Loading...
1/* visemul.c: Emulation of VIS instructions.
2 *
3 * Copyright (C) 2006 David S. Miller (davem@davemloft.net)
4 */
5#include <linux/kernel.h>
6#include <linux/errno.h>
7#include <linux/thread_info.h>
8#include <linux/perf_event.h>
9
10#include <asm/ptrace.h>
11#include <asm/pstate.h>
12#include <asm/fpumacro.h>
13#include <asm/uaccess.h>
14#include <asm/cacheflush.h>
15
16/* OPF field of various VIS instructions. */
17
18/* 000111011 - four 16-bit packs */
19#define FPACK16_OPF 0x03b
20
21/* 000111010 - two 32-bit packs */
22#define FPACK32_OPF 0x03a
23
24/* 000111101 - four 16-bit packs */
25#define FPACKFIX_OPF 0x03d
26
27/* 001001101 - four 16-bit expands */
28#define FEXPAND_OPF 0x04d
29
30/* 001001011 - two 32-bit merges */
31#define FPMERGE_OPF 0x04b
32
33/* 000110001 - 8-by-16-bit partitoned product */
34#define FMUL8x16_OPF 0x031
35
36/* 000110011 - 8-by-16-bit upper alpha partitioned product */
37#define FMUL8x16AU_OPF 0x033
38
39/* 000110101 - 8-by-16-bit lower alpha partitioned product */
40#define FMUL8x16AL_OPF 0x035
41
42/* 000110110 - upper 8-by-16-bit partitioned product */
43#define FMUL8SUx16_OPF 0x036
44
45/* 000110111 - lower 8-by-16-bit partitioned product */
46#define FMUL8ULx16_OPF 0x037
47
48/* 000111000 - upper 8-by-16-bit partitioned product */
49#define FMULD8SUx16_OPF 0x038
50
51/* 000111001 - lower unsigned 8-by-16-bit partitioned product */
52#define FMULD8ULx16_OPF 0x039
53
54/* 000101000 - four 16-bit compare; set rd if src1 > src2 */
55#define FCMPGT16_OPF 0x028
56
57/* 000101100 - two 32-bit compare; set rd if src1 > src2 */
58#define FCMPGT32_OPF 0x02c
59
60/* 000100000 - four 16-bit compare; set rd if src1 <= src2 */
61#define FCMPLE16_OPF 0x020
62
63/* 000100100 - two 32-bit compare; set rd if src1 <= src2 */
64#define FCMPLE32_OPF 0x024
65
66/* 000100010 - four 16-bit compare; set rd if src1 != src2 */
67#define FCMPNE16_OPF 0x022
68
69/* 000100110 - two 32-bit compare; set rd if src1 != src2 */
70#define FCMPNE32_OPF 0x026
71
72/* 000101010 - four 16-bit compare; set rd if src1 == src2 */
73#define FCMPEQ16_OPF 0x02a
74
75/* 000101110 - two 32-bit compare; set rd if src1 == src2 */
76#define FCMPEQ32_OPF 0x02e
77
78/* 000000000 - Eight 8-bit edge boundary processing */
79#define EDGE8_OPF 0x000
80
81/* 000000001 - Eight 8-bit edge boundary processing, no CC */
82#define EDGE8N_OPF 0x001
83
84/* 000000010 - Eight 8-bit edge boundary processing, little-endian */
85#define EDGE8L_OPF 0x002
86
87/* 000000011 - Eight 8-bit edge boundary processing, little-endian, no CC */
88#define EDGE8LN_OPF 0x003
89
90/* 000000100 - Four 16-bit edge boundary processing */
91#define EDGE16_OPF 0x004
92
93/* 000000101 - Four 16-bit edge boundary processing, no CC */
94#define EDGE16N_OPF 0x005
95
96/* 000000110 - Four 16-bit edge boundary processing, little-endian */
97#define EDGE16L_OPF 0x006
98
99/* 000000111 - Four 16-bit edge boundary processing, little-endian, no CC */
100#define EDGE16LN_OPF 0x007
101
102/* 000001000 - Two 32-bit edge boundary processing */
103#define EDGE32_OPF 0x008
104
105/* 000001001 - Two 32-bit edge boundary processing, no CC */
106#define EDGE32N_OPF 0x009
107
108/* 000001010 - Two 32-bit edge boundary processing, little-endian */
109#define EDGE32L_OPF 0x00a
110
111/* 000001011 - Two 32-bit edge boundary processing, little-endian, no CC */
112#define EDGE32LN_OPF 0x00b
113
114/* 000111110 - distance between 8 8-bit components */
115#define PDIST_OPF 0x03e
116
117/* 000010000 - convert 8-bit 3-D address to blocked byte address */
118#define ARRAY8_OPF 0x010
119
120/* 000010010 - convert 16-bit 3-D address to blocked byte address */
121#define ARRAY16_OPF 0x012
122
123/* 000010100 - convert 32-bit 3-D address to blocked byte address */
124#define ARRAY32_OPF 0x014
125
126/* 000011001 - Set the GSR.MASK field in preparation for a BSHUFFLE */
127#define BMASK_OPF 0x019
128
129/* 001001100 - Permute bytes as specified by GSR.MASK */
130#define BSHUFFLE_OPF 0x04c
131
132#define VIS_OPF_SHIFT 5
133#define VIS_OPF_MASK (0x1ff << VIS_OPF_SHIFT)
134
135#define RS1(INSN) (((INSN) >> 14) & 0x1f)
136#define RS2(INSN) (((INSN) >> 0) & 0x1f)
137#define RD(INSN) (((INSN) >> 25) & 0x1f)
138
139static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
140 unsigned int rd, int from_kernel)
141{
142 if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
143 if (from_kernel != 0)
144 __asm__ __volatile__("flushw");
145 else
146 flushw_user();
147 }
148}
149
150static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
151{
152 unsigned long value;
153
154 if (reg < 16)
155 return (!reg ? 0 : regs->u_regs[reg]);
156 if (regs->tstate & TSTATE_PRIV) {
157 struct reg_window *win;
158 win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
159 value = win->locals[reg - 16];
160 } else if (test_thread_flag(TIF_32BIT)) {
161 struct reg_window32 __user *win32;
162 win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
163 get_user(value, &win32->locals[reg - 16]);
164 } else {
165 struct reg_window __user *win;
166 win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
167 get_user(value, &win->locals[reg - 16]);
168 }
169 return value;
170}
171
172static inline unsigned long __user *__fetch_reg_addr_user(unsigned int reg,
173 struct pt_regs *regs)
174{
175 BUG_ON(reg < 16);
176 BUG_ON(regs->tstate & TSTATE_PRIV);
177
178 if (test_thread_flag(TIF_32BIT)) {
179 struct reg_window32 __user *win32;
180 win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
181 return (unsigned long __user *)&win32->locals[reg - 16];
182 } else {
183 struct reg_window __user *win;
184 win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
185 return &win->locals[reg - 16];
186 }
187}
188
189static inline unsigned long *__fetch_reg_addr_kern(unsigned int reg,
190 struct pt_regs *regs)
191{
192 BUG_ON(reg >= 16);
193 BUG_ON(regs->tstate & TSTATE_PRIV);
194
195 return ®s->u_regs[reg];
196}
197
198static void store_reg(struct pt_regs *regs, unsigned long val, unsigned long rd)
199{
200 if (rd < 16) {
201 unsigned long *rd_kern = __fetch_reg_addr_kern(rd, regs);
202
203 *rd_kern = val;
204 } else {
205 unsigned long __user *rd_user = __fetch_reg_addr_user(rd, regs);
206
207 if (test_thread_flag(TIF_32BIT))
208 __put_user((u32)val, (u32 __user *)rd_user);
209 else
210 __put_user(val, rd_user);
211 }
212}
213
214static inline unsigned long fpd_regval(struct fpustate *f,
215 unsigned int insn_regnum)
216{
217 insn_regnum = (((insn_regnum & 1) << 5) |
218 (insn_regnum & 0x1e));
219
220 return *(unsigned long *) &f->regs[insn_regnum];
221}
222
223static inline unsigned long *fpd_regaddr(struct fpustate *f,
224 unsigned int insn_regnum)
225{
226 insn_regnum = (((insn_regnum & 1) << 5) |
227 (insn_regnum & 0x1e));
228
229 return (unsigned long *) &f->regs[insn_regnum];
230}
231
232static inline unsigned int fps_regval(struct fpustate *f,
233 unsigned int insn_regnum)
234{
235 return f->regs[insn_regnum];
236}
237
238static inline unsigned int *fps_regaddr(struct fpustate *f,
239 unsigned int insn_regnum)
240{
241 return &f->regs[insn_regnum];
242}
243
244struct edge_tab {
245 u16 left, right;
246};
247static struct edge_tab edge8_tab[8] = {
248 { 0xff, 0x80 },
249 { 0x7f, 0xc0 },
250 { 0x3f, 0xe0 },
251 { 0x1f, 0xf0 },
252 { 0x0f, 0xf8 },
253 { 0x07, 0xfc },
254 { 0x03, 0xfe },
255 { 0x01, 0xff },
256};
257static struct edge_tab edge8_tab_l[8] = {
258 { 0xff, 0x01 },
259 { 0xfe, 0x03 },
260 { 0xfc, 0x07 },
261 { 0xf8, 0x0f },
262 { 0xf0, 0x1f },
263 { 0xe0, 0x3f },
264 { 0xc0, 0x7f },
265 { 0x80, 0xff },
266};
267static struct edge_tab edge16_tab[4] = {
268 { 0xf, 0x8 },
269 { 0x7, 0xc },
270 { 0x3, 0xe },
271 { 0x1, 0xf },
272};
273static struct edge_tab edge16_tab_l[4] = {
274 { 0xf, 0x1 },
275 { 0xe, 0x3 },
276 { 0xc, 0x7 },
277 { 0x8, 0xf },
278};
279static struct edge_tab edge32_tab[2] = {
280 { 0x3, 0x2 },
281 { 0x1, 0x3 },
282};
283static struct edge_tab edge32_tab_l[2] = {
284 { 0x3, 0x1 },
285 { 0x2, 0x3 },
286};
287
288static void edge(struct pt_regs *regs, unsigned int insn, unsigned int opf)
289{
290 unsigned long orig_rs1, rs1, orig_rs2, rs2, rd_val;
291 u16 left, right;
292
293 maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
294 orig_rs1 = rs1 = fetch_reg(RS1(insn), regs);
295 orig_rs2 = rs2 = fetch_reg(RS2(insn), regs);
296
297 if (test_thread_flag(TIF_32BIT)) {
298 rs1 = rs1 & 0xffffffff;
299 rs2 = rs2 & 0xffffffff;
300 }
301 switch (opf) {
302 default:
303 case EDGE8_OPF:
304 case EDGE8N_OPF:
305 left = edge8_tab[rs1 & 0x7].left;
306 right = edge8_tab[rs2 & 0x7].right;
307 break;
308 case EDGE8L_OPF:
309 case EDGE8LN_OPF:
310 left = edge8_tab_l[rs1 & 0x7].left;
311 right = edge8_tab_l[rs2 & 0x7].right;
312 break;
313
314 case EDGE16_OPF:
315 case EDGE16N_OPF:
316 left = edge16_tab[(rs1 >> 1) & 0x3].left;
317 right = edge16_tab[(rs2 >> 1) & 0x3].right;
318 break;
319
320 case EDGE16L_OPF:
321 case EDGE16LN_OPF:
322 left = edge16_tab_l[(rs1 >> 1) & 0x3].left;
323 right = edge16_tab_l[(rs2 >> 1) & 0x3].right;
324 break;
325
326 case EDGE32_OPF:
327 case EDGE32N_OPF:
328 left = edge32_tab[(rs1 >> 2) & 0x1].left;
329 right = edge32_tab[(rs2 >> 2) & 0x1].right;
330 break;
331
332 case EDGE32L_OPF:
333 case EDGE32LN_OPF:
334 left = edge32_tab_l[(rs1 >> 2) & 0x1].left;
335 right = edge32_tab_l[(rs2 >> 2) & 0x1].right;
336 break;
337 }
338
339 if ((rs1 & ~0x7UL) == (rs2 & ~0x7UL))
340 rd_val = right & left;
341 else
342 rd_val = left;
343
344 store_reg(regs, rd_val, RD(insn));
345
346 switch (opf) {
347 case EDGE8_OPF:
348 case EDGE8L_OPF:
349 case EDGE16_OPF:
350 case EDGE16L_OPF:
351 case EDGE32_OPF:
352 case EDGE32L_OPF: {
353 unsigned long ccr, tstate;
354
355 __asm__ __volatile__("subcc %1, %2, %%g0\n\t"
356 "rd %%ccr, %0"
357 : "=r" (ccr)
358 : "r" (orig_rs1), "r" (orig_rs2)
359 : "cc");
360 tstate = regs->tstate & ~(TSTATE_XCC | TSTATE_ICC);
361 regs->tstate = tstate | (ccr << 32UL);
362 }
363 }
364}
365
366static void array(struct pt_regs *regs, unsigned int insn, unsigned int opf)
367{
368 unsigned long rs1, rs2, rd_val;
369 unsigned int bits, bits_mask;
370
371 maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
372 rs1 = fetch_reg(RS1(insn), regs);
373 rs2 = fetch_reg(RS2(insn), regs);
374
375 bits = (rs2 > 5 ? 5 : rs2);
376 bits_mask = (1UL << bits) - 1UL;
377
378 rd_val = ((((rs1 >> 11) & 0x3) << 0) |
379 (((rs1 >> 33) & 0x3) << 2) |
380 (((rs1 >> 55) & 0x1) << 4) |
381 (((rs1 >> 13) & 0xf) << 5) |
382 (((rs1 >> 35) & 0xf) << 9) |
383 (((rs1 >> 56) & 0xf) << 13) |
384 (((rs1 >> 17) & bits_mask) << 17) |
385 (((rs1 >> 39) & bits_mask) << (17 + bits)) |
386 (((rs1 >> 60) & 0xf) << (17 + (2*bits))));
387
388 switch (opf) {
389 case ARRAY16_OPF:
390 rd_val <<= 1;
391 break;
392
393 case ARRAY32_OPF:
394 rd_val <<= 2;
395 }
396
397 store_reg(regs, rd_val, RD(insn));
398}
399
400static void bmask(struct pt_regs *regs, unsigned int insn)
401{
402 unsigned long rs1, rs2, rd_val, gsr;
403
404 maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
405 rs1 = fetch_reg(RS1(insn), regs);
406 rs2 = fetch_reg(RS2(insn), regs);
407 rd_val = rs1 + rs2;
408
409 store_reg(regs, rd_val, RD(insn));
410
411 gsr = current_thread_info()->gsr[0] & 0xffffffff;
412 gsr |= rd_val << 32UL;
413 current_thread_info()->gsr[0] = gsr;
414}
415
416static void bshuffle(struct pt_regs *regs, unsigned int insn)
417{
418 struct fpustate *f = FPUSTATE;
419 unsigned long rs1, rs2, rd_val;
420 unsigned long bmask, i;
421
422 bmask = current_thread_info()->gsr[0] >> 32UL;
423
424 rs1 = fpd_regval(f, RS1(insn));
425 rs2 = fpd_regval(f, RS2(insn));
426
427 rd_val = 0UL;
428 for (i = 0; i < 8; i++) {
429 unsigned long which = (bmask >> (i * 4)) & 0xf;
430 unsigned long byte;
431
432 if (which < 8)
433 byte = (rs1 >> (which * 8)) & 0xff;
434 else
435 byte = (rs2 >> ((which-8)*8)) & 0xff;
436 rd_val |= (byte << (i * 8));
437 }
438
439 *fpd_regaddr(f, RD(insn)) = rd_val;
440}
441
442static void pdist(struct pt_regs *regs, unsigned int insn)
443{
444 struct fpustate *f = FPUSTATE;
445 unsigned long rs1, rs2, *rd, rd_val;
446 unsigned long i;
447
448 rs1 = fpd_regval(f, RS1(insn));
449 rs2 = fpd_regval(f, RS2(insn));
450 rd = fpd_regaddr(f, RD(insn));
451
452 rd_val = *rd;
453
454 for (i = 0; i < 8; i++) {
455 s16 s1, s2;
456
457 s1 = (rs1 >> (56 - (i * 8))) & 0xff;
458 s2 = (rs2 >> (56 - (i * 8))) & 0xff;
459
460 /* Absolute value of difference. */
461 s1 -= s2;
462 if (s1 < 0)
463 s1 = ~s1 + 1;
464
465 rd_val += s1;
466 }
467
468 *rd = rd_val;
469}
470
471static void pformat(struct pt_regs *regs, unsigned int insn, unsigned int opf)
472{
473 struct fpustate *f = FPUSTATE;
474 unsigned long rs1, rs2, gsr, scale, rd_val;
475
476 gsr = current_thread_info()->gsr[0];
477 scale = (gsr >> 3) & (opf == FPACK16_OPF ? 0xf : 0x1f);
478 switch (opf) {
479 case FPACK16_OPF: {
480 unsigned long byte;
481
482 rs2 = fpd_regval(f, RS2(insn));
483 rd_val = 0;
484 for (byte = 0; byte < 4; byte++) {
485 unsigned int val;
486 s16 src = (rs2 >> (byte * 16UL)) & 0xffffUL;
487 int scaled = src << scale;
488 int from_fixed = scaled >> 7;
489
490 val = ((from_fixed < 0) ?
491 0 :
492 (from_fixed > 255) ?
493 255 : from_fixed);
494
495 rd_val |= (val << (8 * byte));
496 }
497 *fps_regaddr(f, RD(insn)) = rd_val;
498 break;
499 }
500
501 case FPACK32_OPF: {
502 unsigned long word;
503
504 rs1 = fpd_regval(f, RS1(insn));
505 rs2 = fpd_regval(f, RS2(insn));
506 rd_val = (rs1 << 8) & ~(0x000000ff000000ffUL);
507 for (word = 0; word < 2; word++) {
508 unsigned long val;
509 s32 src = (rs2 >> (word * 32UL));
510 s64 scaled = src << scale;
511 s64 from_fixed = scaled >> 23;
512
513 val = ((from_fixed < 0) ?
514 0 :
515 (from_fixed > 255) ?
516 255 : from_fixed);
517
518 rd_val |= (val << (32 * word));
519 }
520 *fpd_regaddr(f, RD(insn)) = rd_val;
521 break;
522 }
523
524 case FPACKFIX_OPF: {
525 unsigned long word;
526
527 rs2 = fpd_regval(f, RS2(insn));
528
529 rd_val = 0;
530 for (word = 0; word < 2; word++) {
531 long val;
532 s32 src = (rs2 >> (word * 32UL));
533 s64 scaled = src << scale;
534 s64 from_fixed = scaled >> 16;
535
536 val = ((from_fixed < -32768) ?
537 -32768 :
538 (from_fixed > 32767) ?
539 32767 : from_fixed);
540
541 rd_val |= ((val & 0xffff) << (word * 16));
542 }
543 *fps_regaddr(f, RD(insn)) = rd_val;
544 break;
545 }
546
547 case FEXPAND_OPF: {
548 unsigned long byte;
549
550 rs2 = fps_regval(f, RS2(insn));
551
552 rd_val = 0;
553 for (byte = 0; byte < 4; byte++) {
554 unsigned long val;
555 u8 src = (rs2 >> (byte * 8)) & 0xff;
556
557 val = src << 4;
558
559 rd_val |= (val << (byte * 16));
560 }
561 *fpd_regaddr(f, RD(insn)) = rd_val;
562 break;
563 }
564
565 case FPMERGE_OPF: {
566 rs1 = fps_regval(f, RS1(insn));
567 rs2 = fps_regval(f, RS2(insn));
568
569 rd_val = (((rs2 & 0x000000ff) << 0) |
570 ((rs1 & 0x000000ff) << 8) |
571 ((rs2 & 0x0000ff00) << 8) |
572 ((rs1 & 0x0000ff00) << 16) |
573 ((rs2 & 0x00ff0000) << 16) |
574 ((rs1 & 0x00ff0000) << 24) |
575 ((rs2 & 0xff000000) << 24) |
576 ((rs1 & 0xff000000) << 32));
577 *fpd_regaddr(f, RD(insn)) = rd_val;
578 break;
579 }
580 }
581}
582
583static void pmul(struct pt_regs *regs, unsigned int insn, unsigned int opf)
584{
585 struct fpustate *f = FPUSTATE;
586 unsigned long rs1, rs2, rd_val;
587
588 switch (opf) {
589 case FMUL8x16_OPF: {
590 unsigned long byte;
591
592 rs1 = fps_regval(f, RS1(insn));
593 rs2 = fpd_regval(f, RS2(insn));
594
595 rd_val = 0;
596 for (byte = 0; byte < 4; byte++) {
597 u16 src1 = (rs1 >> (byte * 8)) & 0x00ff;
598 s16 src2 = (rs2 >> (byte * 16)) & 0xffff;
599 u32 prod = src1 * src2;
600 u16 scaled = ((prod & 0x00ffff00) >> 8);
601
602 /* Round up. */
603 if (prod & 0x80)
604 scaled++;
605 rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
606 }
607
608 *fpd_regaddr(f, RD(insn)) = rd_val;
609 break;
610 }
611
612 case FMUL8x16AU_OPF:
613 case FMUL8x16AL_OPF: {
614 unsigned long byte;
615 s16 src2;
616
617 rs1 = fps_regval(f, RS1(insn));
618 rs2 = fps_regval(f, RS2(insn));
619
620 rd_val = 0;
621 src2 = rs2 >> (opf == FMUL8x16AU_OPF ? 16 : 0);
622 for (byte = 0; byte < 4; byte++) {
623 u16 src1 = (rs1 >> (byte * 8)) & 0x00ff;
624 u32 prod = src1 * src2;
625 u16 scaled = ((prod & 0x00ffff00) >> 8);
626
627 /* Round up. */
628 if (prod & 0x80)
629 scaled++;
630 rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
631 }
632
633 *fpd_regaddr(f, RD(insn)) = rd_val;
634 break;
635 }
636
637 case FMUL8SUx16_OPF:
638 case FMUL8ULx16_OPF: {
639 unsigned long byte, ushift;
640
641 rs1 = fpd_regval(f, RS1(insn));
642 rs2 = fpd_regval(f, RS2(insn));
643
644 rd_val = 0;
645 ushift = (opf == FMUL8SUx16_OPF) ? 8 : 0;
646 for (byte = 0; byte < 4; byte++) {
647 u16 src1;
648 s16 src2;
649 u32 prod;
650 u16 scaled;
651
652 src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff);
653 src2 = ((rs2 >> (16 * byte)) & 0xffff);
654 prod = src1 * src2;
655 scaled = ((prod & 0x00ffff00) >> 8);
656
657 /* Round up. */
658 if (prod & 0x80)
659 scaled++;
660 rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
661 }
662
663 *fpd_regaddr(f, RD(insn)) = rd_val;
664 break;
665 }
666
667 case FMULD8SUx16_OPF:
668 case FMULD8ULx16_OPF: {
669 unsigned long byte, ushift;
670
671 rs1 = fps_regval(f, RS1(insn));
672 rs2 = fps_regval(f, RS2(insn));
673
674 rd_val = 0;
675 ushift = (opf == FMULD8SUx16_OPF) ? 8 : 0;
676 for (byte = 0; byte < 2; byte++) {
677 u16 src1;
678 s16 src2;
679 u32 prod;
680 u16 scaled;
681
682 src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff);
683 src2 = ((rs2 >> (16 * byte)) & 0xffff);
684 prod = src1 * src2;
685 scaled = ((prod & 0x00ffff00) >> 8);
686
687 /* Round up. */
688 if (prod & 0x80)
689 scaled++;
690 rd_val |= ((scaled & 0xffffUL) <<
691 ((byte * 32UL) + 7UL));
692 }
693 *fpd_regaddr(f, RD(insn)) = rd_val;
694 break;
695 }
696 }
697}
698
699static void pcmp(struct pt_regs *regs, unsigned int insn, unsigned int opf)
700{
701 struct fpustate *f = FPUSTATE;
702 unsigned long rs1, rs2, rd_val, i;
703
704 rs1 = fpd_regval(f, RS1(insn));
705 rs2 = fpd_regval(f, RS2(insn));
706
707 rd_val = 0;
708
709 switch (opf) {
710 case FCMPGT16_OPF:
711 for (i = 0; i < 4; i++) {
712 s16 a = (rs1 >> (i * 16)) & 0xffff;
713 s16 b = (rs2 >> (i * 16)) & 0xffff;
714
715 if (a > b)
716 rd_val |= 8 >> i;
717 }
718 break;
719
720 case FCMPGT32_OPF:
721 for (i = 0; i < 2; i++) {
722 s32 a = (rs1 >> (i * 32)) & 0xffffffff;
723 s32 b = (rs2 >> (i * 32)) & 0xffffffff;
724
725 if (a > b)
726 rd_val |= 2 >> i;
727 }
728 break;
729
730 case FCMPLE16_OPF:
731 for (i = 0; i < 4; i++) {
732 s16 a = (rs1 >> (i * 16)) & 0xffff;
733 s16 b = (rs2 >> (i * 16)) & 0xffff;
734
735 if (a <= b)
736 rd_val |= 8 >> i;
737 }
738 break;
739
740 case FCMPLE32_OPF:
741 for (i = 0; i < 2; i++) {
742 s32 a = (rs1 >> (i * 32)) & 0xffffffff;
743 s32 b = (rs2 >> (i * 32)) & 0xffffffff;
744
745 if (a <= b)
746 rd_val |= 2 >> i;
747 }
748 break;
749
750 case FCMPNE16_OPF:
751 for (i = 0; i < 4; i++) {
752 s16 a = (rs1 >> (i * 16)) & 0xffff;
753 s16 b = (rs2 >> (i * 16)) & 0xffff;
754
755 if (a != b)
756 rd_val |= 8 >> i;
757 }
758 break;
759
760 case FCMPNE32_OPF:
761 for (i = 0; i < 2; i++) {
762 s32 a = (rs1 >> (i * 32)) & 0xffffffff;
763 s32 b = (rs2 >> (i * 32)) & 0xffffffff;
764
765 if (a != b)
766 rd_val |= 2 >> i;
767 }
768 break;
769
770 case FCMPEQ16_OPF:
771 for (i = 0; i < 4; i++) {
772 s16 a = (rs1 >> (i * 16)) & 0xffff;
773 s16 b = (rs2 >> (i * 16)) & 0xffff;
774
775 if (a == b)
776 rd_val |= 8 >> i;
777 }
778 break;
779
780 case FCMPEQ32_OPF:
781 for (i = 0; i < 2; i++) {
782 s32 a = (rs1 >> (i * 32)) & 0xffffffff;
783 s32 b = (rs2 >> (i * 32)) & 0xffffffff;
784
785 if (a == b)
786 rd_val |= 2 >> i;
787 }
788 break;
789 }
790
791 maybe_flush_windows(0, 0, RD(insn), 0);
792 store_reg(regs, rd_val, RD(insn));
793}
794
795/* Emulate the VIS instructions which are not implemented in
796 * hardware on Niagara.
797 */
798int vis_emul(struct pt_regs *regs, unsigned int insn)
799{
800 unsigned long pc = regs->tpc;
801 unsigned int opf;
802
803 BUG_ON(regs->tstate & TSTATE_PRIV);
804
805 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
806
807 if (test_thread_flag(TIF_32BIT))
808 pc = (u32)pc;
809
810 if (get_user(insn, (u32 __user *) pc))
811 return -EFAULT;
812
813 save_and_clear_fpu();
814
815 opf = (insn & VIS_OPF_MASK) >> VIS_OPF_SHIFT;
816 switch (opf) {
817 default:
818 return -EINVAL;
819
820 /* Pixel Formatting Instructions. */
821 case FPACK16_OPF:
822 case FPACK32_OPF:
823 case FPACKFIX_OPF:
824 case FEXPAND_OPF:
825 case FPMERGE_OPF:
826 pformat(regs, insn, opf);
827 break;
828
829 /* Partitioned Multiply Instructions */
830 case FMUL8x16_OPF:
831 case FMUL8x16AU_OPF:
832 case FMUL8x16AL_OPF:
833 case FMUL8SUx16_OPF:
834 case FMUL8ULx16_OPF:
835 case FMULD8SUx16_OPF:
836 case FMULD8ULx16_OPF:
837 pmul(regs, insn, opf);
838 break;
839
840 /* Pixel Compare Instructions */
841 case FCMPGT16_OPF:
842 case FCMPGT32_OPF:
843 case FCMPLE16_OPF:
844 case FCMPLE32_OPF:
845 case FCMPNE16_OPF:
846 case FCMPNE32_OPF:
847 case FCMPEQ16_OPF:
848 case FCMPEQ32_OPF:
849 pcmp(regs, insn, opf);
850 break;
851
852 /* Edge Handling Instructions */
853 case EDGE8_OPF:
854 case EDGE8N_OPF:
855 case EDGE8L_OPF:
856 case EDGE8LN_OPF:
857 case EDGE16_OPF:
858 case EDGE16N_OPF:
859 case EDGE16L_OPF:
860 case EDGE16LN_OPF:
861 case EDGE32_OPF:
862 case EDGE32N_OPF:
863 case EDGE32L_OPF:
864 case EDGE32LN_OPF:
865 edge(regs, insn, opf);
866 break;
867
868 /* Pixel Component Distance */
869 case PDIST_OPF:
870 pdist(regs, insn);
871 break;
872
873 /* Three-Dimensional Array Addressing Instructions */
874 case ARRAY8_OPF:
875 case ARRAY16_OPF:
876 case ARRAY32_OPF:
877 array(regs, insn, opf);
878 break;
879
880 /* Byte Mask and Shuffle Instructions */
881 case BMASK_OPF:
882 bmask(regs, insn);
883 break;
884
885 case BSHUFFLE_OPF:
886 bshuffle(regs, insn);
887 break;
888 }
889
890 regs->tpc = regs->tnpc;
891 regs->tnpc += 4;
892 return 0;
893}
1/* visemul.c: Emulation of VIS instructions.
2 *
3 * Copyright (C) 2006 David S. Miller (davem@davemloft.net)
4 */
5#include <linux/kernel.h>
6#include <linux/errno.h>
7#include <linux/thread_info.h>
8#include <linux/perf_event.h>
9
10#include <asm/ptrace.h>
11#include <asm/pstate.h>
12#include <asm/fpumacro.h>
13#include <linux/uaccess.h>
14#include <asm/cacheflush.h>
15
16/* OPF field of various VIS instructions. */
17
18/* 000111011 - four 16-bit packs */
19#define FPACK16_OPF 0x03b
20
21/* 000111010 - two 32-bit packs */
22#define FPACK32_OPF 0x03a
23
24/* 000111101 - four 16-bit packs */
25#define FPACKFIX_OPF 0x03d
26
27/* 001001101 - four 16-bit expands */
28#define FEXPAND_OPF 0x04d
29
30/* 001001011 - two 32-bit merges */
31#define FPMERGE_OPF 0x04b
32
33/* 000110001 - 8-by-16-bit partitoned product */
34#define FMUL8x16_OPF 0x031
35
36/* 000110011 - 8-by-16-bit upper alpha partitioned product */
37#define FMUL8x16AU_OPF 0x033
38
39/* 000110101 - 8-by-16-bit lower alpha partitioned product */
40#define FMUL8x16AL_OPF 0x035
41
42/* 000110110 - upper 8-by-16-bit partitioned product */
43#define FMUL8SUx16_OPF 0x036
44
45/* 000110111 - lower 8-by-16-bit partitioned product */
46#define FMUL8ULx16_OPF 0x037
47
48/* 000111000 - upper 8-by-16-bit partitioned product */
49#define FMULD8SUx16_OPF 0x038
50
51/* 000111001 - lower unsigned 8-by-16-bit partitioned product */
52#define FMULD8ULx16_OPF 0x039
53
54/* 000101000 - four 16-bit compare; set rd if src1 > src2 */
55#define FCMPGT16_OPF 0x028
56
57/* 000101100 - two 32-bit compare; set rd if src1 > src2 */
58#define FCMPGT32_OPF 0x02c
59
60/* 000100000 - four 16-bit compare; set rd if src1 <= src2 */
61#define FCMPLE16_OPF 0x020
62
63/* 000100100 - two 32-bit compare; set rd if src1 <= src2 */
64#define FCMPLE32_OPF 0x024
65
66/* 000100010 - four 16-bit compare; set rd if src1 != src2 */
67#define FCMPNE16_OPF 0x022
68
69/* 000100110 - two 32-bit compare; set rd if src1 != src2 */
70#define FCMPNE32_OPF 0x026
71
72/* 000101010 - four 16-bit compare; set rd if src1 == src2 */
73#define FCMPEQ16_OPF 0x02a
74
75/* 000101110 - two 32-bit compare; set rd if src1 == src2 */
76#define FCMPEQ32_OPF 0x02e
77
78/* 000000000 - Eight 8-bit edge boundary processing */
79#define EDGE8_OPF 0x000
80
81/* 000000001 - Eight 8-bit edge boundary processing, no CC */
82#define EDGE8N_OPF 0x001
83
84/* 000000010 - Eight 8-bit edge boundary processing, little-endian */
85#define EDGE8L_OPF 0x002
86
87/* 000000011 - Eight 8-bit edge boundary processing, little-endian, no CC */
88#define EDGE8LN_OPF 0x003
89
90/* 000000100 - Four 16-bit edge boundary processing */
91#define EDGE16_OPF 0x004
92
93/* 000000101 - Four 16-bit edge boundary processing, no CC */
94#define EDGE16N_OPF 0x005
95
96/* 000000110 - Four 16-bit edge boundary processing, little-endian */
97#define EDGE16L_OPF 0x006
98
99/* 000000111 - Four 16-bit edge boundary processing, little-endian, no CC */
100#define EDGE16LN_OPF 0x007
101
102/* 000001000 - Two 32-bit edge boundary processing */
103#define EDGE32_OPF 0x008
104
105/* 000001001 - Two 32-bit edge boundary processing, no CC */
106#define EDGE32N_OPF 0x009
107
108/* 000001010 - Two 32-bit edge boundary processing, little-endian */
109#define EDGE32L_OPF 0x00a
110
111/* 000001011 - Two 32-bit edge boundary processing, little-endian, no CC */
112#define EDGE32LN_OPF 0x00b
113
114/* 000111110 - distance between 8 8-bit components */
115#define PDIST_OPF 0x03e
116
117/* 000010000 - convert 8-bit 3-D address to blocked byte address */
118#define ARRAY8_OPF 0x010
119
120/* 000010010 - convert 16-bit 3-D address to blocked byte address */
121#define ARRAY16_OPF 0x012
122
123/* 000010100 - convert 32-bit 3-D address to blocked byte address */
124#define ARRAY32_OPF 0x014
125
126/* 000011001 - Set the GSR.MASK field in preparation for a BSHUFFLE */
127#define BMASK_OPF 0x019
128
129/* 001001100 - Permute bytes as specified by GSR.MASK */
130#define BSHUFFLE_OPF 0x04c
131
132#define VIS_OPF_SHIFT 5
133#define VIS_OPF_MASK (0x1ff << VIS_OPF_SHIFT)
134
135#define RS1(INSN) (((INSN) >> 14) & 0x1f)
136#define RS2(INSN) (((INSN) >> 0) & 0x1f)
137#define RD(INSN) (((INSN) >> 25) & 0x1f)
138
139static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
140 unsigned int rd, int from_kernel)
141{
142 if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
143 if (from_kernel != 0)
144 __asm__ __volatile__("flushw");
145 else
146 flushw_user();
147 }
148}
149
150static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
151{
152 unsigned long value, fp;
153
154 if (reg < 16)
155 return (!reg ? 0 : regs->u_regs[reg]);
156
157 fp = regs->u_regs[UREG_FP];
158
159 if (regs->tstate & TSTATE_PRIV) {
160 struct reg_window *win;
161 win = (struct reg_window *)(fp + STACK_BIAS);
162 value = win->locals[reg - 16];
163 } else if (!test_thread_64bit_stack(fp)) {
164 struct reg_window32 __user *win32;
165 win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
166 get_user(value, &win32->locals[reg - 16]);
167 } else {
168 struct reg_window __user *win;
169 win = (struct reg_window __user *)(fp + STACK_BIAS);
170 get_user(value, &win->locals[reg - 16]);
171 }
172 return value;
173}
174
175static inline unsigned long __user *__fetch_reg_addr_user(unsigned int reg,
176 struct pt_regs *regs)
177{
178 unsigned long fp = regs->u_regs[UREG_FP];
179
180 BUG_ON(reg < 16);
181 BUG_ON(regs->tstate & TSTATE_PRIV);
182
183 if (!test_thread_64bit_stack(fp)) {
184 struct reg_window32 __user *win32;
185 win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
186 return (unsigned long __user *)&win32->locals[reg - 16];
187 } else {
188 struct reg_window __user *win;
189 win = (struct reg_window __user *)(fp + STACK_BIAS);
190 return &win->locals[reg - 16];
191 }
192}
193
194static inline unsigned long *__fetch_reg_addr_kern(unsigned int reg,
195 struct pt_regs *regs)
196{
197 BUG_ON(reg >= 16);
198 BUG_ON(regs->tstate & TSTATE_PRIV);
199
200 return ®s->u_regs[reg];
201}
202
203static void store_reg(struct pt_regs *regs, unsigned long val, unsigned long rd)
204{
205 if (rd < 16) {
206 unsigned long *rd_kern = __fetch_reg_addr_kern(rd, regs);
207
208 *rd_kern = val;
209 } else {
210 unsigned long __user *rd_user = __fetch_reg_addr_user(rd, regs);
211
212 if (!test_thread_64bit_stack(regs->u_regs[UREG_FP]))
213 __put_user((u32)val, (u32 __user *)rd_user);
214 else
215 __put_user(val, rd_user);
216 }
217}
218
219static inline unsigned long fpd_regval(struct fpustate *f,
220 unsigned int insn_regnum)
221{
222 insn_regnum = (((insn_regnum & 1) << 5) |
223 (insn_regnum & 0x1e));
224
225 return *(unsigned long *) &f->regs[insn_regnum];
226}
227
228static inline unsigned long *fpd_regaddr(struct fpustate *f,
229 unsigned int insn_regnum)
230{
231 insn_regnum = (((insn_regnum & 1) << 5) |
232 (insn_regnum & 0x1e));
233
234 return (unsigned long *) &f->regs[insn_regnum];
235}
236
237static inline unsigned int fps_regval(struct fpustate *f,
238 unsigned int insn_regnum)
239{
240 return f->regs[insn_regnum];
241}
242
243static inline unsigned int *fps_regaddr(struct fpustate *f,
244 unsigned int insn_regnum)
245{
246 return &f->regs[insn_regnum];
247}
248
249struct edge_tab {
250 u16 left, right;
251};
252static struct edge_tab edge8_tab[8] = {
253 { 0xff, 0x80 },
254 { 0x7f, 0xc0 },
255 { 0x3f, 0xe0 },
256 { 0x1f, 0xf0 },
257 { 0x0f, 0xf8 },
258 { 0x07, 0xfc },
259 { 0x03, 0xfe },
260 { 0x01, 0xff },
261};
262static struct edge_tab edge8_tab_l[8] = {
263 { 0xff, 0x01 },
264 { 0xfe, 0x03 },
265 { 0xfc, 0x07 },
266 { 0xf8, 0x0f },
267 { 0xf0, 0x1f },
268 { 0xe0, 0x3f },
269 { 0xc0, 0x7f },
270 { 0x80, 0xff },
271};
272static struct edge_tab edge16_tab[4] = {
273 { 0xf, 0x8 },
274 { 0x7, 0xc },
275 { 0x3, 0xe },
276 { 0x1, 0xf },
277};
278static struct edge_tab edge16_tab_l[4] = {
279 { 0xf, 0x1 },
280 { 0xe, 0x3 },
281 { 0xc, 0x7 },
282 { 0x8, 0xf },
283};
284static struct edge_tab edge32_tab[2] = {
285 { 0x3, 0x2 },
286 { 0x1, 0x3 },
287};
288static struct edge_tab edge32_tab_l[2] = {
289 { 0x3, 0x1 },
290 { 0x2, 0x3 },
291};
292
293static void edge(struct pt_regs *regs, unsigned int insn, unsigned int opf)
294{
295 unsigned long orig_rs1, rs1, orig_rs2, rs2, rd_val;
296 u16 left, right;
297
298 maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
299 orig_rs1 = rs1 = fetch_reg(RS1(insn), regs);
300 orig_rs2 = rs2 = fetch_reg(RS2(insn), regs);
301
302 if (test_thread_flag(TIF_32BIT)) {
303 rs1 = rs1 & 0xffffffff;
304 rs2 = rs2 & 0xffffffff;
305 }
306 switch (opf) {
307 default:
308 case EDGE8_OPF:
309 case EDGE8N_OPF:
310 left = edge8_tab[rs1 & 0x7].left;
311 right = edge8_tab[rs2 & 0x7].right;
312 break;
313 case EDGE8L_OPF:
314 case EDGE8LN_OPF:
315 left = edge8_tab_l[rs1 & 0x7].left;
316 right = edge8_tab_l[rs2 & 0x7].right;
317 break;
318
319 case EDGE16_OPF:
320 case EDGE16N_OPF:
321 left = edge16_tab[(rs1 >> 1) & 0x3].left;
322 right = edge16_tab[(rs2 >> 1) & 0x3].right;
323 break;
324
325 case EDGE16L_OPF:
326 case EDGE16LN_OPF:
327 left = edge16_tab_l[(rs1 >> 1) & 0x3].left;
328 right = edge16_tab_l[(rs2 >> 1) & 0x3].right;
329 break;
330
331 case EDGE32_OPF:
332 case EDGE32N_OPF:
333 left = edge32_tab[(rs1 >> 2) & 0x1].left;
334 right = edge32_tab[(rs2 >> 2) & 0x1].right;
335 break;
336
337 case EDGE32L_OPF:
338 case EDGE32LN_OPF:
339 left = edge32_tab_l[(rs1 >> 2) & 0x1].left;
340 right = edge32_tab_l[(rs2 >> 2) & 0x1].right;
341 break;
342 }
343
344 if ((rs1 & ~0x7UL) == (rs2 & ~0x7UL))
345 rd_val = right & left;
346 else
347 rd_val = left;
348
349 store_reg(regs, rd_val, RD(insn));
350
351 switch (opf) {
352 case EDGE8_OPF:
353 case EDGE8L_OPF:
354 case EDGE16_OPF:
355 case EDGE16L_OPF:
356 case EDGE32_OPF:
357 case EDGE32L_OPF: {
358 unsigned long ccr, tstate;
359
360 __asm__ __volatile__("subcc %1, %2, %%g0\n\t"
361 "rd %%ccr, %0"
362 : "=r" (ccr)
363 : "r" (orig_rs1), "r" (orig_rs2)
364 : "cc");
365 tstate = regs->tstate & ~(TSTATE_XCC | TSTATE_ICC);
366 regs->tstate = tstate | (ccr << 32UL);
367 }
368 }
369}
370
371static void array(struct pt_regs *regs, unsigned int insn, unsigned int opf)
372{
373 unsigned long rs1, rs2, rd_val;
374 unsigned int bits, bits_mask;
375
376 maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
377 rs1 = fetch_reg(RS1(insn), regs);
378 rs2 = fetch_reg(RS2(insn), regs);
379
380 bits = (rs2 > 5 ? 5 : rs2);
381 bits_mask = (1UL << bits) - 1UL;
382
383 rd_val = ((((rs1 >> 11) & 0x3) << 0) |
384 (((rs1 >> 33) & 0x3) << 2) |
385 (((rs1 >> 55) & 0x1) << 4) |
386 (((rs1 >> 13) & 0xf) << 5) |
387 (((rs1 >> 35) & 0xf) << 9) |
388 (((rs1 >> 56) & 0xf) << 13) |
389 (((rs1 >> 17) & bits_mask) << 17) |
390 (((rs1 >> 39) & bits_mask) << (17 + bits)) |
391 (((rs1 >> 60) & 0xf) << (17 + (2*bits))));
392
393 switch (opf) {
394 case ARRAY16_OPF:
395 rd_val <<= 1;
396 break;
397
398 case ARRAY32_OPF:
399 rd_val <<= 2;
400 }
401
402 store_reg(regs, rd_val, RD(insn));
403}
404
405static void bmask(struct pt_regs *regs, unsigned int insn)
406{
407 unsigned long rs1, rs2, rd_val, gsr;
408
409 maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
410 rs1 = fetch_reg(RS1(insn), regs);
411 rs2 = fetch_reg(RS2(insn), regs);
412 rd_val = rs1 + rs2;
413
414 store_reg(regs, rd_val, RD(insn));
415
416 gsr = current_thread_info()->gsr[0] & 0xffffffff;
417 gsr |= rd_val << 32UL;
418 current_thread_info()->gsr[0] = gsr;
419}
420
421static void bshuffle(struct pt_regs *regs, unsigned int insn)
422{
423 struct fpustate *f = FPUSTATE;
424 unsigned long rs1, rs2, rd_val;
425 unsigned long bmask, i;
426
427 bmask = current_thread_info()->gsr[0] >> 32UL;
428
429 rs1 = fpd_regval(f, RS1(insn));
430 rs2 = fpd_regval(f, RS2(insn));
431
432 rd_val = 0UL;
433 for (i = 0; i < 8; i++) {
434 unsigned long which = (bmask >> (i * 4)) & 0xf;
435 unsigned long byte;
436
437 if (which < 8)
438 byte = (rs1 >> (which * 8)) & 0xff;
439 else
440 byte = (rs2 >> ((which-8)*8)) & 0xff;
441 rd_val |= (byte << (i * 8));
442 }
443
444 *fpd_regaddr(f, RD(insn)) = rd_val;
445}
446
447static void pdist(struct pt_regs *regs, unsigned int insn)
448{
449 struct fpustate *f = FPUSTATE;
450 unsigned long rs1, rs2, *rd, rd_val;
451 unsigned long i;
452
453 rs1 = fpd_regval(f, RS1(insn));
454 rs2 = fpd_regval(f, RS2(insn));
455 rd = fpd_regaddr(f, RD(insn));
456
457 rd_val = *rd;
458
459 for (i = 0; i < 8; i++) {
460 s16 s1, s2;
461
462 s1 = (rs1 >> (56 - (i * 8))) & 0xff;
463 s2 = (rs2 >> (56 - (i * 8))) & 0xff;
464
465 /* Absolute value of difference. */
466 s1 -= s2;
467 if (s1 < 0)
468 s1 = ~s1 + 1;
469
470 rd_val += s1;
471 }
472
473 *rd = rd_val;
474}
475
476static void pformat(struct pt_regs *regs, unsigned int insn, unsigned int opf)
477{
478 struct fpustate *f = FPUSTATE;
479 unsigned long rs1, rs2, gsr, scale, rd_val;
480
481 gsr = current_thread_info()->gsr[0];
482 scale = (gsr >> 3) & (opf == FPACK16_OPF ? 0xf : 0x1f);
483 switch (opf) {
484 case FPACK16_OPF: {
485 unsigned long byte;
486
487 rs2 = fpd_regval(f, RS2(insn));
488 rd_val = 0;
489 for (byte = 0; byte < 4; byte++) {
490 unsigned int val;
491 s16 src = (rs2 >> (byte * 16UL)) & 0xffffUL;
492 int scaled = src << scale;
493 int from_fixed = scaled >> 7;
494
495 val = ((from_fixed < 0) ?
496 0 :
497 (from_fixed > 255) ?
498 255 : from_fixed);
499
500 rd_val |= (val << (8 * byte));
501 }
502 *fps_regaddr(f, RD(insn)) = rd_val;
503 break;
504 }
505
506 case FPACK32_OPF: {
507 unsigned long word;
508
509 rs1 = fpd_regval(f, RS1(insn));
510 rs2 = fpd_regval(f, RS2(insn));
511 rd_val = (rs1 << 8) & ~(0x000000ff000000ffUL);
512 for (word = 0; word < 2; word++) {
513 unsigned long val;
514 s32 src = (rs2 >> (word * 32UL));
515 s64 scaled = src << scale;
516 s64 from_fixed = scaled >> 23;
517
518 val = ((from_fixed < 0) ?
519 0 :
520 (from_fixed > 255) ?
521 255 : from_fixed);
522
523 rd_val |= (val << (32 * word));
524 }
525 *fpd_regaddr(f, RD(insn)) = rd_val;
526 break;
527 }
528
529 case FPACKFIX_OPF: {
530 unsigned long word;
531
532 rs2 = fpd_regval(f, RS2(insn));
533
534 rd_val = 0;
535 for (word = 0; word < 2; word++) {
536 long val;
537 s32 src = (rs2 >> (word * 32UL));
538 s64 scaled = src << scale;
539 s64 from_fixed = scaled >> 16;
540
541 val = ((from_fixed < -32768) ?
542 -32768 :
543 (from_fixed > 32767) ?
544 32767 : from_fixed);
545
546 rd_val |= ((val & 0xffff) << (word * 16));
547 }
548 *fps_regaddr(f, RD(insn)) = rd_val;
549 break;
550 }
551
552 case FEXPAND_OPF: {
553 unsigned long byte;
554
555 rs2 = fps_regval(f, RS2(insn));
556
557 rd_val = 0;
558 for (byte = 0; byte < 4; byte++) {
559 unsigned long val;
560 u8 src = (rs2 >> (byte * 8)) & 0xff;
561
562 val = src << 4;
563
564 rd_val |= (val << (byte * 16));
565 }
566 *fpd_regaddr(f, RD(insn)) = rd_val;
567 break;
568 }
569
570 case FPMERGE_OPF: {
571 rs1 = fps_regval(f, RS1(insn));
572 rs2 = fps_regval(f, RS2(insn));
573
574 rd_val = (((rs2 & 0x000000ff) << 0) |
575 ((rs1 & 0x000000ff) << 8) |
576 ((rs2 & 0x0000ff00) << 8) |
577 ((rs1 & 0x0000ff00) << 16) |
578 ((rs2 & 0x00ff0000) << 16) |
579 ((rs1 & 0x00ff0000) << 24) |
580 ((rs2 & 0xff000000) << 24) |
581 ((rs1 & 0xff000000) << 32));
582 *fpd_regaddr(f, RD(insn)) = rd_val;
583 break;
584 }
585 }
586}
587
588static void pmul(struct pt_regs *regs, unsigned int insn, unsigned int opf)
589{
590 struct fpustate *f = FPUSTATE;
591 unsigned long rs1, rs2, rd_val;
592
593 switch (opf) {
594 case FMUL8x16_OPF: {
595 unsigned long byte;
596
597 rs1 = fps_regval(f, RS1(insn));
598 rs2 = fpd_regval(f, RS2(insn));
599
600 rd_val = 0;
601 for (byte = 0; byte < 4; byte++) {
602 u16 src1 = (rs1 >> (byte * 8)) & 0x00ff;
603 s16 src2 = (rs2 >> (byte * 16)) & 0xffff;
604 u32 prod = src1 * src2;
605 u16 scaled = ((prod & 0x00ffff00) >> 8);
606
607 /* Round up. */
608 if (prod & 0x80)
609 scaled++;
610 rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
611 }
612
613 *fpd_regaddr(f, RD(insn)) = rd_val;
614 break;
615 }
616
617 case FMUL8x16AU_OPF:
618 case FMUL8x16AL_OPF: {
619 unsigned long byte;
620 s16 src2;
621
622 rs1 = fps_regval(f, RS1(insn));
623 rs2 = fps_regval(f, RS2(insn));
624
625 rd_val = 0;
626 src2 = rs2 >> (opf == FMUL8x16AU_OPF ? 16 : 0);
627 for (byte = 0; byte < 4; byte++) {
628 u16 src1 = (rs1 >> (byte * 8)) & 0x00ff;
629 u32 prod = src1 * src2;
630 u16 scaled = ((prod & 0x00ffff00) >> 8);
631
632 /* Round up. */
633 if (prod & 0x80)
634 scaled++;
635 rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
636 }
637
638 *fpd_regaddr(f, RD(insn)) = rd_val;
639 break;
640 }
641
642 case FMUL8SUx16_OPF:
643 case FMUL8ULx16_OPF: {
644 unsigned long byte, ushift;
645
646 rs1 = fpd_regval(f, RS1(insn));
647 rs2 = fpd_regval(f, RS2(insn));
648
649 rd_val = 0;
650 ushift = (opf == FMUL8SUx16_OPF) ? 8 : 0;
651 for (byte = 0; byte < 4; byte++) {
652 u16 src1;
653 s16 src2;
654 u32 prod;
655 u16 scaled;
656
657 src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff);
658 src2 = ((rs2 >> (16 * byte)) & 0xffff);
659 prod = src1 * src2;
660 scaled = ((prod & 0x00ffff00) >> 8);
661
662 /* Round up. */
663 if (prod & 0x80)
664 scaled++;
665 rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
666 }
667
668 *fpd_regaddr(f, RD(insn)) = rd_val;
669 break;
670 }
671
672 case FMULD8SUx16_OPF:
673 case FMULD8ULx16_OPF: {
674 unsigned long byte, ushift;
675
676 rs1 = fps_regval(f, RS1(insn));
677 rs2 = fps_regval(f, RS2(insn));
678
679 rd_val = 0;
680 ushift = (opf == FMULD8SUx16_OPF) ? 8 : 0;
681 for (byte = 0; byte < 2; byte++) {
682 u16 src1;
683 s16 src2;
684 u32 prod;
685 u16 scaled;
686
687 src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff);
688 src2 = ((rs2 >> (16 * byte)) & 0xffff);
689 prod = src1 * src2;
690 scaled = ((prod & 0x00ffff00) >> 8);
691
692 /* Round up. */
693 if (prod & 0x80)
694 scaled++;
695 rd_val |= ((scaled & 0xffffUL) <<
696 ((byte * 32UL) + 7UL));
697 }
698 *fpd_regaddr(f, RD(insn)) = rd_val;
699 break;
700 }
701 }
702}
703
704static void pcmp(struct pt_regs *regs, unsigned int insn, unsigned int opf)
705{
706 struct fpustate *f = FPUSTATE;
707 unsigned long rs1, rs2, rd_val, i;
708
709 rs1 = fpd_regval(f, RS1(insn));
710 rs2 = fpd_regval(f, RS2(insn));
711
712 rd_val = 0;
713
714 switch (opf) {
715 case FCMPGT16_OPF:
716 for (i = 0; i < 4; i++) {
717 s16 a = (rs1 >> (i * 16)) & 0xffff;
718 s16 b = (rs2 >> (i * 16)) & 0xffff;
719
720 if (a > b)
721 rd_val |= 8 >> i;
722 }
723 break;
724
725 case FCMPGT32_OPF:
726 for (i = 0; i < 2; i++) {
727 s32 a = (rs1 >> (i * 32)) & 0xffffffff;
728 s32 b = (rs2 >> (i * 32)) & 0xffffffff;
729
730 if (a > b)
731 rd_val |= 2 >> i;
732 }
733 break;
734
735 case FCMPLE16_OPF:
736 for (i = 0; i < 4; i++) {
737 s16 a = (rs1 >> (i * 16)) & 0xffff;
738 s16 b = (rs2 >> (i * 16)) & 0xffff;
739
740 if (a <= b)
741 rd_val |= 8 >> i;
742 }
743 break;
744
745 case FCMPLE32_OPF:
746 for (i = 0; i < 2; i++) {
747 s32 a = (rs1 >> (i * 32)) & 0xffffffff;
748 s32 b = (rs2 >> (i * 32)) & 0xffffffff;
749
750 if (a <= b)
751 rd_val |= 2 >> i;
752 }
753 break;
754
755 case FCMPNE16_OPF:
756 for (i = 0; i < 4; i++) {
757 s16 a = (rs1 >> (i * 16)) & 0xffff;
758 s16 b = (rs2 >> (i * 16)) & 0xffff;
759
760 if (a != b)
761 rd_val |= 8 >> i;
762 }
763 break;
764
765 case FCMPNE32_OPF:
766 for (i = 0; i < 2; i++) {
767 s32 a = (rs1 >> (i * 32)) & 0xffffffff;
768 s32 b = (rs2 >> (i * 32)) & 0xffffffff;
769
770 if (a != b)
771 rd_val |= 2 >> i;
772 }
773 break;
774
775 case FCMPEQ16_OPF:
776 for (i = 0; i < 4; i++) {
777 s16 a = (rs1 >> (i * 16)) & 0xffff;
778 s16 b = (rs2 >> (i * 16)) & 0xffff;
779
780 if (a == b)
781 rd_val |= 8 >> i;
782 }
783 break;
784
785 case FCMPEQ32_OPF:
786 for (i = 0; i < 2; i++) {
787 s32 a = (rs1 >> (i * 32)) & 0xffffffff;
788 s32 b = (rs2 >> (i * 32)) & 0xffffffff;
789
790 if (a == b)
791 rd_val |= 2 >> i;
792 }
793 break;
794 }
795
796 maybe_flush_windows(0, 0, RD(insn), 0);
797 store_reg(regs, rd_val, RD(insn));
798}
799
800/* Emulate the VIS instructions which are not implemented in
801 * hardware on Niagara.
802 */
803int vis_emul(struct pt_regs *regs, unsigned int insn)
804{
805 unsigned long pc = regs->tpc;
806 unsigned int opf;
807
808 BUG_ON(regs->tstate & TSTATE_PRIV);
809
810 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
811
812 if (test_thread_flag(TIF_32BIT))
813 pc = (u32)pc;
814
815 if (get_user(insn, (u32 __user *) pc))
816 return -EFAULT;
817
818 save_and_clear_fpu();
819
820 opf = (insn & VIS_OPF_MASK) >> VIS_OPF_SHIFT;
821 switch (opf) {
822 default:
823 return -EINVAL;
824
825 /* Pixel Formatting Instructions. */
826 case FPACK16_OPF:
827 case FPACK32_OPF:
828 case FPACKFIX_OPF:
829 case FEXPAND_OPF:
830 case FPMERGE_OPF:
831 pformat(regs, insn, opf);
832 break;
833
834 /* Partitioned Multiply Instructions */
835 case FMUL8x16_OPF:
836 case FMUL8x16AU_OPF:
837 case FMUL8x16AL_OPF:
838 case FMUL8SUx16_OPF:
839 case FMUL8ULx16_OPF:
840 case FMULD8SUx16_OPF:
841 case FMULD8ULx16_OPF:
842 pmul(regs, insn, opf);
843 break;
844
845 /* Pixel Compare Instructions */
846 case FCMPGT16_OPF:
847 case FCMPGT32_OPF:
848 case FCMPLE16_OPF:
849 case FCMPLE32_OPF:
850 case FCMPNE16_OPF:
851 case FCMPNE32_OPF:
852 case FCMPEQ16_OPF:
853 case FCMPEQ32_OPF:
854 pcmp(regs, insn, opf);
855 break;
856
857 /* Edge Handling Instructions */
858 case EDGE8_OPF:
859 case EDGE8N_OPF:
860 case EDGE8L_OPF:
861 case EDGE8LN_OPF:
862 case EDGE16_OPF:
863 case EDGE16N_OPF:
864 case EDGE16L_OPF:
865 case EDGE16LN_OPF:
866 case EDGE32_OPF:
867 case EDGE32N_OPF:
868 case EDGE32L_OPF:
869 case EDGE32LN_OPF:
870 edge(regs, insn, opf);
871 break;
872
873 /* Pixel Component Distance */
874 case PDIST_OPF:
875 pdist(regs, insn);
876 break;
877
878 /* Three-Dimensional Array Addressing Instructions */
879 case ARRAY8_OPF:
880 case ARRAY16_OPF:
881 case ARRAY32_OPF:
882 array(regs, insn, opf);
883 break;
884
885 /* Byte Mask and Shuffle Instructions */
886 case BMASK_OPF:
887 bmask(regs, insn);
888 break;
889
890 case BSHUFFLE_OPF:
891 bshuffle(regs, insn);
892 break;
893 }
894
895 regs->tpc = regs->tnpc;
896 regs->tnpc += 4;
897 return 0;
898}