Loading...
Note: File does not exist in v3.5.6.
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2016 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27#include <linux/prefetch.h>
28#include <net/busy_poll.h>
29#include "i40e.h"
30#include "i40e_prototype.h"
31
32static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33 u32 td_tag)
34{
35 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
37 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
40}
41
42#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43/**
44 * i40e_fdir - Generate a Flow Director descriptor based on fdata
45 * @tx_ring: Tx ring to send buffer on
46 * @fdata: Flow director filter data
47 * @add: Indicate if we are adding a rule or deleting one
48 *
49 **/
50static void i40e_fdir(struct i40e_ring *tx_ring,
51 struct i40e_fdir_filter *fdata, bool add)
52{
53 struct i40e_filter_program_desc *fdir_desc;
54 struct i40e_pf *pf = tx_ring->vsi->back;
55 u32 flex_ptype, dtype_cmd;
56 u16 i;
57
58 /* grab the next descriptor */
59 i = tx_ring->next_to_use;
60 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
61
62 i++;
63 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
64
65 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
66 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
67
68 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
69 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
70
71 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
72 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
73
74 /* Use LAN VSI Id if not programmed by user */
75 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
76 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
77 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
78
79 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
80
81 dtype_cmd |= add ?
82 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
83 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
84 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
85 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
86
87 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
88 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
89
90 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
91 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
92
93 if (fdata->cnt_index) {
94 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
95 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
96 ((u32)fdata->cnt_index <<
97 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
98 }
99
100 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
101 fdir_desc->rsvd = cpu_to_le32(0);
102 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
103 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
104}
105
106#define I40E_FD_CLEAN_DELAY 10
107/**
108 * i40e_program_fdir_filter - Program a Flow Director filter
109 * @fdir_data: Packet data that will be filter parameters
110 * @raw_packet: the pre-allocated packet buffer for FDir
111 * @pf: The PF pointer
112 * @add: True for add/update, False for remove
113 **/
114static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
115 u8 *raw_packet, struct i40e_pf *pf,
116 bool add)
117{
118 struct i40e_tx_buffer *tx_buf, *first;
119 struct i40e_tx_desc *tx_desc;
120 struct i40e_ring *tx_ring;
121 struct i40e_vsi *vsi;
122 struct device *dev;
123 dma_addr_t dma;
124 u32 td_cmd = 0;
125 u16 i;
126
127 /* find existing FDIR VSI */
128 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
129 if (!vsi)
130 return -ENOENT;
131
132 tx_ring = vsi->tx_rings[0];
133 dev = tx_ring->dev;
134
135 /* we need two descriptors to add/del a filter and we can wait */
136 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
137 if (!i)
138 return -EAGAIN;
139 msleep_interruptible(1);
140 }
141
142 dma = dma_map_single(dev, raw_packet,
143 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
144 if (dma_mapping_error(dev, dma))
145 goto dma_fail;
146
147 /* grab the next descriptor */
148 i = tx_ring->next_to_use;
149 first = &tx_ring->tx_bi[i];
150 i40e_fdir(tx_ring, fdir_data, add);
151
152 /* Now program a dummy descriptor */
153 i = tx_ring->next_to_use;
154 tx_desc = I40E_TX_DESC(tx_ring, i);
155 tx_buf = &tx_ring->tx_bi[i];
156
157 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
158
159 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
160
161 /* record length, and DMA address */
162 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
163 dma_unmap_addr_set(tx_buf, dma, dma);
164
165 tx_desc->buffer_addr = cpu_to_le64(dma);
166 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
167
168 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
169 tx_buf->raw_buf = (void *)raw_packet;
170
171 tx_desc->cmd_type_offset_bsz =
172 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
173
174 /* Force memory writes to complete before letting h/w
175 * know there are new descriptors to fetch.
176 */
177 wmb();
178
179 /* Mark the data descriptor to be watched */
180 first->next_to_watch = tx_desc;
181
182 writel(tx_ring->next_to_use, tx_ring->tail);
183 return 0;
184
185dma_fail:
186 return -1;
187}
188
189#define IP_HEADER_OFFSET 14
190#define I40E_UDPIP_DUMMY_PACKET_LEN 42
191/**
192 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
193 * @vsi: pointer to the targeted VSI
194 * @fd_data: the flow director data required for the FDir descriptor
195 * @add: true adds a filter, false removes it
196 *
197 * Returns 0 if the filters were successfully added or removed
198 **/
199static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
200 struct i40e_fdir_filter *fd_data,
201 bool add)
202{
203 struct i40e_pf *pf = vsi->back;
204 struct udphdr *udp;
205 struct iphdr *ip;
206 bool err = false;
207 u8 *raw_packet;
208 int ret;
209 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
210 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
211 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
212
213 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
214 if (!raw_packet)
215 return -ENOMEM;
216 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
217
218 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
219 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
220 + sizeof(struct iphdr));
221
222 ip->daddr = fd_data->dst_ip[0];
223 udp->dest = fd_data->dst_port;
224 ip->saddr = fd_data->src_ip[0];
225 udp->source = fd_data->src_port;
226
227 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
228 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
229 if (ret) {
230 dev_info(&pf->pdev->dev,
231 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
232 fd_data->pctype, fd_data->fd_id, ret);
233 err = true;
234 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
235 if (add)
236 dev_info(&pf->pdev->dev,
237 "Filter OK for PCTYPE %d loc = %d\n",
238 fd_data->pctype, fd_data->fd_id);
239 else
240 dev_info(&pf->pdev->dev,
241 "Filter deleted for PCTYPE %d loc = %d\n",
242 fd_data->pctype, fd_data->fd_id);
243 }
244 if (err)
245 kfree(raw_packet);
246
247 return err ? -EOPNOTSUPP : 0;
248}
249
250#define I40E_TCPIP_DUMMY_PACKET_LEN 54
251/**
252 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
253 * @vsi: pointer to the targeted VSI
254 * @fd_data: the flow director data required for the FDir descriptor
255 * @add: true adds a filter, false removes it
256 *
257 * Returns 0 if the filters were successfully added or removed
258 **/
259static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
260 struct i40e_fdir_filter *fd_data,
261 bool add)
262{
263 struct i40e_pf *pf = vsi->back;
264 struct tcphdr *tcp;
265 struct iphdr *ip;
266 bool err = false;
267 u8 *raw_packet;
268 int ret;
269 /* Dummy packet */
270 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
271 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
272 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
273 0x0, 0x72, 0, 0, 0, 0};
274
275 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
276 if (!raw_packet)
277 return -ENOMEM;
278 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
279
280 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
281 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
282 + sizeof(struct iphdr));
283
284 ip->daddr = fd_data->dst_ip[0];
285 tcp->dest = fd_data->dst_port;
286 ip->saddr = fd_data->src_ip[0];
287 tcp->source = fd_data->src_port;
288
289 if (add) {
290 pf->fd_tcp_rule++;
291 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
292 I40E_DEBUG_FD & pf->hw.debug_mask)
293 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
294 pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
295 } else {
296 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
297 (pf->fd_tcp_rule - 1) : 0;
298 if (pf->fd_tcp_rule == 0) {
299 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
300 I40E_DEBUG_FD & pf->hw.debug_mask)
301 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
302 pf->auto_disable_flags &= ~I40E_FLAG_FD_ATR_ENABLED;
303 }
304 }
305
306 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
307 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
308
309 if (ret) {
310 dev_info(&pf->pdev->dev,
311 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
312 fd_data->pctype, fd_data->fd_id, ret);
313 err = true;
314 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
315 if (add)
316 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
317 fd_data->pctype, fd_data->fd_id);
318 else
319 dev_info(&pf->pdev->dev,
320 "Filter deleted for PCTYPE %d loc = %d\n",
321 fd_data->pctype, fd_data->fd_id);
322 }
323
324 if (err)
325 kfree(raw_packet);
326
327 return err ? -EOPNOTSUPP : 0;
328}
329
330#define I40E_IP_DUMMY_PACKET_LEN 34
331/**
332 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
333 * a specific flow spec
334 * @vsi: pointer to the targeted VSI
335 * @fd_data: the flow director data required for the FDir descriptor
336 * @add: true adds a filter, false removes it
337 *
338 * Returns 0 if the filters were successfully added or removed
339 **/
340static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
341 struct i40e_fdir_filter *fd_data,
342 bool add)
343{
344 struct i40e_pf *pf = vsi->back;
345 struct iphdr *ip;
346 bool err = false;
347 u8 *raw_packet;
348 int ret;
349 int i;
350 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
351 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
352 0, 0, 0, 0};
353
354 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
355 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
356 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
357 if (!raw_packet)
358 return -ENOMEM;
359 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
360 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
361
362 ip->saddr = fd_data->src_ip[0];
363 ip->daddr = fd_data->dst_ip[0];
364 ip->protocol = 0;
365
366 fd_data->pctype = i;
367 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
368
369 if (ret) {
370 dev_info(&pf->pdev->dev,
371 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
372 fd_data->pctype, fd_data->fd_id, ret);
373 err = true;
374 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
375 if (add)
376 dev_info(&pf->pdev->dev,
377 "Filter OK for PCTYPE %d loc = %d\n",
378 fd_data->pctype, fd_data->fd_id);
379 else
380 dev_info(&pf->pdev->dev,
381 "Filter deleted for PCTYPE %d loc = %d\n",
382 fd_data->pctype, fd_data->fd_id);
383 }
384 }
385
386 if (err)
387 kfree(raw_packet);
388
389 return err ? -EOPNOTSUPP : 0;
390}
391
392/**
393 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
394 * @vsi: pointer to the targeted VSI
395 * @cmd: command to get or set RX flow classification rules
396 * @add: true adds a filter, false removes it
397 *
398 **/
399int i40e_add_del_fdir(struct i40e_vsi *vsi,
400 struct i40e_fdir_filter *input, bool add)
401{
402 struct i40e_pf *pf = vsi->back;
403 int ret;
404
405 switch (input->flow_type & ~FLOW_EXT) {
406 case TCP_V4_FLOW:
407 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
408 break;
409 case UDP_V4_FLOW:
410 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
411 break;
412 case IP_USER_FLOW:
413 switch (input->ip4_proto) {
414 case IPPROTO_TCP:
415 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
416 break;
417 case IPPROTO_UDP:
418 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
419 break;
420 case IPPROTO_IP:
421 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
422 break;
423 default:
424 /* We cannot support masking based on protocol */
425 goto unsupported_flow;
426 }
427 break;
428 default:
429unsupported_flow:
430 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
431 input->flow_type);
432 ret = -EINVAL;
433 }
434
435 /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
436 return ret;
437}
438
439/**
440 * i40e_fd_handle_status - check the Programming Status for FD
441 * @rx_ring: the Rx ring for this descriptor
442 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
443 * @prog_id: the id originally used for programming
444 *
445 * This is used to verify if the FD programming or invalidation
446 * requested by SW to the HW is successful or not and take actions accordingly.
447 **/
448static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
449 union i40e_rx_desc *rx_desc, u8 prog_id)
450{
451 struct i40e_pf *pf = rx_ring->vsi->back;
452 struct pci_dev *pdev = pf->pdev;
453 u32 fcnt_prog, fcnt_avail;
454 u32 error;
455 u64 qw;
456
457 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
458 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
459 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
460
461 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
462 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
463 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
464 (I40E_DEBUG_FD & pf->hw.debug_mask))
465 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
466 pf->fd_inv);
467
468 /* Check if the programming error is for ATR.
469 * If so, auto disable ATR and set a state for
470 * flush in progress. Next time we come here if flush is in
471 * progress do nothing, once flush is complete the state will
472 * be cleared.
473 */
474 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
475 return;
476
477 pf->fd_add_err++;
478 /* store the current atr filter count */
479 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
480
481 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
482 (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
483 pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
484 set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
485 }
486
487 /* filter programming failed most likely due to table full */
488 fcnt_prog = i40e_get_global_fd_count(pf);
489 fcnt_avail = pf->fdir_pf_filter_count;
490 /* If ATR is running fcnt_prog can quickly change,
491 * if we are very close to full, it makes sense to disable
492 * FD ATR/SB and then re-enable it when there is room.
493 */
494 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
495 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
496 !(pf->auto_disable_flags &
497 I40E_FLAG_FD_SB_ENABLED)) {
498 if (I40E_DEBUG_FD & pf->hw.debug_mask)
499 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
500 pf->auto_disable_flags |=
501 I40E_FLAG_FD_SB_ENABLED;
502 }
503 }
504 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
505 if (I40E_DEBUG_FD & pf->hw.debug_mask)
506 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
507 rx_desc->wb.qword0.hi_dword.fd_id);
508 }
509}
510
511/**
512 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
513 * @ring: the ring that owns the buffer
514 * @tx_buffer: the buffer to free
515 **/
516static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
517 struct i40e_tx_buffer *tx_buffer)
518{
519 if (tx_buffer->skb) {
520 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
521 kfree(tx_buffer->raw_buf);
522 else
523 dev_kfree_skb_any(tx_buffer->skb);
524 if (dma_unmap_len(tx_buffer, len))
525 dma_unmap_single(ring->dev,
526 dma_unmap_addr(tx_buffer, dma),
527 dma_unmap_len(tx_buffer, len),
528 DMA_TO_DEVICE);
529 } else if (dma_unmap_len(tx_buffer, len)) {
530 dma_unmap_page(ring->dev,
531 dma_unmap_addr(tx_buffer, dma),
532 dma_unmap_len(tx_buffer, len),
533 DMA_TO_DEVICE);
534 }
535
536 tx_buffer->next_to_watch = NULL;
537 tx_buffer->skb = NULL;
538 dma_unmap_len_set(tx_buffer, len, 0);
539 /* tx_buffer must be completely set up in the transmit path */
540}
541
542/**
543 * i40e_clean_tx_ring - Free any empty Tx buffers
544 * @tx_ring: ring to be cleaned
545 **/
546void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
547{
548 unsigned long bi_size;
549 u16 i;
550
551 /* ring already cleared, nothing to do */
552 if (!tx_ring->tx_bi)
553 return;
554
555 /* Free all the Tx ring sk_buffs */
556 for (i = 0; i < tx_ring->count; i++)
557 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
558
559 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
560 memset(tx_ring->tx_bi, 0, bi_size);
561
562 /* Zero out the descriptor ring */
563 memset(tx_ring->desc, 0, tx_ring->size);
564
565 tx_ring->next_to_use = 0;
566 tx_ring->next_to_clean = 0;
567
568 if (!tx_ring->netdev)
569 return;
570
571 /* cleanup Tx queue statistics */
572 netdev_tx_reset_queue(txring_txq(tx_ring));
573}
574
575/**
576 * i40e_free_tx_resources - Free Tx resources per queue
577 * @tx_ring: Tx descriptor ring for a specific queue
578 *
579 * Free all transmit software resources
580 **/
581void i40e_free_tx_resources(struct i40e_ring *tx_ring)
582{
583 i40e_clean_tx_ring(tx_ring);
584 kfree(tx_ring->tx_bi);
585 tx_ring->tx_bi = NULL;
586
587 if (tx_ring->desc) {
588 dma_free_coherent(tx_ring->dev, tx_ring->size,
589 tx_ring->desc, tx_ring->dma);
590 tx_ring->desc = NULL;
591 }
592}
593
594/**
595 * i40e_get_tx_pending - how many tx descriptors not processed
596 * @tx_ring: the ring of descriptors
597 * @in_sw: is tx_pending being checked in SW or HW
598 *
599 * Since there is no access to the ring head register
600 * in XL710, we need to use our local copies
601 **/
602u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
603{
604 u32 head, tail;
605
606 if (!in_sw)
607 head = i40e_get_head(ring);
608 else
609 head = ring->next_to_clean;
610 tail = readl(ring->tail);
611
612 if (head != tail)
613 return (head < tail) ?
614 tail - head : (tail + ring->count - head);
615
616 return 0;
617}
618
619#define WB_STRIDE 4
620
621/**
622 * i40e_clean_tx_irq - Reclaim resources after transmit completes
623 * @vsi: the VSI we care about
624 * @tx_ring: Tx ring to clean
625 * @napi_budget: Used to determine if we are in netpoll
626 *
627 * Returns true if there's any budget left (e.g. the clean is finished)
628 **/
629static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
630 struct i40e_ring *tx_ring, int napi_budget)
631{
632 u16 i = tx_ring->next_to_clean;
633 struct i40e_tx_buffer *tx_buf;
634 struct i40e_tx_desc *tx_head;
635 struct i40e_tx_desc *tx_desc;
636 unsigned int total_bytes = 0, total_packets = 0;
637 unsigned int budget = vsi->work_limit;
638
639 tx_buf = &tx_ring->tx_bi[i];
640 tx_desc = I40E_TX_DESC(tx_ring, i);
641 i -= tx_ring->count;
642
643 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
644
645 do {
646 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
647
648 /* if next_to_watch is not set then there is no work pending */
649 if (!eop_desc)
650 break;
651
652 /* prevent any other reads prior to eop_desc */
653 read_barrier_depends();
654
655 /* we have caught up to head, no work left to do */
656 if (tx_head == tx_desc)
657 break;
658
659 /* clear next_to_watch to prevent false hangs */
660 tx_buf->next_to_watch = NULL;
661
662 /* update the statistics for this packet */
663 total_bytes += tx_buf->bytecount;
664 total_packets += tx_buf->gso_segs;
665
666 /* free the skb */
667 napi_consume_skb(tx_buf->skb, napi_budget);
668
669 /* unmap skb header data */
670 dma_unmap_single(tx_ring->dev,
671 dma_unmap_addr(tx_buf, dma),
672 dma_unmap_len(tx_buf, len),
673 DMA_TO_DEVICE);
674
675 /* clear tx_buffer data */
676 tx_buf->skb = NULL;
677 dma_unmap_len_set(tx_buf, len, 0);
678
679 /* unmap remaining buffers */
680 while (tx_desc != eop_desc) {
681
682 tx_buf++;
683 tx_desc++;
684 i++;
685 if (unlikely(!i)) {
686 i -= tx_ring->count;
687 tx_buf = tx_ring->tx_bi;
688 tx_desc = I40E_TX_DESC(tx_ring, 0);
689 }
690
691 /* unmap any remaining paged data */
692 if (dma_unmap_len(tx_buf, len)) {
693 dma_unmap_page(tx_ring->dev,
694 dma_unmap_addr(tx_buf, dma),
695 dma_unmap_len(tx_buf, len),
696 DMA_TO_DEVICE);
697 dma_unmap_len_set(tx_buf, len, 0);
698 }
699 }
700
701 /* move us one more past the eop_desc for start of next pkt */
702 tx_buf++;
703 tx_desc++;
704 i++;
705 if (unlikely(!i)) {
706 i -= tx_ring->count;
707 tx_buf = tx_ring->tx_bi;
708 tx_desc = I40E_TX_DESC(tx_ring, 0);
709 }
710
711 prefetch(tx_desc);
712
713 /* update budget accounting */
714 budget--;
715 } while (likely(budget));
716
717 i += tx_ring->count;
718 tx_ring->next_to_clean = i;
719 u64_stats_update_begin(&tx_ring->syncp);
720 tx_ring->stats.bytes += total_bytes;
721 tx_ring->stats.packets += total_packets;
722 u64_stats_update_end(&tx_ring->syncp);
723 tx_ring->q_vector->tx.total_bytes += total_bytes;
724 tx_ring->q_vector->tx.total_packets += total_packets;
725
726 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
727 /* check to see if there are < 4 descriptors
728 * waiting to be written back, then kick the hardware to force
729 * them to be written back in case we stay in NAPI.
730 * In this mode on X722 we do not enable Interrupt.
731 */
732 unsigned int j = i40e_get_tx_pending(tx_ring, false);
733
734 if (budget &&
735 ((j / WB_STRIDE) == 0) && (j > 0) &&
736 !test_bit(__I40E_DOWN, &vsi->state) &&
737 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
738 tx_ring->arm_wb = true;
739 }
740
741 /* notify netdev of completed buffers */
742 netdev_tx_completed_queue(txring_txq(tx_ring),
743 total_packets, total_bytes);
744
745#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
746 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
747 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
748 /* Make sure that anybody stopping the queue after this
749 * sees the new next_to_clean.
750 */
751 smp_mb();
752 if (__netif_subqueue_stopped(tx_ring->netdev,
753 tx_ring->queue_index) &&
754 !test_bit(__I40E_DOWN, &vsi->state)) {
755 netif_wake_subqueue(tx_ring->netdev,
756 tx_ring->queue_index);
757 ++tx_ring->tx_stats.restart_queue;
758 }
759 }
760
761 return !!budget;
762}
763
764/**
765 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
766 * @vsi: the VSI we care about
767 * @q_vector: the vector on which to enable writeback
768 *
769 **/
770static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
771 struct i40e_q_vector *q_vector)
772{
773 u16 flags = q_vector->tx.ring[0].flags;
774 u32 val;
775
776 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
777 return;
778
779 if (q_vector->arm_wb_state)
780 return;
781
782 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
783 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
784 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
785
786 wr32(&vsi->back->hw,
787 I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
788 val);
789 } else {
790 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
791 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
792
793 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
794 }
795 q_vector->arm_wb_state = true;
796}
797
798/**
799 * i40e_force_wb - Issue SW Interrupt so HW does a wb
800 * @vsi: the VSI we care about
801 * @q_vector: the vector on which to force writeback
802 *
803 **/
804void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
805{
806 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
807 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
808 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
809 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
810 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
811 /* allow 00 to be written to the index */
812
813 wr32(&vsi->back->hw,
814 I40E_PFINT_DYN_CTLN(q_vector->v_idx +
815 vsi->base_vector - 1), val);
816 } else {
817 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
818 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
819 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
820 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
821 /* allow 00 to be written to the index */
822
823 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
824 }
825}
826
827/**
828 * i40e_set_new_dynamic_itr - Find new ITR level
829 * @rc: structure containing ring performance data
830 *
831 * Returns true if ITR changed, false if not
832 *
833 * Stores a new ITR value based on packets and byte counts during
834 * the last interrupt. The advantage of per interrupt computation
835 * is faster updates and more accurate ITR for the current traffic
836 * pattern. Constants in this function were computed based on
837 * theoretical maximum wire speed and thresholds were set based on
838 * testing data as well as attempting to minimize response time
839 * while increasing bulk throughput.
840 **/
841static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
842{
843 enum i40e_latency_range new_latency_range = rc->latency_range;
844 struct i40e_q_vector *qv = rc->ring->q_vector;
845 u32 new_itr = rc->itr;
846 int bytes_per_int;
847 int usecs;
848
849 if (rc->total_packets == 0 || !rc->itr)
850 return false;
851
852 /* simple throttlerate management
853 * 0-10MB/s lowest (50000 ints/s)
854 * 10-20MB/s low (20000 ints/s)
855 * 20-1249MB/s bulk (18000 ints/s)
856 * > 40000 Rx packets per second (8000 ints/s)
857 *
858 * The math works out because the divisor is in 10^(-6) which
859 * turns the bytes/us input value into MB/s values, but
860 * make sure to use usecs, as the register values written
861 * are in 2 usec increments in the ITR registers, and make sure
862 * to use the smoothed values that the countdown timer gives us.
863 */
864 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
865 bytes_per_int = rc->total_bytes / usecs;
866
867 switch (new_latency_range) {
868 case I40E_LOWEST_LATENCY:
869 if (bytes_per_int > 10)
870 new_latency_range = I40E_LOW_LATENCY;
871 break;
872 case I40E_LOW_LATENCY:
873 if (bytes_per_int > 20)
874 new_latency_range = I40E_BULK_LATENCY;
875 else if (bytes_per_int <= 10)
876 new_latency_range = I40E_LOWEST_LATENCY;
877 break;
878 case I40E_BULK_LATENCY:
879 case I40E_ULTRA_LATENCY:
880 default:
881 if (bytes_per_int <= 20)
882 new_latency_range = I40E_LOW_LATENCY;
883 break;
884 }
885
886 /* this is to adjust RX more aggressively when streaming small
887 * packets. The value of 40000 was picked as it is just beyond
888 * what the hardware can receive per second if in low latency
889 * mode.
890 */
891#define RX_ULTRA_PACKET_RATE 40000
892
893 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
894 (&qv->rx == rc))
895 new_latency_range = I40E_ULTRA_LATENCY;
896
897 rc->latency_range = new_latency_range;
898
899 switch (new_latency_range) {
900 case I40E_LOWEST_LATENCY:
901 new_itr = I40E_ITR_50K;
902 break;
903 case I40E_LOW_LATENCY:
904 new_itr = I40E_ITR_20K;
905 break;
906 case I40E_BULK_LATENCY:
907 new_itr = I40E_ITR_18K;
908 break;
909 case I40E_ULTRA_LATENCY:
910 new_itr = I40E_ITR_8K;
911 break;
912 default:
913 break;
914 }
915
916 rc->total_bytes = 0;
917 rc->total_packets = 0;
918
919 if (new_itr != rc->itr) {
920 rc->itr = new_itr;
921 return true;
922 }
923
924 return false;
925}
926
927/**
928 * i40e_clean_programming_status - clean the programming status descriptor
929 * @rx_ring: the rx ring that has this descriptor
930 * @rx_desc: the rx descriptor written back by HW
931 *
932 * Flow director should handle FD_FILTER_STATUS to check its filter programming
933 * status being successful or not and take actions accordingly. FCoE should
934 * handle its context/filter programming/invalidation status and take actions.
935 *
936 **/
937static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
938 union i40e_rx_desc *rx_desc)
939{
940 u64 qw;
941 u8 id;
942
943 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
944 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
945 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
946
947 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
948 i40e_fd_handle_status(rx_ring, rx_desc, id);
949#ifdef I40E_FCOE
950 else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
951 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
952 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
953#endif
954}
955
956/**
957 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
958 * @tx_ring: the tx ring to set up
959 *
960 * Return 0 on success, negative on error
961 **/
962int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
963{
964 struct device *dev = tx_ring->dev;
965 int bi_size;
966
967 if (!dev)
968 return -ENOMEM;
969
970 /* warn if we are about to overwrite the pointer */
971 WARN_ON(tx_ring->tx_bi);
972 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
973 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
974 if (!tx_ring->tx_bi)
975 goto err;
976
977 /* round up to nearest 4K */
978 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
979 /* add u32 for head writeback, align after this takes care of
980 * guaranteeing this is at least one cache line in size
981 */
982 tx_ring->size += sizeof(u32);
983 tx_ring->size = ALIGN(tx_ring->size, 4096);
984 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
985 &tx_ring->dma, GFP_KERNEL);
986 if (!tx_ring->desc) {
987 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
988 tx_ring->size);
989 goto err;
990 }
991
992 tx_ring->next_to_use = 0;
993 tx_ring->next_to_clean = 0;
994 return 0;
995
996err:
997 kfree(tx_ring->tx_bi);
998 tx_ring->tx_bi = NULL;
999 return -ENOMEM;
1000}
1001
1002/**
1003 * i40e_clean_rx_ring - Free Rx buffers
1004 * @rx_ring: ring to be cleaned
1005 **/
1006void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1007{
1008 struct device *dev = rx_ring->dev;
1009 unsigned long bi_size;
1010 u16 i;
1011
1012 /* ring already cleared, nothing to do */
1013 if (!rx_ring->rx_bi)
1014 return;
1015
1016 /* Free all the Rx ring sk_buffs */
1017 for (i = 0; i < rx_ring->count; i++) {
1018 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1019
1020 if (rx_bi->skb) {
1021 dev_kfree_skb(rx_bi->skb);
1022 rx_bi->skb = NULL;
1023 }
1024 if (!rx_bi->page)
1025 continue;
1026
1027 dma_unmap_page(dev, rx_bi->dma, PAGE_SIZE, DMA_FROM_DEVICE);
1028 __free_pages(rx_bi->page, 0);
1029
1030 rx_bi->page = NULL;
1031 rx_bi->page_offset = 0;
1032 }
1033
1034 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1035 memset(rx_ring->rx_bi, 0, bi_size);
1036
1037 /* Zero out the descriptor ring */
1038 memset(rx_ring->desc, 0, rx_ring->size);
1039
1040 rx_ring->next_to_alloc = 0;
1041 rx_ring->next_to_clean = 0;
1042 rx_ring->next_to_use = 0;
1043}
1044
1045/**
1046 * i40e_free_rx_resources - Free Rx resources
1047 * @rx_ring: ring to clean the resources from
1048 *
1049 * Free all receive software resources
1050 **/
1051void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1052{
1053 i40e_clean_rx_ring(rx_ring);
1054 kfree(rx_ring->rx_bi);
1055 rx_ring->rx_bi = NULL;
1056
1057 if (rx_ring->desc) {
1058 dma_free_coherent(rx_ring->dev, rx_ring->size,
1059 rx_ring->desc, rx_ring->dma);
1060 rx_ring->desc = NULL;
1061 }
1062}
1063
1064/**
1065 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1066 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1067 *
1068 * Returns 0 on success, negative on failure
1069 **/
1070int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1071{
1072 struct device *dev = rx_ring->dev;
1073 int bi_size;
1074
1075 /* warn if we are about to overwrite the pointer */
1076 WARN_ON(rx_ring->rx_bi);
1077 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1078 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1079 if (!rx_ring->rx_bi)
1080 goto err;
1081
1082 u64_stats_init(&rx_ring->syncp);
1083
1084 /* Round up to nearest 4K */
1085 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1086 rx_ring->size = ALIGN(rx_ring->size, 4096);
1087 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1088 &rx_ring->dma, GFP_KERNEL);
1089
1090 if (!rx_ring->desc) {
1091 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1092 rx_ring->size);
1093 goto err;
1094 }
1095
1096 rx_ring->next_to_alloc = 0;
1097 rx_ring->next_to_clean = 0;
1098 rx_ring->next_to_use = 0;
1099
1100 return 0;
1101err:
1102 kfree(rx_ring->rx_bi);
1103 rx_ring->rx_bi = NULL;
1104 return -ENOMEM;
1105}
1106
1107/**
1108 * i40e_release_rx_desc - Store the new tail and head values
1109 * @rx_ring: ring to bump
1110 * @val: new head index
1111 **/
1112static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1113{
1114 rx_ring->next_to_use = val;
1115
1116 /* update next to alloc since we have filled the ring */
1117 rx_ring->next_to_alloc = val;
1118
1119 /* Force memory writes to complete before letting h/w
1120 * know there are new descriptors to fetch. (Only
1121 * applicable for weak-ordered memory model archs,
1122 * such as IA-64).
1123 */
1124 wmb();
1125 writel(val, rx_ring->tail);
1126}
1127
1128/**
1129 * i40e_alloc_mapped_page - recycle or make a new page
1130 * @rx_ring: ring to use
1131 * @bi: rx_buffer struct to modify
1132 *
1133 * Returns true if the page was successfully allocated or
1134 * reused.
1135 **/
1136static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1137 struct i40e_rx_buffer *bi)
1138{
1139 struct page *page = bi->page;
1140 dma_addr_t dma;
1141
1142 /* since we are recycling buffers we should seldom need to alloc */
1143 if (likely(page)) {
1144 rx_ring->rx_stats.page_reuse_count++;
1145 return true;
1146 }
1147
1148 /* alloc new page for storage */
1149 page = dev_alloc_page();
1150 if (unlikely(!page)) {
1151 rx_ring->rx_stats.alloc_page_failed++;
1152 return false;
1153 }
1154
1155 /* map page for use */
1156 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1157
1158 /* if mapping failed free memory back to system since
1159 * there isn't much point in holding memory we can't use
1160 */
1161 if (dma_mapping_error(rx_ring->dev, dma)) {
1162 __free_pages(page, 0);
1163 rx_ring->rx_stats.alloc_page_failed++;
1164 return false;
1165 }
1166
1167 bi->dma = dma;
1168 bi->page = page;
1169 bi->page_offset = 0;
1170
1171 return true;
1172}
1173
1174/**
1175 * i40e_receive_skb - Send a completed packet up the stack
1176 * @rx_ring: rx ring in play
1177 * @skb: packet to send up
1178 * @vlan_tag: vlan tag for packet
1179 **/
1180static void i40e_receive_skb(struct i40e_ring *rx_ring,
1181 struct sk_buff *skb, u16 vlan_tag)
1182{
1183 struct i40e_q_vector *q_vector = rx_ring->q_vector;
1184
1185 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1186 (vlan_tag & VLAN_VID_MASK))
1187 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1188
1189 napi_gro_receive(&q_vector->napi, skb);
1190}
1191
1192/**
1193 * i40e_alloc_rx_buffers - Replace used receive buffers
1194 * @rx_ring: ring to place buffers on
1195 * @cleaned_count: number of buffers to replace
1196 *
1197 * Returns false if all allocations were successful, true if any fail
1198 **/
1199bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1200{
1201 u16 ntu = rx_ring->next_to_use;
1202 union i40e_rx_desc *rx_desc;
1203 struct i40e_rx_buffer *bi;
1204
1205 /* do nothing if no valid netdev defined */
1206 if (!rx_ring->netdev || !cleaned_count)
1207 return false;
1208
1209 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1210 bi = &rx_ring->rx_bi[ntu];
1211
1212 do {
1213 if (!i40e_alloc_mapped_page(rx_ring, bi))
1214 goto no_buffers;
1215
1216 /* Refresh the desc even if buffer_addrs didn't change
1217 * because each write-back erases this info.
1218 */
1219 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1220
1221 rx_desc++;
1222 bi++;
1223 ntu++;
1224 if (unlikely(ntu == rx_ring->count)) {
1225 rx_desc = I40E_RX_DESC(rx_ring, 0);
1226 bi = rx_ring->rx_bi;
1227 ntu = 0;
1228 }
1229
1230 /* clear the status bits for the next_to_use descriptor */
1231 rx_desc->wb.qword1.status_error_len = 0;
1232
1233 cleaned_count--;
1234 } while (cleaned_count);
1235
1236 if (rx_ring->next_to_use != ntu)
1237 i40e_release_rx_desc(rx_ring, ntu);
1238
1239 return false;
1240
1241no_buffers:
1242 if (rx_ring->next_to_use != ntu)
1243 i40e_release_rx_desc(rx_ring, ntu);
1244
1245 /* make sure to come back via polling to try again after
1246 * allocation failure
1247 */
1248 return true;
1249}
1250
1251/**
1252 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1253 * @vsi: the VSI we care about
1254 * @skb: skb currently being received and modified
1255 * @rx_desc: the receive descriptor
1256 *
1257 * skb->protocol must be set before this function is called
1258 **/
1259static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1260 struct sk_buff *skb,
1261 union i40e_rx_desc *rx_desc)
1262{
1263 struct i40e_rx_ptype_decoded decoded;
1264 u32 rx_error, rx_status;
1265 bool ipv4, ipv6;
1266 u8 ptype;
1267 u64 qword;
1268
1269 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1270 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1271 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1272 I40E_RXD_QW1_ERROR_SHIFT;
1273 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1274 I40E_RXD_QW1_STATUS_SHIFT;
1275 decoded = decode_rx_desc_ptype(ptype);
1276
1277 skb->ip_summed = CHECKSUM_NONE;
1278
1279 skb_checksum_none_assert(skb);
1280
1281 /* Rx csum enabled and ip headers found? */
1282 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1283 return;
1284
1285 /* did the hardware decode the packet and checksum? */
1286 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1287 return;
1288
1289 /* both known and outer_ip must be set for the below code to work */
1290 if (!(decoded.known && decoded.outer_ip))
1291 return;
1292
1293 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1294 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1295 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1296 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1297
1298 if (ipv4 &&
1299 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1300 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1301 goto checksum_fail;
1302
1303 /* likely incorrect csum if alternate IP extension headers found */
1304 if (ipv6 &&
1305 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1306 /* don't increment checksum err here, non-fatal err */
1307 return;
1308
1309 /* there was some L4 error, count error and punt packet to the stack */
1310 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1311 goto checksum_fail;
1312
1313 /* handle packets that were not able to be checksummed due
1314 * to arrival speed, in this case the stack can compute
1315 * the csum.
1316 */
1317 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1318 return;
1319
1320 /* If there is an outer header present that might contain a checksum
1321 * we need to bump the checksum level by 1 to reflect the fact that
1322 * we are indicating we validated the inner checksum.
1323 */
1324 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1325 skb->csum_level = 1;
1326
1327 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1328 switch (decoded.inner_prot) {
1329 case I40E_RX_PTYPE_INNER_PROT_TCP:
1330 case I40E_RX_PTYPE_INNER_PROT_UDP:
1331 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1332 skb->ip_summed = CHECKSUM_UNNECESSARY;
1333 /* fall though */
1334 default:
1335 break;
1336 }
1337
1338 return;
1339
1340checksum_fail:
1341 vsi->back->hw_csum_rx_error++;
1342}
1343
1344/**
1345 * i40e_ptype_to_htype - get a hash type
1346 * @ptype: the ptype value from the descriptor
1347 *
1348 * Returns a hash type to be used by skb_set_hash
1349 **/
1350static inline int i40e_ptype_to_htype(u8 ptype)
1351{
1352 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1353
1354 if (!decoded.known)
1355 return PKT_HASH_TYPE_NONE;
1356
1357 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1358 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1359 return PKT_HASH_TYPE_L4;
1360 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1361 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1362 return PKT_HASH_TYPE_L3;
1363 else
1364 return PKT_HASH_TYPE_L2;
1365}
1366
1367/**
1368 * i40e_rx_hash - set the hash value in the skb
1369 * @ring: descriptor ring
1370 * @rx_desc: specific descriptor
1371 **/
1372static inline void i40e_rx_hash(struct i40e_ring *ring,
1373 union i40e_rx_desc *rx_desc,
1374 struct sk_buff *skb,
1375 u8 rx_ptype)
1376{
1377 u32 hash;
1378 const __le64 rss_mask =
1379 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1380 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1381
1382 if (!(ring->netdev->features & NETIF_F_RXHASH))
1383 return;
1384
1385 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1386 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1387 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1388 }
1389}
1390
1391/**
1392 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1393 * @rx_ring: rx descriptor ring packet is being transacted on
1394 * @rx_desc: pointer to the EOP Rx descriptor
1395 * @skb: pointer to current skb being populated
1396 * @rx_ptype: the packet type decoded by hardware
1397 *
1398 * This function checks the ring, descriptor, and packet information in
1399 * order to populate the hash, checksum, VLAN, protocol, and
1400 * other fields within the skb.
1401 **/
1402static inline
1403void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1404 union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1405 u8 rx_ptype)
1406{
1407 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1408 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1409 I40E_RXD_QW1_STATUS_SHIFT;
1410 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1411 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1412 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1413
1414 if (unlikely(tsynvalid))
1415 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1416
1417 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1418
1419 /* modifies the skb - consumes the enet header */
1420 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1421
1422 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1423
1424 skb_record_rx_queue(skb, rx_ring->queue_index);
1425}
1426
1427/**
1428 * i40e_pull_tail - i40e specific version of skb_pull_tail
1429 * @rx_ring: rx descriptor ring packet is being transacted on
1430 * @skb: pointer to current skb being adjusted
1431 *
1432 * This function is an i40e specific version of __pskb_pull_tail. The
1433 * main difference between this version and the original function is that
1434 * this function can make several assumptions about the state of things
1435 * that allow for significant optimizations versus the standard function.
1436 * As a result we can do things like drop a frag and maintain an accurate
1437 * truesize for the skb.
1438 */
1439static void i40e_pull_tail(struct i40e_ring *rx_ring, struct sk_buff *skb)
1440{
1441 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
1442 unsigned char *va;
1443 unsigned int pull_len;
1444
1445 /* it is valid to use page_address instead of kmap since we are
1446 * working with pages allocated out of the lomem pool per
1447 * alloc_page(GFP_ATOMIC)
1448 */
1449 va = skb_frag_address(frag);
1450
1451 /* we need the header to contain the greater of either ETH_HLEN or
1452 * 60 bytes if the skb->len is less than 60 for skb_pad.
1453 */
1454 pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1455
1456 /* align pull length to size of long to optimize memcpy performance */
1457 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
1458
1459 /* update all of the pointers */
1460 skb_frag_size_sub(frag, pull_len);
1461 frag->page_offset += pull_len;
1462 skb->data_len -= pull_len;
1463 skb->tail += pull_len;
1464}
1465
1466/**
1467 * i40e_cleanup_headers - Correct empty headers
1468 * @rx_ring: rx descriptor ring packet is being transacted on
1469 * @skb: pointer to current skb being fixed
1470 *
1471 * Also address the case where we are pulling data in on pages only
1472 * and as such no data is present in the skb header.
1473 *
1474 * In addition if skb is not at least 60 bytes we need to pad it so that
1475 * it is large enough to qualify as a valid Ethernet frame.
1476 *
1477 * Returns true if an error was encountered and skb was freed.
1478 **/
1479static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
1480{
1481 /* place header in linear portion of buffer */
1482 if (skb_is_nonlinear(skb))
1483 i40e_pull_tail(rx_ring, skb);
1484
1485 /* if eth_skb_pad returns an error the skb was freed */
1486 if (eth_skb_pad(skb))
1487 return true;
1488
1489 return false;
1490}
1491
1492/**
1493 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1494 * @rx_ring: rx descriptor ring to store buffers on
1495 * @old_buff: donor buffer to have page reused
1496 *
1497 * Synchronizes page for reuse by the adapter
1498 **/
1499static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1500 struct i40e_rx_buffer *old_buff)
1501{
1502 struct i40e_rx_buffer *new_buff;
1503 u16 nta = rx_ring->next_to_alloc;
1504
1505 new_buff = &rx_ring->rx_bi[nta];
1506
1507 /* update, and store next to alloc */
1508 nta++;
1509 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1510
1511 /* transfer page from old buffer to new buffer */
1512 *new_buff = *old_buff;
1513}
1514
1515/**
1516 * i40e_page_is_reserved - check if reuse is possible
1517 * @page: page struct to check
1518 */
1519static inline bool i40e_page_is_reserved(struct page *page)
1520{
1521 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1522}
1523
1524/**
1525 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1526 * @rx_ring: rx descriptor ring to transact packets on
1527 * @rx_buffer: buffer containing page to add
1528 * @rx_desc: descriptor containing length of buffer written by hardware
1529 * @skb: sk_buff to place the data into
1530 *
1531 * This function will add the data contained in rx_buffer->page to the skb.
1532 * This is done either through a direct copy if the data in the buffer is
1533 * less than the skb header size, otherwise it will just attach the page as
1534 * a frag to the skb.
1535 *
1536 * The function will then update the page offset if necessary and return
1537 * true if the buffer can be reused by the adapter.
1538 **/
1539static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
1540 struct i40e_rx_buffer *rx_buffer,
1541 union i40e_rx_desc *rx_desc,
1542 struct sk_buff *skb)
1543{
1544 struct page *page = rx_buffer->page;
1545 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1546 unsigned int size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1547 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1548#if (PAGE_SIZE < 8192)
1549 unsigned int truesize = I40E_RXBUFFER_2048;
1550#else
1551 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
1552 unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
1553#endif
1554
1555 /* will the data fit in the skb we allocated? if so, just
1556 * copy it as it is pretty small anyway
1557 */
1558 if ((size <= I40E_RX_HDR_SIZE) && !skb_is_nonlinear(skb)) {
1559 unsigned char *va = page_address(page) + rx_buffer->page_offset;
1560
1561 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
1562
1563 /* page is not reserved, we can reuse buffer as-is */
1564 if (likely(!i40e_page_is_reserved(page)))
1565 return true;
1566
1567 /* this page cannot be reused so discard it */
1568 __free_pages(page, 0);
1569 return false;
1570 }
1571
1572 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1573 rx_buffer->page_offset, size, truesize);
1574
1575 /* avoid re-using remote pages */
1576 if (unlikely(i40e_page_is_reserved(page)))
1577 return false;
1578
1579#if (PAGE_SIZE < 8192)
1580 /* if we are only owner of page we can reuse it */
1581 if (unlikely(page_count(page) != 1))
1582 return false;
1583
1584 /* flip page offset to other buffer */
1585 rx_buffer->page_offset ^= truesize;
1586#else
1587 /* move offset up to the next cache line */
1588 rx_buffer->page_offset += truesize;
1589
1590 if (rx_buffer->page_offset > last_offset)
1591 return false;
1592#endif
1593
1594 /* Even if we own the page, we are not allowed to use atomic_set()
1595 * This would break get_page_unless_zero() users.
1596 */
1597 get_page(rx_buffer->page);
1598
1599 return true;
1600}
1601
1602/**
1603 * i40e_fetch_rx_buffer - Allocate skb and populate it
1604 * @rx_ring: rx descriptor ring to transact packets on
1605 * @rx_desc: descriptor containing info written by hardware
1606 *
1607 * This function allocates an skb on the fly, and populates it with the page
1608 * data from the current receive descriptor, taking care to set up the skb
1609 * correctly, as well as handling calling the page recycle function if
1610 * necessary.
1611 */
1612static inline
1613struct sk_buff *i40e_fetch_rx_buffer(struct i40e_ring *rx_ring,
1614 union i40e_rx_desc *rx_desc)
1615{
1616 struct i40e_rx_buffer *rx_buffer;
1617 struct sk_buff *skb;
1618 struct page *page;
1619
1620 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1621 page = rx_buffer->page;
1622 prefetchw(page);
1623
1624 skb = rx_buffer->skb;
1625
1626 if (likely(!skb)) {
1627 void *page_addr = page_address(page) + rx_buffer->page_offset;
1628
1629 /* prefetch first cache line of first page */
1630 prefetch(page_addr);
1631#if L1_CACHE_BYTES < 128
1632 prefetch(page_addr + L1_CACHE_BYTES);
1633#endif
1634
1635 /* allocate a skb to store the frags */
1636 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1637 I40E_RX_HDR_SIZE,
1638 GFP_ATOMIC | __GFP_NOWARN);
1639 if (unlikely(!skb)) {
1640 rx_ring->rx_stats.alloc_buff_failed++;
1641 return NULL;
1642 }
1643
1644 /* we will be copying header into skb->data in
1645 * pskb_may_pull so it is in our interest to prefetch
1646 * it now to avoid a possible cache miss
1647 */
1648 prefetchw(skb->data);
1649 } else {
1650 rx_buffer->skb = NULL;
1651 }
1652
1653 /* we are reusing so sync this buffer for CPU use */
1654 dma_sync_single_range_for_cpu(rx_ring->dev,
1655 rx_buffer->dma,
1656 rx_buffer->page_offset,
1657 I40E_RXBUFFER_2048,
1658 DMA_FROM_DEVICE);
1659
1660 /* pull page into skb */
1661 if (i40e_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
1662 /* hand second half of page back to the ring */
1663 i40e_reuse_rx_page(rx_ring, rx_buffer);
1664 rx_ring->rx_stats.page_reuse_count++;
1665 } else {
1666 /* we are not reusing the buffer so unmap it */
1667 dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
1668 DMA_FROM_DEVICE);
1669 }
1670
1671 /* clear contents of buffer_info */
1672 rx_buffer->page = NULL;
1673
1674 return skb;
1675}
1676
1677/**
1678 * i40e_is_non_eop - process handling of non-EOP buffers
1679 * @rx_ring: Rx ring being processed
1680 * @rx_desc: Rx descriptor for current buffer
1681 * @skb: Current socket buffer containing buffer in progress
1682 *
1683 * This function updates next to clean. If the buffer is an EOP buffer
1684 * this function exits returning false, otherwise it will place the
1685 * sk_buff in the next buffer to be chained and return true indicating
1686 * that this is in fact a non-EOP buffer.
1687 **/
1688static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1689 union i40e_rx_desc *rx_desc,
1690 struct sk_buff *skb)
1691{
1692 u32 ntc = rx_ring->next_to_clean + 1;
1693
1694 /* fetch, update, and store next to clean */
1695 ntc = (ntc < rx_ring->count) ? ntc : 0;
1696 rx_ring->next_to_clean = ntc;
1697
1698 prefetch(I40E_RX_DESC(rx_ring, ntc));
1699
1700#define staterrlen rx_desc->wb.qword1.status_error_len
1701 if (unlikely(i40e_rx_is_programming_status(le64_to_cpu(staterrlen)))) {
1702 i40e_clean_programming_status(rx_ring, rx_desc);
1703 rx_ring->rx_bi[ntc].skb = skb;
1704 return true;
1705 }
1706 /* if we are the last buffer then there is nothing else to do */
1707#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1708 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1709 return false;
1710
1711 /* place skb in next buffer to be received */
1712 rx_ring->rx_bi[ntc].skb = skb;
1713 rx_ring->rx_stats.non_eop_descs++;
1714
1715 return true;
1716}
1717
1718/**
1719 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1720 * @rx_ring: rx descriptor ring to transact packets on
1721 * @budget: Total limit on number of packets to process
1722 *
1723 * This function provides a "bounce buffer" approach to Rx interrupt
1724 * processing. The advantage to this is that on systems that have
1725 * expensive overhead for IOMMU access this provides a means of avoiding
1726 * it by maintaining the mapping of the page to the system.
1727 *
1728 * Returns amount of work completed
1729 **/
1730static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1731{
1732 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1733 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1734 bool failure = false;
1735
1736 while (likely(total_rx_packets < budget)) {
1737 union i40e_rx_desc *rx_desc;
1738 struct sk_buff *skb;
1739 u16 vlan_tag;
1740 u8 rx_ptype;
1741 u64 qword;
1742
1743 /* return some buffers to hardware, one at a time is too slow */
1744 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1745 failure = failure ||
1746 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1747 cleaned_count = 0;
1748 }
1749
1750 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1751
1752 /* status_error_len will always be zero for unused descriptors
1753 * because it's cleared in cleanup, and overlaps with hdr_addr
1754 * which is always zero because packet split isn't used, if the
1755 * hardware wrote DD then it will be non-zero
1756 */
1757 if (!i40e_test_staterr(rx_desc,
1758 BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1759 break;
1760
1761 /* This memory barrier is needed to keep us from reading
1762 * any other fields out of the rx_desc until we know the
1763 * DD bit is set.
1764 */
1765 dma_rmb();
1766
1767 skb = i40e_fetch_rx_buffer(rx_ring, rx_desc);
1768 if (!skb)
1769 break;
1770
1771 cleaned_count++;
1772
1773 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1774 continue;
1775
1776 /* ERR_MASK will only have valid bits if EOP set, and
1777 * what we are doing here is actually checking
1778 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1779 * the error field
1780 */
1781 if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1782 dev_kfree_skb_any(skb);
1783 continue;
1784 }
1785
1786 if (i40e_cleanup_headers(rx_ring, skb))
1787 continue;
1788
1789 /* probably a little skewed due to removing CRC */
1790 total_rx_bytes += skb->len;
1791
1792 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1793 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1794 I40E_RXD_QW1_PTYPE_SHIFT;
1795
1796 /* populate checksum, VLAN, and protocol */
1797 i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1798
1799#ifdef I40E_FCOE
1800 if (unlikely(
1801 i40e_rx_is_fcoe(rx_ptype) &&
1802 !i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
1803 dev_kfree_skb_any(skb);
1804 continue;
1805 }
1806#endif
1807
1808 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1809 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1810
1811 i40e_receive_skb(rx_ring, skb, vlan_tag);
1812
1813 /* update budget accounting */
1814 total_rx_packets++;
1815 }
1816
1817 u64_stats_update_begin(&rx_ring->syncp);
1818 rx_ring->stats.packets += total_rx_packets;
1819 rx_ring->stats.bytes += total_rx_bytes;
1820 u64_stats_update_end(&rx_ring->syncp);
1821 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1822 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1823
1824 /* guarantee a trip back through this routine if there was a failure */
1825 return failure ? budget : total_rx_packets;
1826}
1827
1828static u32 i40e_buildreg_itr(const int type, const u16 itr)
1829{
1830 u32 val;
1831
1832 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1833 /* Don't clear PBA because that can cause lost interrupts that
1834 * came in while we were cleaning/polling
1835 */
1836 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1837 (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1838
1839 return val;
1840}
1841
1842/* a small macro to shorten up some long lines */
1843#define INTREG I40E_PFINT_DYN_CTLN
1844static inline int get_rx_itr_enabled(struct i40e_vsi *vsi, int idx)
1845{
1846 return !!(vsi->rx_rings[idx]->rx_itr_setting);
1847}
1848
1849static inline int get_tx_itr_enabled(struct i40e_vsi *vsi, int idx)
1850{
1851 return !!(vsi->tx_rings[idx]->tx_itr_setting);
1852}
1853
1854/**
1855 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1856 * @vsi: the VSI we care about
1857 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1858 *
1859 **/
1860static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1861 struct i40e_q_vector *q_vector)
1862{
1863 struct i40e_hw *hw = &vsi->back->hw;
1864 bool rx = false, tx = false;
1865 u32 rxval, txval;
1866 int vector;
1867 int idx = q_vector->v_idx;
1868 int rx_itr_setting, tx_itr_setting;
1869
1870 vector = (q_vector->v_idx + vsi->base_vector);
1871
1872 /* avoid dynamic calculation if in countdown mode OR if
1873 * all dynamic is disabled
1874 */
1875 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1876
1877 rx_itr_setting = get_rx_itr_enabled(vsi, idx);
1878 tx_itr_setting = get_tx_itr_enabled(vsi, idx);
1879
1880 if (q_vector->itr_countdown > 0 ||
1881 (!ITR_IS_DYNAMIC(rx_itr_setting) &&
1882 !ITR_IS_DYNAMIC(tx_itr_setting))) {
1883 goto enable_int;
1884 }
1885
1886 if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1887 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1888 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1889 }
1890
1891 if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1892 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1893 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1894 }
1895
1896 if (rx || tx) {
1897 /* get the higher of the two ITR adjustments and
1898 * use the same value for both ITR registers
1899 * when in adaptive mode (Rx and/or Tx)
1900 */
1901 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1902
1903 q_vector->tx.itr = q_vector->rx.itr = itr;
1904 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1905 tx = true;
1906 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1907 rx = true;
1908 }
1909
1910 /* only need to enable the interrupt once, but need
1911 * to possibly update both ITR values
1912 */
1913 if (rx) {
1914 /* set the INTENA_MSK_MASK so that this first write
1915 * won't actually enable the interrupt, instead just
1916 * updating the ITR (it's bit 31 PF and VF)
1917 */
1918 rxval |= BIT(31);
1919 /* don't check _DOWN because interrupt isn't being enabled */
1920 wr32(hw, INTREG(vector - 1), rxval);
1921 }
1922
1923enable_int:
1924 if (!test_bit(__I40E_DOWN, &vsi->state))
1925 wr32(hw, INTREG(vector - 1), txval);
1926
1927 if (q_vector->itr_countdown)
1928 q_vector->itr_countdown--;
1929 else
1930 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1931}
1932
1933/**
1934 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1935 * @napi: napi struct with our devices info in it
1936 * @budget: amount of work driver is allowed to do this pass, in packets
1937 *
1938 * This function will clean all queues associated with a q_vector.
1939 *
1940 * Returns the amount of work done
1941 **/
1942int i40e_napi_poll(struct napi_struct *napi, int budget)
1943{
1944 struct i40e_q_vector *q_vector =
1945 container_of(napi, struct i40e_q_vector, napi);
1946 struct i40e_vsi *vsi = q_vector->vsi;
1947 struct i40e_ring *ring;
1948 bool clean_complete = true;
1949 bool arm_wb = false;
1950 int budget_per_ring;
1951 int work_done = 0;
1952
1953 if (test_bit(__I40E_DOWN, &vsi->state)) {
1954 napi_complete(napi);
1955 return 0;
1956 }
1957
1958 /* Clear hung_detected bit */
1959 clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
1960 /* Since the actual Tx work is minimal, we can give the Tx a larger
1961 * budget and be more aggressive about cleaning up the Tx descriptors.
1962 */
1963 i40e_for_each_ring(ring, q_vector->tx) {
1964 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1965 clean_complete = false;
1966 continue;
1967 }
1968 arm_wb |= ring->arm_wb;
1969 ring->arm_wb = false;
1970 }
1971
1972 /* Handle case where we are called by netpoll with a budget of 0 */
1973 if (budget <= 0)
1974 goto tx_only;
1975
1976 /* We attempt to distribute budget to each Rx queue fairly, but don't
1977 * allow the budget to go below 1 because that would exit polling early.
1978 */
1979 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1980
1981 i40e_for_each_ring(ring, q_vector->rx) {
1982 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
1983
1984 work_done += cleaned;
1985 /* if we clean as many as budgeted, we must not be done */
1986 if (cleaned >= budget_per_ring)
1987 clean_complete = false;
1988 }
1989
1990 /* If work not completed, return budget and polling will return */
1991 if (!clean_complete) {
1992 const cpumask_t *aff_mask = &q_vector->affinity_mask;
1993 int cpu_id = smp_processor_id();
1994
1995 /* It is possible that the interrupt affinity has changed but,
1996 * if the cpu is pegged at 100%, polling will never exit while
1997 * traffic continues and the interrupt will be stuck on this
1998 * cpu. We check to make sure affinity is correct before we
1999 * continue to poll, otherwise we must stop polling so the
2000 * interrupt can move to the correct cpu.
2001 */
2002 if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
2003 !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
2004tx_only:
2005 if (arm_wb) {
2006 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2007 i40e_enable_wb_on_itr(vsi, q_vector);
2008 }
2009 return budget;
2010 }
2011 }
2012
2013 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2014 q_vector->arm_wb_state = false;
2015
2016 /* Work is done so exit the polling mode and re-enable the interrupt */
2017 napi_complete_done(napi, work_done);
2018
2019 /* If we're prematurely stopping polling to fix the interrupt
2020 * affinity we want to make sure polling starts back up so we
2021 * issue a call to i40e_force_wb which triggers a SW interrupt.
2022 */
2023 if (!clean_complete)
2024 i40e_force_wb(vsi, q_vector);
2025 else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
2026 i40e_irq_dynamic_enable_icr0(vsi->back, false);
2027 else
2028 i40e_update_enable_itr(vsi, q_vector);
2029
2030 return min(work_done, budget - 1);
2031}
2032
2033/**
2034 * i40e_atr - Add a Flow Director ATR filter
2035 * @tx_ring: ring to add programming descriptor to
2036 * @skb: send buffer
2037 * @tx_flags: send tx flags
2038 **/
2039static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2040 u32 tx_flags)
2041{
2042 struct i40e_filter_program_desc *fdir_desc;
2043 struct i40e_pf *pf = tx_ring->vsi->back;
2044 union {
2045 unsigned char *network;
2046 struct iphdr *ipv4;
2047 struct ipv6hdr *ipv6;
2048 } hdr;
2049 struct tcphdr *th;
2050 unsigned int hlen;
2051 u32 flex_ptype, dtype_cmd;
2052 int l4_proto;
2053 u16 i;
2054
2055 /* make sure ATR is enabled */
2056 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2057 return;
2058
2059 if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2060 return;
2061
2062 /* if sampling is disabled do nothing */
2063 if (!tx_ring->atr_sample_rate)
2064 return;
2065
2066 /* Currently only IPv4/IPv6 with TCP is supported */
2067 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2068 return;
2069
2070 /* snag network header to get L4 type and address */
2071 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2072 skb_inner_network_header(skb) : skb_network_header(skb);
2073
2074 /* Note: tx_flags gets modified to reflect inner protocols in
2075 * tx_enable_csum function if encap is enabled.
2076 */
2077 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2078 /* access ihl as u8 to avoid unaligned access on ia64 */
2079 hlen = (hdr.network[0] & 0x0F) << 2;
2080 l4_proto = hdr.ipv4->protocol;
2081 } else {
2082 hlen = hdr.network - skb->data;
2083 l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
2084 hlen -= hdr.network - skb->data;
2085 }
2086
2087 if (l4_proto != IPPROTO_TCP)
2088 return;
2089
2090 th = (struct tcphdr *)(hdr.network + hlen);
2091
2092 /* Due to lack of space, no more new filters can be programmed */
2093 if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2094 return;
2095 if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2096 (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
2097 /* HW ATR eviction will take care of removing filters on FIN
2098 * and RST packets.
2099 */
2100 if (th->fin || th->rst)
2101 return;
2102 }
2103
2104 tx_ring->atr_count++;
2105
2106 /* sample on all syn/fin/rst packets or once every atr sample rate */
2107 if (!th->fin &&
2108 !th->syn &&
2109 !th->rst &&
2110 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2111 return;
2112
2113 tx_ring->atr_count = 0;
2114
2115 /* grab the next descriptor */
2116 i = tx_ring->next_to_use;
2117 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2118
2119 i++;
2120 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2121
2122 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2123 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2124 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2125 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2126 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2127 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2128 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2129
2130 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2131
2132 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2133
2134 dtype_cmd |= (th->fin || th->rst) ?
2135 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2136 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2137 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2138 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2139
2140 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2141 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2142
2143 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2144 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2145
2146 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2147 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2148 dtype_cmd |=
2149 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2150 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2151 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2152 else
2153 dtype_cmd |=
2154 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2155 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2156 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2157
2158 if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2159 (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
2160 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2161
2162 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2163 fdir_desc->rsvd = cpu_to_le32(0);
2164 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2165 fdir_desc->fd_id = cpu_to_le32(0);
2166}
2167
2168/**
2169 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2170 * @skb: send buffer
2171 * @tx_ring: ring to send buffer on
2172 * @flags: the tx flags to be set
2173 *
2174 * Checks the skb and set up correspondingly several generic transmit flags
2175 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2176 *
2177 * Returns error code indicate the frame should be dropped upon error and the
2178 * otherwise returns 0 to indicate the flags has been set properly.
2179 **/
2180#ifdef I40E_FCOE
2181inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2182 struct i40e_ring *tx_ring,
2183 u32 *flags)
2184#else
2185static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2186 struct i40e_ring *tx_ring,
2187 u32 *flags)
2188#endif
2189{
2190 __be16 protocol = skb->protocol;
2191 u32 tx_flags = 0;
2192
2193 if (protocol == htons(ETH_P_8021Q) &&
2194 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2195 /* When HW VLAN acceleration is turned off by the user the
2196 * stack sets the protocol to 8021q so that the driver
2197 * can take any steps required to support the SW only
2198 * VLAN handling. In our case the driver doesn't need
2199 * to take any further steps so just set the protocol
2200 * to the encapsulated ethertype.
2201 */
2202 skb->protocol = vlan_get_protocol(skb);
2203 goto out;
2204 }
2205
2206 /* if we have a HW VLAN tag being added, default to the HW one */
2207 if (skb_vlan_tag_present(skb)) {
2208 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2209 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2210 /* else if it is a SW VLAN, check the next protocol and store the tag */
2211 } else if (protocol == htons(ETH_P_8021Q)) {
2212 struct vlan_hdr *vhdr, _vhdr;
2213
2214 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2215 if (!vhdr)
2216 return -EINVAL;
2217
2218 protocol = vhdr->h_vlan_encapsulated_proto;
2219 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2220 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2221 }
2222
2223 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2224 goto out;
2225
2226 /* Insert 802.1p priority into VLAN header */
2227 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2228 (skb->priority != TC_PRIO_CONTROL)) {
2229 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2230 tx_flags |= (skb->priority & 0x7) <<
2231 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2232 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2233 struct vlan_ethhdr *vhdr;
2234 int rc;
2235
2236 rc = skb_cow_head(skb, 0);
2237 if (rc < 0)
2238 return rc;
2239 vhdr = (struct vlan_ethhdr *)skb->data;
2240 vhdr->h_vlan_TCI = htons(tx_flags >>
2241 I40E_TX_FLAGS_VLAN_SHIFT);
2242 } else {
2243 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2244 }
2245 }
2246
2247out:
2248 *flags = tx_flags;
2249 return 0;
2250}
2251
2252/**
2253 * i40e_tso - set up the tso context descriptor
2254 * @skb: ptr to the skb we're sending
2255 * @hdr_len: ptr to the size of the packet header
2256 * @cd_type_cmd_tso_mss: Quad Word 1
2257 *
2258 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2259 **/
2260static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
2261{
2262 u64 cd_cmd, cd_tso_len, cd_mss;
2263 union {
2264 struct iphdr *v4;
2265 struct ipv6hdr *v6;
2266 unsigned char *hdr;
2267 } ip;
2268 union {
2269 struct tcphdr *tcp;
2270 struct udphdr *udp;
2271 unsigned char *hdr;
2272 } l4;
2273 u32 paylen, l4_offset;
2274 int err;
2275
2276 if (skb->ip_summed != CHECKSUM_PARTIAL)
2277 return 0;
2278
2279 if (!skb_is_gso(skb))
2280 return 0;
2281
2282 err = skb_cow_head(skb, 0);
2283 if (err < 0)
2284 return err;
2285
2286 ip.hdr = skb_network_header(skb);
2287 l4.hdr = skb_transport_header(skb);
2288
2289 /* initialize outer IP header fields */
2290 if (ip.v4->version == 4) {
2291 ip.v4->tot_len = 0;
2292 ip.v4->check = 0;
2293 } else {
2294 ip.v6->payload_len = 0;
2295 }
2296
2297 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2298 SKB_GSO_GRE_CSUM |
2299 SKB_GSO_IPXIP4 |
2300 SKB_GSO_IPXIP6 |
2301 SKB_GSO_UDP_TUNNEL |
2302 SKB_GSO_UDP_TUNNEL_CSUM)) {
2303 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2304 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2305 l4.udp->len = 0;
2306
2307 /* determine offset of outer transport header */
2308 l4_offset = l4.hdr - skb->data;
2309
2310 /* remove payload length from outer checksum */
2311 paylen = skb->len - l4_offset;
2312 csum_replace_by_diff(&l4.udp->check, htonl(paylen));
2313 }
2314
2315 /* reset pointers to inner headers */
2316 ip.hdr = skb_inner_network_header(skb);
2317 l4.hdr = skb_inner_transport_header(skb);
2318
2319 /* initialize inner IP header fields */
2320 if (ip.v4->version == 4) {
2321 ip.v4->tot_len = 0;
2322 ip.v4->check = 0;
2323 } else {
2324 ip.v6->payload_len = 0;
2325 }
2326 }
2327
2328 /* determine offset of inner transport header */
2329 l4_offset = l4.hdr - skb->data;
2330
2331 /* remove payload length from inner checksum */
2332 paylen = skb->len - l4_offset;
2333 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2334
2335 /* compute length of segmentation header */
2336 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2337
2338 /* find the field values */
2339 cd_cmd = I40E_TX_CTX_DESC_TSO;
2340 cd_tso_len = skb->len - *hdr_len;
2341 cd_mss = skb_shinfo(skb)->gso_size;
2342 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2343 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2344 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2345 return 1;
2346}
2347
2348/**
2349 * i40e_tsyn - set up the tsyn context descriptor
2350 * @tx_ring: ptr to the ring to send
2351 * @skb: ptr to the skb we're sending
2352 * @tx_flags: the collected send information
2353 * @cd_type_cmd_tso_mss: Quad Word 1
2354 *
2355 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2356 **/
2357static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2358 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2359{
2360 struct i40e_pf *pf;
2361
2362 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2363 return 0;
2364
2365 /* Tx timestamps cannot be sampled when doing TSO */
2366 if (tx_flags & I40E_TX_FLAGS_TSO)
2367 return 0;
2368
2369 /* only timestamp the outbound packet if the user has requested it and
2370 * we are not already transmitting a packet to be timestamped
2371 */
2372 pf = i40e_netdev_to_pf(tx_ring->netdev);
2373 if (!(pf->flags & I40E_FLAG_PTP))
2374 return 0;
2375
2376 if (pf->ptp_tx &&
2377 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2378 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2379 pf->ptp_tx_skb = skb_get(skb);
2380 } else {
2381 return 0;
2382 }
2383
2384 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2385 I40E_TXD_CTX_QW1_CMD_SHIFT;
2386
2387 return 1;
2388}
2389
2390/**
2391 * i40e_tx_enable_csum - Enable Tx checksum offloads
2392 * @skb: send buffer
2393 * @tx_flags: pointer to Tx flags currently set
2394 * @td_cmd: Tx descriptor command bits to set
2395 * @td_offset: Tx descriptor header offsets to set
2396 * @tx_ring: Tx descriptor ring
2397 * @cd_tunneling: ptr to context desc bits
2398 **/
2399static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2400 u32 *td_cmd, u32 *td_offset,
2401 struct i40e_ring *tx_ring,
2402 u32 *cd_tunneling)
2403{
2404 union {
2405 struct iphdr *v4;
2406 struct ipv6hdr *v6;
2407 unsigned char *hdr;
2408 } ip;
2409 union {
2410 struct tcphdr *tcp;
2411 struct udphdr *udp;
2412 unsigned char *hdr;
2413 } l4;
2414 unsigned char *exthdr;
2415 u32 offset, cmd = 0;
2416 __be16 frag_off;
2417 u8 l4_proto = 0;
2418
2419 if (skb->ip_summed != CHECKSUM_PARTIAL)
2420 return 0;
2421
2422 ip.hdr = skb_network_header(skb);
2423 l4.hdr = skb_transport_header(skb);
2424
2425 /* compute outer L2 header size */
2426 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2427
2428 if (skb->encapsulation) {
2429 u32 tunnel = 0;
2430 /* define outer network header type */
2431 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2432 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2433 I40E_TX_CTX_EXT_IP_IPV4 :
2434 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2435
2436 l4_proto = ip.v4->protocol;
2437 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2438 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2439
2440 exthdr = ip.hdr + sizeof(*ip.v6);
2441 l4_proto = ip.v6->nexthdr;
2442 if (l4.hdr != exthdr)
2443 ipv6_skip_exthdr(skb, exthdr - skb->data,
2444 &l4_proto, &frag_off);
2445 }
2446
2447 /* define outer transport */
2448 switch (l4_proto) {
2449 case IPPROTO_UDP:
2450 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2451 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2452 break;
2453 case IPPROTO_GRE:
2454 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2455 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2456 break;
2457 case IPPROTO_IPIP:
2458 case IPPROTO_IPV6:
2459 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2460 l4.hdr = skb_inner_network_header(skb);
2461 break;
2462 default:
2463 if (*tx_flags & I40E_TX_FLAGS_TSO)
2464 return -1;
2465
2466 skb_checksum_help(skb);
2467 return 0;
2468 }
2469
2470 /* compute outer L3 header size */
2471 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2472 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2473
2474 /* switch IP header pointer from outer to inner header */
2475 ip.hdr = skb_inner_network_header(skb);
2476
2477 /* compute tunnel header size */
2478 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2479 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2480
2481 /* indicate if we need to offload outer UDP header */
2482 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2483 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2484 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2485 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2486
2487 /* record tunnel offload values */
2488 *cd_tunneling |= tunnel;
2489
2490 /* switch L4 header pointer from outer to inner */
2491 l4.hdr = skb_inner_transport_header(skb);
2492 l4_proto = 0;
2493
2494 /* reset type as we transition from outer to inner headers */
2495 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2496 if (ip.v4->version == 4)
2497 *tx_flags |= I40E_TX_FLAGS_IPV4;
2498 if (ip.v6->version == 6)
2499 *tx_flags |= I40E_TX_FLAGS_IPV6;
2500 }
2501
2502 /* Enable IP checksum offloads */
2503 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2504 l4_proto = ip.v4->protocol;
2505 /* the stack computes the IP header already, the only time we
2506 * need the hardware to recompute it is in the case of TSO.
2507 */
2508 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2509 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2510 I40E_TX_DESC_CMD_IIPT_IPV4;
2511 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2512 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2513
2514 exthdr = ip.hdr + sizeof(*ip.v6);
2515 l4_proto = ip.v6->nexthdr;
2516 if (l4.hdr != exthdr)
2517 ipv6_skip_exthdr(skb, exthdr - skb->data,
2518 &l4_proto, &frag_off);
2519 }
2520
2521 /* compute inner L3 header size */
2522 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2523
2524 /* Enable L4 checksum offloads */
2525 switch (l4_proto) {
2526 case IPPROTO_TCP:
2527 /* enable checksum offloads */
2528 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2529 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2530 break;
2531 case IPPROTO_SCTP:
2532 /* enable SCTP checksum offload */
2533 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2534 offset |= (sizeof(struct sctphdr) >> 2) <<
2535 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2536 break;
2537 case IPPROTO_UDP:
2538 /* enable UDP checksum offload */
2539 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2540 offset |= (sizeof(struct udphdr) >> 2) <<
2541 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2542 break;
2543 default:
2544 if (*tx_flags & I40E_TX_FLAGS_TSO)
2545 return -1;
2546 skb_checksum_help(skb);
2547 return 0;
2548 }
2549
2550 *td_cmd |= cmd;
2551 *td_offset |= offset;
2552
2553 return 1;
2554}
2555
2556/**
2557 * i40e_create_tx_ctx Build the Tx context descriptor
2558 * @tx_ring: ring to create the descriptor on
2559 * @cd_type_cmd_tso_mss: Quad Word 1
2560 * @cd_tunneling: Quad Word 0 - bits 0-31
2561 * @cd_l2tag2: Quad Word 0 - bits 32-63
2562 **/
2563static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2564 const u64 cd_type_cmd_tso_mss,
2565 const u32 cd_tunneling, const u32 cd_l2tag2)
2566{
2567 struct i40e_tx_context_desc *context_desc;
2568 int i = tx_ring->next_to_use;
2569
2570 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2571 !cd_tunneling && !cd_l2tag2)
2572 return;
2573
2574 /* grab the next descriptor */
2575 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2576
2577 i++;
2578 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2579
2580 /* cpu_to_le32 and assign to struct fields */
2581 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2582 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2583 context_desc->rsvd = cpu_to_le16(0);
2584 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2585}
2586
2587/**
2588 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2589 * @tx_ring: the ring to be checked
2590 * @size: the size buffer we want to assure is available
2591 *
2592 * Returns -EBUSY if a stop is needed, else 0
2593 **/
2594int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2595{
2596 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2597 /* Memory barrier before checking head and tail */
2598 smp_mb();
2599
2600 /* Check again in a case another CPU has just made room available. */
2601 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2602 return -EBUSY;
2603
2604 /* A reprieve! - use start_queue because it doesn't call schedule */
2605 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2606 ++tx_ring->tx_stats.restart_queue;
2607 return 0;
2608}
2609
2610/**
2611 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2612 * @skb: send buffer
2613 *
2614 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2615 * and so we need to figure out the cases where we need to linearize the skb.
2616 *
2617 * For TSO we need to count the TSO header and segment payload separately.
2618 * As such we need to check cases where we have 7 fragments or more as we
2619 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2620 * the segment payload in the first descriptor, and another 7 for the
2621 * fragments.
2622 **/
2623bool __i40e_chk_linearize(struct sk_buff *skb)
2624{
2625 const struct skb_frag_struct *frag, *stale;
2626 int nr_frags, sum;
2627
2628 /* no need to check if number of frags is less than 7 */
2629 nr_frags = skb_shinfo(skb)->nr_frags;
2630 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2631 return false;
2632
2633 /* We need to walk through the list and validate that each group
2634 * of 6 fragments totals at least gso_size.
2635 */
2636 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2637 frag = &skb_shinfo(skb)->frags[0];
2638
2639 /* Initialize size to the negative value of gso_size minus 1. We
2640 * use this as the worst case scenerio in which the frag ahead
2641 * of us only provides one byte which is why we are limited to 6
2642 * descriptors for a single transmit as the header and previous
2643 * fragment are already consuming 2 descriptors.
2644 */
2645 sum = 1 - skb_shinfo(skb)->gso_size;
2646
2647 /* Add size of frags 0 through 4 to create our initial sum */
2648 sum += skb_frag_size(frag++);
2649 sum += skb_frag_size(frag++);
2650 sum += skb_frag_size(frag++);
2651 sum += skb_frag_size(frag++);
2652 sum += skb_frag_size(frag++);
2653
2654 /* Walk through fragments adding latest fragment, testing it, and
2655 * then removing stale fragments from the sum.
2656 */
2657 stale = &skb_shinfo(skb)->frags[0];
2658 for (;;) {
2659 sum += skb_frag_size(frag++);
2660
2661 /* if sum is negative we failed to make sufficient progress */
2662 if (sum < 0)
2663 return true;
2664
2665 if (!nr_frags--)
2666 break;
2667
2668 sum -= skb_frag_size(stale++);
2669 }
2670
2671 return false;
2672}
2673
2674/**
2675 * i40e_tx_map - Build the Tx descriptor
2676 * @tx_ring: ring to send buffer on
2677 * @skb: send buffer
2678 * @first: first buffer info buffer to use
2679 * @tx_flags: collected send information
2680 * @hdr_len: size of the packet header
2681 * @td_cmd: the command field in the descriptor
2682 * @td_offset: offset for checksum or crc
2683 **/
2684#ifdef I40E_FCOE
2685inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2686 struct i40e_tx_buffer *first, u32 tx_flags,
2687 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2688#else
2689static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2690 struct i40e_tx_buffer *first, u32 tx_flags,
2691 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2692#endif
2693{
2694 unsigned int data_len = skb->data_len;
2695 unsigned int size = skb_headlen(skb);
2696 struct skb_frag_struct *frag;
2697 struct i40e_tx_buffer *tx_bi;
2698 struct i40e_tx_desc *tx_desc;
2699 u16 i = tx_ring->next_to_use;
2700 u32 td_tag = 0;
2701 dma_addr_t dma;
2702 u16 gso_segs;
2703 u16 desc_count = 1;
2704
2705 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2706 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2707 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2708 I40E_TX_FLAGS_VLAN_SHIFT;
2709 }
2710
2711 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2712 gso_segs = skb_shinfo(skb)->gso_segs;
2713 else
2714 gso_segs = 1;
2715
2716 /* multiply data chunks by size of headers */
2717 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2718 first->gso_segs = gso_segs;
2719 first->skb = skb;
2720 first->tx_flags = tx_flags;
2721
2722 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2723
2724 tx_desc = I40E_TX_DESC(tx_ring, i);
2725 tx_bi = first;
2726
2727 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2728 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2729
2730 if (dma_mapping_error(tx_ring->dev, dma))
2731 goto dma_error;
2732
2733 /* record length, and DMA address */
2734 dma_unmap_len_set(tx_bi, len, size);
2735 dma_unmap_addr_set(tx_bi, dma, dma);
2736
2737 /* align size to end of page */
2738 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2739 tx_desc->buffer_addr = cpu_to_le64(dma);
2740
2741 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2742 tx_desc->cmd_type_offset_bsz =
2743 build_ctob(td_cmd, td_offset,
2744 max_data, td_tag);
2745
2746 tx_desc++;
2747 i++;
2748 desc_count++;
2749
2750 if (i == tx_ring->count) {
2751 tx_desc = I40E_TX_DESC(tx_ring, 0);
2752 i = 0;
2753 }
2754
2755 dma += max_data;
2756 size -= max_data;
2757
2758 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2759 tx_desc->buffer_addr = cpu_to_le64(dma);
2760 }
2761
2762 if (likely(!data_len))
2763 break;
2764
2765 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2766 size, td_tag);
2767
2768 tx_desc++;
2769 i++;
2770 desc_count++;
2771
2772 if (i == tx_ring->count) {
2773 tx_desc = I40E_TX_DESC(tx_ring, 0);
2774 i = 0;
2775 }
2776
2777 size = skb_frag_size(frag);
2778 data_len -= size;
2779
2780 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2781 DMA_TO_DEVICE);
2782
2783 tx_bi = &tx_ring->tx_bi[i];
2784 }
2785
2786 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2787
2788 i++;
2789 if (i == tx_ring->count)
2790 i = 0;
2791
2792 tx_ring->next_to_use = i;
2793
2794 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2795
2796 /* write last descriptor with EOP bit */
2797 td_cmd |= I40E_TX_DESC_CMD_EOP;
2798
2799 /* We can OR these values together as they both are checked against
2800 * 4 below and at this point desc_count will be used as a boolean value
2801 * after this if/else block.
2802 */
2803 desc_count |= ++tx_ring->packet_stride;
2804
2805 /* Algorithm to optimize tail and RS bit setting:
2806 * if queue is stopped
2807 * mark RS bit
2808 * reset packet counter
2809 * else if xmit_more is supported and is true
2810 * advance packet counter to 4
2811 * reset desc_count to 0
2812 *
2813 * if desc_count >= 4
2814 * mark RS bit
2815 * reset packet counter
2816 * if desc_count > 0
2817 * update tail
2818 *
2819 * Note: If there are less than 4 descriptors
2820 * pending and interrupts were disabled the service task will
2821 * trigger a force WB.
2822 */
2823 if (netif_xmit_stopped(txring_txq(tx_ring))) {
2824 goto do_rs;
2825 } else if (skb->xmit_more) {
2826 /* set stride to arm on next packet and reset desc_count */
2827 tx_ring->packet_stride = WB_STRIDE;
2828 desc_count = 0;
2829 } else if (desc_count >= WB_STRIDE) {
2830do_rs:
2831 /* write last descriptor with RS bit set */
2832 td_cmd |= I40E_TX_DESC_CMD_RS;
2833 tx_ring->packet_stride = 0;
2834 }
2835
2836 tx_desc->cmd_type_offset_bsz =
2837 build_ctob(td_cmd, td_offset, size, td_tag);
2838
2839 /* Force memory writes to complete before letting h/w know there
2840 * are new descriptors to fetch.
2841 *
2842 * We also use this memory barrier to make certain all of the
2843 * status bits have been updated before next_to_watch is written.
2844 */
2845 wmb();
2846
2847 /* set next_to_watch value indicating a packet is present */
2848 first->next_to_watch = tx_desc;
2849
2850 /* notify HW of packet */
2851 if (desc_count) {
2852 writel(i, tx_ring->tail);
2853
2854 /* we need this if more than one processor can write to our tail
2855 * at a time, it synchronizes IO on IA64/Altix systems
2856 */
2857 mmiowb();
2858 }
2859
2860 return;
2861
2862dma_error:
2863 dev_info(tx_ring->dev, "TX DMA map failed\n");
2864
2865 /* clear dma mappings for failed tx_bi map */
2866 for (;;) {
2867 tx_bi = &tx_ring->tx_bi[i];
2868 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2869 if (tx_bi == first)
2870 break;
2871 if (i == 0)
2872 i = tx_ring->count;
2873 i--;
2874 }
2875
2876 tx_ring->next_to_use = i;
2877}
2878
2879/**
2880 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2881 * @skb: send buffer
2882 * @tx_ring: ring to send buffer on
2883 *
2884 * Returns NETDEV_TX_OK if sent, else an error code
2885 **/
2886static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2887 struct i40e_ring *tx_ring)
2888{
2889 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2890 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2891 struct i40e_tx_buffer *first;
2892 u32 td_offset = 0;
2893 u32 tx_flags = 0;
2894 __be16 protocol;
2895 u32 td_cmd = 0;
2896 u8 hdr_len = 0;
2897 int tso, count;
2898 int tsyn;
2899
2900 /* prefetch the data, we'll need it later */
2901 prefetch(skb->data);
2902
2903 count = i40e_xmit_descriptor_count(skb);
2904 if (i40e_chk_linearize(skb, count)) {
2905 if (__skb_linearize(skb))
2906 goto out_drop;
2907 count = i40e_txd_use_count(skb->len);
2908 tx_ring->tx_stats.tx_linearize++;
2909 }
2910
2911 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2912 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2913 * + 4 desc gap to avoid the cache line where head is,
2914 * + 1 desc for context descriptor,
2915 * otherwise try next time
2916 */
2917 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2918 tx_ring->tx_stats.tx_busy++;
2919 return NETDEV_TX_BUSY;
2920 }
2921
2922 /* prepare the xmit flags */
2923 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2924 goto out_drop;
2925
2926 /* obtain protocol of skb */
2927 protocol = vlan_get_protocol(skb);
2928
2929 /* record the location of the first descriptor for this packet */
2930 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2931
2932 /* setup IPv4/IPv6 offloads */
2933 if (protocol == htons(ETH_P_IP))
2934 tx_flags |= I40E_TX_FLAGS_IPV4;
2935 else if (protocol == htons(ETH_P_IPV6))
2936 tx_flags |= I40E_TX_FLAGS_IPV6;
2937
2938 tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
2939
2940 if (tso < 0)
2941 goto out_drop;
2942 else if (tso)
2943 tx_flags |= I40E_TX_FLAGS_TSO;
2944
2945 /* Always offload the checksum, since it's in the data descriptor */
2946 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2947 tx_ring, &cd_tunneling);
2948 if (tso < 0)
2949 goto out_drop;
2950
2951 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2952
2953 if (tsyn)
2954 tx_flags |= I40E_TX_FLAGS_TSYN;
2955
2956 skb_tx_timestamp(skb);
2957
2958 /* always enable CRC insertion offload */
2959 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2960
2961 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2962 cd_tunneling, cd_l2tag2);
2963
2964 /* Add Flow Director ATR if it's enabled.
2965 *
2966 * NOTE: this must always be directly before the data descriptor.
2967 */
2968 i40e_atr(tx_ring, skb, tx_flags);
2969
2970 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2971 td_cmd, td_offset);
2972
2973 return NETDEV_TX_OK;
2974
2975out_drop:
2976 dev_kfree_skb_any(skb);
2977 return NETDEV_TX_OK;
2978}
2979
2980/**
2981 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2982 * @skb: send buffer
2983 * @netdev: network interface device structure
2984 *
2985 * Returns NETDEV_TX_OK if sent, else an error code
2986 **/
2987netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2988{
2989 struct i40e_netdev_priv *np = netdev_priv(netdev);
2990 struct i40e_vsi *vsi = np->vsi;
2991 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2992
2993 /* hardware can't handle really short frames, hardware padding works
2994 * beyond this point
2995 */
2996 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2997 return NETDEV_TX_OK;
2998
2999 return i40e_xmit_frame_ring(skb, tx_ring);
3000}