Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1/*
  2 * Copyright (C) 2013 Broadcom Corporation
  3 * Copyright 2013 Linaro Limited
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation version 2.
  8 *
  9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 10 * kind, whether express or implied; without even the implied warranty
 11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 */
 14
 15#ifndef _CLK_KONA_H
 16#define _CLK_KONA_H
 17
 18#include <linux/kernel.h>
 19#include <linux/list.h>
 20#include <linux/spinlock.h>
 21#include <linux/slab.h>
 22#include <linux/device.h>
 23#include <linux/of.h>
 24#include <linux/clk-provider.h>
 25
 26#define	BILLION		1000000000
 27
 28/* The common clock framework uses u8 to represent a parent index */
 29#define PARENT_COUNT_MAX	((u32)U8_MAX)
 30
 31#define BAD_CLK_INDEX		U8_MAX	/* Can't ever be valid */
 32#define BAD_CLK_NAME		((const char *)-1)
 33
 34#define BAD_SCALED_DIV_VALUE	U64_MAX
 35
 36/*
 37 * Utility macros for object flag management.  If possible, flags
 38 * should be defined such that 0 is the desired default value.
 39 */
 40#define FLAG(type, flag)		BCM_CLK_ ## type ## _FLAGS_ ## flag
 41#define FLAG_SET(obj, type, flag)	((obj)->flags |= FLAG(type, flag))
 42#define FLAG_CLEAR(obj, type, flag)	((obj)->flags &= ~(FLAG(type, flag)))
 43#define FLAG_FLIP(obj, type, flag)	((obj)->flags ^= FLAG(type, flag))
 44#define FLAG_TEST(obj, type, flag)	(!!((obj)->flags & FLAG(type, flag)))
 45
 46/* CCU field state tests */
 47
 48#define ccu_policy_exists(ccu_policy)	((ccu_policy)->enable.offset != 0)
 49
 50/* Clock field state tests */
 51
 52#define policy_exists(policy)		((policy)->offset != 0)
 53
 54#define gate_exists(gate)		FLAG_TEST(gate, GATE, EXISTS)
 55#define gate_is_enabled(gate)		FLAG_TEST(gate, GATE, ENABLED)
 56#define gate_is_hw_controllable(gate)	FLAG_TEST(gate, GATE, HW)
 57#define gate_is_sw_controllable(gate)	FLAG_TEST(gate, GATE, SW)
 58#define gate_is_sw_managed(gate)	FLAG_TEST(gate, GATE, SW_MANAGED)
 59#define gate_is_no_disable(gate)	FLAG_TEST(gate, GATE, NO_DISABLE)
 60
 61#define gate_flip_enabled(gate)		FLAG_FLIP(gate, GATE, ENABLED)
 62
 63#define hyst_exists(hyst)		((hyst)->offset != 0)
 64
 65#define divider_exists(div)		FLAG_TEST(div, DIV, EXISTS)
 66#define divider_is_fixed(div)		FLAG_TEST(div, DIV, FIXED)
 67#define divider_has_fraction(div)	(!divider_is_fixed(div) && \
 68						(div)->u.s.frac_width > 0)
 69
 70#define selector_exists(sel)		((sel)->width != 0)
 71#define trigger_exists(trig)		FLAG_TEST(trig, TRIG, EXISTS)
 72
 73#define policy_lvm_en_exists(enable)	((enable)->offset != 0)
 74#define policy_ctl_exists(control)	((control)->offset != 0)
 75
 76/* Clock type, used to tell common block what it's part of */
 77enum bcm_clk_type {
 78	bcm_clk_none,		/* undefined clock type */
 79	bcm_clk_bus,
 80	bcm_clk_core,
 81	bcm_clk_peri
 82};
 83
 84/*
 85 * CCU policy control for clocks.  Clocks can be enabled or disabled
 86 * based on the CCU policy in effect.  One bit in each policy mask
 87 * register (one per CCU policy) represents whether the clock is
 88 * enabled when that policy is effect or not.  The CCU policy engine
 89 * must be stopped to update these bits, and must be restarted again
 90 * afterward.
 91 */
 92struct bcm_clk_policy {
 93	u32 offset;		/* first policy mask register offset */
 94	u32 bit;		/* bit used in all mask registers */
 95};
 96
 97/* Policy initialization macro */
 98
 99#define POLICY(_offset, _bit)						\
100	{								\
101		.offset = (_offset),					\
102		.bit = (_bit),						\
103	}
104
105/*
106 * Gating control and status is managed by a 32-bit gate register.
107 *
108 * There are several types of gating available:
109 * - (no gate)
110 *     A clock with no gate is assumed to be always enabled.
111 * - hardware-only gating (auto-gating)
112 *     Enabling or disabling clocks with this type of gate is
113 *     managed automatically by the hardware.  Such clocks can be
114 *     considered by the software to be enabled.  The current status
115 *     of auto-gated clocks can be read from the gate status bit.
116 * - software-only gating
117 *     Auto-gating is not available for this type of clock.
118 *     Instead, software manages whether it's enabled by setting or
119 *     clearing the enable bit.  The current gate status of a gate
120 *     under software control can be read from the gate status bit.
121 *     To ensure a change to the gating status is complete, the
122 *     status bit can be polled to verify that the gate has entered
123 *     the desired state.
124 * - selectable hardware or software gating
125 *     Gating for this type of clock can be configured to be either
126 *     under software or hardware control.  Which type is in use is
127 *     determined by the hw_sw_sel bit of the gate register.
128 */
129struct bcm_clk_gate {
130	u32 offset;		/* gate register offset */
131	u32 status_bit;		/* 0: gate is disabled; 0: gatge is enabled */
132	u32 en_bit;		/* 0: disable; 1: enable */
133	u32 hw_sw_sel_bit;	/* 0: hardware gating; 1: software gating */
134	u32 flags;		/* BCM_CLK_GATE_FLAGS_* below */
135};
136
137/*
138 * Gate flags:
139 *   HW         means this gate can be auto-gated
140 *   SW         means the state of this gate can be software controlled
141 *   NO_DISABLE means this gate is (only) enabled if under software control
142 *   SW_MANAGED means the status of this gate is under software control
143 *   ENABLED    means this software-managed gate is *supposed* to be enabled
144 */
145#define BCM_CLK_GATE_FLAGS_EXISTS	((u32)1 << 0)	/* Gate is valid */
146#define BCM_CLK_GATE_FLAGS_HW		((u32)1 << 1)	/* Can auto-gate */
147#define BCM_CLK_GATE_FLAGS_SW		((u32)1 << 2)	/* Software control */
148#define BCM_CLK_GATE_FLAGS_NO_DISABLE	((u32)1 << 3)	/* HW or enabled */
149#define BCM_CLK_GATE_FLAGS_SW_MANAGED	((u32)1 << 4)	/* SW now in control */
150#define BCM_CLK_GATE_FLAGS_ENABLED	((u32)1 << 5)	/* If SW_MANAGED */
151
152/*
153 * Gate initialization macros.
154 *
155 * Any gate initially under software control will be enabled.
156 */
157
158/* A hardware/software gate initially under software control */
159#define HW_SW_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
160	{								\
161		.offset = (_offset),					\
162		.status_bit = (_status_bit),				\
163		.en_bit = (_en_bit),					\
164		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
165		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
166			FLAG(GATE, SW_MANAGED)|FLAG(GATE, ENABLED)|	\
167			FLAG(GATE, EXISTS),				\
168	}
169
170/* A hardware/software gate initially under hardware control */
171#define HW_SW_GATE_AUTO(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
172	{								\
173		.offset = (_offset),					\
174		.status_bit = (_status_bit),				\
175		.en_bit = (_en_bit),					\
176		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
177		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
178			FLAG(GATE, EXISTS),				\
179	}
180
181/* A hardware-or-enabled gate (enabled if not under hardware control) */
182#define HW_ENABLE_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
183	{								\
184		.offset = (_offset),					\
185		.status_bit = (_status_bit),				\
186		.en_bit = (_en_bit),					\
187		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
188		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
189			FLAG(GATE, NO_DISABLE)|FLAG(GATE, EXISTS),	\
190	}
191
192/* A software-only gate */
193#define SW_ONLY_GATE(_offset, _status_bit, _en_bit)			\
194	{								\
195		.offset = (_offset),					\
196		.status_bit = (_status_bit),				\
197		.en_bit = (_en_bit),					\
198		.flags = FLAG(GATE, SW)|FLAG(GATE, SW_MANAGED)|		\
199			FLAG(GATE, ENABLED)|FLAG(GATE, EXISTS),		\
200	}
201
202/* A hardware-only gate */
203#define HW_ONLY_GATE(_offset, _status_bit)				\
204	{								\
205		.offset = (_offset),					\
206		.status_bit = (_status_bit),				\
207		.flags = FLAG(GATE, HW)|FLAG(GATE, EXISTS),		\
208	}
209
210/* Gate hysteresis for clocks */
211struct bcm_clk_hyst {
212	u32 offset;		/* hyst register offset (normally CLKGATE) */
213	u32 en_bit;		/* bit used to enable hysteresis */
214	u32 val_bit;		/* if enabled: 0 = low delay; 1 = high delay */
215};
216
217/* Hysteresis initialization macro */
218
219#define HYST(_offset, _en_bit, _val_bit)				\
220	{								\
221		.offset = (_offset),					\
222		.en_bit = (_en_bit),					\
223		.val_bit = (_val_bit),					\
224	}
225
226/*
227 * Each clock can have zero, one, or two dividers which change the
228 * output rate of the clock.  Each divider can be either fixed or
229 * variable.  If there are two dividers, they are the "pre-divider"
230 * and the "regular" or "downstream" divider.  If there is only one,
231 * there is no pre-divider.
232 *
233 * A fixed divider is any non-zero (positive) value, and it
234 * indicates how the input rate is affected by the divider.
235 *
236 * The value of a variable divider is maintained in a sub-field of a
237 * 32-bit divider register.  The position of the field in the
238 * register is defined by its offset and width.  The value recorded
239 * in this field is always 1 less than the value it represents.
240 *
241 * In addition, a variable divider can indicate that some subset
242 * of its bits represent a "fractional" part of the divider.  Such
243 * bits comprise the low-order portion of the divider field, and can
244 * be viewed as representing the portion of the divider that lies to
245 * the right of the decimal point.  Most variable dividers have zero
246 * fractional bits.  Variable dividers with non-zero fraction width
247 * still record a value 1 less than the value they represent; the
248 * added 1 does *not* affect the low-order bit in this case, it
249 * affects the bits above the fractional part only.  (Often in this
250 * code a divider field value is distinguished from the value it
251 * represents by referring to the latter as a "divisor".)
252 *
253 * In order to avoid dealing with fractions, divider arithmetic is
254 * performed using "scaled" values.  A scaled value is one that's
255 * been left-shifted by the fractional width of a divider.  Dividing
256 * a scaled value by a scaled divisor produces the desired quotient
257 * without loss of precision and without any other special handling
258 * for fractions.
259 *
260 * The recorded value of a variable divider can be modified.  To
261 * modify either divider (or both), a clock must be enabled (i.e.,
262 * using its gate).  In addition, a trigger register (described
263 * below) must be used to commit the change, and polled to verify
264 * the change is complete.
265 */
266struct bcm_clk_div {
267	union {
268		struct {	/* variable divider */
269			u32 offset;	/* divider register offset */
270			u32 shift;	/* field shift */
271			u32 width;	/* field width */
272			u32 frac_width;	/* field fraction width */
273
274			u64 scaled_div;	/* scaled divider value */
275		} s;
276		u32 fixed;	/* non-zero fixed divider value */
277	} u;
278	u32 flags;		/* BCM_CLK_DIV_FLAGS_* below */
279};
280
281/*
282 * Divider flags:
283 *   EXISTS means this divider exists
284 *   FIXED means it is a fixed-rate divider
285 */
286#define BCM_CLK_DIV_FLAGS_EXISTS	((u32)1 << 0)	/* Divider is valid */
287#define BCM_CLK_DIV_FLAGS_FIXED		((u32)1 << 1)	/* Fixed-value */
288
289/* Divider initialization macros */
290
291/* A fixed (non-zero) divider */
292#define FIXED_DIVIDER(_value)						\
293	{								\
294		.u.fixed = (_value),					\
295		.flags = FLAG(DIV, EXISTS)|FLAG(DIV, FIXED),		\
296	}
297
298/* A divider with an integral divisor */
299#define DIVIDER(_offset, _shift, _width)				\
300	{								\
301		.u.s.offset = (_offset),				\
302		.u.s.shift = (_shift),					\
303		.u.s.width = (_width),					\
304		.u.s.scaled_div = BAD_SCALED_DIV_VALUE,			\
305		.flags = FLAG(DIV, EXISTS),				\
306	}
307
308/* A divider whose divisor has an integer and fractional part */
309#define FRAC_DIVIDER(_offset, _shift, _width, _frac_width)		\
310	{								\
311		.u.s.offset = (_offset),				\
312		.u.s.shift = (_shift),					\
313		.u.s.width = (_width),					\
314		.u.s.frac_width = (_frac_width),			\
315		.u.s.scaled_div = BAD_SCALED_DIV_VALUE,			\
316		.flags = FLAG(DIV, EXISTS),				\
317	}
318
319/*
320 * Clocks may have multiple "parent" clocks.  If there is more than
321 * one, a selector must be specified to define which of the parent
322 * clocks is currently in use.  The selected clock is indicated in a
323 * sub-field of a 32-bit selector register.  The range of
324 * representable selector values typically exceeds the number of
325 * available parent clocks.  Occasionally the reset value of a
326 * selector field is explicitly set to a (specific) value that does
327 * not correspond to a defined input clock.
328 *
329 * We register all known parent clocks with the common clock code
330 * using a packed array (i.e., no empty slots) of (parent) clock
331 * names, and refer to them later using indexes into that array.
332 * We maintain an array of selector values indexed by common clock
333 * index values in order to map between these common clock indexes
334 * and the selector values used by the hardware.
335 *
336 * Like dividers, a selector can be modified, but to do so a clock
337 * must be enabled, and a trigger must be used to commit the change.
338 */
339struct bcm_clk_sel {
340	u32 offset;		/* selector register offset */
341	u32 shift;		/* field shift */
342	u32 width;		/* field width */
343
344	u32 parent_count;	/* number of entries in parent_sel[] */
345	u32 *parent_sel;	/* array of parent selector values */
346	u8 clk_index;		/* current selected index in parent_sel[] */
347};
348
349/* Selector initialization macro */
350#define SELECTOR(_offset, _shift, _width)				\
351	{								\
352		.offset = (_offset),					\
353		.shift = (_shift),					\
354		.width = (_width),					\
355		.clk_index = BAD_CLK_INDEX,				\
356	}
357
358/*
359 * Making changes to a variable divider or a selector for a clock
360 * requires the use of a trigger.  A trigger is defined by a single
361 * bit within a register.  To signal a change, a 1 is written into
362 * that bit.  To determine when the change has been completed, that
363 * trigger bit is polled; the read value will be 1 while the change
364 * is in progress, and 0 when it is complete.
365 *
366 * Occasionally a clock will have more than one trigger.  In this
367 * case, the "pre-trigger" will be used when changing a clock's
368 * selector and/or its pre-divider.
369 */
370struct bcm_clk_trig {
371	u32 offset;		/* trigger register offset */
372	u32 bit;		/* trigger bit */
373	u32 flags;		/* BCM_CLK_TRIG_FLAGS_* below */
374};
375
376/*
377 * Trigger flags:
378 *   EXISTS means this trigger exists
379 */
380#define BCM_CLK_TRIG_FLAGS_EXISTS	((u32)1 << 0)	/* Trigger is valid */
381
382/* Trigger initialization macro */
383#define TRIGGER(_offset, _bit)						\
384	{								\
385		.offset = (_offset),					\
386		.bit = (_bit),						\
387		.flags = FLAG(TRIG, EXISTS),				\
388	}
389
390struct peri_clk_data {
391	struct bcm_clk_policy policy;
392	struct bcm_clk_gate gate;
393	struct bcm_clk_hyst hyst;
394	struct bcm_clk_trig pre_trig;
395	struct bcm_clk_div pre_div;
396	struct bcm_clk_trig trig;
397	struct bcm_clk_div div;
398	struct bcm_clk_sel sel;
399	const char *clocks[];	/* must be last; use CLOCKS() to declare */
400};
401#define CLOCKS(...)	{ __VA_ARGS__, NULL, }
402#define NO_CLOCKS	{ NULL, }	/* Must use of no parent clocks */
403
404struct kona_clk {
405	struct clk_hw hw;
406	struct clk_init_data init_data;	/* includes name of this clock */
407	struct ccu_data *ccu;	/* ccu this clock is associated with */
408	enum bcm_clk_type type;
409	union {
410		void *data;
411		struct peri_clk_data *peri;
412	} u;
413};
414#define to_kona_clk(_hw) \
415	container_of(_hw, struct kona_clk, hw)
416
417/* Initialization macro for an entry in a CCU's kona_clks[] array. */
418#define KONA_CLK(_ccu_name, _clk_name, _type)				\
419	{								\
420		.init_data	= {					\
421			.name = #_clk_name,				\
422			.ops = &kona_ ## _type ## _clk_ops,		\
423		},							\
424		.ccu		= &_ccu_name ## _ccu_data,		\
425		.type		= bcm_clk_ ## _type,			\
426		.u.data		= &_clk_name ## _data,			\
427	}
428#define LAST_KONA_CLK	{ .type = bcm_clk_none }
429
430/*
431 * CCU policy control.  To enable software update of the policy
432 * tables the CCU policy engine must be stopped by setting the
433 * software update enable bit (LVM_EN).  After an update the engine
434 * is restarted using the GO bit and either the GO_ATL or GO_AC bit.
435 */
436struct bcm_lvm_en {
437	u32 offset;		/* LVM_EN register offset */
438	u32 bit;		/* POLICY_CONFIG_EN bit in register */
439};
440
441/* Policy enable initialization macro */
442#define CCU_LVM_EN(_offset, _bit)					\
443	{								\
444		.offset = (_offset),					\
445		.bit = (_bit),						\
446	}
447
448struct bcm_policy_ctl {
449	u32 offset;		/* POLICY_CTL register offset */
450	u32 go_bit;
451	u32 atl_bit;		/* GO, GO_ATL, and GO_AC bits */
452	u32 ac_bit;
453};
454
455/* Policy control initialization macro */
456#define CCU_POLICY_CTL(_offset, _go_bit, _ac_bit, _atl_bit)		\
457	{								\
458		.offset = (_offset),					\
459		.go_bit = (_go_bit),					\
460		.ac_bit = (_ac_bit),					\
461		.atl_bit = (_atl_bit),					\
462	}
463
464struct ccu_policy {
465	struct bcm_lvm_en enable;
466	struct bcm_policy_ctl control;
467};
468
469/*
470 * Each CCU defines a mapped area of memory containing registers
471 * used to manage clocks implemented by the CCU.  Access to memory
472 * within the CCU's space is serialized by a spinlock.  Before any
473 * (other) address can be written, a special access "password" value
474 * must be written to its WR_ACCESS register (located at the base
475 * address of the range).  We keep track of the name of each CCU as
476 * it is set up, and maintain them in a list.
477 */
478struct ccu_data {
479	void __iomem *base;	/* base of mapped address space */
480	spinlock_t lock;	/* serialization lock */
481	bool write_enabled;	/* write access is currently enabled */
482	struct ccu_policy policy;
483	struct device_node *node;
484	size_t clk_num;
485	const char *name;
486	u32 range;		/* byte range of address space */
487	struct kona_clk kona_clks[];	/* must be last */
488};
489
490/* Initialization for common fields in a Kona ccu_data structure */
491#define KONA_CCU_COMMON(_prefix, _name, _ccuname)			    \
492	.name		= #_name "_ccu",				    \
493	.lock		= __SPIN_LOCK_UNLOCKED(_name ## _ccu_data.lock),    \
494	.clk_num	= _prefix ## _ ## _ccuname ## _CCU_CLOCK_COUNT
495
496/* Exported globals */
497
498extern struct clk_ops kona_peri_clk_ops;
499
500/* Externally visible functions */
501
502extern u64 scaled_div_max(struct bcm_clk_div *div);
503extern u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value,
504				u32 billionths);
505
506extern void __init kona_dt_ccu_setup(struct ccu_data *ccu,
507				struct device_node *node);
508extern bool __init kona_ccu_init(struct ccu_data *ccu);
509
510#endif /* _CLK_KONA_H */