Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1/*
  2 *  AMD CPU Microcode Update Driver for Linux
  3 *
  4 *  This driver allows to upgrade microcode on F10h AMD
  5 *  CPUs and later.
  6 *
  7 *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
  8 *	          2013-2016 Borislav Petkov <bp@alien8.de>
  9 *
 10 *  Author: Peter Oruba <peter.oruba@amd.com>
 11 *
 12 *  Based on work by:
 13 *  Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
 14 *
 15 *  early loader:
 16 *  Copyright (C) 2013 Advanced Micro Devices, Inc.
 17 *
 18 *  Author: Jacob Shin <jacob.shin@amd.com>
 19 *  Fixes: Borislav Petkov <bp@suse.de>
 20 *
 21 *  Licensed under the terms of the GNU General Public
 22 *  License version 2. See file COPYING for details.
 23 */
 24#define pr_fmt(fmt) "microcode: " fmt
 25
 26#include <linux/earlycpio.h>
 27#include <linux/firmware.h>
 28#include <linux/uaccess.h>
 29#include <linux/vmalloc.h>
 30#include <linux/initrd.h>
 31#include <linux/kernel.h>
 32#include <linux/pci.h>
 33
 34#include <asm/microcode_amd.h>
 35#include <asm/microcode.h>
 36#include <asm/processor.h>
 37#include <asm/setup.h>
 38#include <asm/cpu.h>
 39#include <asm/msr.h>
 40
 41static struct equiv_cpu_entry *equiv_cpu_table;
 42
 43/*
 44 * This points to the current valid container of microcode patches which we will
 45 * save from the initrd/builtin before jettisoning its contents.
 46 */
 47struct container {
 48	u8 *data;
 49	size_t size;
 50} cont;
 51
 52static u32 ucode_new_rev;
 53static u8 amd_ucode_patch[PATCH_MAX_SIZE];
 54static u16 this_equiv_id;
 55
 56/*
 57 * Microcode patch container file is prepended to the initrd in cpio
 58 * format. See Documentation/x86/early-microcode.txt
 59 */
 60static const char
 61ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
 62
 63static size_t compute_container_size(u8 *data, u32 total_size)
 64{
 65	size_t size = 0;
 66	u32 *header = (u32 *)data;
 67
 68	if (header[0] != UCODE_MAGIC ||
 69	    header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
 70	    header[2] == 0)                            /* size */
 71		return size;
 72
 73	size = header[2] + CONTAINER_HDR_SZ;
 74	total_size -= size;
 75	data += size;
 76
 77	while (total_size) {
 78		u16 patch_size;
 79
 80		header = (u32 *)data;
 81
 82		if (header[0] != UCODE_UCODE_TYPE)
 83			break;
 84
 85		/*
 86		 * Sanity-check patch size.
 87		 */
 88		patch_size = header[1];
 89		if (patch_size > PATCH_MAX_SIZE)
 90			break;
 91
 92		size	   += patch_size + SECTION_HDR_SIZE;
 93		data	   += patch_size + SECTION_HDR_SIZE;
 94		total_size -= patch_size + SECTION_HDR_SIZE;
 95	}
 96
 97	return size;
 98}
 99
100static inline u16 find_equiv_id(struct equiv_cpu_entry *equiv_cpu_table,
101				unsigned int sig)
102{
103	int i = 0;
104
105	if (!equiv_cpu_table)
106		return 0;
107
108	while (equiv_cpu_table[i].installed_cpu != 0) {
109		if (sig == equiv_cpu_table[i].installed_cpu)
110			return equiv_cpu_table[i].equiv_cpu;
111
112		i++;
113	}
114	return 0;
115}
116
117/*
118 * This scans the ucode blob for the proper container as we can have multiple
119 * containers glued together. Returns the equivalence ID from the equivalence
120 * table or 0 if none found.
121 */
122static u16
123find_proper_container(u8 *ucode, size_t size, struct container *ret_cont)
124{
125	struct container ret = { NULL, 0 };
126	u32 eax, ebx, ecx, edx;
127	struct equiv_cpu_entry *eq;
128	int offset, left;
129	u16 eq_id = 0;
130	u32 *header;
131	u8 *data;
132
133	data   = ucode;
134	left   = size;
135	header = (u32 *)data;
136
137
138	/* find equiv cpu table */
139	if (header[0] != UCODE_MAGIC ||
140	    header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
141	    header[2] == 0)                            /* size */
142		return eq_id;
143
144	eax = 0x00000001;
145	ecx = 0;
146	native_cpuid(&eax, &ebx, &ecx, &edx);
147
148	while (left > 0) {
149		eq = (struct equiv_cpu_entry *)(data + CONTAINER_HDR_SZ);
150
151		ret.data = data;
152
153		/* Advance past the container header */
154		offset = header[2] + CONTAINER_HDR_SZ;
155		data  += offset;
156		left  -= offset;
157
158		eq_id = find_equiv_id(eq, eax);
159		if (eq_id) {
160			ret.size = compute_container_size(ret.data, left + offset);
161
162			/*
163			 * truncate how much we need to iterate over in the
164			 * ucode update loop below
165			 */
166			left = ret.size - offset;
167
168			*ret_cont = ret;
169			return eq_id;
170		}
171
172		/*
173		 * support multiple container files appended together. if this
174		 * one does not have a matching equivalent cpu entry, we fast
175		 * forward to the next container file.
176		 */
177		while (left > 0) {
178			header = (u32 *)data;
179
180			if (header[0] == UCODE_MAGIC &&
181			    header[1] == UCODE_EQUIV_CPU_TABLE_TYPE)
182				break;
183
184			offset = header[1] + SECTION_HDR_SIZE;
185			data  += offset;
186			left  -= offset;
187		}
188
189		/* mark where the next microcode container file starts */
190		offset    = data - (u8 *)ucode;
191		ucode     = data;
192	}
193
194	return eq_id;
195}
196
197static int __apply_microcode_amd(struct microcode_amd *mc_amd)
198{
199	u32 rev, dummy;
200
201	native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc_amd->hdr.data_code);
202
203	/* verify patch application was successful */
204	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
205	if (rev != mc_amd->hdr.patch_id)
206		return -1;
207
208	return 0;
209}
210
211/*
212 * Early load occurs before we can vmalloc(). So we look for the microcode
213 * patch container file in initrd, traverse equivalent cpu table, look for a
214 * matching microcode patch, and update, all in initrd memory in place.
215 * When vmalloc() is available for use later -- on 64-bit during first AP load,
216 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
217 * load_microcode_amd() to save equivalent cpu table and microcode patches in
218 * kernel heap memory.
219 *
220 * Returns true if container found (sets @ret_cont), false otherwise.
221 */
222static bool apply_microcode_early_amd(void *ucode, size_t size, bool save_patch,
223				      struct container *ret_cont)
224{
225	u8 (*patch)[PATCH_MAX_SIZE];
226	u32 rev, *header, *new_rev;
227	struct container ret;
228	int offset, left;
229	u16 eq_id = 0;
230	u8  *data;
231
232#ifdef CONFIG_X86_32
233	new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
234	patch	= (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
235#else
236	new_rev = &ucode_new_rev;
237	patch	= &amd_ucode_patch;
238#endif
239
240	if (check_current_patch_level(&rev, true))
241		return false;
242
243	eq_id = find_proper_container(ucode, size, &ret);
244	if (!eq_id)
245		return false;
246
247	this_equiv_id = eq_id;
248	header = (u32 *)ret.data;
249
250	/* We're pointing to an equiv table, skip over it. */
251	data = ret.data +  header[2] + CONTAINER_HDR_SZ;
252	left = ret.size - (header[2] + CONTAINER_HDR_SZ);
253
254	while (left > 0) {
255		struct microcode_amd *mc;
256
257		header = (u32 *)data;
258		if (header[0] != UCODE_UCODE_TYPE || /* type */
259		    header[1] == 0)                  /* size */
260			break;
261
262		mc = (struct microcode_amd *)(data + SECTION_HDR_SIZE);
263
264		if (eq_id == mc->hdr.processor_rev_id && rev < mc->hdr.patch_id) {
265
266			if (!__apply_microcode_amd(mc)) {
267				rev = mc->hdr.patch_id;
268				*new_rev = rev;
269
270				if (save_patch)
271					memcpy(patch, mc, min_t(u32, header[1], PATCH_MAX_SIZE));
272			}
273		}
274
275		offset  = header[1] + SECTION_HDR_SIZE;
276		data   += offset;
277		left   -= offset;
278	}
279
280	if (ret_cont)
281		*ret_cont = ret;
282
283	return true;
284}
285
286static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
287{
288#ifdef CONFIG_X86_64
289	char fw_name[36] = "amd-ucode/microcode_amd.bin";
290
291	if (family >= 0x15)
292		snprintf(fw_name, sizeof(fw_name),
293			 "amd-ucode/microcode_amd_fam%.2xh.bin", family);
294
295	return get_builtin_firmware(cp, fw_name);
296#else
297	return false;
298#endif
299}
300
301void __init load_ucode_amd_bsp(unsigned int family)
302{
303	struct ucode_cpu_info *uci;
304	u32 eax, ebx, ecx, edx;
305	struct cpio_data cp;
306	const char *path;
307	bool use_pa;
308
309	if (IS_ENABLED(CONFIG_X86_32)) {
310		uci	= (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
311		path	= (const char *)__pa_nodebug(ucode_path);
312		use_pa	= true;
313	} else {
314		uci     = ucode_cpu_info;
315		path	= ucode_path;
316		use_pa	= false;
317	}
318
319	if (!get_builtin_microcode(&cp, family))
320		cp = find_microcode_in_initrd(path, use_pa);
321
322	if (!(cp.data && cp.size))
323		return;
324
325	/* Get BSP's CPUID.EAX(1), needed in load_microcode_amd() */
326	eax = 1;
327	ecx = 0;
328	native_cpuid(&eax, &ebx, &ecx, &edx);
329	uci->cpu_sig.sig = eax;
330
331	apply_microcode_early_amd(cp.data, cp.size, true, NULL);
332}
333
334#ifdef CONFIG_X86_32
335/*
336 * On 32-bit, since AP's early load occurs before paging is turned on, we
337 * cannot traverse cpu_equiv_table and microcode_cache in kernel heap memory.
338 * So during cold boot, AP will apply_ucode_in_initrd() just like the BSP.
339 * In save_microcode_in_initrd_amd() BSP's patch is copied to amd_ucode_patch,
340 * which is used upon resume from suspend.
341 */
342void load_ucode_amd_ap(unsigned int family)
343{
344	struct microcode_amd *mc;
345	struct cpio_data cp;
346
347	mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
348	if (mc->hdr.patch_id && mc->hdr.processor_rev_id) {
349		__apply_microcode_amd(mc);
350		return;
351	}
352
353	if (!get_builtin_microcode(&cp, family))
354		cp = find_microcode_in_initrd((const char *)__pa_nodebug(ucode_path), true);
355
356	if (!(cp.data && cp.size))
357		return;
358
359	/*
360	 * This would set amd_ucode_patch above so that the following APs can
361	 * use it directly instead of going down this path again.
362	 */
363	apply_microcode_early_amd(cp.data, cp.size, true, NULL);
364}
365#else
366void load_ucode_amd_ap(unsigned int family)
367{
368	struct equiv_cpu_entry *eq;
369	struct microcode_amd *mc;
370	u32 rev, eax;
371	u16 eq_id;
372
373	/* 64-bit runs with paging enabled, thus early==false. */
374	if (check_current_patch_level(&rev, false))
375		return;
376
377	/* First AP hasn't cached it yet, go through the blob. */
378	if (!cont.data) {
379		struct cpio_data cp = { NULL, 0, "" };
380
381		if (cont.size == -1)
382			return;
383
384reget:
385		if (!get_builtin_microcode(&cp, family)) {
386#ifdef CONFIG_BLK_DEV_INITRD
387			if (!initrd_gone)
388				cp = find_cpio_data(ucode_path, (void *)initrd_start,
389						    initrd_end - initrd_start, NULL);
390#endif
391			if (!(cp.data && cp.size)) {
392				/*
393				 * Mark it so that other APs do not scan again
394				 * for no real reason and slow down boot
395				 * needlessly.
396				 */
397				cont.size = -1;
398				return;
399			}
400		}
401
402		if (!apply_microcode_early_amd(cp.data, cp.size, false, &cont)) {
403			cont.size = -1;
404			return;
405		}
406	}
407
408	eax = cpuid_eax(0x00000001);
409	eq  = (struct equiv_cpu_entry *)(cont.data + CONTAINER_HDR_SZ);
410
411	eq_id = find_equiv_id(eq, eax);
412	if (!eq_id)
413		return;
414
415	if (eq_id == this_equiv_id) {
416		mc = (struct microcode_amd *)amd_ucode_patch;
417
418		if (mc && rev < mc->hdr.patch_id) {
419			if (!__apply_microcode_amd(mc))
420				ucode_new_rev = mc->hdr.patch_id;
421		}
422
423	} else {
424
425		/*
426		 * AP has a different equivalence ID than BSP, looks like
427		 * mixed-steppings silicon so go through the ucode blob anew.
428		 */
429		goto reget;
430	}
431}
432#endif /* CONFIG_X86_32 */
433
434static enum ucode_state
435load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size);
436
437int __init save_microcode_in_initrd_amd(unsigned int fam)
438{
439	enum ucode_state ret;
440	int retval = 0;
441	u16 eq_id;
442
443	if (!cont.data) {
444		if (IS_ENABLED(CONFIG_X86_32) && (cont.size != -1)) {
445			struct cpio_data cp = { NULL, 0, "" };
446
447#ifdef CONFIG_BLK_DEV_INITRD
448			cp = find_cpio_data(ucode_path, (void *)initrd_start,
449					    initrd_end - initrd_start, NULL);
450#endif
451
452			if (!(cp.data && cp.size)) {
453				cont.size = -1;
454				return -EINVAL;
455			}
456
457			eq_id = find_proper_container(cp.data, cp.size, &cont);
458			if (!eq_id) {
459				cont.size = -1;
460				return -EINVAL;
461			}
462
463		} else
464			return -EINVAL;
465	}
466
467	ret = load_microcode_amd(smp_processor_id(), fam, cont.data, cont.size);
468	if (ret != UCODE_OK)
469		retval = -EINVAL;
470
471	/*
472	 * This will be freed any msec now, stash patches for the current
473	 * family and switch to patch cache for cpu hotplug, etc later.
474	 */
475	cont.data = NULL;
476	cont.size = 0;
477
478	return retval;
479}
480
481void reload_ucode_amd(void)
482{
483	struct microcode_amd *mc;
484	u32 rev;
485
486	/*
487	 * early==false because this is a syscore ->resume path and by
488	 * that time paging is long enabled.
489	 */
490	if (check_current_patch_level(&rev, false))
491		return;
492
493	mc = (struct microcode_amd *)amd_ucode_patch;
494	if (!mc)
495		return;
496
497	if (rev < mc->hdr.patch_id) {
498		if (!__apply_microcode_amd(mc)) {
499			ucode_new_rev = mc->hdr.patch_id;
500			pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
501		}
502	}
503}
504static u16 __find_equiv_id(unsigned int cpu)
505{
506	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
507	return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig);
508}
509
510static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu)
511{
512	int i = 0;
513
514	BUG_ON(!equiv_cpu_table);
515
516	while (equiv_cpu_table[i].equiv_cpu != 0) {
517		if (equiv_cpu == equiv_cpu_table[i].equiv_cpu)
518			return equiv_cpu_table[i].installed_cpu;
519		i++;
520	}
521	return 0;
522}
523
524/*
525 * a small, trivial cache of per-family ucode patches
526 */
527static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
528{
529	struct ucode_patch *p;
530
531	list_for_each_entry(p, &microcode_cache, plist)
532		if (p->equiv_cpu == equiv_cpu)
533			return p;
534	return NULL;
535}
536
537static void update_cache(struct ucode_patch *new_patch)
538{
539	struct ucode_patch *p;
540
541	list_for_each_entry(p, &microcode_cache, plist) {
542		if (p->equiv_cpu == new_patch->equiv_cpu) {
543			if (p->patch_id >= new_patch->patch_id)
544				/* we already have the latest patch */
545				return;
546
547			list_replace(&p->plist, &new_patch->plist);
548			kfree(p->data);
549			kfree(p);
550			return;
551		}
552	}
553	/* no patch found, add it */
554	list_add_tail(&new_patch->plist, &microcode_cache);
555}
556
557static void free_cache(void)
558{
559	struct ucode_patch *p, *tmp;
560
561	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
562		__list_del(p->plist.prev, p->plist.next);
563		kfree(p->data);
564		kfree(p);
565	}
566}
567
568static struct ucode_patch *find_patch(unsigned int cpu)
569{
570	u16 equiv_id;
571
572	equiv_id = __find_equiv_id(cpu);
573	if (!equiv_id)
574		return NULL;
575
576	return cache_find_patch(equiv_id);
577}
578
579static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
580{
581	struct cpuinfo_x86 *c = &cpu_data(cpu);
582	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
583	struct ucode_patch *p;
584
585	csig->sig = cpuid_eax(0x00000001);
586	csig->rev = c->microcode;
587
588	/*
589	 * a patch could have been loaded early, set uci->mc so that
590	 * mc_bp_resume() can call apply_microcode()
591	 */
592	p = find_patch(cpu);
593	if (p && (p->patch_id == csig->rev))
594		uci->mc = p->data;
595
596	pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
597
598	return 0;
599}
600
601static unsigned int verify_patch_size(u8 family, u32 patch_size,
602				      unsigned int size)
603{
604	u32 max_size;
605
606#define F1XH_MPB_MAX_SIZE 2048
607#define F14H_MPB_MAX_SIZE 1824
608#define F15H_MPB_MAX_SIZE 4096
609#define F16H_MPB_MAX_SIZE 3458
610
611	switch (family) {
612	case 0x14:
613		max_size = F14H_MPB_MAX_SIZE;
614		break;
615	case 0x15:
616		max_size = F15H_MPB_MAX_SIZE;
617		break;
618	case 0x16:
619		max_size = F16H_MPB_MAX_SIZE;
620		break;
621	default:
622		max_size = F1XH_MPB_MAX_SIZE;
623		break;
624	}
625
626	if (patch_size > min_t(u32, size, max_size)) {
627		pr_err("patch size mismatch\n");
628		return 0;
629	}
630
631	return patch_size;
632}
633
634/*
635 * Those patch levels cannot be updated to newer ones and thus should be final.
636 */
637static u32 final_levels[] = {
638	0x01000098,
639	0x0100009f,
640	0x010000af,
641	0, /* T-101 terminator */
642};
643
644/*
645 * Check the current patch level on this CPU.
646 *
647 * @rev: Use it to return the patch level. It is set to 0 in the case of
648 * error.
649 *
650 * Returns:
651 *  - true: if update should stop
652 *  - false: otherwise
653 */
654bool check_current_patch_level(u32 *rev, bool early)
655{
656	u32 lvl, dummy, i;
657	bool ret = false;
658	u32 *levels;
659
660	native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
661
662	if (IS_ENABLED(CONFIG_X86_32) && early)
663		levels = (u32 *)__pa_nodebug(&final_levels);
664	else
665		levels = final_levels;
666
667	for (i = 0; levels[i]; i++) {
668		if (lvl == levels[i]) {
669			lvl = 0;
670			ret = true;
671			break;
672		}
673	}
674
675	if (rev)
676		*rev = lvl;
677
678	return ret;
679}
680
681static int apply_microcode_amd(int cpu)
682{
683	struct cpuinfo_x86 *c = &cpu_data(cpu);
684	struct microcode_amd *mc_amd;
685	struct ucode_cpu_info *uci;
686	struct ucode_patch *p;
687	u32 rev;
688
689	BUG_ON(raw_smp_processor_id() != cpu);
690
691	uci = ucode_cpu_info + cpu;
692
693	p = find_patch(cpu);
694	if (!p)
695		return 0;
696
697	mc_amd  = p->data;
698	uci->mc = p->data;
699
700	if (check_current_patch_level(&rev, false))
701		return -1;
702
703	/* need to apply patch? */
704	if (rev >= mc_amd->hdr.patch_id) {
705		c->microcode = rev;
706		uci->cpu_sig.rev = rev;
707		return 0;
708	}
709
710	if (__apply_microcode_amd(mc_amd)) {
711		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
712			cpu, mc_amd->hdr.patch_id);
713		return -1;
714	}
715	pr_info("CPU%d: new patch_level=0x%08x\n", cpu,
716		mc_amd->hdr.patch_id);
717
718	uci->cpu_sig.rev = mc_amd->hdr.patch_id;
719	c->microcode = mc_amd->hdr.patch_id;
720
721	return 0;
722}
723
724static int install_equiv_cpu_table(const u8 *buf)
725{
726	unsigned int *ibuf = (unsigned int *)buf;
727	unsigned int type = ibuf[1];
728	unsigned int size = ibuf[2];
729
730	if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) {
731		pr_err("empty section/"
732		       "invalid type field in container file section header\n");
733		return -EINVAL;
734	}
735
736	equiv_cpu_table = vmalloc(size);
737	if (!equiv_cpu_table) {
738		pr_err("failed to allocate equivalent CPU table\n");
739		return -ENOMEM;
740	}
741
742	memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size);
743
744	/* add header length */
745	return size + CONTAINER_HDR_SZ;
746}
747
748static void free_equiv_cpu_table(void)
749{
750	vfree(equiv_cpu_table);
751	equiv_cpu_table = NULL;
752}
753
754static void cleanup(void)
755{
756	free_equiv_cpu_table();
757	free_cache();
758}
759
760/*
761 * We return the current size even if some of the checks failed so that
762 * we can skip over the next patch. If we return a negative value, we
763 * signal a grave error like a memory allocation has failed and the
764 * driver cannot continue functioning normally. In such cases, we tear
765 * down everything we've used up so far and exit.
766 */
767static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
768{
769	struct microcode_header_amd *mc_hdr;
770	struct ucode_patch *patch;
771	unsigned int patch_size, crnt_size, ret;
772	u32 proc_fam;
773	u16 proc_id;
774
775	patch_size  = *(u32 *)(fw + 4);
776	crnt_size   = patch_size + SECTION_HDR_SIZE;
777	mc_hdr	    = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
778	proc_id	    = mc_hdr->processor_rev_id;
779
780	proc_fam = find_cpu_family_by_equiv_cpu(proc_id);
781	if (!proc_fam) {
782		pr_err("No patch family for equiv ID: 0x%04x\n", proc_id);
783		return crnt_size;
784	}
785
786	/* check if patch is for the current family */
787	proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff);
788	if (proc_fam != family)
789		return crnt_size;
790
791	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
792		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n",
793			mc_hdr->patch_id);
794		return crnt_size;
795	}
796
797	ret = verify_patch_size(family, patch_size, leftover);
798	if (!ret) {
799		pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id);
800		return crnt_size;
801	}
802
803	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
804	if (!patch) {
805		pr_err("Patch allocation failure.\n");
806		return -EINVAL;
807	}
808
809	patch->data = kmemdup(fw + SECTION_HDR_SIZE, patch_size, GFP_KERNEL);
810	if (!patch->data) {
811		pr_err("Patch data allocation failure.\n");
812		kfree(patch);
813		return -EINVAL;
814	}
815
816	INIT_LIST_HEAD(&patch->plist);
817	patch->patch_id  = mc_hdr->patch_id;
818	patch->equiv_cpu = proc_id;
819
820	pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
821		 __func__, patch->patch_id, proc_id);
822
823	/* ... and add to cache. */
824	update_cache(patch);
825
826	return crnt_size;
827}
828
829static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
830					     size_t size)
831{
832	enum ucode_state ret = UCODE_ERROR;
833	unsigned int leftover;
834	u8 *fw = (u8 *)data;
835	int crnt_size = 0;
836	int offset;
837
838	offset = install_equiv_cpu_table(data);
839	if (offset < 0) {
840		pr_err("failed to create equivalent cpu table\n");
841		return ret;
842	}
843	fw += offset;
844	leftover = size - offset;
845
846	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
847		pr_err("invalid type field in container file section header\n");
848		free_equiv_cpu_table();
849		return ret;
850	}
851
852	while (leftover) {
853		crnt_size = verify_and_add_patch(family, fw, leftover);
854		if (crnt_size < 0)
855			return ret;
856
857		fw	 += crnt_size;
858		leftover -= crnt_size;
859	}
860
861	return UCODE_OK;
862}
863
864static enum ucode_state
865load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size)
866{
867	enum ucode_state ret;
868
869	/* free old equiv table */
870	free_equiv_cpu_table();
871
872	ret = __load_microcode_amd(family, data, size);
873
874	if (ret != UCODE_OK)
875		cleanup();
876
877#ifdef CONFIG_X86_32
878	/* save BSP's matching patch for early load */
879	if (cpu_data(cpu).cpu_index == boot_cpu_data.cpu_index) {
880		struct ucode_patch *p = find_patch(cpu);
881		if (p) {
882			memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
883			memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data),
884							       PATCH_MAX_SIZE));
885		}
886	}
887#endif
888	return ret;
889}
890
891/*
892 * AMD microcode firmware naming convention, up to family 15h they are in
893 * the legacy file:
894 *
895 *    amd-ucode/microcode_amd.bin
896 *
897 * This legacy file is always smaller than 2K in size.
898 *
899 * Beginning with family 15h, they are in family-specific firmware files:
900 *
901 *    amd-ucode/microcode_amd_fam15h.bin
902 *    amd-ucode/microcode_amd_fam16h.bin
903 *    ...
904 *
905 * These might be larger than 2K.
906 */
907static enum ucode_state request_microcode_amd(int cpu, struct device *device,
908					      bool refresh_fw)
909{
910	char fw_name[36] = "amd-ucode/microcode_amd.bin";
911	struct cpuinfo_x86 *c = &cpu_data(cpu);
912	enum ucode_state ret = UCODE_NFOUND;
913	const struct firmware *fw;
914
915	/* reload ucode container only on the boot cpu */
916	if (!refresh_fw || c->cpu_index != boot_cpu_data.cpu_index)
917		return UCODE_OK;
918
919	if (c->x86 >= 0x15)
920		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
921
922	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
923		pr_debug("failed to load file %s\n", fw_name);
924		goto out;
925	}
926
927	ret = UCODE_ERROR;
928	if (*(u32 *)fw->data != UCODE_MAGIC) {
929		pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data);
930		goto fw_release;
931	}
932
933	ret = load_microcode_amd(cpu, c->x86, fw->data, fw->size);
934
935 fw_release:
936	release_firmware(fw);
937
938 out:
939	return ret;
940}
941
942static enum ucode_state
943request_microcode_user(int cpu, const void __user *buf, size_t size)
944{
945	return UCODE_ERROR;
946}
947
948static void microcode_fini_cpu_amd(int cpu)
949{
950	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
951
952	uci->mc = NULL;
953}
954
955static struct microcode_ops microcode_amd_ops = {
956	.request_microcode_user           = request_microcode_user,
957	.request_microcode_fw             = request_microcode_amd,
958	.collect_cpu_info                 = collect_cpu_info_amd,
959	.apply_microcode                  = apply_microcode_amd,
960	.microcode_fini_cpu               = microcode_fini_cpu_amd,
961};
962
963struct microcode_ops * __init init_amd_microcode(void)
964{
965	struct cpuinfo_x86 *c = &boot_cpu_data;
966
967	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
968		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
969		return NULL;
970	}
971
972	if (ucode_new_rev)
973		pr_info_once("microcode updated early to new patch_level=0x%08x\n",
974			     ucode_new_rev);
975
976	return &microcode_amd_ops;
977}
978
979void __exit exit_amd_microcode(void)
980{
981	cleanup();
982}