Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.5.6
  1/*
  2 * Freescale eSPI controller driver.
  3 *
  4 * Copyright 2010 Freescale Semiconductor, Inc.
  5 *
  6 * This program is free software; you can redistribute  it and/or modify it
  7 * under  the terms of  the GNU General  Public License as published by the
  8 * Free Software Foundation;  either version 2 of the  License, or (at your
  9 * option) any later version.
 10 */
 11#include <linux/module.h>
 12#include <linux/delay.h>
 13#include <linux/irq.h>
 14#include <linux/spi/spi.h>
 15#include <linux/platform_device.h>
 16#include <linux/fsl_devices.h>
 
 
 17#include <linux/mm.h>
 18#include <linux/of.h>
 
 
 19#include <linux/of_platform.h>
 20#include <linux/interrupt.h>
 21#include <linux/err.h>
 
 22#include <sysdev/fsl_soc.h>
 23
 24#include "spi-fsl-lib.h"
 25
 26/* eSPI Controller registers */
 27struct fsl_espi_reg {
 28	__be32 mode;		/* 0x000 - eSPI mode register */
 29	__be32 event;		/* 0x004 - eSPI event register */
 30	__be32 mask;		/* 0x008 - eSPI mask register */
 31	__be32 command;		/* 0x00c - eSPI command register */
 32	__be32 transmit;	/* 0x010 - eSPI transmit FIFO access register*/
 33	__be32 receive;		/* 0x014 - eSPI receive FIFO access register*/
 34	u8 res[8];		/* 0x018 - 0x01c reserved */
 35	__be32 csmode[4];	/* 0x020 - 0x02c eSPI cs mode register */
 36};
 37
 38struct fsl_espi_transfer {
 39	const void *tx_buf;
 40	void *rx_buf;
 41	unsigned len;
 42	unsigned n_tx;
 43	unsigned n_rx;
 44	unsigned actual_length;
 45	int status;
 46};
 47
 48/* eSPI Controller mode register definitions */
 49#define SPMODE_ENABLE		(1 << 31)
 50#define SPMODE_LOOP		(1 << 30)
 51#define SPMODE_TXTHR(x)		((x) << 8)
 52#define SPMODE_RXTHR(x)		((x) << 0)
 53
 54/* eSPI Controller CS mode register definitions */
 55#define CSMODE_CI_INACTIVEHIGH	(1 << 31)
 56#define CSMODE_CP_BEGIN_EDGECLK	(1 << 30)
 57#define CSMODE_REV		(1 << 29)
 58#define CSMODE_DIV16		(1 << 28)
 59#define CSMODE_PM(x)		((x) << 24)
 60#define CSMODE_POL_1		(1 << 20)
 61#define CSMODE_LEN(x)		((x) << 16)
 62#define CSMODE_BEF(x)		((x) << 12)
 63#define CSMODE_AFT(x)		((x) << 8)
 64#define CSMODE_CG(x)		((x) << 3)
 65
 
 
 
 66/* Default mode/csmode for eSPI controller */
 67#define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(3))
 68#define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
 69		| CSMODE_AFT(0) | CSMODE_CG(1))
 70
 71/* SPIE register values */
 72#define	SPIE_NE		0x00000200	/* Not empty */
 73#define	SPIE_NF		0x00000100	/* Not full */
 74
 75/* SPIM register values */
 76#define	SPIM_NE		0x00000200	/* Not empty */
 77#define	SPIM_NF		0x00000100	/* Not full */
 78#define SPIE_RXCNT(reg)     ((reg >> 24) & 0x3F)
 79#define SPIE_TXCNT(reg)     ((reg >> 16) & 0x3F)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 80
 81/* SPCOM register values */
 82#define SPCOM_CS(x)		((x) << 30)
 
 
 
 83#define SPCOM_TRANLEN(x)	((x) << 0)
 84#define	SPCOM_TRANLEN_MAX	0xFFFF	/* Max transaction length */
 85
 86static void fsl_espi_change_mode(struct spi_device *spi)
 87{
 88	struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
 89	struct spi_mpc8xxx_cs *cs = spi->controller_state;
 90	struct fsl_espi_reg *reg_base = mspi->reg_base;
 91	__be32 __iomem *mode = &reg_base->csmode[spi->chip_select];
 92	__be32 __iomem *espi_mode = &reg_base->mode;
 93	u32 tmp;
 94	unsigned long flags;
 95
 96	/* Turn off IRQs locally to minimize time that SPI is disabled. */
 97	local_irq_save(flags);
 98
 99	/* Turn off SPI unit prior changing mode */
100	tmp = mpc8xxx_spi_read_reg(espi_mode);
101	mpc8xxx_spi_write_reg(espi_mode, tmp & ~SPMODE_ENABLE);
102	mpc8xxx_spi_write_reg(mode, cs->hw_mode);
103	mpc8xxx_spi_write_reg(espi_mode, tmp);
104
105	local_irq_restore(flags);
106}
107
108static u32 fsl_espi_tx_buf_lsb(struct mpc8xxx_spi *mpc8xxx_spi)
109{
110	u32 data;
111	u16 data_h;
112	u16 data_l;
113	const u32 *tx = mpc8xxx_spi->tx;
114
115	if (!tx)
116		return 0;
117
118	data = *tx++ << mpc8xxx_spi->tx_shift;
119	data_l = data & 0xffff;
120	data_h = (data >> 16) & 0xffff;
121	swab16s(&data_l);
122	swab16s(&data_h);
123	data = data_h | data_l;
124
125	mpc8xxx_spi->tx = tx;
126	return data;
127}
 
 
 
 
128
129static int fsl_espi_setup_transfer(struct spi_device *spi,
130					struct spi_transfer *t)
131{
132	struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
133	int bits_per_word = 0;
134	u8 pm;
135	u32 hz = 0;
136	struct spi_mpc8xxx_cs *cs = spi->controller_state;
137
138	if (t) {
139		bits_per_word = t->bits_per_word;
140		hz = t->speed_hz;
141	}
142
143	/* spi_transfer level calls that work per-word */
144	if (!bits_per_word)
145		bits_per_word = spi->bits_per_word;
146
147	/* Make sure its a bit width we support [4..16] */
148	if ((bits_per_word < 4) || (bits_per_word > 16))
149		return -EINVAL;
150
151	if (!hz)
152		hz = spi->max_speed_hz;
153
154	cs->rx_shift = 0;
155	cs->tx_shift = 0;
156	cs->get_rx = mpc8xxx_spi_rx_buf_u32;
157	cs->get_tx = mpc8xxx_spi_tx_buf_u32;
158	if (bits_per_word <= 8) {
159		cs->rx_shift = 8 - bits_per_word;
160	} else if (bits_per_word <= 16) {
161		cs->rx_shift = 16 - bits_per_word;
162		if (spi->mode & SPI_LSB_FIRST)
163			cs->get_tx = fsl_espi_tx_buf_lsb;
164	} else {
165		return -EINVAL;
166	}
167
168	mpc8xxx_spi->rx_shift = cs->rx_shift;
169	mpc8xxx_spi->tx_shift = cs->tx_shift;
170	mpc8xxx_spi->get_rx = cs->get_rx;
171	mpc8xxx_spi->get_tx = cs->get_tx;
172
173	bits_per_word = bits_per_word - 1;
174
175	/* mask out bits we are going to set */
176	cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
177
178	cs->hw_mode |= CSMODE_LEN(bits_per_word);
179
180	if ((mpc8xxx_spi->spibrg / hz) > 64) {
181		cs->hw_mode |= CSMODE_DIV16;
182		pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 16 * 4);
183
184		WARN_ONCE(pm > 33, "%s: Requested speed is too low: %d Hz. "
185			  "Will use %d Hz instead.\n", dev_name(&spi->dev),
186				hz, mpc8xxx_spi->spibrg / (4 * 16 * (32 + 1)));
187		if (pm > 33)
188			pm = 33;
189	} else {
190		pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 4);
191	}
192	if (pm)
193		pm--;
194	if (pm < 2)
195		pm = 2;
196
197	cs->hw_mode |= CSMODE_PM(pm);
 
 
198
199	fsl_espi_change_mode(spi);
200	return 0;
 
201}
202
203static int fsl_espi_cpu_bufs(struct mpc8xxx_spi *mspi, struct spi_transfer *t,
204		unsigned int len)
205{
206	u32 word;
207	struct fsl_espi_reg *reg_base = mspi->reg_base;
208
209	mspi->count = len;
210
211	/* enable rx ints */
212	mpc8xxx_spi_write_reg(&reg_base->mask, SPIM_NE);
 
 
213
214	/* transmit word */
215	word = mspi->get_tx(mspi);
216	mpc8xxx_spi_write_reg(&reg_base->transmit, word);
 
 
217
218	return 0;
 
 
 
219}
220
221static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
 
222{
223	struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
224	struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
225	unsigned int len = t->len;
226	u8 bits_per_word;
227	int ret;
228
229	bits_per_word = spi->bits_per_word;
230	if (t->bits_per_word)
231		bits_per_word = t->bits_per_word;
 
232
233	mpc8xxx_spi->len = t->len;
234	len = roundup(len, 4) / 4;
 
 
 
235
236	mpc8xxx_spi->tx = t->tx_buf;
237	mpc8xxx_spi->rx = t->rx_buf;
238
239	INIT_COMPLETION(mpc8xxx_spi->done);
 
 
 
 
 
 
240
241	/* Set SPCOM[CS] and SPCOM[TRANLEN] field */
242	if ((t->len - 1) > SPCOM_TRANLEN_MAX) {
243		dev_err(mpc8xxx_spi->dev, "Transaction length (%d)"
244				" beyond the SPCOM[TRANLEN] field\n", t->len);
 
 
245		return -EINVAL;
246	}
247	mpc8xxx_spi_write_reg(&reg_base->command,
248		(SPCOM_CS(spi->chip_select) | SPCOM_TRANLEN(t->len - 1)));
249
250	ret = fsl_espi_cpu_bufs(mpc8xxx_spi, t, len);
251	if (ret)
252		return ret;
253
254	wait_for_completion(&mpc8xxx_spi->done);
255
256	/* disable rx ints */
257	mpc8xxx_spi_write_reg(&reg_base->mask, 0);
258
259	return mpc8xxx_spi->count;
260}
261
262static inline void fsl_espi_addr2cmd(unsigned int addr, u8 *cmd)
263{
264	if (cmd) {
265		cmd[1] = (u8)(addr >> 16);
266		cmd[2] = (u8)(addr >> 8);
267		cmd[3] = (u8)(addr >> 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268	}
 
 
269}
270
271static inline unsigned int fsl_espi_cmd2addr(u8 *cmd)
272{
273	if (cmd)
274		return cmd[1] << 16 | cmd[2] << 8 | cmd[3] << 0;
 
275
276	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277}
278
279static void fsl_espi_do_trans(struct spi_message *m,
280				struct fsl_espi_transfer *tr)
281{
282	struct spi_device *spi = m->spi;
283	struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
284	struct fsl_espi_transfer *espi_trans = tr;
285	struct spi_message message;
286	struct spi_transfer *t, *first, trans;
287	int status = 0;
288
289	spi_message_init(&message);
290	memset(&trans, 0, sizeof(trans));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
291
292	first = list_first_entry(&m->transfers, struct spi_transfer,
293			transfer_list);
294	list_for_each_entry(t, &m->transfers, transfer_list) {
295		if ((first->bits_per_word != t->bits_per_word) ||
296			(first->speed_hz != t->speed_hz)) {
297			espi_trans->status = -EINVAL;
298			dev_err(mspi->dev, "bits_per_word/speed_hz should be"
299					" same for the same SPI transfer\n");
300			return;
301		}
 
302
303		trans.speed_hz = t->speed_hz;
304		trans.bits_per_word = t->bits_per_word;
305		trans.delay_usecs = max(first->delay_usecs, t->delay_usecs);
306	}
307
308	trans.len = espi_trans->len;
309	trans.tx_buf = espi_trans->tx_buf;
310	trans.rx_buf = espi_trans->rx_buf;
311	spi_message_add_tail(&trans, &message);
312
313	list_for_each_entry(t, &message.transfers, transfer_list) {
314		if (t->bits_per_word || t->speed_hz) {
315			status = -EINVAL;
316
317			status = fsl_espi_setup_transfer(spi, t);
318			if (status < 0)
319				break;
320		}
 
 
 
 
 
 
 
321
322		if (t->len)
323			status = fsl_espi_bufs(spi, t);
 
 
 
 
 
 
324
325		if (status) {
326			status = -EMSGSIZE;
327			break;
328		}
329
330		if (t->delay_usecs)
331			udelay(t->delay_usecs);
 
 
 
332	}
333
334	espi_trans->status = status;
335	fsl_espi_setup_transfer(spi, NULL);
 
 
 
 
336}
337
338static void fsl_espi_cmd_trans(struct spi_message *m,
339				struct fsl_espi_transfer *trans, u8 *rx_buff)
340{
341	struct spi_transfer *t;
342	u8 *local_buf;
343	int i = 0;
344	struct fsl_espi_transfer *espi_trans = trans;
345
346	local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
347	if (!local_buf) {
348		espi_trans->status = -ENOMEM;
349		return;
350	}
351
352	list_for_each_entry(t, &m->transfers, transfer_list) {
353		if (t->tx_buf) {
354			memcpy(local_buf + i, t->tx_buf, t->len);
355			i += t->len;
356		}
357	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358
359	espi_trans->tx_buf = local_buf;
360	espi_trans->rx_buf = local_buf + espi_trans->n_tx;
361	fsl_espi_do_trans(m, espi_trans);
362
363	espi_trans->actual_length = espi_trans->len;
364	kfree(local_buf);
365}
366
367static void fsl_espi_rw_trans(struct spi_message *m,
368				struct fsl_espi_transfer *trans, u8 *rx_buff)
369{
370	struct fsl_espi_transfer *espi_trans = trans;
371	unsigned int n_tx = espi_trans->n_tx;
372	unsigned int n_rx = espi_trans->n_rx;
373	struct spi_transfer *t;
374	u8 *local_buf;
375	u8 *rx_buf = rx_buff;
376	unsigned int trans_len;
377	unsigned int addr;
378	int i, pos, loop;
379
380	local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
381	if (!local_buf) {
382		espi_trans->status = -ENOMEM;
383		return;
384	}
385
386	for (pos = 0, loop = 0; pos < n_rx; pos += trans_len, loop++) {
387		trans_len = n_rx - pos;
388		if (trans_len > SPCOM_TRANLEN_MAX - n_tx)
389			trans_len = SPCOM_TRANLEN_MAX - n_tx;
390
391		i = 0;
392		list_for_each_entry(t, &m->transfers, transfer_list) {
393			if (t->tx_buf) {
394				memcpy(local_buf + i, t->tx_buf, t->len);
395				i += t->len;
396			}
397		}
398
399		if (pos > 0) {
400			addr = fsl_espi_cmd2addr(local_buf);
401			addr += pos;
402			fsl_espi_addr2cmd(addr, local_buf);
403		}
 
 
 
 
 
 
 
 
 
 
404
405		espi_trans->n_tx = n_tx;
406		espi_trans->n_rx = trans_len;
407		espi_trans->len = trans_len + n_tx;
408		espi_trans->tx_buf = local_buf;
409		espi_trans->rx_buf = local_buf + n_tx;
410		fsl_espi_do_trans(m, espi_trans);
411
412		memcpy(rx_buf + pos, espi_trans->rx_buf + n_tx, trans_len);
413
414		if (loop > 0)
415			espi_trans->actual_length += espi_trans->len - n_tx;
416		else
417			espi_trans->actual_length += espi_trans->len;
418	}
419
420	kfree(local_buf);
421}
422
423static void fsl_espi_do_one_msg(struct spi_message *m)
 
424{
425	struct spi_transfer *t;
426	u8 *rx_buf = NULL;
427	unsigned int n_tx = 0;
428	unsigned int n_rx = 0;
429	struct fsl_espi_transfer espi_trans;
 
 
430
431	list_for_each_entry(t, &m->transfers, transfer_list) {
432		if (t->tx_buf)
433			n_tx += t->len;
434		if (t->rx_buf) {
435			n_rx += t->len;
436			rx_buf = t->rx_buf;
437		}
438	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
439
440	espi_trans.n_tx = n_tx;
441	espi_trans.n_rx = n_rx;
442	espi_trans.len = n_tx + n_rx;
443	espi_trans.actual_length = 0;
444	espi_trans.status = 0;
445
446	if (!rx_buf)
447		fsl_espi_cmd_trans(m, &espi_trans, NULL);
448	else
449		fsl_espi_rw_trans(m, &espi_trans, rx_buf);
450
451	m->actual_length = espi_trans.actual_length;
452	m->status = espi_trans.status;
453	m->complete(m->context);
454}
455
456static int fsl_espi_setup(struct spi_device *spi)
457{
458	struct mpc8xxx_spi *mpc8xxx_spi;
459	struct fsl_espi_reg *reg_base;
460	int retval;
461	u32 hw_mode;
462	u32 loop_mode;
463	struct spi_mpc8xxx_cs *cs = spi->controller_state;
464
465	if (!spi->max_speed_hz)
466		return -EINVAL;
467
468	if (!cs) {
469		cs = kzalloc(sizeof *cs, GFP_KERNEL);
470		if (!cs)
471			return -ENOMEM;
472		spi->controller_state = cs;
473	}
474
475	mpc8xxx_spi = spi_master_get_devdata(spi->master);
476	reg_base = mpc8xxx_spi->reg_base;
 
477
478	hw_mode = cs->hw_mode; /* Save original settings */
479	cs->hw_mode = mpc8xxx_spi_read_reg(
480			&reg_base->csmode[spi->chip_select]);
481	/* mask out bits we are going to set */
482	cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
483			 | CSMODE_REV);
484
485	if (spi->mode & SPI_CPHA)
486		cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
487	if (spi->mode & SPI_CPOL)
488		cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
489	if (!(spi->mode & SPI_LSB_FIRST))
490		cs->hw_mode |= CSMODE_REV;
491
492	/* Handle the loop mode */
493	loop_mode = mpc8xxx_spi_read_reg(&reg_base->mode);
494	loop_mode &= ~SPMODE_LOOP;
495	if (spi->mode & SPI_LOOP)
496		loop_mode |= SPMODE_LOOP;
497	mpc8xxx_spi_write_reg(&reg_base->mode, loop_mode);
 
 
 
 
 
498
499	retval = fsl_espi_setup_transfer(spi, NULL);
500	if (retval < 0) {
501		cs->hw_mode = hw_mode; /* Restore settings */
502		return retval;
503	}
504	return 0;
505}
506
507void fsl_espi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
508{
509	struct fsl_espi_reg *reg_base = mspi->reg_base;
510
511	/* We need handle RX first */
512	if (events & SPIE_NE) {
513		u32 rx_data, tmp;
514		u8 rx_data_8;
515
516		/* Spin until RX is done */
517		while (SPIE_RXCNT(events) < min(4, mspi->len)) {
518			cpu_relax();
519			events = mpc8xxx_spi_read_reg(&reg_base->event);
520		}
521
522		if (mspi->len >= 4) {
523			rx_data = mpc8xxx_spi_read_reg(&reg_base->receive);
524		} else {
525			tmp = mspi->len;
526			rx_data = 0;
527			while (tmp--) {
528				rx_data_8 = in_8((u8 *)&reg_base->receive);
529				rx_data |= (rx_data_8 << (tmp * 8));
530			}
531
532			rx_data <<= (4 - mspi->len) * 8;
533		}
 
 
534
535		mspi->len -= 4;
 
536
537		if (mspi->rx)
538			mspi->get_rx(rx_data, mspi);
539	}
540
541	if (!(events & SPIE_NF)) {
542		int ret;
543
544		/* spin until TX is done */
545		ret = spin_event_timeout(((events = mpc8xxx_spi_read_reg(
546				&reg_base->event)) & SPIE_NF) == 0, 1000, 0);
547		if (!ret) {
548			dev_err(mspi->dev, "tired waiting for SPIE_NF\n");
549			return;
550		}
551	}
552
553	/* Clear the events */
554	mpc8xxx_spi_write_reg(&reg_base->event, events);
555
556	mspi->count -= 1;
557	if (mspi->count) {
558		u32 word = mspi->get_tx(mspi);
559
560		mpc8xxx_spi_write_reg(&reg_base->transmit, word);
561	} else {
562		complete(&mspi->done);
563	}
564}
565
566static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
567{
568	struct mpc8xxx_spi *mspi = context_data;
569	struct fsl_espi_reg *reg_base = mspi->reg_base;
570	irqreturn_t ret = IRQ_NONE;
571	u32 events;
572
 
 
573	/* Get interrupt events(tx/rx) */
574	events = mpc8xxx_spi_read_reg(&reg_base->event);
575	if (events)
576		ret = IRQ_HANDLED;
 
 
577
578	dev_vdbg(mspi->dev, "%s: events %x\n", __func__, events);
579
580	fsl_espi_cpu_irq(mspi, events);
581
582	return ret;
 
 
 
 
 
583}
584
585static void fsl_espi_remove(struct mpc8xxx_spi *mspi)
 
586{
587	iounmap(mspi->reg_base);
 
 
 
 
 
 
 
 
588}
589
590static struct spi_master * __devinit fsl_espi_probe(struct device *dev,
591		struct resource *mem, unsigned int irq)
592{
593	struct fsl_spi_platform_data *pdata = dev->platform_data;
594	struct spi_master *master;
595	struct mpc8xxx_spi *mpc8xxx_spi;
596	struct fsl_espi_reg *reg_base;
597	u32 regval;
598	int i, ret = 0;
599
600	master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
601	if (!master) {
602		ret = -ENOMEM;
603		goto err;
604	}
605
606	dev_set_drvdata(dev, master);
 
 
607
608	ret = mpc8xxx_spi_probe(dev, mem, irq);
609	if (ret)
610		goto err_probe;
 
611
612	master->setup = fsl_espi_setup;
 
 
 
 
 
 
613
614	mpc8xxx_spi = spi_master_get_devdata(master);
615	mpc8xxx_spi->spi_do_one_msg = fsl_espi_do_one_msg;
616	mpc8xxx_spi->spi_remove = fsl_espi_remove;
617
618	mpc8xxx_spi->reg_base = ioremap(mem->start, resource_size(mem));
619	if (!mpc8xxx_spi->reg_base) {
620		ret = -ENOMEM;
621		goto err_probe;
622	}
623
624	reg_base = mpc8xxx_spi->reg_base;
 
 
 
 
 
625
626	/* Register for SPI Interrupt */
627	ret = request_irq(mpc8xxx_spi->irq, fsl_espi_irq,
628			  0, "fsl_espi", mpc8xxx_spi);
629	if (ret)
630		goto free_irq;
631
632	if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
633		mpc8xxx_spi->rx_shift = 16;
634		mpc8xxx_spi->tx_shift = 24;
635	}
 
 
636
637	/* SPI controller initializations */
638	mpc8xxx_spi_write_reg(&reg_base->mode, 0);
639	mpc8xxx_spi_write_reg(&reg_base->mask, 0);
640	mpc8xxx_spi_write_reg(&reg_base->command, 0);
641	mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);
 
642
643	/* Init eSPI CS mode register */
644	for (i = 0; i < pdata->max_chipselect; i++)
645		mpc8xxx_spi_write_reg(&reg_base->csmode[i], CSMODE_INIT_VAL);
 
 
646
647	/* Enable SPI interface */
648	regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
 
649
650	mpc8xxx_spi_write_reg(&reg_base->mode, regval);
 
 
 
 
 
651
652	ret = spi_register_master(master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
653	if (ret < 0)
654		goto unreg_master;
655
656	dev_info(dev, "at 0x%p (irq = %d)\n", reg_base, mpc8xxx_spi->irq);
657
658	return master;
 
659
660unreg_master:
661	free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
662free_irq:
663	iounmap(mpc8xxx_spi->reg_base);
 
 
664err_probe:
665	spi_master_put(master);
666err:
667	return ERR_PTR(ret);
668}
669
670static int of_fsl_espi_get_chipselects(struct device *dev)
671{
672	struct device_node *np = dev->of_node;
673	struct fsl_spi_platform_data *pdata = dev->platform_data;
674	const u32 *prop;
675	int len;
676
677	prop = of_get_property(np, "fsl,espi-num-chipselects", &len);
678	if (!prop || len < sizeof(*prop)) {
679		dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
680		return -EINVAL;
681	}
682
683	pdata->max_chipselect = *prop;
684	pdata->cs_control = NULL;
685
686	return 0;
687}
688
689static int __devinit of_fsl_espi_probe(struct platform_device *ofdev)
690{
691	struct device *dev = &ofdev->dev;
692	struct device_node *np = ofdev->dev.of_node;
693	struct spi_master *master;
694	struct resource mem;
695	struct resource irq;
696	int ret = -ENOMEM;
697
698	ret = of_mpc8xxx_spi_probe(ofdev);
699	if (ret)
700		return ret;
 
701
702	ret = of_fsl_espi_get_chipselects(dev);
703	if (ret)
704		goto err;
705
706	ret = of_address_to_resource(np, 0, &mem);
707	if (ret)
708		goto err;
709
710	ret = of_irq_to_resource(np, 0, &irq);
711	if (!ret) {
712		ret = -EINVAL;
713		goto err;
714	}
715
716	master = fsl_espi_probe(dev, &mem, irq.start);
717	if (IS_ERR(master)) {
718		ret = PTR_ERR(master);
719		goto err;
720	}
 
721
722	return 0;
 
723
724err:
725	return ret;
 
 
 
 
 
 
 
 
 
 
 
726}
727
728static int __devexit of_fsl_espi_remove(struct platform_device *dev)
729{
730	return mpc8xxx_spi_remove(&dev->dev);
 
 
 
 
 
 
 
 
 
731}
 
 
 
 
 
 
 
732
733static const struct of_device_id of_fsl_espi_match[] = {
734	{ .compatible = "fsl,mpc8536-espi" },
735	{}
736};
737MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
738
739static struct platform_driver fsl_espi_driver = {
740	.driver = {
741		.name = "fsl_espi",
742		.owner = THIS_MODULE,
743		.of_match_table = of_fsl_espi_match,
 
744	},
745	.probe		= of_fsl_espi_probe,
746	.remove		= __devexit_p(of_fsl_espi_remove),
747};
748module_platform_driver(fsl_espi_driver);
749
750MODULE_AUTHOR("Mingkai Hu");
751MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
752MODULE_LICENSE("GPL");
v4.10.11
  1/*
  2 * Freescale eSPI controller driver.
  3 *
  4 * Copyright 2010 Freescale Semiconductor, Inc.
  5 *
  6 * This program is free software; you can redistribute  it and/or modify it
  7 * under  the terms of  the GNU General  Public License as published by the
  8 * Free Software Foundation;  either version 2 of the  License, or (at your
  9 * option) any later version.
 10 */
 
 11#include <linux/delay.h>
 12#include <linux/err.h>
 
 
 13#include <linux/fsl_devices.h>
 14#include <linux/interrupt.h>
 15#include <linux/module.h>
 16#include <linux/mm.h>
 17#include <linux/of.h>
 18#include <linux/of_address.h>
 19#include <linux/of_irq.h>
 20#include <linux/of_platform.h>
 21#include <linux/platform_device.h>
 22#include <linux/spi/spi.h>
 23#include <linux/pm_runtime.h>
 24#include <sysdev/fsl_soc.h>
 25
 
 
 26/* eSPI Controller registers */
 27#define ESPI_SPMODE	0x00	/* eSPI mode register */
 28#define ESPI_SPIE	0x04	/* eSPI event register */
 29#define ESPI_SPIM	0x08	/* eSPI mask register */
 30#define ESPI_SPCOM	0x0c	/* eSPI command register */
 31#define ESPI_SPITF	0x10	/* eSPI transmit FIFO access register*/
 32#define ESPI_SPIRF	0x14	/* eSPI receive FIFO access register*/
 33#define ESPI_SPMODE0	0x20	/* eSPI cs0 mode register */
 
 
 
 34
 35#define ESPI_SPMODEx(x)	(ESPI_SPMODE0 + (x) * 4)
 
 
 
 
 
 
 
 
 36
 37/* eSPI Controller mode register definitions */
 38#define SPMODE_ENABLE		BIT(31)
 39#define SPMODE_LOOP		BIT(30)
 40#define SPMODE_TXTHR(x)		((x) << 8)
 41#define SPMODE_RXTHR(x)		((x) << 0)
 42
 43/* eSPI Controller CS mode register definitions */
 44#define CSMODE_CI_INACTIVEHIGH	BIT(31)
 45#define CSMODE_CP_BEGIN_EDGECLK	BIT(30)
 46#define CSMODE_REV		BIT(29)
 47#define CSMODE_DIV16		BIT(28)
 48#define CSMODE_PM(x)		((x) << 24)
 49#define CSMODE_POL_1		BIT(20)
 50#define CSMODE_LEN(x)		((x) << 16)
 51#define CSMODE_BEF(x)		((x) << 12)
 52#define CSMODE_AFT(x)		((x) << 8)
 53#define CSMODE_CG(x)		((x) << 3)
 54
 55#define FSL_ESPI_FIFO_SIZE	32
 56#define FSL_ESPI_RXTHR		15
 57
 58/* Default mode/csmode for eSPI controller */
 59#define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR))
 60#define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
 61		| CSMODE_AFT(0) | CSMODE_CG(1))
 62
 63/* SPIE register values */
 
 
 
 
 
 
 64#define SPIE_RXCNT(reg)     ((reg >> 24) & 0x3F)
 65#define SPIE_TXCNT(reg)     ((reg >> 16) & 0x3F)
 66#define	SPIE_TXE		BIT(15)	/* TX FIFO empty */
 67#define	SPIE_DON		BIT(14)	/* TX done */
 68#define	SPIE_RXT		BIT(13)	/* RX FIFO threshold */
 69#define	SPIE_RXF		BIT(12)	/* RX FIFO full */
 70#define	SPIE_TXT		BIT(11)	/* TX FIFO threshold*/
 71#define	SPIE_RNE		BIT(9)	/* RX FIFO not empty */
 72#define	SPIE_TNF		BIT(8)	/* TX FIFO not full */
 73
 74/* SPIM register values */
 75#define	SPIM_TXE		BIT(15)	/* TX FIFO empty */
 76#define	SPIM_DON		BIT(14)	/* TX done */
 77#define	SPIM_RXT		BIT(13)	/* RX FIFO threshold */
 78#define	SPIM_RXF		BIT(12)	/* RX FIFO full */
 79#define	SPIM_TXT		BIT(11)	/* TX FIFO threshold*/
 80#define	SPIM_RNE		BIT(9)	/* RX FIFO not empty */
 81#define	SPIM_TNF		BIT(8)	/* TX FIFO not full */
 82
 83/* SPCOM register values */
 84#define SPCOM_CS(x)		((x) << 30)
 85#define SPCOM_DO		BIT(28) /* Dual output */
 86#define SPCOM_TO		BIT(27) /* TX only */
 87#define SPCOM_RXSKIP(x)		((x) << 16)
 88#define SPCOM_TRANLEN(x)	((x) << 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 89
 90#define	SPCOM_TRANLEN_MAX	0x10000	/* Max transaction length */
 
 
 
 
 
 91
 92#define AUTOSUSPEND_TIMEOUT 2000
 
 93
 94struct fsl_espi {
 95	struct device *dev;
 96	void __iomem *reg_base;
 
 
 
 97
 98	struct list_head *m_transfers;
 99	struct spi_transfer *tx_t;
100	unsigned int tx_pos;
101	bool tx_done;
102	struct spi_transfer *rx_t;
103	unsigned int rx_pos;
104	bool rx_done;
105
106	bool swab;
107	unsigned int rxskip;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
109	spinlock_t lock;
 
 
110
111	u32 spibrg;             /* SPIBRG input clock */
 
112
113	struct completion done;
114};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
116struct fsl_espi_cs {
117	u32 hw_mode;
118};
119
120static inline u32 fsl_espi_read_reg(struct fsl_espi *espi, int offset)
121{
122	return ioread32be(espi->reg_base + offset);
123}
124
125static inline u16 fsl_espi_read_reg16(struct fsl_espi *espi, int offset)
 
126{
127	return ioread16be(espi->reg_base + offset);
128}
 
 
129
130static inline u8 fsl_espi_read_reg8(struct fsl_espi *espi, int offset)
131{
132	return ioread8(espi->reg_base + offset);
133}
134
135static inline void fsl_espi_write_reg(struct fsl_espi *espi, int offset,
136				      u32 val)
137{
138	iowrite32be(val, espi->reg_base + offset);
139}
140
141static inline void fsl_espi_write_reg16(struct fsl_espi *espi, int offset,
142					u16 val)
143{
144	iowrite16be(val, espi->reg_base + offset);
145}
146
147static inline void fsl_espi_write_reg8(struct fsl_espi *espi, int offset,
148				       u8 val)
149{
150	iowrite8(val, espi->reg_base + offset);
151}
 
 
 
152
153static int fsl_espi_check_message(struct spi_message *m)
154{
155	struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
156	struct spi_transfer *t, *first;
157
158	if (m->frame_length > SPCOM_TRANLEN_MAX) {
159		dev_err(espi->dev, "message too long, size is %u bytes\n",
160			m->frame_length);
161		return -EMSGSIZE;
162	}
163
164	first = list_first_entry(&m->transfers, struct spi_transfer,
165				 transfer_list);
166
167	list_for_each_entry(t, &m->transfers, transfer_list) {
168		if (first->bits_per_word != t->bits_per_word ||
169		    first->speed_hz != t->speed_hz) {
170			dev_err(espi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
171			return -EINVAL;
172		}
173	}
174
175	/* ESPI supports MSB-first transfers for word size 8 / 16 only */
176	if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 &&
177	    first->bits_per_word != 16) {
178		dev_err(espi->dev,
179			"MSB-first transfer not supported for wordsize %u\n",
180			first->bits_per_word);
181		return -EINVAL;
182	}
 
 
 
 
 
 
183
184	return 0;
 
 
 
 
 
185}
186
187static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m)
188{
189	struct spi_transfer *t;
190	unsigned int i = 0, rxskip = 0;
191
192	/*
193	 * prerequisites for ESPI rxskip mode:
194	 * - message has two transfers
195	 * - first transfer is a write and second is a read
196	 *
197	 * In addition the current low-level transfer mechanism requires
198	 * that the rxskip bytes fit into the TX FIFO. Else the transfer
199	 * would hang because after the first FSL_ESPI_FIFO_SIZE bytes
200	 * the TX FIFO isn't re-filled.
201	 */
202	list_for_each_entry(t, &m->transfers, transfer_list) {
203		if (i == 0) {
204			if (!t->tx_buf || t->rx_buf ||
205			    t->len > FSL_ESPI_FIFO_SIZE)
206				return 0;
207			rxskip = t->len;
208		} else if (i == 1) {
209			if (t->tx_buf || !t->rx_buf)
210				return 0;
211		}
212		i++;
213	}
214
215	return i == 2 ? rxskip : 0;
216}
217
218static void fsl_espi_fill_tx_fifo(struct fsl_espi *espi, u32 events)
219{
220	u32 tx_fifo_avail;
221	unsigned int tx_left;
222	const void *tx_buf;
223
224	/* if events is zero transfer has not started and tx fifo is empty */
225	tx_fifo_avail = events ? SPIE_TXCNT(events) :  FSL_ESPI_FIFO_SIZE;
226start:
227	tx_left = espi->tx_t->len - espi->tx_pos;
228	tx_buf = espi->tx_t->tx_buf;
229	while (tx_fifo_avail >= min(4U, tx_left) && tx_left) {
230		if (tx_left >= 4) {
231			if (!tx_buf)
232				fsl_espi_write_reg(espi, ESPI_SPITF, 0);
233			else if (espi->swab)
234				fsl_espi_write_reg(espi, ESPI_SPITF,
235					swahb32p(tx_buf + espi->tx_pos));
236			else
237				fsl_espi_write_reg(espi, ESPI_SPITF,
238					*(u32 *)(tx_buf + espi->tx_pos));
239			espi->tx_pos += 4;
240			tx_left -= 4;
241			tx_fifo_avail -= 4;
242		} else if (tx_left >= 2 && tx_buf && espi->swab) {
243			fsl_espi_write_reg16(espi, ESPI_SPITF,
244					swab16p(tx_buf + espi->tx_pos));
245			espi->tx_pos += 2;
246			tx_left -= 2;
247			tx_fifo_avail -= 2;
248		} else {
249			if (!tx_buf)
250				fsl_espi_write_reg8(espi, ESPI_SPITF, 0);
251			else
252				fsl_espi_write_reg8(espi, ESPI_SPITF,
253					*(u8 *)(tx_buf + espi->tx_pos));
254			espi->tx_pos += 1;
255			tx_left -= 1;
256			tx_fifo_avail -= 1;
257		}
258	}
259
260	if (!tx_left) {
261		/* Last transfer finished, in rxskip mode only one is needed */
262		if (list_is_last(&espi->tx_t->transfer_list,
263		    espi->m_transfers) || espi->rxskip) {
264			espi->tx_done = true;
265			return;
266		}
267		espi->tx_t = list_next_entry(espi->tx_t, transfer_list);
268		espi->tx_pos = 0;
269		/* continue with next transfer if tx fifo is not full */
270		if (tx_fifo_avail)
271			goto start;
272	}
273}
274
275static void fsl_espi_read_rx_fifo(struct fsl_espi *espi, u32 events)
 
276{
277	u32 rx_fifo_avail = SPIE_RXCNT(events);
278	unsigned int rx_left;
279	void *rx_buf;
 
 
 
280
281start:
282	rx_left = espi->rx_t->len - espi->rx_pos;
283	rx_buf = espi->rx_t->rx_buf;
284	while (rx_fifo_avail >= min(4U, rx_left) && rx_left) {
285		if (rx_left >= 4) {
286			u32 val = fsl_espi_read_reg(espi, ESPI_SPIRF);
287
288			if (rx_buf && espi->swab)
289				*(u32 *)(rx_buf + espi->rx_pos) = swahb32(val);
290			else if (rx_buf)
291				*(u32 *)(rx_buf + espi->rx_pos) = val;
292			espi->rx_pos += 4;
293			rx_left -= 4;
294			rx_fifo_avail -= 4;
295		} else if (rx_left >= 2 && rx_buf && espi->swab) {
296			u16 val = fsl_espi_read_reg16(espi, ESPI_SPIRF);
297
298			*(u16 *)(rx_buf + espi->rx_pos) = swab16(val);
299			espi->rx_pos += 2;
300			rx_left -= 2;
301			rx_fifo_avail -= 2;
302		} else {
303			u8 val = fsl_espi_read_reg8(espi, ESPI_SPIRF);
304
305			if (rx_buf)
306				*(u8 *)(rx_buf + espi->rx_pos) = val;
307			espi->rx_pos += 1;
308			rx_left -= 1;
309			rx_fifo_avail -= 1;
 
 
 
 
310		}
311	}
312
313	if (!rx_left) {
314		if (list_is_last(&espi->rx_t->transfer_list,
315		    espi->m_transfers)) {
316			espi->rx_done = true;
317			return;
 
 
 
 
 
 
 
 
 
 
 
 
318		}
319		espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
320		espi->rx_pos = 0;
321		/* continue with next transfer if rx fifo is not empty */
322		if (rx_fifo_avail)
323			goto start;
324	}
325}
326
327static void fsl_espi_setup_transfer(struct spi_device *spi,
328					struct spi_transfer *t)
329{
330	struct fsl_espi *espi = spi_master_get_devdata(spi->master);
331	int bits_per_word = t ? t->bits_per_word : spi->bits_per_word;
332	u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz;
333	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
334	u32 hw_mode_old = cs->hw_mode;
335
336	/* mask out bits we are going to set */
337	cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
338
339	cs->hw_mode |= CSMODE_LEN(bits_per_word - 1);
340
341	pm = DIV_ROUND_UP(espi->spibrg, hz * 4) - 1;
342
343	if (pm > 15) {
344		cs->hw_mode |= CSMODE_DIV16;
345		pm = DIV_ROUND_UP(espi->spibrg, hz * 16 * 4) - 1;
346	}
347
348	cs->hw_mode |= CSMODE_PM(pm);
349
350	/* don't write the mode register if the mode doesn't change */
351	if (cs->hw_mode != hw_mode_old)
352		fsl_espi_write_reg(espi, ESPI_SPMODEx(spi->chip_select),
353				   cs->hw_mode);
354}
355
356static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
 
357{
358	struct fsl_espi *espi = spi_master_get_devdata(spi->master);
359	unsigned int rx_len = t->len;
360	u32 mask, spcom;
361	int ret;
 
 
 
 
 
 
362
363	reinit_completion(&espi->done);
364
365	/* Set SPCOM[CS] and SPCOM[TRANLEN] field */
366	spcom = SPCOM_CS(spi->chip_select);
367	spcom |= SPCOM_TRANLEN(t->len - 1);
368
369	/* configure RXSKIP mode */
370	if (espi->rxskip) {
371		spcom |= SPCOM_RXSKIP(espi->rxskip);
372		rx_len = t->len - espi->rxskip;
373		if (t->rx_nbits == SPI_NBITS_DUAL)
374			spcom |= SPCOM_DO;
375	}
376
377	fsl_espi_write_reg(espi, ESPI_SPCOM, spcom);
378
379	/* enable interrupts */
380	mask = SPIM_DON;
381	if (rx_len > FSL_ESPI_FIFO_SIZE)
382		mask |= SPIM_RXT;
383	fsl_espi_write_reg(espi, ESPI_SPIM, mask);
384
385	/* Prevent filling the fifo from getting interrupted */
386	spin_lock_irq(&espi->lock);
387	fsl_espi_fill_tx_fifo(espi, 0);
388	spin_unlock_irq(&espi->lock);
389
390	/* Won't hang up forever, SPI bus sometimes got lost interrupts... */
391	ret = wait_for_completion_timeout(&espi->done, 2 * HZ);
392	if (ret == 0)
393		dev_err(espi->dev, "Transfer timed out!\n");
394
395	/* disable rx ints */
396	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
 
397
398	return ret == 0 ? -ETIMEDOUT : 0;
 
399}
400
401static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
 
402{
403	struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
404	struct spi_device *spi = m->spi;
405	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
406
407	/* In case of LSB-first and bits_per_word > 8 byte-swap all words */
408	espi->swab = spi->mode & SPI_LSB_FIRST && trans->bits_per_word > 8;
 
 
 
 
 
 
 
 
 
 
409
410	espi->m_transfers = &m->transfers;
411	espi->tx_t = list_first_entry(&m->transfers, struct spi_transfer,
412				      transfer_list);
413	espi->tx_pos = 0;
414	espi->tx_done = false;
415	espi->rx_t = list_first_entry(&m->transfers, struct spi_transfer,
416				      transfer_list);
417	espi->rx_pos = 0;
418	espi->rx_done = false;
419
420	espi->rxskip = fsl_espi_check_rxskip_mode(m);
421	if (trans->rx_nbits == SPI_NBITS_DUAL && !espi->rxskip) {
422		dev_err(espi->dev, "Dual output mode requires RXSKIP mode!\n");
423		return -EINVAL;
424	}
425
426	/* In RXSKIP mode skip first transfer for reads */
427	if (espi->rxskip)
428		espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
 
 
 
429
430	fsl_espi_setup_transfer(spi, trans);
431
432	ret = fsl_espi_bufs(spi, trans);
433
434	if (trans->delay_usecs)
435		udelay(trans->delay_usecs);
 
436
437	return ret;
438}
439
440static int fsl_espi_do_one_msg(struct spi_master *master,
441			       struct spi_message *m)
442{
443	unsigned int delay_usecs = 0, rx_nbits = 0;
444	struct spi_transfer *t, trans = {};
445	int ret;
446
447	ret = fsl_espi_check_message(m);
448	if (ret)
449		goto out;
450
451	list_for_each_entry(t, &m->transfers, transfer_list) {
452		if (t->delay_usecs > delay_usecs)
453			delay_usecs = t->delay_usecs;
454		if (t->rx_nbits > rx_nbits)
455			rx_nbits = t->rx_nbits;
456	}
457
458	t = list_first_entry(&m->transfers, struct spi_transfer,
459			     transfer_list);
460
461	trans.len = m->frame_length;
462	trans.speed_hz = t->speed_hz;
463	trans.bits_per_word = t->bits_per_word;
464	trans.delay_usecs = delay_usecs;
465	trans.rx_nbits = rx_nbits;
466
467	if (trans.len)
468		ret = fsl_espi_trans(m, &trans);
469
470	m->actual_length = ret ? 0 : trans.len;
471out:
472	if (m->status == -EINPROGRESS)
473		m->status = ret;
474
475	spi_finalize_current_message(master);
476
477	return ret;
 
 
 
 
 
 
 
 
 
 
 
478}
479
480static int fsl_espi_setup(struct spi_device *spi)
481{
482	struct fsl_espi *espi;
 
 
 
483	u32 loop_mode;
484	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
 
 
 
485
486	if (!cs) {
487		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
488		if (!cs)
489			return -ENOMEM;
490		spi_set_ctldata(spi, cs);
491	}
492
493	espi = spi_master_get_devdata(spi->master);
494
495	pm_runtime_get_sync(espi->dev);
496
497	cs->hw_mode = fsl_espi_read_reg(espi, ESPI_SPMODEx(spi->chip_select));
 
 
498	/* mask out bits we are going to set */
499	cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
500			 | CSMODE_REV);
501
502	if (spi->mode & SPI_CPHA)
503		cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
504	if (spi->mode & SPI_CPOL)
505		cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
506	if (!(spi->mode & SPI_LSB_FIRST))
507		cs->hw_mode |= CSMODE_REV;
508
509	/* Handle the loop mode */
510	loop_mode = fsl_espi_read_reg(espi, ESPI_SPMODE);
511	loop_mode &= ~SPMODE_LOOP;
512	if (spi->mode & SPI_LOOP)
513		loop_mode |= SPMODE_LOOP;
514	fsl_espi_write_reg(espi, ESPI_SPMODE, loop_mode);
515
516	fsl_espi_setup_transfer(spi, NULL);
517
518	pm_runtime_mark_last_busy(espi->dev);
519	pm_runtime_put_autosuspend(espi->dev);
520
 
 
 
 
 
521	return 0;
522}
523
524static void fsl_espi_cleanup(struct spi_device *spi)
525{
526	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
 
 
 
 
 
 
 
 
 
 
 
527
528	kfree(cs);
529	spi_set_ctldata(spi, NULL);
530}
 
 
 
 
 
 
531
532static void fsl_espi_cpu_irq(struct fsl_espi *espi, u32 events)
533{
534	if (!espi->rx_done)
535		fsl_espi_read_rx_fifo(espi, events);
536
537	if (!espi->tx_done)
538		fsl_espi_fill_tx_fifo(espi, events);
539
540	if (!espi->tx_done || !espi->rx_done)
541		return;
 
542
543	/* we're done, but check for errors before returning */
544	events = fsl_espi_read_reg(espi, ESPI_SPIE);
545
546	if (!(events & SPIE_DON))
547		dev_err(espi->dev,
548			"Transfer done but SPIE_DON isn't set!\n");
 
 
 
 
 
549
550	if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE)
551		dev_err(espi->dev, "Transfer done but rx/tx fifo's aren't empty!\n");
552
553	complete(&espi->done);
 
 
 
 
 
 
 
554}
555
556static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
557{
558	struct fsl_espi *espi = context_data;
 
 
559	u32 events;
560
561	spin_lock(&espi->lock);
562
563	/* Get interrupt events(tx/rx) */
564	events = fsl_espi_read_reg(espi, ESPI_SPIE);
565	if (!events) {
566		spin_unlock(&espi->lock);
567		return IRQ_NONE;
568	}
569
570	dev_vdbg(espi->dev, "%s: events %x\n", __func__, events);
571
572	fsl_espi_cpu_irq(espi, events);
573
574	/* Clear the events */
575	fsl_espi_write_reg(espi, ESPI_SPIE, events);
576
577	spin_unlock(&espi->lock);
578
579	return IRQ_HANDLED;
580}
581
582#ifdef CONFIG_PM
583static int fsl_espi_runtime_suspend(struct device *dev)
584{
585	struct spi_master *master = dev_get_drvdata(dev);
586	struct fsl_espi *espi = spi_master_get_devdata(master);
587	u32 regval;
588
589	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
590	regval &= ~SPMODE_ENABLE;
591	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
592
593	return 0;
594}
595
596static int fsl_espi_runtime_resume(struct device *dev)
 
597{
598	struct spi_master *master = dev_get_drvdata(dev);
599	struct fsl_espi *espi = spi_master_get_devdata(master);
 
 
600	u32 regval;
 
601
602	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
603	regval |= SPMODE_ENABLE;
604	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
 
 
605
606	return 0;
607}
608#endif
609
610static size_t fsl_espi_max_message_size(struct spi_device *spi)
611{
612	return SPCOM_TRANLEN_MAX;
613}
614
615static void fsl_espi_init_regs(struct device *dev, bool initial)
616{
617	struct spi_master *master = dev_get_drvdata(dev);
618	struct fsl_espi *espi = spi_master_get_devdata(master);
619	struct device_node *nc;
620	u32 csmode, cs, prop;
621	int ret;
622
623	/* SPI controller initializations */
624	fsl_espi_write_reg(espi, ESPI_SPMODE, 0);
625	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
626	fsl_espi_write_reg(espi, ESPI_SPCOM, 0);
627	fsl_espi_write_reg(espi, ESPI_SPIE, 0xffffffff);
 
 
 
 
628
629	/* Init eSPI CS mode register */
630	for_each_available_child_of_node(master->dev.of_node, nc) {
631		/* get chip select */
632		ret = of_property_read_u32(nc, "reg", &cs);
633		if (ret || cs >= master->num_chipselect)
634			continue;
635
636		csmode = CSMODE_INIT_VAL;
 
 
 
 
637
638		/* check if CSBEF is set in device tree */
639		ret = of_property_read_u32(nc, "fsl,csbef", &prop);
640		if (!ret) {
641			csmode &= ~(CSMODE_BEF(0xf));
642			csmode |= CSMODE_BEF(prop);
643		}
644
645		/* check if CSAFT is set in device tree */
646		ret = of_property_read_u32(nc, "fsl,csaft", &prop);
647		if (!ret) {
648			csmode &= ~(CSMODE_AFT(0xf));
649			csmode |= CSMODE_AFT(prop);
650		}
651
652		fsl_espi_write_reg(espi, ESPI_SPMODEx(cs), csmode);
653
654		if (initial)
655			dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode);
656	}
657
658	/* Enable SPI interface */
659	fsl_espi_write_reg(espi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE);
660}
661
662static int fsl_espi_probe(struct device *dev, struct resource *mem,
663			  unsigned int irq, unsigned int num_cs)
664{
665	struct spi_master *master;
666	struct fsl_espi *espi;
667	int ret;
668
669	master = spi_alloc_master(dev, sizeof(struct fsl_espi));
670	if (!master)
671		return -ENOMEM;
672
673	dev_set_drvdata(dev, master);
674
675	master->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
676			    SPI_LSB_FIRST | SPI_LOOP;
677	master->dev.of_node = dev->of_node;
678	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
679	master->setup = fsl_espi_setup;
680	master->cleanup = fsl_espi_cleanup;
681	master->transfer_one_message = fsl_espi_do_one_msg;
682	master->auto_runtime_pm = true;
683	master->max_message_size = fsl_espi_max_message_size;
684	master->num_chipselect = num_cs;
685
686	espi = spi_master_get_devdata(master);
687	spin_lock_init(&espi->lock);
688
689	espi->dev = dev;
690	espi->spibrg = fsl_get_sys_freq();
691	if (espi->spibrg == -1) {
692		dev_err(dev, "Can't get sys frequency!\n");
693		ret = -EINVAL;
694		goto err_probe;
695	}
696	/* determined by clock divider fields DIV16/PM in register SPMODEx */
697	master->min_speed_hz = DIV_ROUND_UP(espi->spibrg, 4 * 16 * 16);
698	master->max_speed_hz = DIV_ROUND_UP(espi->spibrg, 4);
699
700	init_completion(&espi->done);
701
702	espi->reg_base = devm_ioremap_resource(dev, mem);
703	if (IS_ERR(espi->reg_base)) {
704		ret = PTR_ERR(espi->reg_base);
705		goto err_probe;
706	}
707
708	/* Register for SPI Interrupt */
709	ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi", espi);
710	if (ret)
711		goto err_probe;
712
713	fsl_espi_init_regs(dev, true);
714
715	pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
716	pm_runtime_use_autosuspend(dev);
717	pm_runtime_set_active(dev);
718	pm_runtime_enable(dev);
719	pm_runtime_get_sync(dev);
720
721	ret = devm_spi_register_master(dev, master);
722	if (ret < 0)
723		goto err_pm;
724
725	dev_info(dev, "at 0x%p (irq = %u)\n", espi->reg_base, irq);
726
727	pm_runtime_mark_last_busy(dev);
728	pm_runtime_put_autosuspend(dev);
729
730	return 0;
731
732err_pm:
733	pm_runtime_put_noidle(dev);
734	pm_runtime_disable(dev);
735	pm_runtime_set_suspended(dev);
736err_probe:
737	spi_master_put(master);
738	return ret;
 
739}
740
741static int of_fsl_espi_get_chipselects(struct device *dev)
742{
743	struct device_node *np = dev->of_node;
744	u32 num_cs;
745	int ret;
 
746
747	ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs);
748	if (ret) {
749		dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
750		return 0;
751	}
752
753	return num_cs;
 
 
 
754}
755
756static int of_fsl_espi_probe(struct platform_device *ofdev)
757{
758	struct device *dev = &ofdev->dev;
759	struct device_node *np = ofdev->dev.of_node;
 
760	struct resource mem;
761	unsigned int irq, num_cs;
762	int ret;
763
764	if (of_property_read_bool(np, "mode")) {
765		dev_err(dev, "mode property is not supported on ESPI!\n");
766		return -EINVAL;
767	}
768
769	num_cs = of_fsl_espi_get_chipselects(dev);
770	if (!num_cs)
771		return -EINVAL;
772
773	ret = of_address_to_resource(np, 0, &mem);
774	if (ret)
775		return ret;
776
777	irq = irq_of_parse_and_map(np, 0);
778	if (!irq)
779		return -EINVAL;
 
 
780
781	return fsl_espi_probe(dev, &mem, irq, num_cs);
782}
783
784static int of_fsl_espi_remove(struct platform_device *dev)
785{
786	pm_runtime_disable(&dev->dev);
787
788	return 0;
789}
790
791#ifdef CONFIG_PM_SLEEP
792static int of_fsl_espi_suspend(struct device *dev)
793{
794	struct spi_master *master = dev_get_drvdata(dev);
795	int ret;
796
797	ret = spi_master_suspend(master);
798	if (ret) {
799		dev_warn(dev, "cannot suspend master\n");
800		return ret;
801	}
802
803	return pm_runtime_force_suspend(dev);
804}
805
806static int of_fsl_espi_resume(struct device *dev)
807{
808	struct spi_master *master = dev_get_drvdata(dev);
809	int ret;
810
811	fsl_espi_init_regs(dev, false);
812
813	ret = pm_runtime_force_resume(dev);
814	if (ret < 0)
815		return ret;
816
817	return spi_master_resume(master);
818}
819#endif /* CONFIG_PM_SLEEP */
820
821static const struct dev_pm_ops espi_pm = {
822	SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
823			   fsl_espi_runtime_resume, NULL)
824	SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
825};
826
827static const struct of_device_id of_fsl_espi_match[] = {
828	{ .compatible = "fsl,mpc8536-espi" },
829	{}
830};
831MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
832
833static struct platform_driver fsl_espi_driver = {
834	.driver = {
835		.name = "fsl_espi",
 
836		.of_match_table = of_fsl_espi_match,
837		.pm = &espi_pm,
838	},
839	.probe		= of_fsl_espi_probe,
840	.remove		= of_fsl_espi_remove,
841};
842module_platform_driver(fsl_espi_driver);
843
844MODULE_AUTHOR("Mingkai Hu");
845MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
846MODULE_LICENSE("GPL");