice.h>
  28#include <linux/of_mdio.h>
 
  29#include <linux/of_platform.h>
 
  30#include <linux/of_address.h>
  31#include <linux/skbuff.h>
  32#include <linux/spinlock.h>
  33#include <linux/phy.h>
  34#include <linux/mii.h>
  35#include <linux/ethtool.h>
  36
  37#include "xilinx_axienet.h"
  38
  39/* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
  40#define TX_BD_NUM		64
  41#define RX_BD_NUM		128
  42
  43/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
  44#define DRIVER_NAME		"xaxienet"
  45#define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
  46#define DRIVER_VERSION		"1.00a"
  47
  48#define AXIENET_REGS_N		32
  49
  50/* Match table for of_platform binding */
  51static struct of_device_id axienet_of_match[] __devinitdata = {
  52	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
  53	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
  54	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
  55	{},
  56};
  57
  58MODULE_DEVICE_TABLE(of, axienet_of_match);
  59
  60/* Option table for setting up Axi Ethernet hardware options */
  61static struct axienet_option axienet_options[] = {
  62	/* Turn on jumbo packet support for both Rx and Tx */
  63	{
  64		.opt = XAE_OPTION_JUMBO,
  65		.reg = XAE_TC_OFFSET,
  66		.m_or = XAE_TC_JUM_MASK,
  67	}, {
  68		.opt = XAE_OPTION_JUMBO,
  69		.reg = XAE_RCW1_OFFSET,
  70		.m_or = XAE_RCW1_JUM_MASK,
  71	}, { /* Turn on VLAN packet support for both Rx and Tx */
  72		.opt = XAE_OPTION_VLAN,
  73		.reg = XAE_TC_OFFSET,
  74		.m_or = XAE_TC_VLAN_MASK,
  75	}, {
  76		.opt = XAE_OPTION_VLAN,
  77		.reg = XAE_RCW1_OFFSET,
  78		.m_or = XAE_RCW1_VLAN_MASK,
  79	}, { /* Turn on FCS stripping on receive packets */
  80		.opt = XAE_OPTION_FCS_STRIP,
  81		.reg = XAE_RCW1_OFFSET,
  82		.m_or = XAE_RCW1_FCS_MASK,
  83	}, { /* Turn on FCS insertion on transmit packets */
  84		.opt = XAE_OPTION_FCS_INSERT,
  85		.reg = XAE_TC_OFFSET,
  86		.m_or = XAE_TC_FCS_MASK,
  87	}, { /* Turn off length/type field checking on receive packets */
  88		.opt = XAE_OPTION_LENTYPE_ERR,
  89		.reg = XAE_RCW1_OFFSET,
  90		.m_or = XAE_RCW1_LT_DIS_MASK,
  91	}, { /* Turn on Rx flow control */
  92		.opt = XAE_OPTION_FLOW_CONTROL,
  93		.reg = XAE_FCC_OFFSET,
  94		.m_or = XAE_FCC_FCRX_MASK,
  95	}, { /* Turn on Tx flow control */
  96		.opt = XAE_OPTION_FLOW_CONTROL,
  97		.reg = XAE_FCC_OFFSET,
  98		.m_or = XAE_FCC_FCTX_MASK,
  99	}, { /* Turn on promiscuous frame filtering */
 100		.opt = XAE_OPTION_PROMISC,
 101		.reg = XAE_FMI_OFFSET,
 102		.m_or = XAE_FMI_PM_MASK,
 103	}, { /* Enable transmitter */
 104		.opt = XAE_OPTION_TXEN,
 105		.reg = XAE_TC_OFFSET,
 106		.m_or = XAE_TC_TX_MASK,
 107	}, { /* Enable receiver */
 108		.opt = XAE_OPTION_RXEN,
 109		.reg = XAE_RCW1_OFFSET,
 110		.m_or = XAE_RCW1_RX_MASK,
 111	},
 112	{}
 113};
 114
 115/**
 116 * axienet_dma_in32 - Memory mapped Axi DMA register read
 117 * @lp:		Pointer to axienet local structure
 118 * @reg:	Address offset from the base address of the Axi DMA core
 119 *
 120 * returns: The contents of the Axi DMA register
 121 *
 122 * This function returns the contents of the corresponding Axi DMA register.
 123 */
 124static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
 125{
 126	return in_be32(lp->dma_regs + reg);
 127}
 128
 129/**
 130 * axienet_dma_out32 - Memory mapped Axi DMA register write.
 131 * @lp:		Pointer to axienet local structure
 132 * @reg:	Address offset from the base address of the Axi DMA core
 133 * @value:	Value to be written into the Axi DMA register
 134 *
 135 * This function writes the desired value into the corresponding Axi DMA
 136 * register.
 137 */
 138static inline void axienet_dma_out32(struct axienet_local *lp,
 139				     off_t reg, u32 value)
 140{
 141	out_be32((lp->dma_regs + reg), value);
 142}
 143
 144/**
 145 * axienet_dma_bd_release - Release buffer descriptor rings
 146 * @ndev:	Pointer to the net_device structure
 147 *
 148 * This function is used to release the descriptors allocated in
 149 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
 150 * driver stop api is called.
 151 */
 152static void axienet_dma_bd_release(struct net_device *ndev)
 153{
 154	int i;
 155	struct axienet_local *lp = netdev_priv(ndev);
 156
 157	for (i = 0; i < RX_BD_NUM; i++) {
 158		dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
 159				 lp->max_frm_size, DMA_FROM_DEVICE);
 160		dev_kfree_skb((struct sk_buff *)
 161			      (lp->rx_bd_v[i].sw_id_offset));
 162	}
 163
 164	if (lp->rx_bd_v) {
 165		dma_free_coherent(ndev->dev.parent,
 166				  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
 167				  lp->rx_bd_v,
 168				  lp->rx_bd_p);
 169	}
 170	if (lp->tx_bd_v) {
 171		dma_free_coherent(ndev->dev.parent,
 172				  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
 173				  lp->tx_bd_v,
 174				  lp->tx_bd_p);
 175	}
 176}
 177
 178/**
 179 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
 180 * @ndev:	Pointer to the net_device structure
 181 *
 182 * returns: 0, on success
 183 *	    -ENOMEM, on failure
 184 *
 185 * This function is called to initialize the Rx and Tx DMA descriptor
 186 * rings. This initializes the descriptors with required default values
 187 * and is called when Axi Ethernet driver reset is called.
 188 */
 189static int axienet_dma_bd_init(struct net_device *ndev)
 190{
 191	u32 cr;
 192	int i;
 193	struct sk_buff *skb;
 194	struct axienet_local *lp = netdev_priv(ndev);
 195
 196	/* Reset the indexes which are used for accessing the BDs */
 197	lp->tx_bd_ci = 0;
 198	lp->tx_bd_tail = 0;
 199	lp->rx_bd_ci = 0;
 200
 201	/*
 202	 * Allocate the Tx and Rx buffer descriptors.
 203	 */
 204	lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
 205					 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
 206					 &lp->tx_bd_p,
 207					 GFP_KERNEL);
 208	if (!lp->tx_bd_v) {
 209		dev_err(&ndev->dev, "unable to allocate DMA Tx buffer "
 210			"descriptors");
 211		goto out;
 212	}
 213
 214	lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
 215					 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
 216					 &lp->rx_bd_p,
 217					 GFP_KERNEL);
 218	if (!lp->rx_bd_v) {
 219		dev_err(&ndev->dev, "unable to allocate DMA Rx buffer "
 220			"descriptors");
 221		goto out;
 222	}
 223
 224	memset(lp->tx_bd_v, 0, sizeof(*lp->tx_bd_v) * TX_BD_NUM);
 225	for (i = 0; i < TX_BD_NUM; i++) {
 226		lp->tx_bd_v[i].next = lp->tx_bd_p +
 227				      sizeof(*lp->tx_bd_v) *
 228				      ((i + 1) % TX_BD_NUM);
 229	}
 230
 231	memset(lp->rx_bd_v, 0, sizeof(*lp->rx_bd_v) * RX_BD_NUM);
 232	for (i = 0; i < RX_BD_NUM; i++) {
 233		lp->rx_bd_v[i].next = lp->rx_bd_p +
 234				      sizeof(*lp->rx_bd_v) *
 235				      ((i + 1) % RX_BD_NUM);
 236
 237		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
 238		if (!skb) {
 239			dev_err(&ndev->dev, "alloc_skb error %d\n", i);
 240			goto out;
 241		}
 242
 243		lp->rx_bd_v[i].sw_id_offset = (u32) skb;
 244		lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
 245						     skb->data,
 246						     lp->max_frm_size,
 247						     DMA_FROM_DEVICE);
 248		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
 249	}
 250
 251	/* Start updating the Rx channel control register */
 252	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 253	/* Update the interrupt coalesce count */
 254	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
 255	      ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
 256	/* Update the delay timer count */
 257	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
 258	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
 259	/* Enable coalesce, delay timer and error interrupts */
 260	cr |= XAXIDMA_IRQ_ALL_MASK;
 261	/* Write to the Rx channel control register */
 262	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 263
 264	/* Start updating the Tx channel control register */
 265	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 266	/* Update the interrupt coalesce count */
 267	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
 268	      ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
 269	/* Update the delay timer count */
 270	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
 271	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
 272	/* Enable coalesce, delay timer and error interrupts */
 273	cr |= XAXIDMA_IRQ_ALL_MASK;
 274	/* Write to the Tx channel control register */
 275	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 276
 277	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
 278	 * halted state. This will make the Rx side ready for reception.*/
 
 279	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
 280	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 281	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
 282			  cr | XAXIDMA_CR_RUNSTOP_MASK);
 283	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
 284			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
 285
 286	/* Write to the RS (Run-stop) bit in the Tx channel control register.
 287	 * Tx channel is now ready to run. But only after we write to the
 288	 * tail pointer register that the Tx channel will start transmitting */
 
 289	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
 290	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 291	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
 292			  cr | XAXIDMA_CR_RUNSTOP_MASK);
 293
 294	return 0;
 295out:
 296	axienet_dma_bd_release(ndev);
 297	return -ENOMEM;
 298}
 299
 300/**
 301 * axienet_set_mac_address - Write the MAC address
 302 * @ndev:	Pointer to the net_device structure
 303 * @address:	6 byte Address to be written as MAC address
 304 *
 305 * This function is called to initialize the MAC address of the Axi Ethernet
 306 * core. It writes to the UAW0 and UAW1 registers of the core.
 307 */
 308static void axienet_set_mac_address(struct net_device *ndev, void *address)
 
 309{
 310	struct axienet_local *lp = netdev_priv(ndev);
 311
 312	if (address)
 313		memcpy(ndev->dev_addr, address, ETH_ALEN);
 314	if (!is_valid_ether_addr(ndev->dev_addr))
 315		random_ether_addr(ndev->dev_addr);
 316
 317	/* Set up unicast MAC address filter set its mac address */
 318	axienet_iow(lp, XAE_UAW0_OFFSET,
 319		    (ndev->dev_addr[0]) |
 320		    (ndev->dev_addr[1] << 8) |
 321		    (ndev->dev_addr[2] << 16) |
 322		    (ndev->dev_addr[3] << 24));
 323	axienet_iow(lp, XAE_UAW1_OFFSET,
 324		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
 325		      ~XAE_UAW1_UNICASTADDR_MASK) |
 326		     (ndev->dev_addr[4] |
 327		     (ndev->dev_addr[5] << 8))));
 328}
 329
 330/**
 331 * netdev_set_mac_address - Write the MAC address (from outside the driver)
 332 * @ndev:	Pointer to the net_device structure
 333 * @p:		6 byte Address to be written as MAC address
 334 *
 335 * returns: 0 for all conditions. Presently, there is no failure case.
 336 *
 337 * This function is called to initialize the MAC address of the Axi Ethernet
 338 * core. It calls the core specific axienet_set_mac_address. This is the
 339 * function that goes into net_device_ops structure entry ndo_set_mac_address.
 340 */
 341static int netdev_set_mac_address(struct net_device *ndev, void *p)
 342{
 343	struct sockaddr *addr = p;
 344	axienet_set_mac_address(ndev, addr->sa_data);
 345	return 0;
 346}
 347
 348/**
 349 * axienet_set_multicast_list - Prepare the multicast table
 350 * @ndev:	Pointer to the net_device structure
 351 *
 352 * This function is called to initialize the multicast table during
 353 * initialization. The Axi Ethernet basic multicast support has a four-entry
 354 * multicast table which is initialized here. Additionally this function
 355 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
 356 * means whenever the multicast table entries need to be updated this
 357 * function gets called.
 358 */
 359static void axienet_set_multicast_list(struct net_device *ndev)
 360{
 361	int i;
 362	u32 reg, af0reg, af1reg;
 363	struct axienet_local *lp = netdev_priv(ndev);
 364
 365	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
 366	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
 367		/* We must make the kernel realize we had to move into
 368		 * promiscuous mode. If it was a promiscuous mode request
 369		 * the flag is already set. If not we set it. */
 
 370		ndev->flags |= IFF_PROMISC;
 371		reg = axienet_ior(lp, XAE_FMI_OFFSET);
 372		reg |= XAE_FMI_PM_MASK;
 373		axienet_iow(lp, XAE_FMI_OFFSET, reg);
 374		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
 375	} else if (!netdev_mc_empty(ndev)) {
 376		struct netdev_hw_addr *ha;
 377
 378		i = 0;
 379		netdev_for_each_mc_addr(ha, ndev) {
 380			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
 381				break;
 382
 383			af0reg = (ha->addr[0]);
 384			af0reg |= (ha->addr[1] << 8);
 385			af0reg |= (ha->addr[2] << 16);
 386			af0reg |= (ha->addr[3] << 24);
 387
 388			af1reg = (ha->addr[4]);
 389			af1reg |= (ha->addr[5] << 8);
 390
 391			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 392			reg |= i;
 393
 394			axienet_iow(lp, XAE_FMI_OFFSET, reg);
 395			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
 396			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
 397			i++;
 398		}
 399	} else {
 400		reg = axienet_ior(lp, XAE_FMI_OFFSET);
 401		reg &= ~XAE_FMI_PM_MASK;
 402
 403		axienet_iow(lp, XAE_FMI_OFFSET, reg);
 404
 405		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
 406			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 407			reg |= i;
 408
 409			axienet_iow(lp, XAE_FMI_OFFSET, reg);
 410			axienet_iow(lp, XAE_AF0_OFFSET, 0);
 411			axienet_iow(lp, XAE_AF1_OFFSET, 0);
 412		}
 413
 414		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
 415	}
 416}
 417
 418/**
 419 * axienet_setoptions - Set an Axi Ethernet option
 420 * @ndev:	Pointer to the net_device structure
 421 * @options:	Option to be enabled/disabled
 422 *
 423 * The Axi Ethernet core has multiple features which can be selectively turned
 424 * on or off. The typical options could be jumbo frame option, basic VLAN
 425 * option, promiscuous mode option etc. This function is used to set or clear
 426 * these options in the Axi Ethernet hardware. This is done through
 427 * axienet_option structure .
 428 */
 429static void axienet_setoptions(struct net_device *ndev, u32 options)
 430{
 431	int reg;
 432	struct axienet_local *lp = netdev_priv(ndev);
 433	struct axienet_option *tp = &axienet_options[0];
 434
 435	while (tp->opt) {
 436		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
 437		if (options & tp->opt)
 438			reg |= tp->m_or;
 439		axienet_iow(lp, tp->reg, reg);
 440		tp++;
 441	}
 442
 443	lp->options |= options;
 444}
 445
 446static void __axienet_device_reset(struct axienet_local *lp,
 447				   struct device *dev, off_t offset)
 448{
 449	u32 timeout;
 450	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
 451	 * process of Axi DMA takes a while to complete as all pending
 452	 * commands/transfers will be flushed or completed during this
 453	 * reset process. */
 
 454	axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
 455	timeout = DELAY_OF_ONE_MILLISEC;
 456	while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
 457		udelay(1);
 458		if (--timeout == 0) {
 459			dev_err(dev, "axienet_device_reset DMA "
 460				"reset timeout!\n");
 461			break;
 462		}
 463	}
 464}
 465
 466/**
 467 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
 468 * @ndev:	Pointer to the net_device structure
 469 *
 470 * This function is called to reset and initialize the Axi Ethernet core. This
 471 * is typically called during initialization. It does a reset of the Axi DMA
 472 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
 473 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
 474 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
 475 * core.
 476 */
 477static void axienet_device_reset(struct net_device *ndev)
 478{
 479	u32 axienet_status;
 480	struct axienet_local *lp = netdev_priv(ndev);
 481
 482	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
 483	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
 484
 485	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
 
 486	lp->options &= (~XAE_OPTION_JUMBO);
 487
 488	if ((ndev->mtu > XAE_MTU) &&
 489	    (ndev->mtu <= XAE_JUMBO_MTU) &&
 490	    (lp->jumbo_support)) {
 491		lp->max_frm_size = ndev->mtu + XAE_HDR_VLAN_SIZE +
 492				   XAE_TRL_SIZE;
 493		lp->options |= XAE_OPTION_JUMBO;
 
 494	}
 495
 496	if (axienet_dma_bd_init(ndev)) {
 497		dev_err(&ndev->dev, "axienet_device_reset descriptor "
 498			"allocation failed\n");
 499	}
 500
 501	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
 502	axienet_status &= ~XAE_RCW1_RX_MASK;
 503	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
 504
 505	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
 506	if (axienet_status & XAE_INT_RXRJECT_MASK)
 507		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
 508
 509	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
 510
 511	/* Sync default options with HW but leave receiver and
 512	 * transmitter disabled.*/
 
 513	axienet_setoptions(ndev, lp->options &
 514			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
 515	axienet_set_mac_address(ndev, NULL);
 516	axienet_set_multicast_list(ndev);
 517	axienet_setoptions(ndev, lp->options);
 518
 519	ndev->trans_start = jiffies;
 520}
 521
 522/**
 523 * axienet_adjust_link - Adjust the PHY link speed/duplex.
 524 * @ndev:	Pointer to the net_device structure
 525 *
 526 * This function is called to change the speed and duplex setting after
 527 * auto negotiation is done by the PHY. This is the function that gets
 528 * registered with the PHY interface through the "of_phy_connect" call.
 529 */
 530static void axienet_adjust_link(struct net_device *ndev)
 531{
 532	u32 emmc_reg;
 533	u32 link_state;
 534	u32 setspeed = 1;
 535	struct axienet_local *lp = netdev_priv(ndev);
 536	struct phy_device *phy = lp->phy_dev;
 537
 538	link_state = phy->speed | (phy->duplex << 1) | phy->link;
 539	if (lp->last_link != link_state) {
 540		if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
 541			if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
 542				setspeed = 0;
 543		} else {
 544			if ((phy->speed == SPEED_1000) &&
 545			    (lp->phy_type == XAE_PHY_TYPE_MII))
 546				setspeed = 0;
 547		}
 548
 549		if (setspeed == 1) {
 550			emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
 551			emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
 552
 553			switch (phy->speed) {
 554			case SPEED_1000:
 555				emmc_reg |= XAE_EMMC_LINKSPD_1000;
 556				break;
 557			case SPEED_100:
 558				emmc_reg |= XAE_EMMC_LINKSPD_100;
 559				break;
 560			case SPEED_10:
 561				emmc_reg |= XAE_EMMC_LINKSPD_10;
 562				break;
 563			default:
 564				dev_err(&ndev->dev, "Speed other than 10, 100 "
 565					"or 1Gbps is not supported\n");
 566				break;
 567			}
 568
 569			axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
 570			lp->last_link = link_state;
 571			phy_print_status(phy);
 572		} else {
 573			dev_err(&ndev->dev, "Error setting Axi Ethernet "
 574				"mac speed\n");
 575		}
 576	}
 577}
 578
 579/**
 580 * axienet_start_xmit_done - Invoked once a transmit is completed by the
 581 * Axi DMA Tx channel.
 582 * @ndev:	Pointer to the net_device structure
 583 *
 584 * This function is invoked from the Axi DMA Tx isr to notify the completion
 585 * of transmit operation. It clears fields in the corresponding Tx BDs and
 586 * unmaps the corresponding buffer so that CPU can regain ownership of the
 587 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
 588 * required.
 589 */
 590static void axienet_start_xmit_done(struct net_device *ndev)
 591{
 592	u32 size = 0;
 593	u32 packets = 0;
 594	struct axienet_local *lp = netdev_priv(ndev);
 595	struct axidma_bd *cur_p;
 596	unsigned int status = 0;
 597
 598	cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
 599	status = cur_p->status;
 600	while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
 601		dma_unmap_single(ndev->dev.parent, cur_p->phys,
 602				(cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
 603				DMA_TO_DEVICE);
 604		if (cur_p->app4)
 605			dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
 606		/*cur_p->phys = 0;*/
 607		cur_p->app0 = 0;
 608		cur_p->app1 = 0;
 609		cur_p->app2 = 0;
 610		cur_p->app4 = 0;
 611		cur_p->status = 0;
 612
 613		size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
 614		packets++;
 615
 616		lp->tx_bd_ci = ++lp->tx_bd_ci % TX_BD_NUM;
 
 617		cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
 618		status = cur_p->status;
 619	}
 620
 621	ndev->stats.tx_packets += packets;
 622	ndev->stats.tx_bytes += size;
 623	netif_wake_queue(ndev);
 624}
 625
 626/**
 627 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
 628 * @lp:		Pointer to the axienet_local structure
 629 * @num_frag:	The number of BDs to check for
 630 *
 631 * returns: 0, on success
 632 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 633 *
 634 * This function is invoked before BDs are allocated and transmission starts.
 635 * This function returns 0 if a BD or group of BDs can be allocated for
 636 * transmission. If the BD or any of the BDs are not free the function
 637 * returns a busy status. This is invoked from axienet_start_xmit.
 638 */
 639static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
 640					    int num_frag)
 641{
 642	struct axidma_bd *cur_p;
 643	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
 644	if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
 645		return NETDEV_TX_BUSY;
 646	return 0;
 647}
 648
 649/**
 650 * axienet_start_xmit - Starts the transmission.
 651 * @skb:	sk_buff pointer that contains data to be Txed.
 652 * @ndev:	Pointer to net_device structure.
 653 *
 654 * returns: NETDEV_TX_OK, on success
 655 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 656 *
 657 * This function is invoked from upper layers to initiate transmission. The
 658 * function uses the next available free BDs and populates their fields to
 659 * start the transmission. Additionally if checksum offloading is supported,
 660 * it populates AXI Stream Control fields with appropriate values.
 661 */
 662static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 663{
 664	u32 ii;
 665	u32 num_frag;
 666	u32 csum_start_off;
 667	u32 csum_index_off;
 668	skb_frag_t *frag;
 669	dma_addr_t tail_p;
 670	struct axienet_local *lp = netdev_priv(ndev);
 671	struct axidma_bd *cur_p;
 672
 673	num_frag = skb_shinfo(skb)->nr_frags;
 674	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
 675
 676	if (axienet_check_tx_bd_space(lp, num_frag)) {
 677		if (!netif_queue_stopped(ndev))
 678			netif_stop_queue(ndev);
 679		return NETDEV_TX_BUSY;
 680	}
 681
 682	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 683		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
 684			/* Tx Full Checksum Offload Enabled */
 685			cur_p->app0 |= 2;
 686		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
 687			csum_start_off = skb_transport_offset(skb);
 688			csum_index_off = csum_start_off + skb->csum_offset;
 689			/* Tx Partial Checksum Offload Enabled */
 690			cur_p->app0 |= 1;
 691			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
 692		}
 693	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
 694		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
 695	}
 696
 697	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
 698	cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
 699				     skb_headlen(skb), DMA_TO_DEVICE);
 700
 701	for (ii = 0; ii < num_frag; ii++) {
 702		lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM;
 
 703		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
 704		frag = &skb_shinfo(skb)->frags[ii];
 705		cur_p->phys = dma_map_single(ndev->dev.parent,
 706					     skb_frag_address(frag),
 707					     skb_frag_size(frag),
 708					     DMA_TO_DEVICE);
 709		cur_p->cntrl = skb_frag_size(frag);
 710	}
 711
 712	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
 713	cur_p->app4 = (unsigned long)skb;
 714
 715	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
 716	/* Start the transfer */
 717	axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
 718	lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM;
 
 719
 720	return NETDEV_TX_OK;
 721}
 722
 723/**
 724 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
 725 *		  BD processing.
 726 * @ndev:	Pointer to net_device structure.
 727 *
 728 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
 729 * does minimal processing and invokes "netif_rx" to complete further
 730 * processing.
 731 */
 732static void axienet_recv(struct net_device *ndev)
 733{
 734	u32 length;
 735	u32 csumstatus;
 736	u32 size = 0;
 737	u32 packets = 0;
 738	dma_addr_t tail_p;
 739	struct axienet_local *lp = netdev_priv(ndev);
 740	struct sk_buff *skb, *new_skb;
 741	struct axidma_bd *cur_p;
 742
 743	tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
 744	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
 745
 746	while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
 
 747		skb = (struct sk_buff *) (cur_p->sw_id_offset);
 748		length = cur_p->app4 & 0x0000FFFF;
 749
 750		dma_unmap_single(ndev->dev.parent, cur_p->phys,
 751				 lp->max_frm_size,
 752				 DMA_FROM_DEVICE);
 753
 754		skb_put(skb, length);
 755		skb->protocol = eth_type_trans(skb, ndev);
 756		/*skb_checksum_none_assert(skb);*/
 757		skb->ip_summed = CHECKSUM_NONE;
 758
 759		/* if we're doing Rx csum offload, set it up */
 760		if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
 761			csumstatus = (cur_p->app2 &
 762				      XAE_FULL_CSUM_STATUS_MASK) >> 3;
 763			if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
 764			    (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
 765				skb->ip_summed = CHECKSUM_UNNECESSARY;
 766			}
 767		} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
 768			   skb->protocol == __constant_htons(ETH_P_IP) &&
 769			   skb->len > 64) {
 770			skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
 771			skb->ip_summed = CHECKSUM_COMPLETE;
 772		}
 773
 774		netif_rx(skb);
 775
 776		size += length;
 777		packets++;
 778
 779		new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
 780		if (!new_skb) {
 781			dev_err(&ndev->dev, "no memory for new sk_buff\n");
 782			return;
 783		}
 784		cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
 785					     lp->max_frm_size,
 786					     DMA_FROM_DEVICE);
 787		cur_p->cntrl = lp->max_frm_size;
 788		cur_p->status = 0;
 789		cur_p->sw_id_offset = (u32) new_skb;
 790
 791		lp->rx_bd_ci = ++lp->rx_bd_ci % RX_BD_NUM;
 
 792		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
 793	}
 794
 795	ndev->stats.rx_packets += packets;
 796	ndev->stats.rx_bytes += size;
 797
 798	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
 
 799}
 800
 801/**
 802 * axienet_tx_irq - Tx Done Isr.
 803 * @irq:	irq number
 804 * @_ndev:	net_device pointer
 805 *
 806 * returns: IRQ_HANDLED for all cases.
 807 *
 808 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
 809 * to complete the BD processing.
 810 */
 811static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
 812{
 813	u32 cr;
 814	unsigned int status;
 815	struct net_device *ndev = _ndev;
 816	struct axienet_local *lp = netdev_priv(ndev);
 817
 818	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
 819	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
 
 820		axienet_start_xmit_done(lp->ndev);
 821		goto out;
 822	}
 823	if (!(status & XAXIDMA_IRQ_ALL_MASK))
 824		dev_err(&ndev->dev, "No interrupts asserted in Tx path");
 825	if (status & XAXIDMA_IRQ_ERROR_MASK) {
 826		dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
 827		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
 828			(lp->tx_bd_v[lp->tx_bd_ci]).phys);
 829
 830		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 831		/* Disable coalesce, delay timer and error interrupts */
 832		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 833		/* Write to the Tx channel control register */
 834		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 835
 836		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 837		/* Disable coalesce, delay timer and error interrupts */
 838		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 839		/* Write to the Rx channel control register */
 840		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 841
 842		tasklet_schedule(&lp->dma_err_tasklet);
 
 843	}
 844out:
 845	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
 846	return IRQ_HANDLED;
 847}
 848
 849/**
 850 * axienet_rx_irq - Rx Isr.
 851 * @irq:	irq number
 852 * @_ndev:	net_device pointer
 853 *
 854 * returns: IRQ_HANDLED for all cases.
 855 *
 856 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
 857 * processing.
 858 */
 859static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
 860{
 861	u32 cr;
 862	unsigned int status;
 863	struct net_device *ndev = _ndev;
 864	struct axienet_local *lp = netdev_priv(ndev);
 865
 866	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
 867	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
 
 868		axienet_recv(lp->ndev);
 869		goto out;
 870	}
 871	if (!(status & XAXIDMA_IRQ_ALL_MASK))
 872		dev_err(&ndev->dev, "No interrupts asserted in Rx path");
 873	if (status & XAXIDMA_IRQ_ERROR_MASK) {
 874		dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
 875		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
 876			(lp->rx_bd_v[lp->rx_bd_ci]).phys);
 877
 878		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 879		/* Disable coalesce, delay timer and error interrupts */
 880		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 881		/* Finally write to the Tx channel control register */
 882		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 883
 884		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 885		/* Disable coalesce, delay timer and error interrupts */
 886		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 887		/* write to the Rx channel control register */
 888		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 889
 890		tasklet_schedule(&lp->dma_err_tasklet);
 
 891	}
 892out:
 893	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
 894	return IRQ_HANDLED;
 895}
 896
 
 
 897/**
 898 * axienet_open - Driver open routine.
 899 * @ndev:	Pointer to net_device structure
 900 *
 901 * returns: 0, on success.
 902 *	    -ENODEV, if PHY cannot be connected to
 903 *	    non-zero error value on failure
 904 *
 905 * This is the driver open routine. It calls phy_start to start the PHY device.
 906 * It also allocates interrupt service routines, enables the interrupt lines
 907 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
 908 * descriptors are initialized.
 909 */
 910static int axienet_open(struct net_device *ndev)
 911{
 912	int ret, mdio_mcreg;
 913	struct axienet_local *lp = netdev_priv(ndev);
 
 914
 915	dev_dbg(&ndev->dev, "axienet_open()\n");
 916
 917	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
 918	ret = axienet_mdio_wait_until_ready(lp);
 919	if (ret < 0)
 920		return ret;
 921	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
 922	 * When we do an Axi Ethernet reset, it resets the complete core
 923	 * including the MDIO. If MDIO is not disabled when the reset
 924	 * process is started, MDIO will be broken afterwards. */
 
 925	axienet_iow(lp, XAE_MDIO_MC_OFFSET,
 926		    (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
 927	axienet_device_reset(ndev);
 928	/* Enable the MDIO */
 929	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
 930	ret = axienet_mdio_wait_until_ready(lp);
 931	if (ret < 0)
 932		return ret;
 933
 934	if (lp->phy_node) {
 935		lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
 936					     axienet_adjust_link, 0,
 937					     PHY_INTERFACE_MODE_GMII);
 938		if (!lp->phy_dev) {
 939			dev_err(lp->dev, "of_phy_connect() failed\n");
 940			return -ENODEV;
 
 
 941		}
 942		phy_start(lp->phy_dev);
 
 
 
 
 943	}
 944
 
 
 
 
 945	/* Enable interrupts for Axi DMA Tx */
 946	ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
 947	if (ret)
 948		goto err_tx_irq;
 949	/* Enable interrupts for Axi DMA Rx */
 950	ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
 951	if (ret)
 952		goto err_rx_irq;
 953	/* Enable tasklets for Axi DMA error handling */
 954	tasklet_enable(&lp->dma_err_tasklet);
 955	return 0;
 956
 957err_rx_irq:
 958	free_irq(lp->tx_irq, ndev);
 959err_tx_irq:
 960	if (lp->phy_dev)
 961		phy_disconnect(lp->phy_dev);
 962	lp->phy_dev = NULL;
 963	dev_err(lp->dev, "request_irq() failed\n");
 964	return ret;
 965}
 966
 967/**
 968 * axienet_stop - Driver stop routine.
 969 * @ndev:	Pointer to net_device structure
 970 *
 971 * returns: 0, on success.
 972 *
 973 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
 974 * device. It also removes the interrupt handlers and disables the interrupts.
 975 * The Axi DMA Tx/Rx BDs are released.
 976 */
 977static int axienet_stop(struct net_device *ndev)
 978{
 979	u32 cr;
 980	struct axienet_local *lp = netdev_priv(ndev);
 981
 982	dev_dbg(&ndev->dev, "axienet_close()\n");
 983
 984	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 985	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
 986			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
 987	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 988	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
 989			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
 990	axienet_setoptions(ndev, lp->options &
 991			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
 992
 993	tasklet_disable(&lp->dma_err_tasklet);
 994
 995	free_irq(lp->tx_irq, ndev);
 996	free_irq(lp->rx_irq, ndev);
 997
 998	if (lp->phy_dev)
 999		phy_disconnect(lp->phy_dev);
1000	lp->phy_dev = NULL;
1001
1002	axienet_dma_bd_release(ndev);
1003	return 0;
1004}
1005
1006/**
1007 * axienet_change_mtu - Driver change mtu routine.
1008 * @ndev:	Pointer to net_device structure
1009 * @new_mtu:	New mtu value to be applied
1010 *
1011 * returns: Always returns 0 (success).
1012 *
1013 * This is the change mtu driver routine. It checks if the Axi Ethernet
1014 * hardware supports jumbo frames before changing the mtu. This can be
1015 * called only when the device is not up.
1016 */
1017static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1018{
1019	struct axienet_local *lp = netdev_priv(ndev);
1020
1021	if (netif_running(ndev))
1022		return -EBUSY;
1023	if (lp->jumbo_support) {
1024		if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1025			return -EINVAL;
1026		ndev->mtu = new_mtu;
1027	} else {
1028		if ((new_mtu > XAE_MTU) || (new_mtu < 64))
1029			return -EINVAL;
1030		ndev->mtu = new_mtu;
1031	}
1032
1033	return 0;
1034}
1035
1036#ifdef CONFIG_NET_POLL_CONTROLLER
1037/**
1038 * axienet_poll_controller - Axi Ethernet poll mechanism.
1039 * @ndev:	Pointer to net_device structure
1040 *
1041 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1042 * to polling the ISRs and are enabled back after the polling is done.
1043 */
1044static void axienet_poll_controller(struct net_device *ndev)
1045{
1046	struct axienet_local *lp = netdev_priv(ndev);
1047	disable_irq(lp->tx_irq);
1048	disable_irq(lp->rx_irq);
1049	axienet_rx_irq(lp->tx_irq, ndev);
1050	axienet_tx_irq(lp->rx_irq, ndev);
1051	enable_irq(lp->tx_irq);
1052	enable_irq(lp->rx_irq);
1053}
1054#endif
1055
1056static const struct net_device_ops axienet_netdev_ops = {
1057	.ndo_open = axienet_open,
1058	.ndo_stop = axienet_stop,
1059	.ndo_start_xmit = axienet_start_xmit,
1060	.ndo_change_mtu	= axienet_change_mtu,
1061	.ndo_set_mac_address = netdev_set_mac_address,
1062	.ndo_validate_addr = eth_validate_addr,
1063	.ndo_set_rx_mode = axienet_set_multicast_list,
1064#ifdef CONFIG_NET_POLL_CONTROLLER
1065	.ndo_poll_controller = axienet_poll_controller,
1066#endif
1067};
1068
1069/**
1070 * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY.
1071 * @ndev:	Pointer to net_device structure
1072 * @ecmd:	Pointer to ethtool_cmd structure
1073 *
1074 * This implements ethtool command for getting PHY settings. If PHY could
1075 * not be found, the function returns -ENODEV. This function calls the
1076 * relevant PHY ethtool API to get the PHY settings.
1077 * Issue "ethtool ethX" under linux prompt to execute this function.
1078 */
1079static int axienet_ethtools_get_settings(struct net_device *ndev,
1080					 struct ethtool_cmd *ecmd)
1081{
1082	struct axienet_local *lp = netdev_priv(ndev);
1083	struct phy_device *phydev = lp->phy_dev;
1084	if (!phydev)
1085		return -ENODEV;
1086	return phy_ethtool_gset(phydev, ecmd);
1087}
1088
1089/**
1090 * axienet_ethtools_set_settings - Set PHY settings as passed in the argument.
1091 * @ndev:	Pointer to net_device structure
1092 * @ecmd:	Pointer to ethtool_cmd structure
1093 *
1094 * This implements ethtool command for setting various PHY settings. If PHY
1095 * could not be found, the function returns -ENODEV. This function calls the
1096 * relevant PHY ethtool API to set the PHY.
1097 * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
1098 * function.
1099 */
1100static int axienet_ethtools_set_settings(struct net_device *ndev,
1101					 struct ethtool_cmd *ecmd)
1102{
1103	struct axienet_local *lp = netdev_priv(ndev);
1104	struct phy_device *phydev = lp->phy_dev;
1105	if (!phydev)
1106		return -ENODEV;
1107	return phy_ethtool_sset(phydev, ecmd);
1108}
1109
1110/**
1111 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1112 * @ndev:	Pointer to net_device structure
1113 * @ed:		Pointer to ethtool_drvinfo structure
1114 *
1115 * This implements ethtool command for getting the driver information.
1116 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1117 */
1118static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1119					 struct ethtool_drvinfo *ed)
1120{
1121	memset(ed, 0, sizeof(struct ethtool_drvinfo));
1122	strcpy(ed->driver, DRIVER_NAME);
1123	strcpy(ed->version, DRIVER_VERSION);
1124	ed->regdump_len = sizeof(u32) * AXIENET_REGS_N;
1125}
1126
1127/**
1128 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1129 *				   AxiEthernet core.
1130 * @ndev:	Pointer to net_device structure
1131 *
1132 * This implements ethtool command for getting the total register length
1133 * information.
 
 
1134 */
1135static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1136{
1137	return sizeof(u32) * AXIENET_REGS_N;
1138}
1139
1140/**
1141 * axienet_ethtools_get_regs - Dump the contents of all registers present
1142 *			       in AxiEthernet core.
1143 * @ndev:	Pointer to net_device structure
1144 * @regs:	Pointer to ethtool_regs structure
1145 * @ret:	Void pointer used to return the contents of the registers.
1146 *
1147 * This implements ethtool command for getting the Axi Ethernet register dump.
1148 * Issue "ethtool -d ethX" to execute this function.
1149 */
1150static void axienet_ethtools_get_regs(struct net_device *ndev,
1151				      struct ethtool_regs *regs, void *ret)
1152{
1153	u32 *data = (u32 *) ret;
1154	size_t len = sizeof(u32) * AXIENET_REGS_N;
1155	struct axienet_local *lp = netdev_priv(ndev);
1156
1157	regs->version = 0;
1158	regs->len = len;
1159
1160	memset(data, 0, len);
1161	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1162	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1163	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1164	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1165	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1166	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1167	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1168	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1169	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1170	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1171	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1172	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1173	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1174	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1175	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1176	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1177	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1178	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1179	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1180	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1181	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1182	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1183	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1184	data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1185	data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1186	data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1187	data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1188	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1189	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1190	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1191	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1192	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1193}
1194
1195/**
1196 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1197 *				     Tx and Rx paths.
1198 * @ndev:	Pointer to net_device structure
1199 * @epauseparm:	Pointer to ethtool_pauseparam structure.
1200 *
1201 * This implements ethtool command for getting axi ethernet pause frame
1202 * setting. Issue "ethtool -a ethX" to execute this function.
1203 */
1204static void
1205axienet_ethtools_get_pauseparam(struct net_device *ndev,
1206				struct ethtool_pauseparam *epauseparm)
1207{
1208	u32 regval;
1209	struct axienet_local *lp = netdev_priv(ndev);
1210	epauseparm->autoneg  = 0;
1211	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1212	epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1213	epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1214}
1215
1216/**
1217 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1218 *				     settings.
1219 * @ndev:	Pointer to net_device structure
1220 * @epauseparam:Pointer to ethtool_pauseparam structure
1221 *
1222 * This implements ethtool command for enabling flow control on Rx and Tx
1223 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1224 * function.
 
 
1225 */
1226static int
1227axienet_ethtools_set_pauseparam(struct net_device *ndev,
1228				struct ethtool_pauseparam *epauseparm)
1229{
1230	u32 regval = 0;
1231	struct axienet_local *lp = netdev_priv(ndev);
1232
1233	if (netif_running(ndev)) {
1234		printk(KERN_ERR	"%s: Please stop netif before applying "
1235		       "configruation\n", ndev->name);
1236		return -EFAULT;
1237	}
1238
1239	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1240	if (epauseparm->tx_pause)
1241		regval |= XAE_FCC_FCTX_MASK;
1242	else
1243		regval &= ~XAE_FCC_FCTX_MASK;
1244	if (epauseparm->rx_pause)
1245		regval |= XAE_FCC_FCRX_MASK;
1246	else
1247		regval &= ~XAE_FCC_FCRX_MASK;
1248	axienet_iow(lp, XAE_FCC_OFFSET, regval);
1249
1250	return 0;
1251}
1252
1253/**
1254 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1255 * @ndev:	Pointer to net_device structure
1256 * @ecoalesce:	Pointer to ethtool_coalesce structure
1257 *
1258 * This implements ethtool command for getting the DMA interrupt coalescing
1259 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1260 * execute this function.
 
 
1261 */
1262static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1263					 struct ethtool_coalesce *ecoalesce)
1264{
1265	u32 regval = 0;
1266	struct axienet_local *lp = netdev_priv(ndev);
1267	regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1268	ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1269					     >> XAXIDMA_COALESCE_SHIFT;
1270	regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1271	ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1272					     >> XAXIDMA_COALESCE_SHIFT;
1273	return 0;
1274}
1275
1276/**
1277 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1278 * @ndev:	Pointer to net_device structure
1279 * @ecoalesce:	Pointer to ethtool_coalesce structure
1280 *
1281 * This implements ethtool command for setting the DMA interrupt coalescing
1282 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1283 * prompt to execute this function.
 
 
1284 */
1285static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1286					 struct ethtool_coalesce *ecoalesce)
1287{
1288	struct axienet_local *lp = netdev_priv(ndev);
1289
1290	if (netif_running(ndev)) {
1291		printk(KERN_ERR	"%s: Please stop netif before applying "
1292		       "configruation\n", ndev->name);
1293		return -EFAULT;
1294	}
1295
1296	if ((ecoalesce->rx_coalesce_usecs) ||
1297	    (ecoalesce->rx_coalesce_usecs_irq) ||
1298	    (ecoalesce->rx_max_coalesced_frames_irq) ||
1299	    (ecoalesce->tx_coalesce_usecs) ||
1300	    (ecoalesce->tx_coalesce_usecs_irq) ||
1301	    (ecoalesce->tx_max_coalesced_frames_irq) ||
1302	    (ecoalesce->stats_block_coalesce_usecs) ||
1303	    (ecoalesce->use_adaptive_rx_coalesce) ||
1304	    (ecoalesce->use_adaptive_tx_coalesce) ||
1305	    (ecoalesce->pkt_rate_low) ||
1306	    (ecoalesce->rx_coalesce_usecs_low) ||
1307	    (ecoalesce->rx_max_coalesced_frames_low) ||
1308	    (ecoalesce->tx_coalesce_usecs_low) ||
1309	    (ecoalesce->tx_max_coalesced_frames_low) ||
1310	    (ecoalesce->pkt_rate_high) ||
1311	    (ecoalesce->rx_coalesce_usecs_high) ||
1312	    (ecoalesce->rx_max_coalesced_frames_high) ||
1313	    (ecoalesce->tx_coalesce_usecs_high) ||
1314	    (ecoalesce->tx_max_coalesced_frames_high) ||
1315	    (ecoalesce->rate_sample_interval))
1316		return -EOPNOTSUPP;
1317	if (ecoalesce->rx_max_coalesced_frames)
1318		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1319	if (ecoalesce->tx_max_coalesced_frames)
1320		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1321
1322	return 0;
1323}
1324
1325static struct ethtool_ops axienet_ethtool_ops = {
1326	.get_settings   = axienet_ethtools_get_settings,
1327	.set_settings   = axienet_ethtools_set_settings,
1328	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1329	.get_regs_len   = axienet_ethtools_get_regs_len,
1330	.get_regs       = axienet_ethtools_get_regs,
1331	.get_link       = ethtool_op_get_link,
1332	.get_pauseparam = axienet_ethtools_get_pauseparam,
1333	.set_pauseparam = axienet_ethtools_set_pauseparam,
1334	.get_coalesce   = axienet_ethtools_get_coalesce,
1335	.set_coalesce   = axienet_ethtools_set_coalesce,
 
 
1336};
1337
1338/**
1339 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1340 * @data:	Data passed
1341 *
1342 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1343 * Tx/Rx BDs.
1344 */
1345static void axienet_dma_err_handler(unsigned long data)
1346{
1347	u32 axienet_status;
1348	u32 cr, i;
1349	int mdio_mcreg;
1350	struct axienet_local *lp = (struct axienet_local *) data;
1351	struct net_device *ndev = lp->ndev;
1352	struct axidma_bd *cur_p;
1353
1354	axienet_setoptions(ndev, lp->options &
1355			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1356	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1357	axienet_mdio_wait_until_ready(lp);
1358	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
1359	 * When we do an Axi Ethernet reset, it resets the complete core
1360	 * including the MDIO. So if MDIO is not disabled when the reset
1361	 * process is started, MDIO will be broken afterwards. */
 
1362	axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1363		    ~XAE_MDIO_MC_MDIOEN_MASK));
1364
1365	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1366	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1367
1368	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1369	axienet_mdio_wait_until_ready(lp);
1370
1371	for (i = 0; i < TX_BD_NUM; i++) {
1372		cur_p = &lp->tx_bd_v[i];
1373		if (cur_p->phys)
1374			dma_unmap_single(ndev->dev.parent, cur_p->phys,
1375					 (cur_p->cntrl &
1376					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1377					 DMA_TO_DEVICE);
1378		if (cur_p->app4)
1379			dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1380		cur_p->phys = 0;
1381		cur_p->cntrl = 0;
1382		cur_p->status = 0;
1383		cur_p->app0 = 0;
1384		cur_p->app1 = 0;
1385		cur_p->app2 = 0;
1386		cur_p->app3 = 0;
1387		cur_p->app4 = 0;
1388		cur_p->sw_id_offset = 0;
1389	}
1390
1391	for (i = 0; i < RX_BD_NUM; i++) {
1392		cur_p = &lp->rx_bd_v[i];
1393		cur_p->status = 0;
1394		cur_p->app0 = 0;
1395		cur_p->app1 = 0;
1396		cur_p->app2 = 0;
1397		cur_p->app3 = 0;
1398		cur_p->app4 = 0;
1399	}
1400
1401	lp->tx_bd_ci = 0;
1402	lp->tx_bd_tail = 0;
1403	lp->rx_bd_ci = 0;
1404
1405	/* Start updating the Rx channel control register */
1406	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1407	/* Update the interrupt coalesce count */
1408	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1409	      (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1410	/* Update the delay timer count */
1411	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1412	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1413	/* Enable coalesce, delay timer and error interrupts */
1414	cr |= XAXIDMA_IRQ_ALL_MASK;
1415	/* Finally write to the Rx channel control register */
1416	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1417
1418	/* Start updating the Tx channel control register */
1419	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1420	/* Update the interrupt coalesce count */
1421	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1422	      (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1423	/* Update the delay timer count */
1424	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1425	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1426	/* Enable coalesce, delay timer and error interrupts */
1427	cr |= XAXIDMA_IRQ_ALL_MASK;
1428	/* Finally write to the Tx channel control register */
1429	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1430
1431	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
1432	 * halted state. This will make the Rx side ready for reception.*/
 
1433	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1434	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1435	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1436			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1437	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1438			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1439
1440	/* Write to the RS (Run-stop) bit in the Tx channel control register.
1441	 * Tx channel is now ready to run. But only after we write to the
1442	 * tail pointer register that the Tx channel will start transmitting */
 
1443	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1444	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1445	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1446			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1447
1448	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1449	axienet_status &= ~XAE_RCW1_RX_MASK;
1450	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1451
1452	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1453	if (axienet_status & XAE_INT_RXRJECT_MASK)
1454		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1455	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1456
1457	/* Sync default options with HW but leave receiver and
1458	 * transmitter disabled.*/
 
1459	axienet_setoptions(ndev, lp->options &
1460			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1461	axienet_set_mac_address(ndev, NULL);
1462	axienet_set_multicast_list(ndev);
1463	axienet_setoptions(ndev, lp->options);
1464}
1465
1466/**
1467 * axienet_of_probe - Axi Ethernet probe function.
1468 * @op:		Pointer to platform device structure.
1469 * @match:	Pointer to device id structure
1470 *
1471 * returns: 0, on success
1472 *	    Non-zero error value on failure.
1473 *
1474 * This is the probe routine for Axi Ethernet driver. This is called before
1475 * any other driver routines are invoked. It allocates and sets up the Ethernet
1476 * device. Parses through device tree and populates fields of
1477 * axienet_local. It registers the Ethernet device.
1478 */
1479static int __devinit axienet_of_probe(struct platform_device *op)
1480{
1481	__be32 *p;
1482	int size, ret = 0;
1483	struct device_node *np;
1484	struct axienet_local *lp;
1485	struct net_device *ndev;
1486	const void *addr;
 
 
1487
1488	ndev = alloc_etherdev(sizeof(*lp));
1489	if (!ndev)
1490		return -ENOMEM;
1491
1492	ether_setup(ndev);
1493	dev_set_drvdata(&op->dev, ndev);
1494
1495	SET_NETDEV_DEV(ndev, &op->dev);
1496	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1497	ndev->features = NETIF_F_SG | NETIF_F_FRAGLIST;
1498	ndev->netdev_ops = &axienet_netdev_ops;
1499	ndev->ethtool_ops = &axienet_ethtool_ops;
1500
 
 
 
 
1501	lp = netdev_priv(ndev);
1502	lp->ndev = ndev;
1503	lp->dev = &op->dev;
1504	lp->options = XAE_OPTION_DEFAULTS;
1505	/* Map device registers */
1506	lp->regs = of_iomap(op->dev.of_node, 0);
1507	if (!lp->regs) {
1508		dev_err(&op->dev, "could not map Axi Ethernet regs.\n");
1509		goto nodev;
 
 
1510	}
 
1511	/* Setup checksum offload, but default to off if not specified */
1512	lp->features = 0;
1513
1514	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,txcsum", NULL);
1515	if (p) {
1516		switch (be32_to_cpup(p)) {
1517		case 1:
1518			lp->csum_offload_on_tx_path =
1519				XAE_FEATURE_PARTIAL_TX_CSUM;
1520			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1521			/* Can checksum TCP/UDP over IPv4. */
1522			ndev->features |= NETIF_F_IP_CSUM;
1523			break;
1524		case 2:
1525			lp->csum_offload_on_tx_path =
1526				XAE_FEATURE_FULL_TX_CSUM;
1527			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1528			/* Can checksum TCP/UDP over IPv4. */
1529			ndev->features |= NETIF_F_IP_CSUM;
1530			break;
1531		default:
1532			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1533		}
1534	}
1535	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxcsum", NULL);
1536	if (p) {
1537		switch (be32_to_cpup(p)) {
1538		case 1:
1539			lp->csum_offload_on_rx_path =
1540				XAE_FEATURE_PARTIAL_RX_CSUM;
1541			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1542			break;
1543		case 2:
1544			lp->csum_offload_on_rx_path =
1545				XAE_FEATURE_FULL_RX_CSUM;
1546			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1547			break;
1548		default:
1549			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1550		}
1551	}
1552	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1553	 * a larger Rx/Tx Memory. Typically, the size must be more than or
1554	 * equal to 16384 bytes, so that we can enable jumbo option and start
1555	 * supporting jumbo frames. Here we check for memory allocated for
1556	 * Rx/Tx in the hardware from the device-tree and accordingly set
1557	 * flags. */
1558	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxmem", NULL);
1559	if (p) {
1560		if ((be32_to_cpup(p)) >= 0x4000)
1561			lp->jumbo_support = 1;
1562	}
1563	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,temac-type",
1564				       NULL);
1565	if (p)
1566		lp->temac_type = be32_to_cpup(p);
1567	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,phy-type", NULL);
1568	if (p)
1569		lp->phy_type = be32_to_cpup(p);
1570
1571	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1572	np = of_parse_phandle(op->dev.of_node, "axistream-connected", 0);
1573	if (!np) {
1574		dev_err(&op->dev, "could not find DMA node\n");
1575		goto err_iounmap;
 
1576	}
1577	lp->dma_regs = of_iomap(np, 0);
1578	if (lp->dma_regs) {
1579		dev_dbg(&op->dev, "MEM base: %p\n", lp->dma_regs);
1580	} else {
1581		dev_err(&op->dev, "unable to map DMA registers\n");
1582		of_node_put(np);
 
 
 
 
1583	}
1584	lp->rx_irq = irq_of_parse_and_map(np, 1);
1585	lp->tx_irq = irq_of_parse_and_map(np, 0);
1586	of_node_put(np);
1587	if ((lp->rx_irq == NO_IRQ) || (lp->tx_irq == NO_IRQ)) {
1588		dev_err(&op->dev, "could not determine irqs\n");
1589		ret = -ENOMEM;
1590		goto err_iounmap_2;
1591	}
1592
1593	/* Retrieve the MAC address */
1594	addr = of_get_property(op->dev.of_node, "local-mac-address", &size);
1595	if ((!addr) || (size != 6)) {
1596		dev_err(&op->dev, "could not find MAC address\n");
1597		ret = -ENODEV;
1598		goto err_iounmap_2;
1599	}
1600	axienet_set_mac_address(ndev, (void *) addr);
1601
1602	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1603	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1604
1605	lp->phy_node = of_parse_phandle(op->dev.of_node, "phy-handle", 0);
1606	ret = axienet_mdio_setup(lp, op->dev.of_node);
1607	if (ret)
1608		dev_warn(&op->dev, "error registering MDIO bus\n");
 
 
1609
1610	ret = register_netdev(lp->ndev);
1611	if (ret) {
1612		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1613		goto err_iounmap_2;
1614	}
1615
1616	tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
1617		     (unsigned long) lp);
1618	tasklet_disable(&lp->dma_err_tasklet);
1619
1620	return 0;
1621
1622err_iounmap_2:
1623	if (lp->dma_regs)
1624		iounmap(lp->dma_regs);
1625err_iounmap:
1626	iounmap(lp->regs);
1627nodev:
1628	free_netdev(ndev);
1629	ndev = NULL;
1630	return ret;
1631}
1632
1633static int __devexit axienet_of_remove(struct platform_device *op)
1634{
1635	struct net_device *ndev = dev_get_drvdata(&op->dev);
1636	struct axienet_local *lp = netdev_priv(ndev);
1637
1638	axienet_mdio_teardown(lp);
1639	unregister_netdev(ndev);
1640
1641	if (lp->phy_node)
1642		of_node_put(lp->phy_node);
1643	lp->phy_node = NULL;
1644
1645	dev_set_drvdata(&op->dev, NULL);
1646
1647	iounmap(lp->regs);
1648	if (lp->dma_regs)
1649		iounmap(lp->dma_regs);
1650	free_netdev(ndev);
1651
1652	return 0;
1653}
1654
1655static struct platform_driver axienet_of_driver = {
1656	.probe = axienet_of_probe,
1657	.remove = __devexit_p(axienet_of_remove),
1658	.driver = {
1659		 .owner = THIS_MODULE,
1660		 .name = "xilinx_axienet",
1661		 .of_match_table = axienet_of_match,
1662	},
1663};
1664
1665module_platform_driver(axienet_of_driver);
1666
1667MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1668MODULE_AUTHOR("Xilinx");
1669MODULE_LICENSE("GPL");
v4.10.11
   1/*
   2 * Xilinx Axi Ethernet device driver
   3 *
   4 * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
   5 * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
   6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
   7 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
   8 * Copyright (c) 2010 - 2011 PetaLogix
   9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
  10 *
  11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
  12 * and Spartan6.
  13 *
  14 * TODO:
  15 *  - Add Axi Fifo support.
  16 *  - Factor out Axi DMA code into separate driver.
  17 *  - Test and fix basic multicast filtering.
  18 *  - Add support for extended multicast filtering.
  19 *  - Test basic VLAN support.
  20 *  - Add support for extended VLAN support.
  21 */
  22
  23#include <linux/delay.h>
  24#include <linux/etherdevice.h>
 
  25#include <linux/module.h>
  26#include <linux/netdevice.h>
  27#include <linux/of_mdio.h>
  28#include <linux/of_net.h>
  29#include <linux/of_platform.h>
  30#include <linux/of_irq.h>
  31#include <linux/of_address.h>
  32#include <linux/skbuff.h>
  33#include <linux/spinlock.h>
  34#include <linux/phy.h>
  35#include <linux/mii.h>
  36#include <linux/ethtool.h>
  37
  38#include "xilinx_axienet.h"
  39
  40/* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
  41#define TX_BD_NUM		64
  42#define RX_BD_NUM		128
  43
  44/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
  45#define DRIVER_NAME		"xaxienet"
  46#define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
  47#define DRIVER_VERSION		"1.00a"
  48
  49#define AXIENET_REGS_N		32
  50
  51/* Match table for of_platform binding */
  52static const struct of_device_id axienet_of_match[] = {
  53	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
  54	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
  55	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
  56	{},
  57};
  58
  59MODULE_DEVICE_TABLE(of, axienet_of_match);
  60
  61/* Option table for setting up Axi Ethernet hardware options */
  62static struct axienet_option axienet_options[] = {
  63	/* Turn on jumbo packet support for both Rx and Tx */
  64	{
  65		.opt = XAE_OPTION_JUMBO,
  66		.reg = XAE_TC_OFFSET,
  67		.m_or = XAE_TC_JUM_MASK,
  68	}, {
  69		.opt = XAE_OPTION_JUMBO,
  70		.reg = XAE_RCW1_OFFSET,
  71		.m_or = XAE_RCW1_JUM_MASK,
  72	}, { /* Turn on VLAN packet support for both Rx and Tx */
  73		.opt = XAE_OPTION_VLAN,
  74		.reg = XAE_TC_OFFSET,
  75		.m_or = XAE_TC_VLAN_MASK,
  76	}, {
  77		.opt = XAE_OPTION_VLAN,
  78		.reg = XAE_RCW1_OFFSET,
  79		.m_or = XAE_RCW1_VLAN_MASK,
  80	}, { /* Turn on FCS stripping on receive packets */
  81		.opt = XAE_OPTION_FCS_STRIP,
  82		.reg = XAE_RCW1_OFFSET,
  83		.m_or = XAE_RCW1_FCS_MASK,
  84	}, { /* Turn on FCS insertion on transmit packets */
  85		.opt = XAE_OPTION_FCS_INSERT,
  86		.reg = XAE_TC_OFFSET,
  87		.m_or = XAE_TC_FCS_MASK,
  88	}, { /* Turn off length/type field checking on receive packets */
  89		.opt = XAE_OPTION_LENTYPE_ERR,
  90		.reg = XAE_RCW1_OFFSET,
  91		.m_or = XAE_RCW1_LT_DIS_MASK,
  92	}, { /* Turn on Rx flow control */
  93		.opt = XAE_OPTION_FLOW_CONTROL,
  94		.reg = XAE_FCC_OFFSET,
  95		.m_or = XAE_FCC_FCRX_MASK,
  96	}, { /* Turn on Tx flow control */
  97		.opt = XAE_OPTION_FLOW_CONTROL,
  98		.reg = XAE_FCC_OFFSET,
  99		.m_or = XAE_FCC_FCTX_MASK,
 100	}, { /* Turn on promiscuous frame filtering */
 101		.opt = XAE_OPTION_PROMISC,
 102		.reg = XAE_FMI_OFFSET,
 103		.m_or = XAE_FMI_PM_MASK,
 104	}, { /* Enable transmitter */
 105		.opt = XAE_OPTION_TXEN,
 106		.reg = XAE_TC_OFFSET,
 107		.m_or = XAE_TC_TX_MASK,
 108	}, { /* Enable receiver */
 109		.opt = XAE_OPTION_RXEN,
 110		.reg = XAE_RCW1_OFFSET,
 111		.m_or = XAE_RCW1_RX_MASK,
 112	},
 113	{}
 114};
 115
 116/**
 117 * axienet_dma_in32 - Memory mapped Axi DMA register read
 118 * @lp:		Pointer to axienet local structure
 119 * @reg:	Address offset from the base address of the Axi DMA core
 120 *
 121 * Return: The contents of the Axi DMA register
 122 *
 123 * This function returns the contents of the corresponding Axi DMA register.
 124 */
 125static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
 126{
 127	return in_be32(lp->dma_regs + reg);
 128}
 129
 130/**
 131 * axienet_dma_out32 - Memory mapped Axi DMA register write.
 132 * @lp:		Pointer to axienet local structure
 133 * @reg:	Address offset from the base address of the Axi DMA core
 134 * @value:	Value to be written into the Axi DMA register
 135 *
 136 * This function writes the desired value into the corresponding Axi DMA
 137 * register.
 138 */
 139static inline void axienet_dma_out32(struct axienet_local *lp,
 140				     off_t reg, u32 value)
 141{
 142	out_be32((lp->dma_regs + reg), value);
 143}
 144
 145/**
 146 * axienet_dma_bd_release - Release buffer descriptor rings
 147 * @ndev:	Pointer to the net_device structure
 148 *
 149 * This function is used to release the descriptors allocated in
 150 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
 151 * driver stop api is called.
 152 */
 153static void axienet_dma_bd_release(struct net_device *ndev)
 154{
 155	int i;
 156	struct axienet_local *lp = netdev_priv(ndev);
 157
 158	for (i = 0; i < RX_BD_NUM; i++) {
 159		dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
 160				 lp->max_frm_size, DMA_FROM_DEVICE);
 161		dev_kfree_skb((struct sk_buff *)
 162			      (lp->rx_bd_v[i].sw_id_offset));
 163	}
 164
 165	if (lp->rx_bd_v) {
 166		dma_free_coherent(ndev->dev.parent,
 167				  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
 168				  lp->rx_bd_v,
 169				  lp->rx_bd_p);
 170	}
 171	if (lp->tx_bd_v) {
 172		dma_free_coherent(ndev->dev.parent,
 173				  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
 174				  lp->tx_bd_v,
 175				  lp->tx_bd_p);
 176	}
 177}
 178
 179/**
 180 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
 181 * @ndev:	Pointer to the net_device structure
 182 *
 183 * Return: 0, on success -ENOMEM, on failure
 
 184 *
 185 * This function is called to initialize the Rx and Tx DMA descriptor
 186 * rings. This initializes the descriptors with required default values
 187 * and is called when Axi Ethernet driver reset is called.
 188 */
 189static int axienet_dma_bd_init(struct net_device *ndev)
 190{
 191	u32 cr;
 192	int i;
 193	struct sk_buff *skb;
 194	struct axienet_local *lp = netdev_priv(ndev);
 195
 196	/* Reset the indexes which are used for accessing the BDs */
 197	lp->tx_bd_ci = 0;
 198	lp->tx_bd_tail = 0;
 199	lp->rx_bd_ci = 0;
 200
 201	/* Allocate the Tx and Rx buffer descriptors. */
 202	lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
 203					  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
 204					  &lp->tx_bd_p, GFP_KERNEL);
 205	if (!lp->tx_bd_v)
 
 
 
 
 
 206		goto out;
 
 207
 208	lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
 209					  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
 210					  &lp->rx_bd_p, GFP_KERNEL);
 211	if (!lp->rx_bd_v)
 
 
 
 212		goto out;
 
 213
 
 214	for (i = 0; i < TX_BD_NUM; i++) {
 215		lp->tx_bd_v[i].next = lp->tx_bd_p +
 216				      sizeof(*lp->tx_bd_v) *
 217				      ((i + 1) % TX_BD_NUM);
 218	}
 219
 
 220	for (i = 0; i < RX_BD_NUM; i++) {
 221		lp->rx_bd_v[i].next = lp->rx_bd_p +
 222				      sizeof(*lp->rx_bd_v) *
 223				      ((i + 1) % RX_BD_NUM);
 224
 225		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
 226		if (!skb)
 
 227			goto out;
 
 228
 229		lp->rx_bd_v[i].sw_id_offset = (u32) skb;
 230		lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
 231						     skb->data,
 232						     lp->max_frm_size,
 233						     DMA_FROM_DEVICE);
 234		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
 235	}
 236
 237	/* Start updating the Rx channel control register */
 238	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 239	/* Update the interrupt coalesce count */
 240	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
 241	      ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
 242	/* Update the delay timer count */
 243	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
 244	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
 245	/* Enable coalesce, delay timer and error interrupts */
 246	cr |= XAXIDMA_IRQ_ALL_MASK;
 247	/* Write to the Rx channel control register */
 248	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 249
 250	/* Start updating the Tx channel control register */
 251	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 252	/* Update the interrupt coalesce count */
 253	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
 254	      ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
 255	/* Update the delay timer count */
 256	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
 257	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
 258	/* Enable coalesce, delay timer and error interrupts */
 259	cr |= XAXIDMA_IRQ_ALL_MASK;
 260	/* Write to the Tx channel control register */
 261	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 262
 263	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
 264	 * halted state. This will make the Rx side ready for reception.
 265	 */
 266	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
 267	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 268	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
 269			  cr | XAXIDMA_CR_RUNSTOP_MASK);
 270	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
 271			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
 272
 273	/* Write to the RS (Run-stop) bit in the Tx channel control register.
 274	 * Tx channel is now ready to run. But only after we write to the
 275	 * tail pointer register that the Tx channel will start transmitting.
 276	 */
 277	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
 278	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 279	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
 280			  cr | XAXIDMA_CR_RUNSTOP_MASK);
 281
 282	return 0;
 283out:
 284	axienet_dma_bd_release(ndev);
 285	return -ENOMEM;
 286}
 287
 288/**
 289 * axienet_set_mac_address - Write the MAC address
 290 * @ndev:	Pointer to the net_device structure
 291 * @address:	6 byte Address to be written as MAC address
 292 *
 293 * This function is called to initialize the MAC address of the Axi Ethernet
 294 * core. It writes to the UAW0 and UAW1 registers of the core.
 295 */
 296static void axienet_set_mac_address(struct net_device *ndev,
 297				    const void *address)
 298{
 299	struct axienet_local *lp = netdev_priv(ndev);
 300
 301	if (address)
 302		memcpy(ndev->dev_addr, address, ETH_ALEN);
 303	if (!is_valid_ether_addr(ndev->dev_addr))
 304		eth_random_addr(ndev->dev_addr);
 305
 306	/* Set up unicast MAC address filter set its mac address */
 307	axienet_iow(lp, XAE_UAW0_OFFSET,
 308		    (ndev->dev_addr[0]) |
 309		    (ndev->dev_addr[1] << 8) |
 310		    (ndev->dev_addr[2] << 16) |
 311		    (ndev->dev_addr[3] << 24));
 312	axienet_iow(lp, XAE_UAW1_OFFSET,
 313		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
 314		      ~XAE_UAW1_UNICASTADDR_MASK) |
 315		     (ndev->dev_addr[4] |
 316		     (ndev->dev_addr[5] << 8))));
 317}
 318
 319/**
 320 * netdev_set_mac_address - Write the MAC address (from outside the driver)
 321 * @ndev:	Pointer to the net_device structure
 322 * @p:		6 byte Address to be written as MAC address
 323 *
 324 * Return: 0 for all conditions. Presently, there is no failure case.
 325 *
 326 * This function is called to initialize the MAC address of the Axi Ethernet
 327 * core. It calls the core specific axienet_set_mac_address. This is the
 328 * function that goes into net_device_ops structure entry ndo_set_mac_address.
 329 */
 330static int netdev_set_mac_address(struct net_device *ndev, void *p)
 331{
 332	struct sockaddr *addr = p;
 333	axienet_set_mac_address(ndev, addr->sa_data);
 334	return 0;
 335}
 336
 337/**
 338 * axienet_set_multicast_list - Prepare the multicast table
 339 * @ndev:	Pointer to the net_device structure
 340 *
 341 * This function is called to initialize the multicast table during
 342 * initialization. The Axi Ethernet basic multicast support has a four-entry
 343 * multicast table which is initialized here. Additionally this function
 344 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
 345 * means whenever the multicast table entries need to be updated this
 346 * function gets called.
 347 */
 348static void axienet_set_multicast_list(struct net_device *ndev)
 349{
 350	int i;
 351	u32 reg, af0reg, af1reg;
 352	struct axienet_local *lp = netdev_priv(ndev);
 353
 354	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
 355	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
 356		/* We must make the kernel realize we had to move into
 357		 * promiscuous mode. If it was a promiscuous mode request
 358		 * the flag is already set. If not we set it.
 359		 */
 360		ndev->flags |= IFF_PROMISC;
 361		reg = axienet_ior(lp, XAE_FMI_OFFSET);
 362		reg |= XAE_FMI_PM_MASK;
 363		axienet_iow(lp, XAE_FMI_OFFSET, reg);
 364		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
 365	} else if (!netdev_mc_empty(ndev)) {
 366		struct netdev_hw_addr *ha;
 367
 368		i = 0;
 369		netdev_for_each_mc_addr(ha, ndev) {
 370			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
 371				break;
 372
 373			af0reg = (ha->addr[0]);
 374			af0reg |= (ha->addr[1] << 8);
 375			af0reg |= (ha->addr[2] << 16);
 376			af0reg |= (ha->addr[3] << 24);
 377
 378			af1reg = (ha->addr[4]);
 379			af1reg |= (ha->addr[5] << 8);
 380
 381			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 382			reg |= i;
 383
 384			axienet_iow(lp, XAE_FMI_OFFSET, reg);
 385			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
 386			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
 387			i++;
 388		}
 389	} else {
 390		reg = axienet_ior(lp, XAE_FMI_OFFSET);
 391		reg &= ~XAE_FMI_PM_MASK;
 392
 393		axienet_iow(lp, XAE_FMI_OFFSET, reg);
 394
 395		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
 396			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 397			reg |= i;
 398
 399			axienet_iow(lp, XAE_FMI_OFFSET, reg);
 400			axienet_iow(lp, XAE_AF0_OFFSET, 0);
 401			axienet_iow(lp, XAE_AF1_OFFSET, 0);
 402		}
 403
 404		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
 405	}
 406}
 407
 408/**
 409 * axienet_setoptions - Set an Axi Ethernet option
 410 * @ndev:	Pointer to the net_device structure
 411 * @options:	Option to be enabled/disabled
 412 *
 413 * The Axi Ethernet core has multiple features which can be selectively turned
 414 * on or off. The typical options could be jumbo frame option, basic VLAN
 415 * option, promiscuous mode option etc. This function is used to set or clear
 416 * these options in the Axi Ethernet hardware. This is done through
 417 * axienet_option structure .
 418 */
 419static void axienet_setoptions(struct net_device *ndev, u32 options)
 420{
 421	int reg;
 422	struct axienet_local *lp = netdev_priv(ndev);
 423	struct axienet_option *tp = &axienet_options[0];
 424
 425	while (tp->opt) {
 426		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
 427		if (options & tp->opt)
 428			reg |= tp->m_or;
 429		axienet_iow(lp, tp->reg, reg);
 430		tp++;
 431	}
 432
 433	lp->options |= options;
 434}
 435
 436static void __axienet_device_reset(struct axienet_local *lp, off_t offset)
 
 437{
 438	u32 timeout;
 439	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
 440	 * process of Axi DMA takes a while to complete as all pending
 441	 * commands/transfers will be flushed or completed during this
 442	 * reset process.
 443	 */
 444	axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
 445	timeout = DELAY_OF_ONE_MILLISEC;
 446	while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
 447		udelay(1);
 448		if (--timeout == 0) {
 449			netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
 450				   __func__);
 451			break;
 452		}
 453	}
 454}
 455
 456/**
 457 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
 458 * @ndev:	Pointer to the net_device structure
 459 *
 460 * This function is called to reset and initialize the Axi Ethernet core. This
 461 * is typically called during initialization. It does a reset of the Axi DMA
 462 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
 463 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
 464 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
 465 * core.
 466 */
 467static void axienet_device_reset(struct net_device *ndev)
 468{
 469	u32 axienet_status;
 470	struct axienet_local *lp = netdev_priv(ndev);
 471
 472	__axienet_device_reset(lp, XAXIDMA_TX_CR_OFFSET);
 473	__axienet_device_reset(lp, XAXIDMA_RX_CR_OFFSET);
 474
 475	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
 476	lp->options |= XAE_OPTION_VLAN;
 477	lp->options &= (~XAE_OPTION_JUMBO);
 478
 479	if ((ndev->mtu > XAE_MTU) &&
 480		(ndev->mtu <= XAE_JUMBO_MTU)) {
 481		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
 482					XAE_TRL_SIZE;
 483
 484		if (lp->max_frm_size <= lp->rxmem)
 485			lp->options |= XAE_OPTION_JUMBO;
 486	}
 487
 488	if (axienet_dma_bd_init(ndev)) {
 489		netdev_err(ndev, "%s: descriptor allocation failed\n",
 490			   __func__);
 491	}
 492
 493	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
 494	axienet_status &= ~XAE_RCW1_RX_MASK;
 495	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
 496
 497	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
 498	if (axienet_status & XAE_INT_RXRJECT_MASK)
 499		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
 500
 501	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
 502
 503	/* Sync default options with HW but leave receiver and
 504	 * transmitter disabled.
 505	 */
 506	axienet_setoptions(ndev, lp->options &
 507			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
 508	axienet_set_mac_address(ndev, NULL);
 509	axienet_set_multicast_list(ndev);
 510	axienet_setoptions(ndev, lp->options);
 511
 512	netif_trans_update(ndev);
 513}
 514
 515/**
 516 * axienet_adjust_link - Adjust the PHY link speed/duplex.
 517 * @ndev:	Pointer to the net_device structure
 518 *
 519 * This function is called to change the speed and duplex setting after
 520 * auto negotiation is done by the PHY. This is the function that gets
 521 * registered with the PHY interface through the "of_phy_connect" call.
 522 */
 523static void axienet_adjust_link(struct net_device *ndev)
 524{
 525	u32 emmc_reg;
 526	u32 link_state;
 527	u32 setspeed = 1;
 528	struct axienet_local *lp = netdev_priv(ndev);
 529	struct phy_device *phy = ndev->phydev;
 530
 531	link_state = phy->speed | (phy->duplex << 1) | phy->link;
 532	if (lp->last_link != link_state) {
 533		if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
 534			if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
 535				setspeed = 0;
 536		} else {
 537			if ((phy->speed == SPEED_1000) &&
 538			    (lp->phy_type == XAE_PHY_TYPE_MII))
 539				setspeed = 0;
 540		}
 541
 542		if (setspeed == 1) {
 543			emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
 544			emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
 545
 546			switch (phy->speed) {
 547			case SPEED_1000:
 548				emmc_reg |= XAE_EMMC_LINKSPD_1000;
 549				break;
 550			case SPEED_100:
 551				emmc_reg |= XAE_EMMC_LINKSPD_100;
 552				break;
 553			case SPEED_10:
 554				emmc_reg |= XAE_EMMC_LINKSPD_10;
 555				break;
 556			default:
 557				dev_err(&ndev->dev, "Speed other than 10, 100 "
 558					"or 1Gbps is not supported\n");
 559				break;
 560			}
 561
 562			axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
 563			lp->last_link = link_state;
 564			phy_print_status(phy);
 565		} else {
 566			netdev_err(ndev,
 567				   "Error setting Axi Ethernet mac speed\n");
 568		}
 569	}
 570}
 571
 572/**
 573 * axienet_start_xmit_done - Invoked once a transmit is completed by the
 574 * Axi DMA Tx channel.
 575 * @ndev:	Pointer to the net_device structure
 576 *
 577 * This function is invoked from the Axi DMA Tx isr to notify the completion
 578 * of transmit operation. It clears fields in the corresponding Tx BDs and
 579 * unmaps the corresponding buffer so that CPU can regain ownership of the
 580 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
 581 * required.
 582 */
 583static void axienet_start_xmit_done(struct net_device *ndev)
 584{
 585	u32 size = 0;
 586	u32 packets = 0;
 587	struct axienet_local *lp = netdev_priv(ndev);
 588	struct axidma_bd *cur_p;
 589	unsigned int status = 0;
 590
 591	cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
 592	status = cur_p->status;
 593	while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
 594		dma_unmap_single(ndev->dev.parent, cur_p->phys,
 595				(cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
 596				DMA_TO_DEVICE);
 597		if (cur_p->app4)
 598			dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
 599		/*cur_p->phys = 0;*/
 600		cur_p->app0 = 0;
 601		cur_p->app1 = 0;
 602		cur_p->app2 = 0;
 603		cur_p->app4 = 0;
 604		cur_p->status = 0;
 605
 606		size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
 607		packets++;
 608
 609		++lp->tx_bd_ci;
 610		lp->tx_bd_ci %= TX_BD_NUM;
 611		cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
 612		status = cur_p->status;
 613	}
 614
 615	ndev->stats.tx_packets += packets;
 616	ndev->stats.tx_bytes += size;
 617	netif_wake_queue(ndev);
 618}
 619
 620/**
 621 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
 622 * @lp:		Pointer to the axienet_local structure
 623 * @num_frag:	The number of BDs to check for
 624 *
 625 * Return: 0, on success
 626 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 627 *
 628 * This function is invoked before BDs are allocated and transmission starts.
 629 * This function returns 0 if a BD or group of BDs can be allocated for
 630 * transmission. If the BD or any of the BDs are not free the function
 631 * returns a busy status. This is invoked from axienet_start_xmit.
 632 */
 633static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
 634					    int num_frag)
 635{
 636	struct axidma_bd *cur_p;
 637	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
 638	if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
 639		return NETDEV_TX_BUSY;
 640	return 0;
 641}
 642
 643/**
 644 * axienet_start_xmit - Starts the transmission.
 645 * @skb:	sk_buff pointer that contains data to be Txed.
 646 * @ndev:	Pointer to net_device structure.
 647 *
 648 * Return: NETDEV_TX_OK, on success
 649 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 650 *
 651 * This function is invoked from upper layers to initiate transmission. The
 652 * function uses the next available free BDs and populates their fields to
 653 * start the transmission. Additionally if checksum offloading is supported,
 654 * it populates AXI Stream Control fields with appropriate values.
 655 */
 656static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 657{
 658	u32 ii;
 659	u32 num_frag;
 660	u32 csum_start_off;
 661	u32 csum_index_off;
 662	skb_frag_t *frag;
 663	dma_addr_t tail_p;
 664	struct axienet_local *lp = netdev_priv(ndev);
 665	struct axidma_bd *cur_p;
 666
 667	num_frag = skb_shinfo(skb)->nr_frags;
 668	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
 669
 670	if (axienet_check_tx_bd_space(lp, num_frag)) {
 671		if (!netif_queue_stopped(ndev))
 672			netif_stop_queue(ndev);
 673		return NETDEV_TX_BUSY;
 674	}
 675
 676	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 677		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
 678			/* Tx Full Checksum Offload Enabled */
 679			cur_p->app0 |= 2;
 680		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
 681			csum_start_off = skb_transport_offset(skb);
 682			csum_index_off = csum_start_off + skb->csum_offset;
 683			/* Tx Partial Checksum Offload Enabled */
 684			cur_p->app0 |= 1;
 685			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
 686		}
 687	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
 688		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
 689	}
 690
 691	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
 692	cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
 693				     skb_headlen(skb), DMA_TO_DEVICE);
 694
 695	for (ii = 0; ii < num_frag; ii++) {
 696		++lp->tx_bd_tail;
 697		lp->tx_bd_tail %= TX_BD_NUM;
 698		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
 699		frag = &skb_shinfo(skb)->frags[ii];
 700		cur_p->phys = dma_map_single(ndev->dev.parent,
 701					     skb_frag_address(frag),
 702					     skb_frag_size(frag),
 703					     DMA_TO_DEVICE);
 704		cur_p->cntrl = skb_frag_size(frag);
 705	}
 706
 707	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
 708	cur_p->app4 = (unsigned long)skb;
 709
 710	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
 711	/* Start the transfer */
 712	axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
 713	++lp->tx_bd_tail;
 714	lp->tx_bd_tail %= TX_BD_NUM;
 715
 716	return NETDEV_TX_OK;
 717}
 718
 719/**
 720 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
 721 *		  BD processing.
 722 * @ndev:	Pointer to net_device structure.
 723 *
 724 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
 725 * does minimal processing and invokes "netif_rx" to complete further
 726 * processing.
 727 */
 728static void axienet_recv(struct net_device *ndev)
 729{
 730	u32 length;
 731	u32 csumstatus;
 732	u32 size = 0;
 733	u32 packets = 0;
 734	dma_addr_t tail_p = 0;
 735	struct axienet_local *lp = netdev_priv(ndev);
 736	struct sk_buff *skb, *new_skb;
 737	struct axidma_bd *cur_p;
 738
 
 739	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
 740
 741	while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
 742		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
 743		skb = (struct sk_buff *) (cur_p->sw_id_offset);
 744		length = cur_p->app4 & 0x0000FFFF;
 745
 746		dma_unmap_single(ndev->dev.parent, cur_p->phys,
 747				 lp->max_frm_size,
 748				 DMA_FROM_DEVICE);
 749
 750		skb_put(skb, length);
 751		skb->protocol = eth_type_trans(skb, ndev);
 752		/*skb_checksum_none_assert(skb);*/
 753		skb->ip_summed = CHECKSUM_NONE;
 754
 755		/* if we're doing Rx csum offload, set it up */
 756		if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
 757			csumstatus = (cur_p->app2 &
 758				      XAE_FULL_CSUM_STATUS_MASK) >> 3;
 759			if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
 760			    (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
 761				skb->ip_summed = CHECKSUM_UNNECESSARY;
 762			}
 763		} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
 764			   skb->protocol == htons(ETH_P_IP) &&
 765			   skb->len > 64) {
 766			skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
 767			skb->ip_summed = CHECKSUM_COMPLETE;
 768		}
 769
 770		netif_rx(skb);
 771
 772		size += length;
 773		packets++;
 774
 775		new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
 776		if (!new_skb)
 
 777			return;
 778
 779		cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
 780					     lp->max_frm_size,
 781					     DMA_FROM_DEVICE);
 782		cur_p->cntrl = lp->max_frm_size;
 783		cur_p->status = 0;
 784		cur_p->sw_id_offset = (u32) new_skb;
 785
 786		++lp->rx_bd_ci;
 787		lp->rx_bd_ci %= RX_BD_NUM;
 788		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
 789	}
 790
 791	ndev->stats.rx_packets += packets;
 792	ndev->stats.rx_bytes += size;
 793
 794	if (tail_p)
 795		axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
 796}
 797
 798/**
 799 * axienet_tx_irq - Tx Done Isr.
 800 * @irq:	irq number
 801 * @_ndev:	net_device pointer
 802 *
 803 * Return: IRQ_HANDLED for all cases.
 804 *
 805 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
 806 * to complete the BD processing.
 807 */
 808static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
 809{
 810	u32 cr;
 811	unsigned int status;
 812	struct net_device *ndev = _ndev;
 813	struct axienet_local *lp = netdev_priv(ndev);
 814
 815	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
 816	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
 817		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
 818		axienet_start_xmit_done(lp->ndev);
 819		goto out;
 820	}
 821	if (!(status & XAXIDMA_IRQ_ALL_MASK))
 822		dev_err(&ndev->dev, "No interrupts asserted in Tx path\n");
 823	if (status & XAXIDMA_IRQ_ERROR_MASK) {
 824		dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
 825		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
 826			(lp->tx_bd_v[lp->tx_bd_ci]).phys);
 827
 828		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 829		/* Disable coalesce, delay timer and error interrupts */
 830		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 831		/* Write to the Tx channel control register */
 832		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 833
 834		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 835		/* Disable coalesce, delay timer and error interrupts */
 836		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 837		/* Write to the Rx channel control register */
 838		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 839
 840		tasklet_schedule(&lp->dma_err_tasklet);
 841		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
 842	}
 843out:
 
 844	return IRQ_HANDLED;
 845}
 846
 847/**
 848 * axienet_rx_irq - Rx Isr.
 849 * @irq:	irq number
 850 * @_ndev:	net_device pointer
 851 *
 852 * Return: IRQ_HANDLED for all cases.
 853 *
 854 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
 855 * processing.
 856 */
 857static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
 858{
 859	u32 cr;
 860	unsigned int status;
 861	struct net_device *ndev = _ndev;
 862	struct axienet_local *lp = netdev_priv(ndev);
 863
 864	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
 865	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
 866		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
 867		axienet_recv(lp->ndev);
 868		goto out;
 869	}
 870	if (!(status & XAXIDMA_IRQ_ALL_MASK))
 871		dev_err(&ndev->dev, "No interrupts asserted in Rx path\n");
 872	if (status & XAXIDMA_IRQ_ERROR_MASK) {
 873		dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
 874		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
 875			(lp->rx_bd_v[lp->rx_bd_ci]).phys);
 876
 877		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 878		/* Disable coalesce, delay timer and error interrupts */
 879		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 880		/* Finally write to the Tx channel control register */
 881		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 882
 883		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 884		/* Disable coalesce, delay timer and error interrupts */
 885		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 886		/* write to the Rx channel control register */
 887		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 888
 889		tasklet_schedule(&lp->dma_err_tasklet);
 890		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
 891	}
 892out:
 
 893	return IRQ_HANDLED;
 894}
 895
 896static void axienet_dma_err_handler(unsigned long data);
 897
 898/**
 899 * axienet_open - Driver open routine.
 900 * @ndev:	Pointer to net_device structure
 901 *
 902 * Return: 0, on success.
 903 *	    -ENODEV, if PHY cannot be connected to
 904 *	    non-zero error value on failure
 905 *
 906 * This is the driver open routine. It calls phy_start to start the PHY device.
 907 * It also allocates interrupt service routines, enables the interrupt lines
 908 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
 909 * descriptors are initialized.
 910 */
 911static int axienet_open(struct net_device *ndev)
 912{
 913	int ret, mdio_mcreg;
 914	struct axienet_local *lp = netdev_priv(ndev);
 915	struct phy_device *phydev = NULL;
 916
 917	dev_dbg(&ndev->dev, "axienet_open()\n");
 918
 919	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
 920	ret = axienet_mdio_wait_until_ready(lp);
 921	if (ret < 0)
 922		return ret;
 923	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
 924	 * When we do an Axi Ethernet reset, it resets the complete core
 925	 * including the MDIO. If MDIO is not disabled when the reset
 926	 * process is started, MDIO will be broken afterwards.
 927	 */
 928	axienet_iow(lp, XAE_MDIO_MC_OFFSET,
 929		    (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
 930	axienet_device_reset(ndev);
 931	/* Enable the MDIO */
 932	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
 933	ret = axienet_mdio_wait_until_ready(lp);
 934	if (ret < 0)
 935		return ret;
 936
 937	if (lp->phy_node) {
 938		if (lp->phy_type == XAE_PHY_TYPE_GMII) {
 939			phydev = of_phy_connect(lp->ndev, lp->phy_node,
 940						axienet_adjust_link, 0,
 941						PHY_INTERFACE_MODE_GMII);
 942		} else if (lp->phy_type == XAE_PHY_TYPE_RGMII_2_0) {
 943			phydev = of_phy_connect(lp->ndev, lp->phy_node,
 944						axienet_adjust_link, 0,
 945						PHY_INTERFACE_MODE_RGMII_ID);
 946		}
 947
 948		if (!phydev)
 949			dev_err(lp->dev, "of_phy_connect() failed\n");
 950		else
 951			phy_start(phydev);
 952	}
 953
 954	/* Enable tasklets for Axi DMA error handling */
 955	tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
 956		     (unsigned long) lp);
 957
 958	/* Enable interrupts for Axi DMA Tx */
 959	ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
 960	if (ret)
 961		goto err_tx_irq;
 962	/* Enable interrupts for Axi DMA Rx */
 963	ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
 964	if (ret)
 965		goto err_rx_irq;
 966
 
 967	return 0;
 968
 969err_rx_irq:
 970	free_irq(lp->tx_irq, ndev);
 971err_tx_irq:
 972	if (phydev)
 973		phy_disconnect(phydev);
 974	tasklet_kill(&lp->dma_err_tasklet);
 975	dev_err(lp->dev, "request_irq() failed\n");
 976	return ret;
 977}
 978
 979/**
 980 * axienet_stop - Driver stop routine.
 981 * @ndev:	Pointer to net_device structure
 982 *
 983 * Return: 0, on success.
 984 *
 985 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
 986 * device. It also removes the interrupt handlers and disables the interrupts.
 987 * The Axi DMA Tx/Rx BDs are released.
 988 */
 989static int axienet_stop(struct net_device *ndev)
 990{
 991	u32 cr;
 992	struct axienet_local *lp = netdev_priv(ndev);
 993
 994	dev_dbg(&ndev->dev, "axienet_close()\n");
 995
 996	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 997	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
 998			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
 999	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1000	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1001			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
1002	axienet_setoptions(ndev, lp->options &
1003			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1004
1005	tasklet_kill(&lp->dma_err_tasklet);
1006
1007	free_irq(lp->tx_irq, ndev);
1008	free_irq(lp->rx_irq, ndev);
1009
1010	if (ndev->phydev)
1011		phy_disconnect(ndev->phydev);
 
1012
1013	axienet_dma_bd_release(ndev);
1014	return 0;
1015}
1016
1017/**
1018 * axienet_change_mtu - Driver change mtu routine.
1019 * @ndev:	Pointer to net_device structure
1020 * @new_mtu:	New mtu value to be applied
1021 *
1022 * Return: Always returns 0 (success).
1023 *
1024 * This is the change mtu driver routine. It checks if the Axi Ethernet
1025 * hardware supports jumbo frames before changing the mtu. This can be
1026 * called only when the device is not up.
1027 */
1028static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1029{
1030	struct axienet_local *lp = netdev_priv(ndev);
1031
1032	if (netif_running(ndev))
1033		return -EBUSY;
1034
1035	if ((new_mtu + VLAN_ETH_HLEN +
1036		XAE_TRL_SIZE) > lp->rxmem)
1037		return -EINVAL;
1038
1039	ndev->mtu = new_mtu;
 
 
 
1040
1041	return 0;
1042}
1043
1044#ifdef CONFIG_NET_POLL_CONTROLLER
1045/**
1046 * axienet_poll_controller - Axi Ethernet poll mechanism.
1047 * @ndev:	Pointer to net_device structure
1048 *
1049 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1050 * to polling the ISRs and are enabled back after the polling is done.
1051 */
1052static void axienet_poll_controller(struct net_device *ndev)
1053{
1054	struct axienet_local *lp = netdev_priv(ndev);
1055	disable_irq(lp->tx_irq);
1056	disable_irq(lp->rx_irq);
1057	axienet_rx_irq(lp->tx_irq, ndev);
1058	axienet_tx_irq(lp->rx_irq, ndev);
1059	enable_irq(lp->tx_irq);
1060	enable_irq(lp->rx_irq);
1061}
1062#endif
1063
1064static const struct net_device_ops axienet_netdev_ops = {
1065	.ndo_open = axienet_open,
1066	.ndo_stop = axienet_stop,
1067	.ndo_start_xmit = axienet_start_xmit,
1068	.ndo_change_mtu	= axienet_change_mtu,
1069	.ndo_set_mac_address = netdev_set_mac_address,
1070	.ndo_validate_addr = eth_validate_addr,
1071	.ndo_set_rx_mode = axienet_set_multicast_list,
1072#ifdef CONFIG_NET_POLL_CONTROLLER
1073	.ndo_poll_controller = axienet_poll_controller,
1074#endif
1075};
1076
1077/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1079 * @ndev:	Pointer to net_device structure
1080 * @ed:		Pointer to ethtool_drvinfo structure
1081 *
1082 * This implements ethtool command for getting the driver information.
1083 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1084 */
1085static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1086					 struct ethtool_drvinfo *ed)
1087{
1088	strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1089	strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
 
 
1090}
1091
1092/**
1093 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1094 *				   AxiEthernet core.
1095 * @ndev:	Pointer to net_device structure
1096 *
1097 * This implements ethtool command for getting the total register length
1098 * information.
1099 *
1100 * Return: the total regs length
1101 */
1102static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1103{
1104	return sizeof(u32) * AXIENET_REGS_N;
1105}
1106
1107/**
1108 * axienet_ethtools_get_regs - Dump the contents of all registers present
1109 *			       in AxiEthernet core.
1110 * @ndev:	Pointer to net_device structure
1111 * @regs:	Pointer to ethtool_regs structure
1112 * @ret:	Void pointer used to return the contents of the registers.
1113 *
1114 * This implements ethtool command for getting the Axi Ethernet register dump.
1115 * Issue "ethtool -d ethX" to execute this function.
1116 */
1117static void axienet_ethtools_get_regs(struct net_device *ndev,
1118				      struct ethtool_regs *regs, void *ret)
1119{
1120	u32 *data = (u32 *) ret;
1121	size_t len = sizeof(u32) * AXIENET_REGS_N;
1122	struct axienet_local *lp = netdev_priv(ndev);
1123
1124	regs->version = 0;
1125	regs->len = len;
1126
1127	memset(data, 0, len);
1128	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1129	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1130	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1131	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1132	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1133	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1134	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1135	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1136	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1137	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1138	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1139	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1140	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1141	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1142	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1143	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1144	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1145	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1146	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1147	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1148	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1149	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1150	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1151	data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1152	data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1153	data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1154	data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1155	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1156	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1157	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1158	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1159	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1160}
1161
1162/**
1163 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1164 *				     Tx and Rx paths.
1165 * @ndev:	Pointer to net_device structure
1166 * @epauseparm:	Pointer to ethtool_pauseparam structure.
1167 *
1168 * This implements ethtool command for getting axi ethernet pause frame
1169 * setting. Issue "ethtool -a ethX" to execute this function.
1170 */
1171static void
1172axienet_ethtools_get_pauseparam(struct net_device *ndev,
1173				struct ethtool_pauseparam *epauseparm)
1174{
1175	u32 regval;
1176	struct axienet_local *lp = netdev_priv(ndev);
1177	epauseparm->autoneg  = 0;
1178	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1179	epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1180	epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1181}
1182
1183/**
1184 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1185 *				     settings.
1186 * @ndev:	Pointer to net_device structure
1187 * @epauseparm:Pointer to ethtool_pauseparam structure
1188 *
1189 * This implements ethtool command for enabling flow control on Rx and Tx
1190 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1191 * function.
1192 *
1193 * Return: 0 on success, -EFAULT if device is running
1194 */
1195static int
1196axienet_ethtools_set_pauseparam(struct net_device *ndev,
1197				struct ethtool_pauseparam *epauseparm)
1198{
1199	u32 regval = 0;
1200	struct axienet_local *lp = netdev_priv(ndev);
1201
1202	if (netif_running(ndev)) {
1203		netdev_err(ndev,
1204			   "Please stop netif before applying configuration\n");
1205		return -EFAULT;
1206	}
1207
1208	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1209	if (epauseparm->tx_pause)
1210		regval |= XAE_FCC_FCTX_MASK;
1211	else
1212		regval &= ~XAE_FCC_FCTX_MASK;
1213	if (epauseparm->rx_pause)
1214		regval |= XAE_FCC_FCRX_MASK;
1215	else
1216		regval &= ~XAE_FCC_FCRX_MASK;
1217	axienet_iow(lp, XAE_FCC_OFFSET, regval);
1218
1219	return 0;
1220}
1221
1222/**
1223 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1224 * @ndev:	Pointer to net_device structure
1225 * @ecoalesce:	Pointer to ethtool_coalesce structure
1226 *
1227 * This implements ethtool command for getting the DMA interrupt coalescing
1228 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1229 * execute this function.
1230 *
1231 * Return: 0 always
1232 */
1233static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1234					 struct ethtool_coalesce *ecoalesce)
1235{
1236	u32 regval = 0;
1237	struct axienet_local *lp = netdev_priv(ndev);
1238	regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1239	ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1240					     >> XAXIDMA_COALESCE_SHIFT;
1241	regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1242	ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1243					     >> XAXIDMA_COALESCE_SHIFT;
1244	return 0;
1245}
1246
1247/**
1248 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1249 * @ndev:	Pointer to net_device structure
1250 * @ecoalesce:	Pointer to ethtool_coalesce structure
1251 *
1252 * This implements ethtool command for setting the DMA interrupt coalescing
1253 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1254 * prompt to execute this function.
1255 *
1256 * Return: 0, on success, Non-zero error value on failure.
1257 */
1258static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1259					 struct ethtool_coalesce *ecoalesce)
1260{
1261	struct axienet_local *lp = netdev_priv(ndev);
1262
1263	if (netif_running(ndev)) {
1264		netdev_err(ndev,
1265			   "Please stop netif before applying configuration\n");
1266		return -EFAULT;
1267	}
1268
1269	if ((ecoalesce->rx_coalesce_usecs) ||
1270	    (ecoalesce->rx_coalesce_usecs_irq) ||
1271	    (ecoalesce->rx_max_coalesced_frames_irq) ||
1272	    (ecoalesce->tx_coalesce_usecs) ||
1273	    (ecoalesce->tx_coalesce_usecs_irq) ||
1274	    (ecoalesce->tx_max_coalesced_frames_irq) ||
1275	    (ecoalesce->stats_block_coalesce_usecs) ||
1276	    (ecoalesce->use_adaptive_rx_coalesce) ||
1277	    (ecoalesce->use_adaptive_tx_coalesce) ||
1278	    (ecoalesce->pkt_rate_low) ||
1279	    (ecoalesce->rx_coalesce_usecs_low) ||
1280	    (ecoalesce->rx_max_coalesced_frames_low) ||
1281	    (ecoalesce->tx_coalesce_usecs_low) ||
1282	    (ecoalesce->tx_max_coalesced_frames_low) ||
1283	    (ecoalesce->pkt_rate_high) ||
1284	    (ecoalesce->rx_coalesce_usecs_high) ||
1285	    (ecoalesce->rx_max_coalesced_frames_high) ||
1286	    (ecoalesce->tx_coalesce_usecs_high) ||
1287	    (ecoalesce->tx_max_coalesced_frames_high) ||
1288	    (ecoalesce->rate_sample_interval))
1289		return -EOPNOTSUPP;
1290	if (ecoalesce->rx_max_coalesced_frames)
1291		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1292	if (ecoalesce->tx_max_coalesced_frames)
1293		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1294
1295	return 0;
1296}
1297
1298static const struct ethtool_ops axienet_ethtool_ops = {
 
 
1299	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1300	.get_regs_len   = axienet_ethtools_get_regs_len,
1301	.get_regs       = axienet_ethtools_get_regs,
1302	.get_link       = ethtool_op_get_link,
1303	.get_pauseparam = axienet_ethtools_get_pauseparam,
1304	.set_pauseparam = axienet_ethtools_set_pauseparam,
1305	.get_coalesce   = axienet_ethtools_get_coalesce,
1306	.set_coalesce   = axienet_ethtools_set_coalesce,
1307	.get_link_ksettings = phy_ethtool_get_link_ksettings,
1308	.set_link_ksettings = phy_ethtool_set_link_ksettings,
1309};
1310
1311/**
1312 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1313 * @data:	Data passed
1314 *
1315 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1316 * Tx/Rx BDs.
1317 */
1318static void axienet_dma_err_handler(unsigned long data)
1319{
1320	u32 axienet_status;
1321	u32 cr, i;
1322	int mdio_mcreg;
1323	struct axienet_local *lp = (struct axienet_local *) data;
1324	struct net_device *ndev = lp->ndev;
1325	struct axidma_bd *cur_p;
1326
1327	axienet_setoptions(ndev, lp->options &
1328			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1329	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1330	axienet_mdio_wait_until_ready(lp);
1331	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
1332	 * When we do an Axi Ethernet reset, it resets the complete core
1333	 * including the MDIO. So if MDIO is not disabled when the reset
1334	 * process is started, MDIO will be broken afterwards.
1335	 */
1336	axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1337		    ~XAE_MDIO_MC_MDIOEN_MASK));
1338
1339	__axienet_device_reset(lp, XAXIDMA_TX_CR_OFFSET);
1340	__axienet_device_reset(lp, XAXIDMA_RX_CR_OFFSET);
1341
1342	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1343	axienet_mdio_wait_until_ready(lp);
1344
1345	for (i = 0; i < TX_BD_NUM; i++) {
1346		cur_p = &lp->tx_bd_v[i];
1347		if (cur_p->phys)
1348			dma_unmap_single(ndev->dev.parent, cur_p->phys,
1349					 (cur_p->cntrl &
1350					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1351					 DMA_TO_DEVICE);
1352		if (cur_p->app4)
1353			dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1354		cur_p->phys = 0;
1355		cur_p->cntrl = 0;
1356		cur_p->status = 0;
1357		cur_p->app0 = 0;
1358		cur_p->app1 = 0;
1359		cur_p->app2 = 0;
1360		cur_p->app3 = 0;
1361		cur_p->app4 = 0;
1362		cur_p->sw_id_offset = 0;
1363	}
1364
1365	for (i = 0; i < RX_BD_NUM; i++) {
1366		cur_p = &lp->rx_bd_v[i];
1367		cur_p->status = 0;
1368		cur_p->app0 = 0;
1369		cur_p->app1 = 0;
1370		cur_p->app2 = 0;
1371		cur_p->app3 = 0;
1372		cur_p->app4 = 0;
1373	}
1374
1375	lp->tx_bd_ci = 0;
1376	lp->tx_bd_tail = 0;
1377	lp->rx_bd_ci = 0;
1378
1379	/* Start updating the Rx channel control register */
1380	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1381	/* Update the interrupt coalesce count */
1382	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1383	      (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1384	/* Update the delay timer count */
1385	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1386	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1387	/* Enable coalesce, delay timer and error interrupts */
1388	cr |= XAXIDMA_IRQ_ALL_MASK;
1389	/* Finally write to the Rx channel control register */
1390	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1391
1392	/* Start updating the Tx channel control register */
1393	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1394	/* Update the interrupt coalesce count */
1395	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1396	      (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1397	/* Update the delay timer count */
1398	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1399	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1400	/* Enable coalesce, delay timer and error interrupts */
1401	cr |= XAXIDMA_IRQ_ALL_MASK;
1402	/* Finally write to the Tx channel control register */
1403	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1404
1405	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
1406	 * halted state. This will make the Rx side ready for reception.
1407	 */
1408	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1409	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1410	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1411			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1412	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1413			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1414
1415	/* Write to the RS (Run-stop) bit in the Tx channel control register.
1416	 * Tx channel is now ready to run. But only after we write to the
1417	 * tail pointer register that the Tx channel will start transmitting
1418	 */
1419	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1420	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1421	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1422			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1423
1424	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1425	axienet_status &= ~XAE_RCW1_RX_MASK;
1426	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1427
1428	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1429	if (axienet_status & XAE_INT_RXRJECT_MASK)
1430		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1431	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1432
1433	/* Sync default options with HW but leave receiver and
1434	 * transmitter disabled.
1435	 */
1436	axienet_setoptions(ndev, lp->options &
1437			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1438	axienet_set_mac_address(ndev, NULL);
1439	axienet_set_multicast_list(ndev);
1440	axienet_setoptions(ndev, lp->options);
1441}
1442
1443/**
1444 * axienet_probe - Axi Ethernet probe function.
1445 * @pdev:	Pointer to platform device structure.
 
1446 *
1447 * Return: 0, on success
1448 *	    Non-zero error value on failure.
1449 *
1450 * This is the probe routine for Axi Ethernet driver. This is called before
1451 * any other driver routines are invoked. It allocates and sets up the Ethernet
1452 * device. Parses through device tree and populates fields of
1453 * axienet_local. It registers the Ethernet device.
1454 */
1455static int axienet_probe(struct platform_device *pdev)
1456{
1457	int ret;
 
1458	struct device_node *np;
1459	struct axienet_local *lp;
1460	struct net_device *ndev;
1461	const void *mac_addr;
1462	struct resource *ethres, dmares;
1463	u32 value;
1464
1465	ndev = alloc_etherdev(sizeof(*lp));
1466	if (!ndev)
1467		return -ENOMEM;
1468
1469	platform_set_drvdata(pdev, ndev);
 
1470
1471	SET_NETDEV_DEV(ndev, &pdev->dev);
1472	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1473	ndev->features = NETIF_F_SG;
1474	ndev->netdev_ops = &axienet_netdev_ops;
1475	ndev->ethtool_ops = &axienet_ethtool_ops;
1476
1477	/* MTU range: 64 - 9000 */
1478	ndev->min_mtu = 64;
1479	ndev->max_mtu = XAE_JUMBO_MTU;
1480
1481	lp = netdev_priv(ndev);
1482	lp->ndev = ndev;
1483	lp->dev = &pdev->dev;
1484	lp->options = XAE_OPTION_DEFAULTS;
1485	/* Map device registers */
1486	ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1487	lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
1488	if (IS_ERR(lp->regs)) {
1489		dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
1490		ret = PTR_ERR(lp->regs);
1491		goto free_netdev;
1492	}
1493
1494	/* Setup checksum offload, but default to off if not specified */
1495	lp->features = 0;
1496
1497	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1498	if (!ret) {
1499		switch (value) {
1500		case 1:
1501			lp->csum_offload_on_tx_path =
1502				XAE_FEATURE_PARTIAL_TX_CSUM;
1503			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1504			/* Can checksum TCP/UDP over IPv4. */
1505			ndev->features |= NETIF_F_IP_CSUM;
1506			break;
1507		case 2:
1508			lp->csum_offload_on_tx_path =
1509				XAE_FEATURE_FULL_TX_CSUM;
1510			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1511			/* Can checksum TCP/UDP over IPv4. */
1512			ndev->features |= NETIF_F_IP_CSUM;
1513			break;
1514		default:
1515			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1516		}
1517	}
1518	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1519	if (!ret) {
1520		switch (value) {
1521		case 1:
1522			lp->csum_offload_on_rx_path =
1523				XAE_FEATURE_PARTIAL_RX_CSUM;
1524			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1525			break;
1526		case 2:
1527			lp->csum_offload_on_rx_path =
1528				XAE_FEATURE_FULL_RX_CSUM;
1529			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1530			break;
1531		default:
1532			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1533		}
1534	}
1535	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1536	 * a larger Rx/Tx Memory. Typically, the size must be large so that
1537	 * we can enable jumbo option and start supporting jumbo frames.
1538	 * Here we check for memory allocated for Rx/Tx in the hardware from
1539	 * the device-tree and accordingly set flags.
1540	 */
1541	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1542	of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &lp->phy_type);
 
 
 
 
 
 
 
 
 
 
1543
1544	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1545	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1546	if (!np) {
1547		dev_err(&pdev->dev, "could not find DMA node\n");
1548		ret = -ENODEV;
1549		goto free_netdev;
1550	}
1551	ret = of_address_to_resource(np, 0, &dmares);
1552	if (ret) {
1553		dev_err(&pdev->dev, "unable to get DMA resource\n");
1554		goto free_netdev;
1555	}
1556	lp->dma_regs = devm_ioremap_resource(&pdev->dev, &dmares);
1557	if (IS_ERR(lp->dma_regs)) {
1558		dev_err(&pdev->dev, "could not map DMA regs\n");
1559		ret = PTR_ERR(lp->dma_regs);
1560		goto free_netdev;
1561	}
1562	lp->rx_irq = irq_of_parse_and_map(np, 1);
1563	lp->tx_irq = irq_of_parse_and_map(np, 0);
1564	of_node_put(np);
1565	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1566		dev_err(&pdev->dev, "could not determine irqs\n");
1567		ret = -ENOMEM;
1568		goto free_netdev;
1569	}
1570
1571	/* Retrieve the MAC address */
1572	mac_addr = of_get_mac_address(pdev->dev.of_node);
1573	if (!mac_addr) {
1574		dev_err(&pdev->dev, "could not find MAC address\n");
1575		goto free_netdev;
 
1576	}
1577	axienet_set_mac_address(ndev, mac_addr);
1578
1579	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1580	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1581
1582	lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1583	if (lp->phy_node) {
1584		ret = axienet_mdio_setup(lp, pdev->dev.of_node);
1585		if (ret)
1586			dev_warn(&pdev->dev, "error registering MDIO bus\n");
1587	}
1588
1589	ret = register_netdev(lp->ndev);
1590	if (ret) {
1591		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1592		goto free_netdev;
1593	}
1594
 
 
 
 
1595	return 0;
1596
1597free_netdev:
 
 
 
 
 
1598	free_netdev(ndev);
1599
1600	return ret;
1601}
1602
1603static int axienet_remove(struct platform_device *pdev)
1604{
1605	struct net_device *ndev = platform_get_drvdata(pdev);
1606	struct axienet_local *lp = netdev_priv(ndev);
1607
1608	axienet_mdio_teardown(lp);
1609	unregister_netdev(ndev);
1610
1611	of_node_put(lp->phy_node);
 
1612	lp->phy_node = NULL;
1613
 
 
 
 
 
1614	free_netdev(ndev);
1615
1616	return 0;
1617}
1618
1619static struct platform_driver axienet_driver = {
1620	.probe = axienet_probe,
1621	.remove = axienet_remove,
1622	.driver = {
 
1623		 .name = "xilinx_axienet",
1624		 .of_match_table = axienet_of_match,
1625	},
1626};
1627
1628module_platform_driver(axienet_driver);
1629
1630MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1631MODULE_AUTHOR("Xilinx");
1632MODULE_LICENSE("GPL");