Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * Simple synchronous userspace interface to SPI devices
  3 *
  4 * Copyright (C) 2006 SWAPP
  5 *	Andrea Paterniani <a.paterniani@swapp-eng.it>
  6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License as published by
 10 * the Free Software Foundation; either version 2 of the License, or
 11 * (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 21 */
 22
 23#include <linux/init.h>
 24#include <linux/module.h>
 25#include <linux/ioctl.h>
 26#include <linux/fs.h>
 27#include <linux/device.h>
 28#include <linux/err.h>
 29#include <linux/list.h>
 30#include <linux/errno.h>
 31#include <linux/mutex.h>
 32#include <linux/slab.h>
 33#include <linux/compat.h>
 
 
 
 34
 35#include <linux/spi/spi.h>
 36#include <linux/spi/spidev.h>
 37
 38#include <asm/uaccess.h>
 39
 40
 41/*
 42 * This supports access to SPI devices using normal userspace I/O calls.
 43 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
 44 * and often mask message boundaries, full SPI support requires full duplex
 45 * transfers.  There are several kinds of internal message boundaries to
 46 * handle chipselect management and other protocol options.
 47 *
 48 * SPI has a character major number assigned.  We allocate minor numbers
 49 * dynamically using a bitmask.  You must use hotplug tools, such as udev
 50 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
 51 * nodes, since there is no fixed association of minor numbers with any
 52 * particular SPI bus or device.
 53 */
 54#define SPIDEV_MAJOR			153	/* assigned */
 55#define N_SPI_MINORS			32	/* ... up to 256 */
 56
 57static DECLARE_BITMAP(minors, N_SPI_MINORS);
 58
 59
 60/* Bit masks for spi_device.mode management.  Note that incorrect
 61 * settings for some settings can cause *lots* of trouble for other
 62 * devices on a shared bus:
 63 *
 64 *  - CS_HIGH ... this device will be active when it shouldn't be
 65 *  - 3WIRE ... when active, it won't behave as it should
 66 *  - NO_CS ... there will be no explicit message boundaries; this
 67 *	is completely incompatible with the shared bus model
 68 *  - READY ... transfers may proceed when they shouldn't.
 69 *
 70 * REVISIT should changing those flags be privileged?
 71 */
 72#define SPI_MODE_MASK		(SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
 73				| SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
 74				| SPI_NO_CS | SPI_READY)
 
 75
 76struct spidev_data {
 77	dev_t			devt;
 78	spinlock_t		spi_lock;
 79	struct spi_device	*spi;
 80	struct list_head	device_entry;
 81
 82	/* buffer is NULL unless this device is open (users > 0) */
 83	struct mutex		buf_lock;
 84	unsigned		users;
 85	u8			*buffer;
 
 
 86};
 87
 88static LIST_HEAD(device_list);
 89static DEFINE_MUTEX(device_list_lock);
 90
 91static unsigned bufsiz = 4096;
 92module_param(bufsiz, uint, S_IRUGO);
 93MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
 94
 95/*-------------------------------------------------------------------------*/
 96
 97/*
 98 * We can't use the standard synchronous wrappers for file I/O; we
 99 * need to protect against async removal of the underlying spi_device.
100 */
101static void spidev_complete(void *arg)
102{
103	complete(arg);
104}
105
106static ssize_t
107spidev_sync(struct spidev_data *spidev, struct spi_message *message)
108{
109	DECLARE_COMPLETION_ONSTACK(done);
110	int status;
111
112	message->complete = spidev_complete;
113	message->context = &done;
114
115	spin_lock_irq(&spidev->spi_lock);
116	if (spidev->spi == NULL)
 
 
 
117		status = -ESHUTDOWN;
118	else
119		status = spi_async(spidev->spi, message);
120	spin_unlock_irq(&spidev->spi_lock);
 
 
121
122	if (status == 0) {
123		wait_for_completion(&done);
124		status = message->status;
125		if (status == 0)
126			status = message->actual_length;
127	}
128	return status;
129}
130
131static inline ssize_t
132spidev_sync_write(struct spidev_data *spidev, size_t len)
133{
134	struct spi_transfer	t = {
135			.tx_buf		= spidev->buffer,
136			.len		= len,
 
137		};
138	struct spi_message	m;
139
140	spi_message_init(&m);
141	spi_message_add_tail(&t, &m);
142	return spidev_sync(spidev, &m);
143}
144
145static inline ssize_t
146spidev_sync_read(struct spidev_data *spidev, size_t len)
147{
148	struct spi_transfer	t = {
149			.rx_buf		= spidev->buffer,
150			.len		= len,
 
151		};
152	struct spi_message	m;
153
154	spi_message_init(&m);
155	spi_message_add_tail(&t, &m);
156	return spidev_sync(spidev, &m);
157}
158
159/*-------------------------------------------------------------------------*/
160
161/* Read-only message with current device setup */
162static ssize_t
163spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
164{
165	struct spidev_data	*spidev;
166	ssize_t			status = 0;
167
168	/* chipselect only toggles at start or end of operation */
169	if (count > bufsiz)
170		return -EMSGSIZE;
171
172	spidev = filp->private_data;
173
174	mutex_lock(&spidev->buf_lock);
175	status = spidev_sync_read(spidev, count);
176	if (status > 0) {
177		unsigned long	missing;
178
179		missing = copy_to_user(buf, spidev->buffer, status);
180		if (missing == status)
181			status = -EFAULT;
182		else
183			status = status - missing;
184	}
185	mutex_unlock(&spidev->buf_lock);
186
187	return status;
188}
189
190/* Write-only message with current device setup */
191static ssize_t
192spidev_write(struct file *filp, const char __user *buf,
193		size_t count, loff_t *f_pos)
194{
195	struct spidev_data	*spidev;
196	ssize_t			status = 0;
197	unsigned long		missing;
198
199	/* chipselect only toggles at start or end of operation */
200	if (count > bufsiz)
201		return -EMSGSIZE;
202
203	spidev = filp->private_data;
204
205	mutex_lock(&spidev->buf_lock);
206	missing = copy_from_user(spidev->buffer, buf, count);
207	if (missing == 0) {
208		status = spidev_sync_write(spidev, count);
209	} else
210		status = -EFAULT;
211	mutex_unlock(&spidev->buf_lock);
212
213	return status;
214}
215
216static int spidev_message(struct spidev_data *spidev,
217		struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
218{
219	struct spi_message	msg;
220	struct spi_transfer	*k_xfers;
221	struct spi_transfer	*k_tmp;
222	struct spi_ioc_transfer *u_tmp;
223	unsigned		n, total;
224	u8			*buf;
225	int			status = -EFAULT;
226
227	spi_message_init(&msg);
228	k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
229	if (k_xfers == NULL)
230		return -ENOMEM;
231
232	/* Construct spi_message, copying any tx data to bounce buffer.
233	 * We walk the array of user-provided transfers, using each one
234	 * to initialize a kernel version of the same transfer.
235	 */
236	buf = spidev->buffer;
 
237	total = 0;
 
 
238	for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
239			n;
240			n--, k_tmp++, u_tmp++) {
241		k_tmp->len = u_tmp->len;
242
243		total += k_tmp->len;
244		if (total > bufsiz) {
 
 
 
 
 
245			status = -EMSGSIZE;
246			goto done;
247		}
248
249		if (u_tmp->rx_buf) {
250			k_tmp->rx_buf = buf;
 
 
 
 
 
 
251			if (!access_ok(VERIFY_WRITE, (u8 __user *)
252						(uintptr_t) u_tmp->rx_buf,
253						u_tmp->len))
254				goto done;
 
255		}
256		if (u_tmp->tx_buf) {
257			k_tmp->tx_buf = buf;
258			if (copy_from_user(buf, (const u8 __user *)
 
 
 
 
 
 
259						(uintptr_t) u_tmp->tx_buf,
260					u_tmp->len))
261				goto done;
 
262		}
263		buf += k_tmp->len;
264
265		k_tmp->cs_change = !!u_tmp->cs_change;
 
 
266		k_tmp->bits_per_word = u_tmp->bits_per_word;
267		k_tmp->delay_usecs = u_tmp->delay_usecs;
268		k_tmp->speed_hz = u_tmp->speed_hz;
 
 
269#ifdef VERBOSE
270		dev_dbg(&spidev->spi->dev,
271			"  xfer len %zd %s%s%s%dbits %u usec %uHz\n",
272			u_tmp->len,
273			u_tmp->rx_buf ? "rx " : "",
274			u_tmp->tx_buf ? "tx " : "",
275			u_tmp->cs_change ? "cs " : "",
276			u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
277			u_tmp->delay_usecs,
278			u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
279#endif
280		spi_message_add_tail(k_tmp, &msg);
281	}
282
283	status = spidev_sync(spidev, &msg);
284	if (status < 0)
285		goto done;
286
287	/* copy any rx data out of bounce buffer */
288	buf = spidev->buffer;
289	for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
290		if (u_tmp->rx_buf) {
291			if (__copy_to_user((u8 __user *)
292					(uintptr_t) u_tmp->rx_buf, buf,
293					u_tmp->len)) {
294				status = -EFAULT;
295				goto done;
296			}
 
297		}
298		buf += u_tmp->len;
299	}
300	status = total;
301
302done:
303	kfree(k_xfers);
304	return status;
305}
306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307static long
308spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
309{
310	int			err = 0;
311	int			retval = 0;
312	struct spidev_data	*spidev;
313	struct spi_device	*spi;
314	u32			tmp;
315	unsigned		n_ioc;
316	struct spi_ioc_transfer	*ioc;
317
318	/* Check type and command number */
319	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
320		return -ENOTTY;
321
322	/* Check access direction once here; don't repeat below.
323	 * IOC_DIR is from the user perspective, while access_ok is
324	 * from the kernel perspective; so they look reversed.
325	 */
326	if (_IOC_DIR(cmd) & _IOC_READ)
327		err = !access_ok(VERIFY_WRITE,
328				(void __user *)arg, _IOC_SIZE(cmd));
329	if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
330		err = !access_ok(VERIFY_READ,
331				(void __user *)arg, _IOC_SIZE(cmd));
332	if (err)
333		return -EFAULT;
334
335	/* guard against device removal before, or while,
336	 * we issue this ioctl.
337	 */
338	spidev = filp->private_data;
339	spin_lock_irq(&spidev->spi_lock);
340	spi = spi_dev_get(spidev->spi);
341	spin_unlock_irq(&spidev->spi_lock);
342
343	if (spi == NULL)
344		return -ESHUTDOWN;
345
346	/* use the buffer lock here for triple duty:
347	 *  - prevent I/O (from us) so calling spi_setup() is safe;
348	 *  - prevent concurrent SPI_IOC_WR_* from morphing
349	 *    data fields while SPI_IOC_RD_* reads them;
350	 *  - SPI_IOC_MESSAGE needs the buffer locked "normally".
351	 */
352	mutex_lock(&spidev->buf_lock);
353
354	switch (cmd) {
355	/* read requests */
356	case SPI_IOC_RD_MODE:
357		retval = __put_user(spi->mode & SPI_MODE_MASK,
358					(__u8 __user *)arg);
359		break;
 
 
 
 
360	case SPI_IOC_RD_LSB_FIRST:
361		retval = __put_user((spi->mode & SPI_LSB_FIRST) ?  1 : 0,
362					(__u8 __user *)arg);
363		break;
364	case SPI_IOC_RD_BITS_PER_WORD:
365		retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
366		break;
367	case SPI_IOC_RD_MAX_SPEED_HZ:
368		retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg);
369		break;
370
371	/* write requests */
372	case SPI_IOC_WR_MODE:
373		retval = __get_user(tmp, (u8 __user *)arg);
 
 
 
 
374		if (retval == 0) {
375			u8	save = spi->mode;
376
377			if (tmp & ~SPI_MODE_MASK) {
378				retval = -EINVAL;
379				break;
380			}
381
382			tmp |= spi->mode & ~SPI_MODE_MASK;
383			spi->mode = (u8)tmp;
384			retval = spi_setup(spi);
385			if (retval < 0)
386				spi->mode = save;
387			else
388				dev_dbg(&spi->dev, "spi mode %02x\n", tmp);
389		}
390		break;
391	case SPI_IOC_WR_LSB_FIRST:
392		retval = __get_user(tmp, (__u8 __user *)arg);
393		if (retval == 0) {
394			u8	save = spi->mode;
395
396			if (tmp)
397				spi->mode |= SPI_LSB_FIRST;
398			else
399				spi->mode &= ~SPI_LSB_FIRST;
400			retval = spi_setup(spi);
401			if (retval < 0)
402				spi->mode = save;
403			else
404				dev_dbg(&spi->dev, "%csb first\n",
405						tmp ? 'l' : 'm');
406		}
407		break;
408	case SPI_IOC_WR_BITS_PER_WORD:
409		retval = __get_user(tmp, (__u8 __user *)arg);
410		if (retval == 0) {
411			u8	save = spi->bits_per_word;
412
413			spi->bits_per_word = tmp;
414			retval = spi_setup(spi);
415			if (retval < 0)
416				spi->bits_per_word = save;
417			else
418				dev_dbg(&spi->dev, "%d bits per word\n", tmp);
419		}
420		break;
421	case SPI_IOC_WR_MAX_SPEED_HZ:
422		retval = __get_user(tmp, (__u32 __user *)arg);
423		if (retval == 0) {
424			u32	save = spi->max_speed_hz;
425
426			spi->max_speed_hz = tmp;
427			retval = spi_setup(spi);
428			if (retval < 0)
429				spi->max_speed_hz = save;
430			else
431				dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
 
432		}
433		break;
434
435	default:
436		/* segmented and/or full-duplex I/O request */
437		if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
438				|| _IOC_DIR(cmd) != _IOC_WRITE) {
439			retval = -ENOTTY;
440			break;
441		}
442
443		tmp = _IOC_SIZE(cmd);
444		if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) {
445			retval = -EINVAL;
446			break;
447		}
448		n_ioc = tmp / sizeof(struct spi_ioc_transfer);
449		if (n_ioc == 0)
450			break;
451
452		/* copy into scratch area */
453		ioc = kmalloc(tmp, GFP_KERNEL);
454		if (!ioc) {
455			retval = -ENOMEM;
456			break;
457		}
458		if (__copy_from_user(ioc, (void __user *)arg, tmp)) {
459			kfree(ioc);
460			retval = -EFAULT;
461			break;
462		}
 
 
463
464		/* translate to spi_message, execute */
465		retval = spidev_message(spidev, ioc, n_ioc);
466		kfree(ioc);
467		break;
468	}
469
470	mutex_unlock(&spidev->buf_lock);
471	spi_dev_put(spi);
472	return retval;
473}
474
475#ifdef CONFIG_COMPAT
476static long
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
478{
 
 
 
 
 
479	return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
480}
481#else
482#define spidev_compat_ioctl NULL
483#endif /* CONFIG_COMPAT */
484
485static int spidev_open(struct inode *inode, struct file *filp)
486{
487	struct spidev_data	*spidev;
488	int			status = -ENXIO;
489
490	mutex_lock(&device_list_lock);
491
492	list_for_each_entry(spidev, &device_list, device_entry) {
493		if (spidev->devt == inode->i_rdev) {
494			status = 0;
495			break;
496		}
497	}
498	if (status == 0) {
499		if (!spidev->buffer) {
500			spidev->buffer = kmalloc(bufsiz, GFP_KERNEL);
501			if (!spidev->buffer) {
502				dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
503				status = -ENOMEM;
504			}
 
 
 
 
 
505		}
506		if (status == 0) {
507			spidev->users++;
508			filp->private_data = spidev;
509			nonseekable_open(inode, filp);
 
 
 
 
510		}
511	} else
512		pr_debug("spidev: nothing for minor %d\n", iminor(inode));
 
 
 
 
 
 
513
 
 
 
 
514	mutex_unlock(&device_list_lock);
515	return status;
516}
517
518static int spidev_release(struct inode *inode, struct file *filp)
519{
520	struct spidev_data	*spidev;
521	int			status = 0;
522
523	mutex_lock(&device_list_lock);
524	spidev = filp->private_data;
525	filp->private_data = NULL;
526
527	/* last close? */
528	spidev->users--;
529	if (!spidev->users) {
530		int		dofree;
531
532		kfree(spidev->buffer);
533		spidev->buffer = NULL;
 
 
 
534
535		/* ... after we unbound from the underlying device? */
536		spin_lock_irq(&spidev->spi_lock);
 
 
 
 
537		dofree = (spidev->spi == NULL);
538		spin_unlock_irq(&spidev->spi_lock);
539
540		if (dofree)
541			kfree(spidev);
542	}
543	mutex_unlock(&device_list_lock);
544
545	return status;
546}
547
548static const struct file_operations spidev_fops = {
549	.owner =	THIS_MODULE,
550	/* REVISIT switch to aio primitives, so that userspace
551	 * gets more complete API coverage.  It'll simplify things
552	 * too, except for the locking.
553	 */
554	.write =	spidev_write,
555	.read =		spidev_read,
556	.unlocked_ioctl = spidev_ioctl,
557	.compat_ioctl = spidev_compat_ioctl,
558	.open =		spidev_open,
559	.release =	spidev_release,
560	.llseek =	no_llseek,
561};
562
563/*-------------------------------------------------------------------------*/
564
565/* The main reason to have this class is to make mdev/udev create the
566 * /dev/spidevB.C character device nodes exposing our userspace API.
567 * It also simplifies memory management.
568 */
569
570static struct class *spidev_class;
571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572/*-------------------------------------------------------------------------*/
573
574static int __devinit spidev_probe(struct spi_device *spi)
575{
576	struct spidev_data	*spidev;
577	int			status;
578	unsigned long		minor;
579
 
 
 
 
 
 
 
 
 
 
 
 
 
580	/* Allocate driver data */
581	spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
582	if (!spidev)
583		return -ENOMEM;
584
585	/* Initialize the driver data */
586	spidev->spi = spi;
587	spin_lock_init(&spidev->spi_lock);
588	mutex_init(&spidev->buf_lock);
589
590	INIT_LIST_HEAD(&spidev->device_entry);
591
592	/* If we can allocate a minor number, hook up this device.
593	 * Reusing minors is fine so long as udev or mdev is working.
594	 */
595	mutex_lock(&device_list_lock);
596	minor = find_first_zero_bit(minors, N_SPI_MINORS);
597	if (minor < N_SPI_MINORS) {
598		struct device *dev;
599
600		spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
601		dev = device_create(spidev_class, &spi->dev, spidev->devt,
602				    spidev, "spidev%d.%d",
603				    spi->master->bus_num, spi->chip_select);
604		status = IS_ERR(dev) ? PTR_ERR(dev) : 0;
605	} else {
606		dev_dbg(&spi->dev, "no minor number available!\n");
607		status = -ENODEV;
608	}
609	if (status == 0) {
610		set_bit(minor, minors);
611		list_add(&spidev->device_entry, &device_list);
612	}
613	mutex_unlock(&device_list_lock);
614
 
 
615	if (status == 0)
616		spi_set_drvdata(spi, spidev);
617	else
618		kfree(spidev);
619
620	return status;
621}
622
623static int __devexit spidev_remove(struct spi_device *spi)
624{
625	struct spidev_data	*spidev = spi_get_drvdata(spi);
626
627	/* make sure ops on existing fds can abort cleanly */
628	spin_lock_irq(&spidev->spi_lock);
629	spidev->spi = NULL;
630	spi_set_drvdata(spi, NULL);
631	spin_unlock_irq(&spidev->spi_lock);
632
633	/* prevent new opens */
634	mutex_lock(&device_list_lock);
635	list_del(&spidev->device_entry);
636	device_destroy(spidev_class, spidev->devt);
637	clear_bit(MINOR(spidev->devt), minors);
638	if (spidev->users == 0)
639		kfree(spidev);
640	mutex_unlock(&device_list_lock);
641
642	return 0;
643}
644
645static struct spi_driver spidev_spi_driver = {
646	.driver = {
647		.name =		"spidev",
648		.owner =	THIS_MODULE,
 
649	},
650	.probe =	spidev_probe,
651	.remove =	__devexit_p(spidev_remove),
652
653	/* NOTE:  suspend/resume methods are not necessary here.
654	 * We don't do anything except pass the requests to/from
655	 * the underlying controller.  The refrigerator handles
656	 * most issues; the controller driver handles the rest.
657	 */
658};
659
660/*-------------------------------------------------------------------------*/
661
662static int __init spidev_init(void)
663{
664	int status;
665
666	/* Claim our 256 reserved device numbers.  Then register a class
667	 * that will key udev/mdev to add/remove /dev nodes.  Last, register
668	 * the driver which manages those device numbers.
669	 */
670	BUILD_BUG_ON(N_SPI_MINORS > 256);
671	status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
672	if (status < 0)
673		return status;
674
675	spidev_class = class_create(THIS_MODULE, "spidev");
676	if (IS_ERR(spidev_class)) {
677		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
678		return PTR_ERR(spidev_class);
679	}
680
681	status = spi_register_driver(&spidev_spi_driver);
682	if (status < 0) {
683		class_destroy(spidev_class);
684		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
685	}
686	return status;
687}
688module_init(spidev_init);
689
690static void __exit spidev_exit(void)
691{
692	spi_unregister_driver(&spidev_spi_driver);
693	class_destroy(spidev_class);
694	unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
695}
696module_exit(spidev_exit);
697
698MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
699MODULE_DESCRIPTION("User mode SPI device interface");
700MODULE_LICENSE("GPL");
701MODULE_ALIAS("spi:spidev");
v4.10.11
  1/*
  2 * Simple synchronous userspace interface to SPI devices
  3 *
  4 * Copyright (C) 2006 SWAPP
  5 *	Andrea Paterniani <a.paterniani@swapp-eng.it>
  6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License as published by
 10 * the Free Software Foundation; either version 2 of the License, or
 11 * (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 
 
 
 
 17 */
 18
 19#include <linux/init.h>
 20#include <linux/module.h>
 21#include <linux/ioctl.h>
 22#include <linux/fs.h>
 23#include <linux/device.h>
 24#include <linux/err.h>
 25#include <linux/list.h>
 26#include <linux/errno.h>
 27#include <linux/mutex.h>
 28#include <linux/slab.h>
 29#include <linux/compat.h>
 30#include <linux/of.h>
 31#include <linux/of_device.h>
 32#include <linux/acpi.h>
 33
 34#include <linux/spi/spi.h>
 35#include <linux/spi/spidev.h>
 36
 37#include <linux/uaccess.h>
 38
 39
 40/*
 41 * This supports access to SPI devices using normal userspace I/O calls.
 42 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
 43 * and often mask message boundaries, full SPI support requires full duplex
 44 * transfers.  There are several kinds of internal message boundaries to
 45 * handle chipselect management and other protocol options.
 46 *
 47 * SPI has a character major number assigned.  We allocate minor numbers
 48 * dynamically using a bitmask.  You must use hotplug tools, such as udev
 49 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
 50 * nodes, since there is no fixed association of minor numbers with any
 51 * particular SPI bus or device.
 52 */
 53#define SPIDEV_MAJOR			153	/* assigned */
 54#define N_SPI_MINORS			32	/* ... up to 256 */
 55
 56static DECLARE_BITMAP(minors, N_SPI_MINORS);
 57
 58
 59/* Bit masks for spi_device.mode management.  Note that incorrect
 60 * settings for some settings can cause *lots* of trouble for other
 61 * devices on a shared bus:
 62 *
 63 *  - CS_HIGH ... this device will be active when it shouldn't be
 64 *  - 3WIRE ... when active, it won't behave as it should
 65 *  - NO_CS ... there will be no explicit message boundaries; this
 66 *	is completely incompatible with the shared bus model
 67 *  - READY ... transfers may proceed when they shouldn't.
 68 *
 69 * REVISIT should changing those flags be privileged?
 70 */
 71#define SPI_MODE_MASK		(SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
 72				| SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
 73				| SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
 74				| SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)
 75
 76struct spidev_data {
 77	dev_t			devt;
 78	spinlock_t		spi_lock;
 79	struct spi_device	*spi;
 80	struct list_head	device_entry;
 81
 82	/* TX/RX buffers are NULL unless this device is open (users > 0) */
 83	struct mutex		buf_lock;
 84	unsigned		users;
 85	u8			*tx_buffer;
 86	u8			*rx_buffer;
 87	u32			speed_hz;
 88};
 89
 90static LIST_HEAD(device_list);
 91static DEFINE_MUTEX(device_list_lock);
 92
 93static unsigned bufsiz = 4096;
 94module_param(bufsiz, uint, S_IRUGO);
 95MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
 96
 97/*-------------------------------------------------------------------------*/
 98
 
 
 
 
 
 
 
 
 
 99static ssize_t
100spidev_sync(struct spidev_data *spidev, struct spi_message *message)
101{
102	DECLARE_COMPLETION_ONSTACK(done);
103	int status;
104	struct spi_device *spi;
 
 
105
106	spin_lock_irq(&spidev->spi_lock);
107	spi = spidev->spi;
108	spin_unlock_irq(&spidev->spi_lock);
109
110	if (spi == NULL)
111		status = -ESHUTDOWN;
112	else
113		status = spi_sync(spi, message);
114
115	if (status == 0)
116		status = message->actual_length;
117
 
 
 
 
 
 
118	return status;
119}
120
121static inline ssize_t
122spidev_sync_write(struct spidev_data *spidev, size_t len)
123{
124	struct spi_transfer	t = {
125			.tx_buf		= spidev->tx_buffer,
126			.len		= len,
127			.speed_hz	= spidev->speed_hz,
128		};
129	struct spi_message	m;
130
131	spi_message_init(&m);
132	spi_message_add_tail(&t, &m);
133	return spidev_sync(spidev, &m);
134}
135
136static inline ssize_t
137spidev_sync_read(struct spidev_data *spidev, size_t len)
138{
139	struct spi_transfer	t = {
140			.rx_buf		= spidev->rx_buffer,
141			.len		= len,
142			.speed_hz	= spidev->speed_hz,
143		};
144	struct spi_message	m;
145
146	spi_message_init(&m);
147	spi_message_add_tail(&t, &m);
148	return spidev_sync(spidev, &m);
149}
150
151/*-------------------------------------------------------------------------*/
152
153/* Read-only message with current device setup */
154static ssize_t
155spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
156{
157	struct spidev_data	*spidev;
158	ssize_t			status = 0;
159
160	/* chipselect only toggles at start or end of operation */
161	if (count > bufsiz)
162		return -EMSGSIZE;
163
164	spidev = filp->private_data;
165
166	mutex_lock(&spidev->buf_lock);
167	status = spidev_sync_read(spidev, count);
168	if (status > 0) {
169		unsigned long	missing;
170
171		missing = copy_to_user(buf, spidev->rx_buffer, status);
172		if (missing == status)
173			status = -EFAULT;
174		else
175			status = status - missing;
176	}
177	mutex_unlock(&spidev->buf_lock);
178
179	return status;
180}
181
182/* Write-only message with current device setup */
183static ssize_t
184spidev_write(struct file *filp, const char __user *buf,
185		size_t count, loff_t *f_pos)
186{
187	struct spidev_data	*spidev;
188	ssize_t			status = 0;
189	unsigned long		missing;
190
191	/* chipselect only toggles at start or end of operation */
192	if (count > bufsiz)
193		return -EMSGSIZE;
194
195	spidev = filp->private_data;
196
197	mutex_lock(&spidev->buf_lock);
198	missing = copy_from_user(spidev->tx_buffer, buf, count);
199	if (missing == 0)
200		status = spidev_sync_write(spidev, count);
201	else
202		status = -EFAULT;
203	mutex_unlock(&spidev->buf_lock);
204
205	return status;
206}
207
208static int spidev_message(struct spidev_data *spidev,
209		struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
210{
211	struct spi_message	msg;
212	struct spi_transfer	*k_xfers;
213	struct spi_transfer	*k_tmp;
214	struct spi_ioc_transfer *u_tmp;
215	unsigned		n, total, tx_total, rx_total;
216	u8			*tx_buf, *rx_buf;
217	int			status = -EFAULT;
218
219	spi_message_init(&msg);
220	k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
221	if (k_xfers == NULL)
222		return -ENOMEM;
223
224	/* Construct spi_message, copying any tx data to bounce buffer.
225	 * We walk the array of user-provided transfers, using each one
226	 * to initialize a kernel version of the same transfer.
227	 */
228	tx_buf = spidev->tx_buffer;
229	rx_buf = spidev->rx_buffer;
230	total = 0;
231	tx_total = 0;
232	rx_total = 0;
233	for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
234			n;
235			n--, k_tmp++, u_tmp++) {
236		k_tmp->len = u_tmp->len;
237
238		total += k_tmp->len;
239		/* Since the function returns the total length of transfers
240		 * on success, restrict the total to positive int values to
241		 * avoid the return value looking like an error.  Also check
242		 * each transfer length to avoid arithmetic overflow.
243		 */
244		if (total > INT_MAX || k_tmp->len > INT_MAX) {
245			status = -EMSGSIZE;
246			goto done;
247		}
248
249		if (u_tmp->rx_buf) {
250			/* this transfer needs space in RX bounce buffer */
251			rx_total += k_tmp->len;
252			if (rx_total > bufsiz) {
253				status = -EMSGSIZE;
254				goto done;
255			}
256			k_tmp->rx_buf = rx_buf;
257			if (!access_ok(VERIFY_WRITE, (u8 __user *)
258						(uintptr_t) u_tmp->rx_buf,
259						u_tmp->len))
260				goto done;
261			rx_buf += k_tmp->len;
262		}
263		if (u_tmp->tx_buf) {
264			/* this transfer needs space in TX bounce buffer */
265			tx_total += k_tmp->len;
266			if (tx_total > bufsiz) {
267				status = -EMSGSIZE;
268				goto done;
269			}
270			k_tmp->tx_buf = tx_buf;
271			if (copy_from_user(tx_buf, (const u8 __user *)
272						(uintptr_t) u_tmp->tx_buf,
273					u_tmp->len))
274				goto done;
275			tx_buf += k_tmp->len;
276		}
 
277
278		k_tmp->cs_change = !!u_tmp->cs_change;
279		k_tmp->tx_nbits = u_tmp->tx_nbits;
280		k_tmp->rx_nbits = u_tmp->rx_nbits;
281		k_tmp->bits_per_word = u_tmp->bits_per_word;
282		k_tmp->delay_usecs = u_tmp->delay_usecs;
283		k_tmp->speed_hz = u_tmp->speed_hz;
284		if (!k_tmp->speed_hz)
285			k_tmp->speed_hz = spidev->speed_hz;
286#ifdef VERBOSE
287		dev_dbg(&spidev->spi->dev,
288			"  xfer len %u %s%s%s%dbits %u usec %uHz\n",
289			u_tmp->len,
290			u_tmp->rx_buf ? "rx " : "",
291			u_tmp->tx_buf ? "tx " : "",
292			u_tmp->cs_change ? "cs " : "",
293			u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
294			u_tmp->delay_usecs,
295			u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
296#endif
297		spi_message_add_tail(k_tmp, &msg);
298	}
299
300	status = spidev_sync(spidev, &msg);
301	if (status < 0)
302		goto done;
303
304	/* copy any rx data out of bounce buffer */
305	rx_buf = spidev->rx_buffer;
306	for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
307		if (u_tmp->rx_buf) {
308			if (__copy_to_user((u8 __user *)
309					(uintptr_t) u_tmp->rx_buf, rx_buf,
310					u_tmp->len)) {
311				status = -EFAULT;
312				goto done;
313			}
314			rx_buf += u_tmp->len;
315		}
 
316	}
317	status = total;
318
319done:
320	kfree(k_xfers);
321	return status;
322}
323
324static struct spi_ioc_transfer *
325spidev_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
326		unsigned *n_ioc)
327{
328	struct spi_ioc_transfer	*ioc;
329	u32	tmp;
330
331	/* Check type, command number and direction */
332	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC
333			|| _IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
334			|| _IOC_DIR(cmd) != _IOC_WRITE)
335		return ERR_PTR(-ENOTTY);
336
337	tmp = _IOC_SIZE(cmd);
338	if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
339		return ERR_PTR(-EINVAL);
340	*n_ioc = tmp / sizeof(struct spi_ioc_transfer);
341	if (*n_ioc == 0)
342		return NULL;
343
344	/* copy into scratch area */
345	ioc = kmalloc(tmp, GFP_KERNEL);
346	if (!ioc)
347		return ERR_PTR(-ENOMEM);
348	if (__copy_from_user(ioc, u_ioc, tmp)) {
349		kfree(ioc);
350		return ERR_PTR(-EFAULT);
351	}
352	return ioc;
353}
354
355static long
356spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
357{
358	int			err = 0;
359	int			retval = 0;
360	struct spidev_data	*spidev;
361	struct spi_device	*spi;
362	u32			tmp;
363	unsigned		n_ioc;
364	struct spi_ioc_transfer	*ioc;
365
366	/* Check type and command number */
367	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
368		return -ENOTTY;
369
370	/* Check access direction once here; don't repeat below.
371	 * IOC_DIR is from the user perspective, while access_ok is
372	 * from the kernel perspective; so they look reversed.
373	 */
374	if (_IOC_DIR(cmd) & _IOC_READ)
375		err = !access_ok(VERIFY_WRITE,
376				(void __user *)arg, _IOC_SIZE(cmd));
377	if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
378		err = !access_ok(VERIFY_READ,
379				(void __user *)arg, _IOC_SIZE(cmd));
380	if (err)
381		return -EFAULT;
382
383	/* guard against device removal before, or while,
384	 * we issue this ioctl.
385	 */
386	spidev = filp->private_data;
387	spin_lock_irq(&spidev->spi_lock);
388	spi = spi_dev_get(spidev->spi);
389	spin_unlock_irq(&spidev->spi_lock);
390
391	if (spi == NULL)
392		return -ESHUTDOWN;
393
394	/* use the buffer lock here for triple duty:
395	 *  - prevent I/O (from us) so calling spi_setup() is safe;
396	 *  - prevent concurrent SPI_IOC_WR_* from morphing
397	 *    data fields while SPI_IOC_RD_* reads them;
398	 *  - SPI_IOC_MESSAGE needs the buffer locked "normally".
399	 */
400	mutex_lock(&spidev->buf_lock);
401
402	switch (cmd) {
403	/* read requests */
404	case SPI_IOC_RD_MODE:
405		retval = __put_user(spi->mode & SPI_MODE_MASK,
406					(__u8 __user *)arg);
407		break;
408	case SPI_IOC_RD_MODE32:
409		retval = __put_user(spi->mode & SPI_MODE_MASK,
410					(__u32 __user *)arg);
411		break;
412	case SPI_IOC_RD_LSB_FIRST:
413		retval = __put_user((spi->mode & SPI_LSB_FIRST) ?  1 : 0,
414					(__u8 __user *)arg);
415		break;
416	case SPI_IOC_RD_BITS_PER_WORD:
417		retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
418		break;
419	case SPI_IOC_RD_MAX_SPEED_HZ:
420		retval = __put_user(spidev->speed_hz, (__u32 __user *)arg);
421		break;
422
423	/* write requests */
424	case SPI_IOC_WR_MODE:
425	case SPI_IOC_WR_MODE32:
426		if (cmd == SPI_IOC_WR_MODE)
427			retval = __get_user(tmp, (u8 __user *)arg);
428		else
429			retval = __get_user(tmp, (u32 __user *)arg);
430		if (retval == 0) {
431			u32	save = spi->mode;
432
433			if (tmp & ~SPI_MODE_MASK) {
434				retval = -EINVAL;
435				break;
436			}
437
438			tmp |= spi->mode & ~SPI_MODE_MASK;
439			spi->mode = (u16)tmp;
440			retval = spi_setup(spi);
441			if (retval < 0)
442				spi->mode = save;
443			else
444				dev_dbg(&spi->dev, "spi mode %x\n", tmp);
445		}
446		break;
447	case SPI_IOC_WR_LSB_FIRST:
448		retval = __get_user(tmp, (__u8 __user *)arg);
449		if (retval == 0) {
450			u32	save = spi->mode;
451
452			if (tmp)
453				spi->mode |= SPI_LSB_FIRST;
454			else
455				spi->mode &= ~SPI_LSB_FIRST;
456			retval = spi_setup(spi);
457			if (retval < 0)
458				spi->mode = save;
459			else
460				dev_dbg(&spi->dev, "%csb first\n",
461						tmp ? 'l' : 'm');
462		}
463		break;
464	case SPI_IOC_WR_BITS_PER_WORD:
465		retval = __get_user(tmp, (__u8 __user *)arg);
466		if (retval == 0) {
467			u8	save = spi->bits_per_word;
468
469			spi->bits_per_word = tmp;
470			retval = spi_setup(spi);
471			if (retval < 0)
472				spi->bits_per_word = save;
473			else
474				dev_dbg(&spi->dev, "%d bits per word\n", tmp);
475		}
476		break;
477	case SPI_IOC_WR_MAX_SPEED_HZ:
478		retval = __get_user(tmp, (__u32 __user *)arg);
479		if (retval == 0) {
480			u32	save = spi->max_speed_hz;
481
482			spi->max_speed_hz = tmp;
483			retval = spi_setup(spi);
484			if (retval >= 0)
485				spidev->speed_hz = tmp;
486			else
487				dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
488			spi->max_speed_hz = save;
489		}
490		break;
491
492	default:
493		/* segmented and/or full-duplex I/O request */
494		/* Check message and copy into scratch area */
495		ioc = spidev_get_ioc_message(cmd,
496				(struct spi_ioc_transfer __user *)arg, &n_ioc);
497		if (IS_ERR(ioc)) {
498			retval = PTR_ERR(ioc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499			break;
500		}
501		if (!ioc)
502			break;	/* n_ioc is also 0 */
503
504		/* translate to spi_message, execute */
505		retval = spidev_message(spidev, ioc, n_ioc);
506		kfree(ioc);
507		break;
508	}
509
510	mutex_unlock(&spidev->buf_lock);
511	spi_dev_put(spi);
512	return retval;
513}
514
515#ifdef CONFIG_COMPAT
516static long
517spidev_compat_ioc_message(struct file *filp, unsigned int cmd,
518		unsigned long arg)
519{
520	struct spi_ioc_transfer __user	*u_ioc;
521	int				retval = 0;
522	struct spidev_data		*spidev;
523	struct spi_device		*spi;
524	unsigned			n_ioc, n;
525	struct spi_ioc_transfer		*ioc;
526
527	u_ioc = (struct spi_ioc_transfer __user *) compat_ptr(arg);
528	if (!access_ok(VERIFY_READ, u_ioc, _IOC_SIZE(cmd)))
529		return -EFAULT;
530
531	/* guard against device removal before, or while,
532	 * we issue this ioctl.
533	 */
534	spidev = filp->private_data;
535	spin_lock_irq(&spidev->spi_lock);
536	spi = spi_dev_get(spidev->spi);
537	spin_unlock_irq(&spidev->spi_lock);
538
539	if (spi == NULL)
540		return -ESHUTDOWN;
541
542	/* SPI_IOC_MESSAGE needs the buffer locked "normally" */
543	mutex_lock(&spidev->buf_lock);
544
545	/* Check message and copy into scratch area */
546	ioc = spidev_get_ioc_message(cmd, u_ioc, &n_ioc);
547	if (IS_ERR(ioc)) {
548		retval = PTR_ERR(ioc);
549		goto done;
550	}
551	if (!ioc)
552		goto done;	/* n_ioc is also 0 */
553
554	/* Convert buffer pointers */
555	for (n = 0; n < n_ioc; n++) {
556		ioc[n].rx_buf = (uintptr_t) compat_ptr(ioc[n].rx_buf);
557		ioc[n].tx_buf = (uintptr_t) compat_ptr(ioc[n].tx_buf);
558	}
559
560	/* translate to spi_message, execute */
561	retval = spidev_message(spidev, ioc, n_ioc);
562	kfree(ioc);
563
564done:
565	mutex_unlock(&spidev->buf_lock);
566	spi_dev_put(spi);
567	return retval;
568}
569
570static long
571spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
572{
573	if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC
574			&& _IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0))
575			&& _IOC_DIR(cmd) == _IOC_WRITE)
576		return spidev_compat_ioc_message(filp, cmd, arg);
577
578	return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
579}
580#else
581#define spidev_compat_ioctl NULL
582#endif /* CONFIG_COMPAT */
583
584static int spidev_open(struct inode *inode, struct file *filp)
585{
586	struct spidev_data	*spidev;
587	int			status = -ENXIO;
588
589	mutex_lock(&device_list_lock);
590
591	list_for_each_entry(spidev, &device_list, device_entry) {
592		if (spidev->devt == inode->i_rdev) {
593			status = 0;
594			break;
595		}
596	}
597
598	if (status) {
599		pr_debug("spidev: nothing for minor %d\n", iminor(inode));
600		goto err_find_dev;
601	}
602
603	if (!spidev->tx_buffer) {
604		spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
605		if (!spidev->tx_buffer) {
606			dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
607			status = -ENOMEM;
608			goto err_find_dev;
609		}
610	}
611
612	if (!spidev->rx_buffer) {
613		spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
614		if (!spidev->rx_buffer) {
615			dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
616			status = -ENOMEM;
617			goto err_alloc_rx_buf;
618		}
619	}
620
621	spidev->users++;
622	filp->private_data = spidev;
623	nonseekable_open(inode, filp);
624
625	mutex_unlock(&device_list_lock);
626	return 0;
627
628err_alloc_rx_buf:
629	kfree(spidev->tx_buffer);
630	spidev->tx_buffer = NULL;
631err_find_dev:
632	mutex_unlock(&device_list_lock);
633	return status;
634}
635
636static int spidev_release(struct inode *inode, struct file *filp)
637{
638	struct spidev_data	*spidev;
 
639
640	mutex_lock(&device_list_lock);
641	spidev = filp->private_data;
642	filp->private_data = NULL;
643
644	/* last close? */
645	spidev->users--;
646	if (!spidev->users) {
647		int		dofree;
648
649		kfree(spidev->tx_buffer);
650		spidev->tx_buffer = NULL;
651
652		kfree(spidev->rx_buffer);
653		spidev->rx_buffer = NULL;
654
 
655		spin_lock_irq(&spidev->spi_lock);
656		if (spidev->spi)
657			spidev->speed_hz = spidev->spi->max_speed_hz;
658
659		/* ... after we unbound from the underlying device? */
660		dofree = (spidev->spi == NULL);
661		spin_unlock_irq(&spidev->spi_lock);
662
663		if (dofree)
664			kfree(spidev);
665	}
666	mutex_unlock(&device_list_lock);
667
668	return 0;
669}
670
671static const struct file_operations spidev_fops = {
672	.owner =	THIS_MODULE,
673	/* REVISIT switch to aio primitives, so that userspace
674	 * gets more complete API coverage.  It'll simplify things
675	 * too, except for the locking.
676	 */
677	.write =	spidev_write,
678	.read =		spidev_read,
679	.unlocked_ioctl = spidev_ioctl,
680	.compat_ioctl = spidev_compat_ioctl,
681	.open =		spidev_open,
682	.release =	spidev_release,
683	.llseek =	no_llseek,
684};
685
686/*-------------------------------------------------------------------------*/
687
688/* The main reason to have this class is to make mdev/udev create the
689 * /dev/spidevB.C character device nodes exposing our userspace API.
690 * It also simplifies memory management.
691 */
692
693static struct class *spidev_class;
694
695#ifdef CONFIG_OF
696static const struct of_device_id spidev_dt_ids[] = {
697	{ .compatible = "rohm,dh2228fv" },
698	{ .compatible = "lineartechnology,ltc2488" },
699	{ .compatible = "ge,achc" },
700	{},
701};
702MODULE_DEVICE_TABLE(of, spidev_dt_ids);
703#endif
704
705#ifdef CONFIG_ACPI
706
707/* Dummy SPI devices not to be used in production systems */
708#define SPIDEV_ACPI_DUMMY	1
709
710static const struct acpi_device_id spidev_acpi_ids[] = {
711	/*
712	 * The ACPI SPT000* devices are only meant for development and
713	 * testing. Systems used in production should have a proper ACPI
714	 * description of the connected peripheral and they should also use
715	 * a proper driver instead of poking directly to the SPI bus.
716	 */
717	{ "SPT0001", SPIDEV_ACPI_DUMMY },
718	{ "SPT0002", SPIDEV_ACPI_DUMMY },
719	{ "SPT0003", SPIDEV_ACPI_DUMMY },
720	{},
721};
722MODULE_DEVICE_TABLE(acpi, spidev_acpi_ids);
723
724static void spidev_probe_acpi(struct spi_device *spi)
725{
726	const struct acpi_device_id *id;
727
728	if (!has_acpi_companion(&spi->dev))
729		return;
730
731	id = acpi_match_device(spidev_acpi_ids, &spi->dev);
732	if (WARN_ON(!id))
733		return;
734
735	if (id->driver_data == SPIDEV_ACPI_DUMMY)
736		dev_warn(&spi->dev, "do not use this driver in production systems!\n");
737}
738#else
739static inline void spidev_probe_acpi(struct spi_device *spi) {}
740#endif
741
742/*-------------------------------------------------------------------------*/
743
744static int spidev_probe(struct spi_device *spi)
745{
746	struct spidev_data	*spidev;
747	int			status;
748	unsigned long		minor;
749
750	/*
751	 * spidev should never be referenced in DT without a specific
752	 * compatible string, it is a Linux implementation thing
753	 * rather than a description of the hardware.
754	 */
755	if (spi->dev.of_node && !of_match_device(spidev_dt_ids, &spi->dev)) {
756		dev_err(&spi->dev, "buggy DT: spidev listed directly in DT\n");
757		WARN_ON(spi->dev.of_node &&
758			!of_match_device(spidev_dt_ids, &spi->dev));
759	}
760
761	spidev_probe_acpi(spi);
762
763	/* Allocate driver data */
764	spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
765	if (!spidev)
766		return -ENOMEM;
767
768	/* Initialize the driver data */
769	spidev->spi = spi;
770	spin_lock_init(&spidev->spi_lock);
771	mutex_init(&spidev->buf_lock);
772
773	INIT_LIST_HEAD(&spidev->device_entry);
774
775	/* If we can allocate a minor number, hook up this device.
776	 * Reusing minors is fine so long as udev or mdev is working.
777	 */
778	mutex_lock(&device_list_lock);
779	minor = find_first_zero_bit(minors, N_SPI_MINORS);
780	if (minor < N_SPI_MINORS) {
781		struct device *dev;
782
783		spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
784		dev = device_create(spidev_class, &spi->dev, spidev->devt,
785				    spidev, "spidev%d.%d",
786				    spi->master->bus_num, spi->chip_select);
787		status = PTR_ERR_OR_ZERO(dev);
788	} else {
789		dev_dbg(&spi->dev, "no minor number available!\n");
790		status = -ENODEV;
791	}
792	if (status == 0) {
793		set_bit(minor, minors);
794		list_add(&spidev->device_entry, &device_list);
795	}
796	mutex_unlock(&device_list_lock);
797
798	spidev->speed_hz = spi->max_speed_hz;
799
800	if (status == 0)
801		spi_set_drvdata(spi, spidev);
802	else
803		kfree(spidev);
804
805	return status;
806}
807
808static int spidev_remove(struct spi_device *spi)
809{
810	struct spidev_data	*spidev = spi_get_drvdata(spi);
811
812	/* make sure ops on existing fds can abort cleanly */
813	spin_lock_irq(&spidev->spi_lock);
814	spidev->spi = NULL;
 
815	spin_unlock_irq(&spidev->spi_lock);
816
817	/* prevent new opens */
818	mutex_lock(&device_list_lock);
819	list_del(&spidev->device_entry);
820	device_destroy(spidev_class, spidev->devt);
821	clear_bit(MINOR(spidev->devt), minors);
822	if (spidev->users == 0)
823		kfree(spidev);
824	mutex_unlock(&device_list_lock);
825
826	return 0;
827}
828
829static struct spi_driver spidev_spi_driver = {
830	.driver = {
831		.name =		"spidev",
832		.of_match_table = of_match_ptr(spidev_dt_ids),
833		.acpi_match_table = ACPI_PTR(spidev_acpi_ids),
834	},
835	.probe =	spidev_probe,
836	.remove =	spidev_remove,
837
838	/* NOTE:  suspend/resume methods are not necessary here.
839	 * We don't do anything except pass the requests to/from
840	 * the underlying controller.  The refrigerator handles
841	 * most issues; the controller driver handles the rest.
842	 */
843};
844
845/*-------------------------------------------------------------------------*/
846
847static int __init spidev_init(void)
848{
849	int status;
850
851	/* Claim our 256 reserved device numbers.  Then register a class
852	 * that will key udev/mdev to add/remove /dev nodes.  Last, register
853	 * the driver which manages those device numbers.
854	 */
855	BUILD_BUG_ON(N_SPI_MINORS > 256);
856	status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
857	if (status < 0)
858		return status;
859
860	spidev_class = class_create(THIS_MODULE, "spidev");
861	if (IS_ERR(spidev_class)) {
862		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
863		return PTR_ERR(spidev_class);
864	}
865
866	status = spi_register_driver(&spidev_spi_driver);
867	if (status < 0) {
868		class_destroy(spidev_class);
869		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
870	}
871	return status;
872}
873module_init(spidev_init);
874
875static void __exit spidev_exit(void)
876{
877	spi_unregister_driver(&spidev_spi_driver);
878	class_destroy(spidev_class);
879	unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
880}
881module_exit(spidev_exit);
882
883MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
884MODULE_DESCRIPTION("User mode SPI device interface");
885MODULE_LICENSE("GPL");
886MODULE_ALIAS("spi:spidev");