Loading...
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/* ethtool support for e1000 */
30
31#include <linux/netdevice.h>
32#include <linux/interrupt.h>
33#include <linux/ethtool.h>
34#include <linux/pci.h>
35#include <linux/slab.h>
36#include <linux/delay.h>
37#include <linux/vmalloc.h>
38
39#include "e1000.h"
40
41enum {NETDEV_STATS, E1000_STATS};
42
43struct e1000_stats {
44 char stat_string[ETH_GSTRING_LEN];
45 int type;
46 int sizeof_stat;
47 int stat_offset;
48};
49
50#define E1000_STAT(str, m) { \
51 .stat_string = str, \
52 .type = E1000_STATS, \
53 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
54 .stat_offset = offsetof(struct e1000_adapter, m) }
55#define E1000_NETDEV_STAT(str, m) { \
56 .stat_string = str, \
57 .type = NETDEV_STATS, \
58 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
59 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
60
61static const struct e1000_stats e1000_gstrings_stats[] = {
62 E1000_STAT("rx_packets", stats.gprc),
63 E1000_STAT("tx_packets", stats.gptc),
64 E1000_STAT("rx_bytes", stats.gorc),
65 E1000_STAT("tx_bytes", stats.gotc),
66 E1000_STAT("rx_broadcast", stats.bprc),
67 E1000_STAT("tx_broadcast", stats.bptc),
68 E1000_STAT("rx_multicast", stats.mprc),
69 E1000_STAT("tx_multicast", stats.mptc),
70 E1000_NETDEV_STAT("rx_errors", rx_errors),
71 E1000_NETDEV_STAT("tx_errors", tx_errors),
72 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
73 E1000_STAT("multicast", stats.mprc),
74 E1000_STAT("collisions", stats.colc),
75 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
76 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
77 E1000_STAT("rx_crc_errors", stats.crcerrs),
78 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
79 E1000_STAT("rx_no_buffer_count", stats.rnbc),
80 E1000_STAT("rx_missed_errors", stats.mpc),
81 E1000_STAT("tx_aborted_errors", stats.ecol),
82 E1000_STAT("tx_carrier_errors", stats.tncrs),
83 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
84 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
85 E1000_STAT("tx_window_errors", stats.latecol),
86 E1000_STAT("tx_abort_late_coll", stats.latecol),
87 E1000_STAT("tx_deferred_ok", stats.dc),
88 E1000_STAT("tx_single_coll_ok", stats.scc),
89 E1000_STAT("tx_multi_coll_ok", stats.mcc),
90 E1000_STAT("tx_timeout_count", tx_timeout_count),
91 E1000_STAT("tx_restart_queue", restart_queue),
92 E1000_STAT("rx_long_length_errors", stats.roc),
93 E1000_STAT("rx_short_length_errors", stats.ruc),
94 E1000_STAT("rx_align_errors", stats.algnerrc),
95 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
96 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
97 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
98 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
99 E1000_STAT("tx_flow_control_xon", stats.xontxc),
100 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
101 E1000_STAT("rx_long_byte_count", stats.gorc),
102 E1000_STAT("rx_csum_offload_good", hw_csum_good),
103 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104 E1000_STAT("rx_header_split", rx_hdr_split),
105 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106 E1000_STAT("tx_smbus", stats.mgptc),
107 E1000_STAT("rx_smbus", stats.mgprc),
108 E1000_STAT("dropped_smbus", stats.mgpdc),
109 E1000_STAT("rx_dma_failed", rx_dma_failed),
110 E1000_STAT("tx_dma_failed", tx_dma_failed),
111};
112
113#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
114#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
115static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
116 "Register test (offline)", "Eeprom test (offline)",
117 "Interrupt test (offline)", "Loopback test (offline)",
118 "Link test (on/offline)"
119};
120#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
121
122static int e1000_get_settings(struct net_device *netdev,
123 struct ethtool_cmd *ecmd)
124{
125 struct e1000_adapter *adapter = netdev_priv(netdev);
126 struct e1000_hw *hw = &adapter->hw;
127 u32 speed;
128
129 if (hw->phy.media_type == e1000_media_type_copper) {
130
131 ecmd->supported = (SUPPORTED_10baseT_Half |
132 SUPPORTED_10baseT_Full |
133 SUPPORTED_100baseT_Half |
134 SUPPORTED_100baseT_Full |
135 SUPPORTED_1000baseT_Full |
136 SUPPORTED_Autoneg |
137 SUPPORTED_TP);
138 if (hw->phy.type == e1000_phy_ife)
139 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
140 ecmd->advertising = ADVERTISED_TP;
141
142 if (hw->mac.autoneg == 1) {
143 ecmd->advertising |= ADVERTISED_Autoneg;
144 /* the e1000 autoneg seems to match ethtool nicely */
145 ecmd->advertising |= hw->phy.autoneg_advertised;
146 }
147
148 ecmd->port = PORT_TP;
149 ecmd->phy_address = hw->phy.addr;
150 ecmd->transceiver = XCVR_INTERNAL;
151
152 } else {
153 ecmd->supported = (SUPPORTED_1000baseT_Full |
154 SUPPORTED_FIBRE |
155 SUPPORTED_Autoneg);
156
157 ecmd->advertising = (ADVERTISED_1000baseT_Full |
158 ADVERTISED_FIBRE |
159 ADVERTISED_Autoneg);
160
161 ecmd->port = PORT_FIBRE;
162 ecmd->transceiver = XCVR_EXTERNAL;
163 }
164
165 speed = -1;
166 ecmd->duplex = -1;
167
168 if (netif_running(netdev)) {
169 if (netif_carrier_ok(netdev)) {
170 speed = adapter->link_speed;
171 ecmd->duplex = adapter->link_duplex - 1;
172 }
173 } else {
174 u32 status = er32(STATUS);
175 if (status & E1000_STATUS_LU) {
176 if (status & E1000_STATUS_SPEED_1000)
177 speed = SPEED_1000;
178 else if (status & E1000_STATUS_SPEED_100)
179 speed = SPEED_100;
180 else
181 speed = SPEED_10;
182
183 if (status & E1000_STATUS_FD)
184 ecmd->duplex = DUPLEX_FULL;
185 else
186 ecmd->duplex = DUPLEX_HALF;
187 }
188 }
189
190 ethtool_cmd_speed_set(ecmd, speed);
191 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
192 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
193
194 /* MDI-X => 2; MDI =>1; Invalid =>0 */
195 if ((hw->phy.media_type == e1000_media_type_copper) &&
196 netif_carrier_ok(netdev))
197 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
198 ETH_TP_MDI;
199 else
200 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
201
202 return 0;
203}
204
205static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
206{
207 struct e1000_mac_info *mac = &adapter->hw.mac;
208
209 mac->autoneg = 0;
210
211 /* Make sure dplx is at most 1 bit and lsb of speed is not set
212 * for the switch() below to work */
213 if ((spd & 1) || (dplx & ~1))
214 goto err_inval;
215
216 /* Fiber NICs only allow 1000 gbps Full duplex */
217 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
218 spd != SPEED_1000 &&
219 dplx != DUPLEX_FULL) {
220 goto err_inval;
221 }
222
223 switch (spd + dplx) {
224 case SPEED_10 + DUPLEX_HALF:
225 mac->forced_speed_duplex = ADVERTISE_10_HALF;
226 break;
227 case SPEED_10 + DUPLEX_FULL:
228 mac->forced_speed_duplex = ADVERTISE_10_FULL;
229 break;
230 case SPEED_100 + DUPLEX_HALF:
231 mac->forced_speed_duplex = ADVERTISE_100_HALF;
232 break;
233 case SPEED_100 + DUPLEX_FULL:
234 mac->forced_speed_duplex = ADVERTISE_100_FULL;
235 break;
236 case SPEED_1000 + DUPLEX_FULL:
237 mac->autoneg = 1;
238 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
239 break;
240 case SPEED_1000 + DUPLEX_HALF: /* not supported */
241 default:
242 goto err_inval;
243 }
244 return 0;
245
246err_inval:
247 e_err("Unsupported Speed/Duplex configuration\n");
248 return -EINVAL;
249}
250
251static int e1000_set_settings(struct net_device *netdev,
252 struct ethtool_cmd *ecmd)
253{
254 struct e1000_adapter *adapter = netdev_priv(netdev);
255 struct e1000_hw *hw = &adapter->hw;
256
257 /*
258 * When SoL/IDER sessions are active, autoneg/speed/duplex
259 * cannot be changed
260 */
261 if (hw->phy.ops.check_reset_block &&
262 hw->phy.ops.check_reset_block(hw)) {
263 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
264 return -EINVAL;
265 }
266
267 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
268 usleep_range(1000, 2000);
269
270 if (ecmd->autoneg == AUTONEG_ENABLE) {
271 hw->mac.autoneg = 1;
272 if (hw->phy.media_type == e1000_media_type_fiber)
273 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
274 ADVERTISED_FIBRE |
275 ADVERTISED_Autoneg;
276 else
277 hw->phy.autoneg_advertised = ecmd->advertising |
278 ADVERTISED_TP |
279 ADVERTISED_Autoneg;
280 ecmd->advertising = hw->phy.autoneg_advertised;
281 if (adapter->fc_autoneg)
282 hw->fc.requested_mode = e1000_fc_default;
283 } else {
284 u32 speed = ethtool_cmd_speed(ecmd);
285 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
286 clear_bit(__E1000_RESETTING, &adapter->state);
287 return -EINVAL;
288 }
289 }
290
291 /* reset the link */
292
293 if (netif_running(adapter->netdev)) {
294 e1000e_down(adapter);
295 e1000e_up(adapter);
296 } else {
297 e1000e_reset(adapter);
298 }
299
300 clear_bit(__E1000_RESETTING, &adapter->state);
301 return 0;
302}
303
304static void e1000_get_pauseparam(struct net_device *netdev,
305 struct ethtool_pauseparam *pause)
306{
307 struct e1000_adapter *adapter = netdev_priv(netdev);
308 struct e1000_hw *hw = &adapter->hw;
309
310 pause->autoneg =
311 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
312
313 if (hw->fc.current_mode == e1000_fc_rx_pause) {
314 pause->rx_pause = 1;
315 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
316 pause->tx_pause = 1;
317 } else if (hw->fc.current_mode == e1000_fc_full) {
318 pause->rx_pause = 1;
319 pause->tx_pause = 1;
320 }
321}
322
323static int e1000_set_pauseparam(struct net_device *netdev,
324 struct ethtool_pauseparam *pause)
325{
326 struct e1000_adapter *adapter = netdev_priv(netdev);
327 struct e1000_hw *hw = &adapter->hw;
328 int retval = 0;
329
330 adapter->fc_autoneg = pause->autoneg;
331
332 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
333 usleep_range(1000, 2000);
334
335 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
336 hw->fc.requested_mode = e1000_fc_default;
337 if (netif_running(adapter->netdev)) {
338 e1000e_down(adapter);
339 e1000e_up(adapter);
340 } else {
341 e1000e_reset(adapter);
342 }
343 } else {
344 if (pause->rx_pause && pause->tx_pause)
345 hw->fc.requested_mode = e1000_fc_full;
346 else if (pause->rx_pause && !pause->tx_pause)
347 hw->fc.requested_mode = e1000_fc_rx_pause;
348 else if (!pause->rx_pause && pause->tx_pause)
349 hw->fc.requested_mode = e1000_fc_tx_pause;
350 else if (!pause->rx_pause && !pause->tx_pause)
351 hw->fc.requested_mode = e1000_fc_none;
352
353 hw->fc.current_mode = hw->fc.requested_mode;
354
355 if (hw->phy.media_type == e1000_media_type_fiber) {
356 retval = hw->mac.ops.setup_link(hw);
357 /* implicit goto out */
358 } else {
359 retval = e1000e_force_mac_fc(hw);
360 if (retval)
361 goto out;
362 e1000e_set_fc_watermarks(hw);
363 }
364 }
365
366out:
367 clear_bit(__E1000_RESETTING, &adapter->state);
368 return retval;
369}
370
371static u32 e1000_get_msglevel(struct net_device *netdev)
372{
373 struct e1000_adapter *adapter = netdev_priv(netdev);
374 return adapter->msg_enable;
375}
376
377static void e1000_set_msglevel(struct net_device *netdev, u32 data)
378{
379 struct e1000_adapter *adapter = netdev_priv(netdev);
380 adapter->msg_enable = data;
381}
382
383static int e1000_get_regs_len(struct net_device *netdev)
384{
385#define E1000_REGS_LEN 32 /* overestimate */
386 return E1000_REGS_LEN * sizeof(u32);
387}
388
389static void e1000_get_regs(struct net_device *netdev,
390 struct ethtool_regs *regs, void *p)
391{
392 struct e1000_adapter *adapter = netdev_priv(netdev);
393 struct e1000_hw *hw = &adapter->hw;
394 u32 *regs_buff = p;
395 u16 phy_data;
396
397 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
398
399 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
400 adapter->pdev->device;
401
402 regs_buff[0] = er32(CTRL);
403 regs_buff[1] = er32(STATUS);
404
405 regs_buff[2] = er32(RCTL);
406 regs_buff[3] = er32(RDLEN(0));
407 regs_buff[4] = er32(RDH(0));
408 regs_buff[5] = er32(RDT(0));
409 regs_buff[6] = er32(RDTR);
410
411 regs_buff[7] = er32(TCTL);
412 regs_buff[8] = er32(TDLEN(0));
413 regs_buff[9] = er32(TDH(0));
414 regs_buff[10] = er32(TDT(0));
415 regs_buff[11] = er32(TIDV);
416
417 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
418
419 /* ethtool doesn't use anything past this point, so all this
420 * code is likely legacy junk for apps that may or may not
421 * exist */
422 if (hw->phy.type == e1000_phy_m88) {
423 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
424 regs_buff[13] = (u32)phy_data; /* cable length */
425 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
426 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
427 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
428 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
429 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
430 regs_buff[18] = regs_buff[13]; /* cable polarity */
431 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
432 regs_buff[20] = regs_buff[17]; /* polarity correction */
433 /* phy receive errors */
434 regs_buff[22] = adapter->phy_stats.receive_errors;
435 regs_buff[23] = regs_buff[13]; /* mdix mode */
436 }
437 regs_buff[21] = 0; /* was idle_errors */
438 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
439 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
440 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
441}
442
443static int e1000_get_eeprom_len(struct net_device *netdev)
444{
445 struct e1000_adapter *adapter = netdev_priv(netdev);
446 return adapter->hw.nvm.word_size * 2;
447}
448
449static int e1000_get_eeprom(struct net_device *netdev,
450 struct ethtool_eeprom *eeprom, u8 *bytes)
451{
452 struct e1000_adapter *adapter = netdev_priv(netdev);
453 struct e1000_hw *hw = &adapter->hw;
454 u16 *eeprom_buff;
455 int first_word;
456 int last_word;
457 int ret_val = 0;
458 u16 i;
459
460 if (eeprom->len == 0)
461 return -EINVAL;
462
463 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
464
465 first_word = eeprom->offset >> 1;
466 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
467
468 eeprom_buff = kmalloc(sizeof(u16) *
469 (last_word - first_word + 1), GFP_KERNEL);
470 if (!eeprom_buff)
471 return -ENOMEM;
472
473 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
474 ret_val = e1000_read_nvm(hw, first_word,
475 last_word - first_word + 1,
476 eeprom_buff);
477 } else {
478 for (i = 0; i < last_word - first_word + 1; i++) {
479 ret_val = e1000_read_nvm(hw, first_word + i, 1,
480 &eeprom_buff[i]);
481 if (ret_val)
482 break;
483 }
484 }
485
486 if (ret_val) {
487 /* a read error occurred, throw away the result */
488 memset(eeprom_buff, 0xff, sizeof(u16) *
489 (last_word - first_word + 1));
490 } else {
491 /* Device's eeprom is always little-endian, word addressable */
492 for (i = 0; i < last_word - first_word + 1; i++)
493 le16_to_cpus(&eeprom_buff[i]);
494 }
495
496 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
497 kfree(eeprom_buff);
498
499 return ret_val;
500}
501
502static int e1000_set_eeprom(struct net_device *netdev,
503 struct ethtool_eeprom *eeprom, u8 *bytes)
504{
505 struct e1000_adapter *adapter = netdev_priv(netdev);
506 struct e1000_hw *hw = &adapter->hw;
507 u16 *eeprom_buff;
508 void *ptr;
509 int max_len;
510 int first_word;
511 int last_word;
512 int ret_val = 0;
513 u16 i;
514
515 if (eeprom->len == 0)
516 return -EOPNOTSUPP;
517
518 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
519 return -EFAULT;
520
521 if (adapter->flags & FLAG_READ_ONLY_NVM)
522 return -EINVAL;
523
524 max_len = hw->nvm.word_size * 2;
525
526 first_word = eeprom->offset >> 1;
527 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
528 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
529 if (!eeprom_buff)
530 return -ENOMEM;
531
532 ptr = (void *)eeprom_buff;
533
534 if (eeprom->offset & 1) {
535 /* need read/modify/write of first changed EEPROM word */
536 /* only the second byte of the word is being modified */
537 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
538 ptr++;
539 }
540 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
541 /* need read/modify/write of last changed EEPROM word */
542 /* only the first byte of the word is being modified */
543 ret_val = e1000_read_nvm(hw, last_word, 1,
544 &eeprom_buff[last_word - first_word]);
545
546 if (ret_val)
547 goto out;
548
549 /* Device's eeprom is always little-endian, word addressable */
550 for (i = 0; i < last_word - first_word + 1; i++)
551 le16_to_cpus(&eeprom_buff[i]);
552
553 memcpy(ptr, bytes, eeprom->len);
554
555 for (i = 0; i < last_word - first_word + 1; i++)
556 cpu_to_le16s(&eeprom_buff[i]);
557
558 ret_val = e1000_write_nvm(hw, first_word,
559 last_word - first_word + 1, eeprom_buff);
560
561 if (ret_val)
562 goto out;
563
564 /*
565 * Update the checksum over the first part of the EEPROM if needed
566 * and flush shadow RAM for applicable controllers
567 */
568 if ((first_word <= NVM_CHECKSUM_REG) ||
569 (hw->mac.type == e1000_82583) ||
570 (hw->mac.type == e1000_82574) ||
571 (hw->mac.type == e1000_82573))
572 ret_val = e1000e_update_nvm_checksum(hw);
573
574out:
575 kfree(eeprom_buff);
576 return ret_val;
577}
578
579static void e1000_get_drvinfo(struct net_device *netdev,
580 struct ethtool_drvinfo *drvinfo)
581{
582 struct e1000_adapter *adapter = netdev_priv(netdev);
583
584 strlcpy(drvinfo->driver, e1000e_driver_name,
585 sizeof(drvinfo->driver));
586 strlcpy(drvinfo->version, e1000e_driver_version,
587 sizeof(drvinfo->version));
588
589 /*
590 * EEPROM image version # is reported as firmware version # for
591 * PCI-E controllers
592 */
593 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
594 "%d.%d-%d",
595 (adapter->eeprom_vers & 0xF000) >> 12,
596 (adapter->eeprom_vers & 0x0FF0) >> 4,
597 (adapter->eeprom_vers & 0x000F));
598
599 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
600 sizeof(drvinfo->bus_info));
601 drvinfo->regdump_len = e1000_get_regs_len(netdev);
602 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
603}
604
605static void e1000_get_ringparam(struct net_device *netdev,
606 struct ethtool_ringparam *ring)
607{
608 struct e1000_adapter *adapter = netdev_priv(netdev);
609
610 ring->rx_max_pending = E1000_MAX_RXD;
611 ring->tx_max_pending = E1000_MAX_TXD;
612 ring->rx_pending = adapter->rx_ring_count;
613 ring->tx_pending = adapter->tx_ring_count;
614}
615
616static int e1000_set_ringparam(struct net_device *netdev,
617 struct ethtool_ringparam *ring)
618{
619 struct e1000_adapter *adapter = netdev_priv(netdev);
620 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
621 int err = 0, size = sizeof(struct e1000_ring);
622 bool set_tx = false, set_rx = false;
623 u16 new_rx_count, new_tx_count;
624
625 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
626 return -EINVAL;
627
628 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
629 E1000_MAX_RXD);
630 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
631
632 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
633 E1000_MAX_TXD);
634 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
635
636 if ((new_tx_count == adapter->tx_ring_count) &&
637 (new_rx_count == adapter->rx_ring_count))
638 /* nothing to do */
639 return 0;
640
641 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
642 usleep_range(1000, 2000);
643
644 if (!netif_running(adapter->netdev)) {
645 /* Set counts now and allocate resources during open() */
646 adapter->tx_ring->count = new_tx_count;
647 adapter->rx_ring->count = new_rx_count;
648 adapter->tx_ring_count = new_tx_count;
649 adapter->rx_ring_count = new_rx_count;
650 goto clear_reset;
651 }
652
653 set_tx = (new_tx_count != adapter->tx_ring_count);
654 set_rx = (new_rx_count != adapter->rx_ring_count);
655
656 /* Allocate temporary storage for ring updates */
657 if (set_tx) {
658 temp_tx = vmalloc(size);
659 if (!temp_tx) {
660 err = -ENOMEM;
661 goto free_temp;
662 }
663 }
664 if (set_rx) {
665 temp_rx = vmalloc(size);
666 if (!temp_rx) {
667 err = -ENOMEM;
668 goto free_temp;
669 }
670 }
671
672 e1000e_down(adapter);
673
674 /*
675 * We can't just free everything and then setup again, because the
676 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
677 * structs. First, attempt to allocate new resources...
678 */
679 if (set_tx) {
680 memcpy(temp_tx, adapter->tx_ring, size);
681 temp_tx->count = new_tx_count;
682 err = e1000e_setup_tx_resources(temp_tx);
683 if (err)
684 goto err_setup;
685 }
686 if (set_rx) {
687 memcpy(temp_rx, adapter->rx_ring, size);
688 temp_rx->count = new_rx_count;
689 err = e1000e_setup_rx_resources(temp_rx);
690 if (err)
691 goto err_setup_rx;
692 }
693
694 /* ...then free the old resources and copy back any new ring data */
695 if (set_tx) {
696 e1000e_free_tx_resources(adapter->tx_ring);
697 memcpy(adapter->tx_ring, temp_tx, size);
698 adapter->tx_ring_count = new_tx_count;
699 }
700 if (set_rx) {
701 e1000e_free_rx_resources(adapter->rx_ring);
702 memcpy(adapter->rx_ring, temp_rx, size);
703 adapter->rx_ring_count = new_rx_count;
704 }
705
706err_setup_rx:
707 if (err && set_tx)
708 e1000e_free_tx_resources(temp_tx);
709err_setup:
710 e1000e_up(adapter);
711free_temp:
712 vfree(temp_tx);
713 vfree(temp_rx);
714clear_reset:
715 clear_bit(__E1000_RESETTING, &adapter->state);
716 return err;
717}
718
719static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
720 int reg, int offset, u32 mask, u32 write)
721{
722 u32 pat, val;
723 static const u32 test[] = {
724 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
725 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
726 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
727 (test[pat] & write));
728 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
729 if (val != (test[pat] & write & mask)) {
730 e_err("pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
731 reg + offset, val, (test[pat] & write & mask));
732 *data = reg;
733 return 1;
734 }
735 }
736 return 0;
737}
738
739static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
740 int reg, u32 mask, u32 write)
741{
742 u32 val;
743 __ew32(&adapter->hw, reg, write & mask);
744 val = __er32(&adapter->hw, reg);
745 if ((write & mask) != (val & mask)) {
746 e_err("set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
747 reg, (val & mask), (write & mask));
748 *data = reg;
749 return 1;
750 }
751 return 0;
752}
753#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
754 do { \
755 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
756 return 1; \
757 } while (0)
758#define REG_PATTERN_TEST(reg, mask, write) \
759 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
760
761#define REG_SET_AND_CHECK(reg, mask, write) \
762 do { \
763 if (reg_set_and_check(adapter, data, reg, mask, write)) \
764 return 1; \
765 } while (0)
766
767static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
768{
769 struct e1000_hw *hw = &adapter->hw;
770 struct e1000_mac_info *mac = &adapter->hw.mac;
771 u32 value;
772 u32 before;
773 u32 after;
774 u32 i;
775 u32 toggle;
776 u32 mask;
777 u32 wlock_mac = 0;
778
779 /*
780 * The status register is Read Only, so a write should fail.
781 * Some bits that get toggled are ignored.
782 */
783 switch (mac->type) {
784 /* there are several bits on newer hardware that are r/w */
785 case e1000_82571:
786 case e1000_82572:
787 case e1000_80003es2lan:
788 toggle = 0x7FFFF3FF;
789 break;
790 default:
791 toggle = 0x7FFFF033;
792 break;
793 }
794
795 before = er32(STATUS);
796 value = (er32(STATUS) & toggle);
797 ew32(STATUS, toggle);
798 after = er32(STATUS) & toggle;
799 if (value != after) {
800 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
801 after, value);
802 *data = 1;
803 return 1;
804 }
805 /* restore previous status */
806 ew32(STATUS, before);
807
808 if (!(adapter->flags & FLAG_IS_ICH)) {
809 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
810 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
811 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
812 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
813 }
814
815 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
816 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
817 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
818 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
819 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
820 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
821 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
822 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
823 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
824 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
825
826 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
827
828 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
829 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
830 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
831
832 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
833 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
834 if (!(adapter->flags & FLAG_IS_ICH))
835 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
836 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
837 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
838 mask = 0x8003FFFF;
839 switch (mac->type) {
840 case e1000_ich10lan:
841 case e1000_pchlan:
842 case e1000_pch2lan:
843 case e1000_pch_lpt:
844 mask |= (1 << 18);
845 break;
846 default:
847 break;
848 }
849
850 if (mac->type == e1000_pch_lpt)
851 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
852 E1000_FWSM_WLOCK_MAC_SHIFT;
853
854 for (i = 0; i < mac->rar_entry_count; i++) {
855 /* Cannot test write-protected SHRAL[n] registers */
856 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
857 continue;
858
859 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
860 mask, 0xFFFFFFFF);
861 }
862
863 for (i = 0; i < mac->mta_reg_count; i++)
864 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
865
866 *data = 0;
867
868 return 0;
869}
870
871static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
872{
873 u16 temp;
874 u16 checksum = 0;
875 u16 i;
876
877 *data = 0;
878 /* Read and add up the contents of the EEPROM */
879 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
880 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
881 *data = 1;
882 return *data;
883 }
884 checksum += temp;
885 }
886
887 /* If Checksum is not Correct return error else test passed */
888 if ((checksum != (u16) NVM_SUM) && !(*data))
889 *data = 2;
890
891 return *data;
892}
893
894static irqreturn_t e1000_test_intr(int irq, void *data)
895{
896 struct net_device *netdev = (struct net_device *) data;
897 struct e1000_adapter *adapter = netdev_priv(netdev);
898 struct e1000_hw *hw = &adapter->hw;
899
900 adapter->test_icr |= er32(ICR);
901
902 return IRQ_HANDLED;
903}
904
905static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
906{
907 struct net_device *netdev = adapter->netdev;
908 struct e1000_hw *hw = &adapter->hw;
909 u32 mask;
910 u32 shared_int = 1;
911 u32 irq = adapter->pdev->irq;
912 int i;
913 int ret_val = 0;
914 int int_mode = E1000E_INT_MODE_LEGACY;
915
916 *data = 0;
917
918 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
919 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
920 int_mode = adapter->int_mode;
921 e1000e_reset_interrupt_capability(adapter);
922 adapter->int_mode = E1000E_INT_MODE_LEGACY;
923 e1000e_set_interrupt_capability(adapter);
924 }
925 /* Hook up test interrupt handler just for this test */
926 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
927 netdev)) {
928 shared_int = 0;
929 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
930 netdev->name, netdev)) {
931 *data = 1;
932 ret_val = -1;
933 goto out;
934 }
935 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
936
937 /* Disable all the interrupts */
938 ew32(IMC, 0xFFFFFFFF);
939 e1e_flush();
940 usleep_range(10000, 20000);
941
942 /* Test each interrupt */
943 for (i = 0; i < 10; i++) {
944 /* Interrupt to test */
945 mask = 1 << i;
946
947 if (adapter->flags & FLAG_IS_ICH) {
948 switch (mask) {
949 case E1000_ICR_RXSEQ:
950 continue;
951 case 0x00000100:
952 if (adapter->hw.mac.type == e1000_ich8lan ||
953 adapter->hw.mac.type == e1000_ich9lan)
954 continue;
955 break;
956 default:
957 break;
958 }
959 }
960
961 if (!shared_int) {
962 /*
963 * Disable the interrupt to be reported in
964 * the cause register and then force the same
965 * interrupt and see if one gets posted. If
966 * an interrupt was posted to the bus, the
967 * test failed.
968 */
969 adapter->test_icr = 0;
970 ew32(IMC, mask);
971 ew32(ICS, mask);
972 e1e_flush();
973 usleep_range(10000, 20000);
974
975 if (adapter->test_icr & mask) {
976 *data = 3;
977 break;
978 }
979 }
980
981 /*
982 * Enable the interrupt to be reported in
983 * the cause register and then force the same
984 * interrupt and see if one gets posted. If
985 * an interrupt was not posted to the bus, the
986 * test failed.
987 */
988 adapter->test_icr = 0;
989 ew32(IMS, mask);
990 ew32(ICS, mask);
991 e1e_flush();
992 usleep_range(10000, 20000);
993
994 if (!(adapter->test_icr & mask)) {
995 *data = 4;
996 break;
997 }
998
999 if (!shared_int) {
1000 /*
1001 * Disable the other interrupts to be reported in
1002 * the cause register and then force the other
1003 * interrupts and see if any get posted. If
1004 * an interrupt was posted to the bus, the
1005 * test failed.
1006 */
1007 adapter->test_icr = 0;
1008 ew32(IMC, ~mask & 0x00007FFF);
1009 ew32(ICS, ~mask & 0x00007FFF);
1010 e1e_flush();
1011 usleep_range(10000, 20000);
1012
1013 if (adapter->test_icr) {
1014 *data = 5;
1015 break;
1016 }
1017 }
1018 }
1019
1020 /* Disable all the interrupts */
1021 ew32(IMC, 0xFFFFFFFF);
1022 e1e_flush();
1023 usleep_range(10000, 20000);
1024
1025 /* Unhook test interrupt handler */
1026 free_irq(irq, netdev);
1027
1028out:
1029 if (int_mode == E1000E_INT_MODE_MSIX) {
1030 e1000e_reset_interrupt_capability(adapter);
1031 adapter->int_mode = int_mode;
1032 e1000e_set_interrupt_capability(adapter);
1033 }
1034
1035 return ret_val;
1036}
1037
1038static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1039{
1040 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1041 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1042 struct pci_dev *pdev = adapter->pdev;
1043 int i;
1044
1045 if (tx_ring->desc && tx_ring->buffer_info) {
1046 for (i = 0; i < tx_ring->count; i++) {
1047 if (tx_ring->buffer_info[i].dma)
1048 dma_unmap_single(&pdev->dev,
1049 tx_ring->buffer_info[i].dma,
1050 tx_ring->buffer_info[i].length,
1051 DMA_TO_DEVICE);
1052 if (tx_ring->buffer_info[i].skb)
1053 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1054 }
1055 }
1056
1057 if (rx_ring->desc && rx_ring->buffer_info) {
1058 for (i = 0; i < rx_ring->count; i++) {
1059 if (rx_ring->buffer_info[i].dma)
1060 dma_unmap_single(&pdev->dev,
1061 rx_ring->buffer_info[i].dma,
1062 2048, DMA_FROM_DEVICE);
1063 if (rx_ring->buffer_info[i].skb)
1064 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1065 }
1066 }
1067
1068 if (tx_ring->desc) {
1069 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1070 tx_ring->dma);
1071 tx_ring->desc = NULL;
1072 }
1073 if (rx_ring->desc) {
1074 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1075 rx_ring->dma);
1076 rx_ring->desc = NULL;
1077 }
1078
1079 kfree(tx_ring->buffer_info);
1080 tx_ring->buffer_info = NULL;
1081 kfree(rx_ring->buffer_info);
1082 rx_ring->buffer_info = NULL;
1083}
1084
1085static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1086{
1087 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1088 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1089 struct pci_dev *pdev = adapter->pdev;
1090 struct e1000_hw *hw = &adapter->hw;
1091 u32 rctl;
1092 int i;
1093 int ret_val;
1094
1095 /* Setup Tx descriptor ring and Tx buffers */
1096
1097 if (!tx_ring->count)
1098 tx_ring->count = E1000_DEFAULT_TXD;
1099
1100 tx_ring->buffer_info = kcalloc(tx_ring->count,
1101 sizeof(struct e1000_buffer),
1102 GFP_KERNEL);
1103 if (!tx_ring->buffer_info) {
1104 ret_val = 1;
1105 goto err_nomem;
1106 }
1107
1108 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1109 tx_ring->size = ALIGN(tx_ring->size, 4096);
1110 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1111 &tx_ring->dma, GFP_KERNEL);
1112 if (!tx_ring->desc) {
1113 ret_val = 2;
1114 goto err_nomem;
1115 }
1116 tx_ring->next_to_use = 0;
1117 tx_ring->next_to_clean = 0;
1118
1119 ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1120 ew32(TDBAH(0), ((u64) tx_ring->dma >> 32));
1121 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1122 ew32(TDH(0), 0);
1123 ew32(TDT(0), 0);
1124 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1125 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1126 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1127
1128 for (i = 0; i < tx_ring->count; i++) {
1129 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1130 struct sk_buff *skb;
1131 unsigned int skb_size = 1024;
1132
1133 skb = alloc_skb(skb_size, GFP_KERNEL);
1134 if (!skb) {
1135 ret_val = 3;
1136 goto err_nomem;
1137 }
1138 skb_put(skb, skb_size);
1139 tx_ring->buffer_info[i].skb = skb;
1140 tx_ring->buffer_info[i].length = skb->len;
1141 tx_ring->buffer_info[i].dma =
1142 dma_map_single(&pdev->dev, skb->data, skb->len,
1143 DMA_TO_DEVICE);
1144 if (dma_mapping_error(&pdev->dev,
1145 tx_ring->buffer_info[i].dma)) {
1146 ret_val = 4;
1147 goto err_nomem;
1148 }
1149 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1150 tx_desc->lower.data = cpu_to_le32(skb->len);
1151 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1152 E1000_TXD_CMD_IFCS |
1153 E1000_TXD_CMD_RS);
1154 tx_desc->upper.data = 0;
1155 }
1156
1157 /* Setup Rx descriptor ring and Rx buffers */
1158
1159 if (!rx_ring->count)
1160 rx_ring->count = E1000_DEFAULT_RXD;
1161
1162 rx_ring->buffer_info = kcalloc(rx_ring->count,
1163 sizeof(struct e1000_buffer),
1164 GFP_KERNEL);
1165 if (!rx_ring->buffer_info) {
1166 ret_val = 5;
1167 goto err_nomem;
1168 }
1169
1170 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1171 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1172 &rx_ring->dma, GFP_KERNEL);
1173 if (!rx_ring->desc) {
1174 ret_val = 6;
1175 goto err_nomem;
1176 }
1177 rx_ring->next_to_use = 0;
1178 rx_ring->next_to_clean = 0;
1179
1180 rctl = er32(RCTL);
1181 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1182 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1183 ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF));
1184 ew32(RDBAH(0), ((u64) rx_ring->dma >> 32));
1185 ew32(RDLEN(0), rx_ring->size);
1186 ew32(RDH(0), 0);
1187 ew32(RDT(0), 0);
1188 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1189 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1190 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1191 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1192 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1193 ew32(RCTL, rctl);
1194
1195 for (i = 0; i < rx_ring->count; i++) {
1196 union e1000_rx_desc_extended *rx_desc;
1197 struct sk_buff *skb;
1198
1199 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1200 if (!skb) {
1201 ret_val = 7;
1202 goto err_nomem;
1203 }
1204 skb_reserve(skb, NET_IP_ALIGN);
1205 rx_ring->buffer_info[i].skb = skb;
1206 rx_ring->buffer_info[i].dma =
1207 dma_map_single(&pdev->dev, skb->data, 2048,
1208 DMA_FROM_DEVICE);
1209 if (dma_mapping_error(&pdev->dev,
1210 rx_ring->buffer_info[i].dma)) {
1211 ret_val = 8;
1212 goto err_nomem;
1213 }
1214 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1215 rx_desc->read.buffer_addr =
1216 cpu_to_le64(rx_ring->buffer_info[i].dma);
1217 memset(skb->data, 0x00, skb->len);
1218 }
1219
1220 return 0;
1221
1222err_nomem:
1223 e1000_free_desc_rings(adapter);
1224 return ret_val;
1225}
1226
1227static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1228{
1229 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1230 e1e_wphy(&adapter->hw, 29, 0x001F);
1231 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1232 e1e_wphy(&adapter->hw, 29, 0x001A);
1233 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1234}
1235
1236static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1237{
1238 struct e1000_hw *hw = &adapter->hw;
1239 u32 ctrl_reg = 0;
1240 u16 phy_reg = 0;
1241 s32 ret_val = 0;
1242
1243 hw->mac.autoneg = 0;
1244
1245 if (hw->phy.type == e1000_phy_ife) {
1246 /* force 100, set loopback */
1247 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1248
1249 /* Now set up the MAC to the same speed/duplex as the PHY. */
1250 ctrl_reg = er32(CTRL);
1251 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1252 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1253 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1254 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1255 E1000_CTRL_FD); /* Force Duplex to FULL */
1256
1257 ew32(CTRL, ctrl_reg);
1258 e1e_flush();
1259 udelay(500);
1260
1261 return 0;
1262 }
1263
1264 /* Specific PHY configuration for loopback */
1265 switch (hw->phy.type) {
1266 case e1000_phy_m88:
1267 /* Auto-MDI/MDIX Off */
1268 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1269 /* reset to update Auto-MDI/MDIX */
1270 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1271 /* autoneg off */
1272 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1273 break;
1274 case e1000_phy_gg82563:
1275 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1276 break;
1277 case e1000_phy_bm:
1278 /* Set Default MAC Interface speed to 1GB */
1279 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1280 phy_reg &= ~0x0007;
1281 phy_reg |= 0x006;
1282 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1283 /* Assert SW reset for above settings to take effect */
1284 e1000e_commit_phy(hw);
1285 mdelay(1);
1286 /* Force Full Duplex */
1287 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1288 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1289 /* Set Link Up (in force link) */
1290 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1291 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1292 /* Force Link */
1293 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1294 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1295 /* Set Early Link Enable */
1296 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1297 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1298 break;
1299 case e1000_phy_82577:
1300 case e1000_phy_82578:
1301 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1302 ret_val = hw->phy.ops.acquire(hw);
1303 if (ret_val) {
1304 e_err("Cannot setup 1Gbps loopback.\n");
1305 return ret_val;
1306 }
1307 e1000_configure_k1_ich8lan(hw, false);
1308 hw->phy.ops.release(hw);
1309 break;
1310 case e1000_phy_82579:
1311 /* Disable PHY energy detect power down */
1312 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1313 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1314 /* Disable full chip energy detect */
1315 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1316 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1317 /* Enable loopback on the PHY */
1318#define I82577_PHY_LBK_CTRL 19
1319 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1320 break;
1321 default:
1322 break;
1323 }
1324
1325 /* force 1000, set loopback */
1326 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1327 mdelay(250);
1328
1329 /* Now set up the MAC to the same speed/duplex as the PHY. */
1330 ctrl_reg = er32(CTRL);
1331 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1332 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1333 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1334 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1335 E1000_CTRL_FD); /* Force Duplex to FULL */
1336
1337 if (adapter->flags & FLAG_IS_ICH)
1338 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1339
1340 if (hw->phy.media_type == e1000_media_type_copper &&
1341 hw->phy.type == e1000_phy_m88) {
1342 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1343 } else {
1344 /*
1345 * Set the ILOS bit on the fiber Nic if half duplex link is
1346 * detected.
1347 */
1348 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1349 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1350 }
1351
1352 ew32(CTRL, ctrl_reg);
1353
1354 /*
1355 * Disable the receiver on the PHY so when a cable is plugged in, the
1356 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1357 */
1358 if (hw->phy.type == e1000_phy_m88)
1359 e1000_phy_disable_receiver(adapter);
1360
1361 udelay(500);
1362
1363 return 0;
1364}
1365
1366static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1367{
1368 struct e1000_hw *hw = &adapter->hw;
1369 u32 ctrl = er32(CTRL);
1370 int link = 0;
1371
1372 /* special requirements for 82571/82572 fiber adapters */
1373
1374 /*
1375 * jump through hoops to make sure link is up because serdes
1376 * link is hardwired up
1377 */
1378 ctrl |= E1000_CTRL_SLU;
1379 ew32(CTRL, ctrl);
1380
1381 /* disable autoneg */
1382 ctrl = er32(TXCW);
1383 ctrl &= ~(1 << 31);
1384 ew32(TXCW, ctrl);
1385
1386 link = (er32(STATUS) & E1000_STATUS_LU);
1387
1388 if (!link) {
1389 /* set invert loss of signal */
1390 ctrl = er32(CTRL);
1391 ctrl |= E1000_CTRL_ILOS;
1392 ew32(CTRL, ctrl);
1393 }
1394
1395 /*
1396 * special write to serdes control register to enable SerDes analog
1397 * loopback
1398 */
1399#define E1000_SERDES_LB_ON 0x410
1400 ew32(SCTL, E1000_SERDES_LB_ON);
1401 e1e_flush();
1402 usleep_range(10000, 20000);
1403
1404 return 0;
1405}
1406
1407/* only call this for fiber/serdes connections to es2lan */
1408static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1409{
1410 struct e1000_hw *hw = &adapter->hw;
1411 u32 ctrlext = er32(CTRL_EXT);
1412 u32 ctrl = er32(CTRL);
1413
1414 /*
1415 * save CTRL_EXT to restore later, reuse an empty variable (unused
1416 * on mac_type 80003es2lan)
1417 */
1418 adapter->tx_fifo_head = ctrlext;
1419
1420 /* clear the serdes mode bits, putting the device into mac loopback */
1421 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1422 ew32(CTRL_EXT, ctrlext);
1423
1424 /* force speed to 1000/FD, link up */
1425 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1426 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1427 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1428 ew32(CTRL, ctrl);
1429
1430 /* set mac loopback */
1431 ctrl = er32(RCTL);
1432 ctrl |= E1000_RCTL_LBM_MAC;
1433 ew32(RCTL, ctrl);
1434
1435 /* set testing mode parameters (no need to reset later) */
1436#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1437#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1438 ew32(KMRNCTRLSTA,
1439 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1440
1441 return 0;
1442}
1443
1444static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1445{
1446 struct e1000_hw *hw = &adapter->hw;
1447 u32 rctl;
1448
1449 if (hw->phy.media_type == e1000_media_type_fiber ||
1450 hw->phy.media_type == e1000_media_type_internal_serdes) {
1451 switch (hw->mac.type) {
1452 case e1000_80003es2lan:
1453 return e1000_set_es2lan_mac_loopback(adapter);
1454 break;
1455 case e1000_82571:
1456 case e1000_82572:
1457 return e1000_set_82571_fiber_loopback(adapter);
1458 break;
1459 default:
1460 rctl = er32(RCTL);
1461 rctl |= E1000_RCTL_LBM_TCVR;
1462 ew32(RCTL, rctl);
1463 return 0;
1464 }
1465 } else if (hw->phy.media_type == e1000_media_type_copper) {
1466 return e1000_integrated_phy_loopback(adapter);
1467 }
1468
1469 return 7;
1470}
1471
1472static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1473{
1474 struct e1000_hw *hw = &adapter->hw;
1475 u32 rctl;
1476 u16 phy_reg;
1477
1478 rctl = er32(RCTL);
1479 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1480 ew32(RCTL, rctl);
1481
1482 switch (hw->mac.type) {
1483 case e1000_80003es2lan:
1484 if (hw->phy.media_type == e1000_media_type_fiber ||
1485 hw->phy.media_type == e1000_media_type_internal_serdes) {
1486 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1487 ew32(CTRL_EXT, adapter->tx_fifo_head);
1488 adapter->tx_fifo_head = 0;
1489 }
1490 /* fall through */
1491 case e1000_82571:
1492 case e1000_82572:
1493 if (hw->phy.media_type == e1000_media_type_fiber ||
1494 hw->phy.media_type == e1000_media_type_internal_serdes) {
1495#define E1000_SERDES_LB_OFF 0x400
1496 ew32(SCTL, E1000_SERDES_LB_OFF);
1497 e1e_flush();
1498 usleep_range(10000, 20000);
1499 break;
1500 }
1501 /* Fall Through */
1502 default:
1503 hw->mac.autoneg = 1;
1504 if (hw->phy.type == e1000_phy_gg82563)
1505 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1506 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1507 if (phy_reg & MII_CR_LOOPBACK) {
1508 phy_reg &= ~MII_CR_LOOPBACK;
1509 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1510 e1000e_commit_phy(hw);
1511 }
1512 break;
1513 }
1514}
1515
1516static void e1000_create_lbtest_frame(struct sk_buff *skb,
1517 unsigned int frame_size)
1518{
1519 memset(skb->data, 0xFF, frame_size);
1520 frame_size &= ~1;
1521 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1522 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1523 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1524}
1525
1526static int e1000_check_lbtest_frame(struct sk_buff *skb,
1527 unsigned int frame_size)
1528{
1529 frame_size &= ~1;
1530 if (*(skb->data + 3) == 0xFF)
1531 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1532 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1533 return 0;
1534 return 13;
1535}
1536
1537static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1538{
1539 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1540 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1541 struct pci_dev *pdev = adapter->pdev;
1542 struct e1000_hw *hw = &adapter->hw;
1543 int i, j, k, l;
1544 int lc;
1545 int good_cnt;
1546 int ret_val = 0;
1547 unsigned long time;
1548
1549 ew32(RDT(0), rx_ring->count - 1);
1550
1551 /*
1552 * Calculate the loop count based on the largest descriptor ring
1553 * The idea is to wrap the largest ring a number of times using 64
1554 * send/receive pairs during each loop
1555 */
1556
1557 if (rx_ring->count <= tx_ring->count)
1558 lc = ((tx_ring->count / 64) * 2) + 1;
1559 else
1560 lc = ((rx_ring->count / 64) * 2) + 1;
1561
1562 k = 0;
1563 l = 0;
1564 for (j = 0; j <= lc; j++) { /* loop count loop */
1565 for (i = 0; i < 64; i++) { /* send the packets */
1566 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1567 1024);
1568 dma_sync_single_for_device(&pdev->dev,
1569 tx_ring->buffer_info[k].dma,
1570 tx_ring->buffer_info[k].length,
1571 DMA_TO_DEVICE);
1572 k++;
1573 if (k == tx_ring->count)
1574 k = 0;
1575 }
1576 ew32(TDT(0), k);
1577 e1e_flush();
1578 msleep(200);
1579 time = jiffies; /* set the start time for the receive */
1580 good_cnt = 0;
1581 do { /* receive the sent packets */
1582 dma_sync_single_for_cpu(&pdev->dev,
1583 rx_ring->buffer_info[l].dma, 2048,
1584 DMA_FROM_DEVICE);
1585
1586 ret_val = e1000_check_lbtest_frame(
1587 rx_ring->buffer_info[l].skb, 1024);
1588 if (!ret_val)
1589 good_cnt++;
1590 l++;
1591 if (l == rx_ring->count)
1592 l = 0;
1593 /*
1594 * time + 20 msecs (200 msecs on 2.4) is more than
1595 * enough time to complete the receives, if it's
1596 * exceeded, break and error off
1597 */
1598 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1599 if (good_cnt != 64) {
1600 ret_val = 13; /* ret_val is the same as mis-compare */
1601 break;
1602 }
1603 if (jiffies >= (time + 20)) {
1604 ret_val = 14; /* error code for time out error */
1605 break;
1606 }
1607 } /* end loop count loop */
1608 return ret_val;
1609}
1610
1611static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1612{
1613 struct e1000_hw *hw = &adapter->hw;
1614
1615 /*
1616 * PHY loopback cannot be performed if SoL/IDER
1617 * sessions are active
1618 */
1619 if (hw->phy.ops.check_reset_block &&
1620 hw->phy.ops.check_reset_block(hw)) {
1621 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1622 *data = 0;
1623 goto out;
1624 }
1625
1626 *data = e1000_setup_desc_rings(adapter);
1627 if (*data)
1628 goto out;
1629
1630 *data = e1000_setup_loopback_test(adapter);
1631 if (*data)
1632 goto err_loopback;
1633
1634 *data = e1000_run_loopback_test(adapter);
1635 e1000_loopback_cleanup(adapter);
1636
1637err_loopback:
1638 e1000_free_desc_rings(adapter);
1639out:
1640 return *data;
1641}
1642
1643static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1644{
1645 struct e1000_hw *hw = &adapter->hw;
1646
1647 *data = 0;
1648 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1649 int i = 0;
1650 hw->mac.serdes_has_link = false;
1651
1652 /*
1653 * On some blade server designs, link establishment
1654 * could take as long as 2-3 minutes
1655 */
1656 do {
1657 hw->mac.ops.check_for_link(hw);
1658 if (hw->mac.serdes_has_link)
1659 return *data;
1660 msleep(20);
1661 } while (i++ < 3750);
1662
1663 *data = 1;
1664 } else {
1665 hw->mac.ops.check_for_link(hw);
1666 if (hw->mac.autoneg)
1667 /*
1668 * On some Phy/switch combinations, link establishment
1669 * can take a few seconds more than expected.
1670 */
1671 msleep(5000);
1672
1673 if (!(er32(STATUS) & E1000_STATUS_LU))
1674 *data = 1;
1675 }
1676 return *data;
1677}
1678
1679static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1680{
1681 switch (sset) {
1682 case ETH_SS_TEST:
1683 return E1000_TEST_LEN;
1684 case ETH_SS_STATS:
1685 return E1000_STATS_LEN;
1686 default:
1687 return -EOPNOTSUPP;
1688 }
1689}
1690
1691static void e1000_diag_test(struct net_device *netdev,
1692 struct ethtool_test *eth_test, u64 *data)
1693{
1694 struct e1000_adapter *adapter = netdev_priv(netdev);
1695 u16 autoneg_advertised;
1696 u8 forced_speed_duplex;
1697 u8 autoneg;
1698 bool if_running = netif_running(netdev);
1699
1700 set_bit(__E1000_TESTING, &adapter->state);
1701
1702 if (!if_running) {
1703 /* Get control of and reset hardware */
1704 if (adapter->flags & FLAG_HAS_AMT)
1705 e1000e_get_hw_control(adapter);
1706
1707 e1000e_power_up_phy(adapter);
1708
1709 adapter->hw.phy.autoneg_wait_to_complete = 1;
1710 e1000e_reset(adapter);
1711 adapter->hw.phy.autoneg_wait_to_complete = 0;
1712 }
1713
1714 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1715 /* Offline tests */
1716
1717 /* save speed, duplex, autoneg settings */
1718 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1719 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1720 autoneg = adapter->hw.mac.autoneg;
1721
1722 e_info("offline testing starting\n");
1723
1724 if (if_running)
1725 /* indicate we're in test mode */
1726 dev_close(netdev);
1727
1728 if (e1000_reg_test(adapter, &data[0]))
1729 eth_test->flags |= ETH_TEST_FL_FAILED;
1730
1731 e1000e_reset(adapter);
1732 if (e1000_eeprom_test(adapter, &data[1]))
1733 eth_test->flags |= ETH_TEST_FL_FAILED;
1734
1735 e1000e_reset(adapter);
1736 if (e1000_intr_test(adapter, &data[2]))
1737 eth_test->flags |= ETH_TEST_FL_FAILED;
1738
1739 e1000e_reset(adapter);
1740 if (e1000_loopback_test(adapter, &data[3]))
1741 eth_test->flags |= ETH_TEST_FL_FAILED;
1742
1743 /* force this routine to wait until autoneg complete/timeout */
1744 adapter->hw.phy.autoneg_wait_to_complete = 1;
1745 e1000e_reset(adapter);
1746 adapter->hw.phy.autoneg_wait_to_complete = 0;
1747
1748 if (e1000_link_test(adapter, &data[4]))
1749 eth_test->flags |= ETH_TEST_FL_FAILED;
1750
1751 /* restore speed, duplex, autoneg settings */
1752 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1753 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1754 adapter->hw.mac.autoneg = autoneg;
1755 e1000e_reset(adapter);
1756
1757 clear_bit(__E1000_TESTING, &adapter->state);
1758 if (if_running)
1759 dev_open(netdev);
1760 } else {
1761 /* Online tests */
1762
1763 e_info("online testing starting\n");
1764
1765 /* register, eeprom, intr and loopback tests not run online */
1766 data[0] = 0;
1767 data[1] = 0;
1768 data[2] = 0;
1769 data[3] = 0;
1770
1771 if (e1000_link_test(adapter, &data[4]))
1772 eth_test->flags |= ETH_TEST_FL_FAILED;
1773
1774 clear_bit(__E1000_TESTING, &adapter->state);
1775 }
1776
1777 if (!if_running) {
1778 e1000e_reset(adapter);
1779
1780 if (adapter->flags & FLAG_HAS_AMT)
1781 e1000e_release_hw_control(adapter);
1782 }
1783
1784 msleep_interruptible(4 * 1000);
1785}
1786
1787static void e1000_get_wol(struct net_device *netdev,
1788 struct ethtool_wolinfo *wol)
1789{
1790 struct e1000_adapter *adapter = netdev_priv(netdev);
1791
1792 wol->supported = 0;
1793 wol->wolopts = 0;
1794
1795 if (!(adapter->flags & FLAG_HAS_WOL) ||
1796 !device_can_wakeup(&adapter->pdev->dev))
1797 return;
1798
1799 wol->supported = WAKE_UCAST | WAKE_MCAST |
1800 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1801
1802 /* apply any specific unsupported masks here */
1803 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1804 wol->supported &= ~WAKE_UCAST;
1805
1806 if (adapter->wol & E1000_WUFC_EX)
1807 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1808 }
1809
1810 if (adapter->wol & E1000_WUFC_EX)
1811 wol->wolopts |= WAKE_UCAST;
1812 if (adapter->wol & E1000_WUFC_MC)
1813 wol->wolopts |= WAKE_MCAST;
1814 if (adapter->wol & E1000_WUFC_BC)
1815 wol->wolopts |= WAKE_BCAST;
1816 if (adapter->wol & E1000_WUFC_MAG)
1817 wol->wolopts |= WAKE_MAGIC;
1818 if (adapter->wol & E1000_WUFC_LNKC)
1819 wol->wolopts |= WAKE_PHY;
1820}
1821
1822static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1823{
1824 struct e1000_adapter *adapter = netdev_priv(netdev);
1825
1826 if (!(adapter->flags & FLAG_HAS_WOL) ||
1827 !device_can_wakeup(&adapter->pdev->dev) ||
1828 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1829 WAKE_MAGIC | WAKE_PHY)))
1830 return -EOPNOTSUPP;
1831
1832 /* these settings will always override what we currently have */
1833 adapter->wol = 0;
1834
1835 if (wol->wolopts & WAKE_UCAST)
1836 adapter->wol |= E1000_WUFC_EX;
1837 if (wol->wolopts & WAKE_MCAST)
1838 adapter->wol |= E1000_WUFC_MC;
1839 if (wol->wolopts & WAKE_BCAST)
1840 adapter->wol |= E1000_WUFC_BC;
1841 if (wol->wolopts & WAKE_MAGIC)
1842 adapter->wol |= E1000_WUFC_MAG;
1843 if (wol->wolopts & WAKE_PHY)
1844 adapter->wol |= E1000_WUFC_LNKC;
1845
1846 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1847
1848 return 0;
1849}
1850
1851static int e1000_set_phys_id(struct net_device *netdev,
1852 enum ethtool_phys_id_state state)
1853{
1854 struct e1000_adapter *adapter = netdev_priv(netdev);
1855 struct e1000_hw *hw = &adapter->hw;
1856
1857 switch (state) {
1858 case ETHTOOL_ID_ACTIVE:
1859 if (!hw->mac.ops.blink_led)
1860 return 2; /* cycle on/off twice per second */
1861
1862 hw->mac.ops.blink_led(hw);
1863 break;
1864
1865 case ETHTOOL_ID_INACTIVE:
1866 if (hw->phy.type == e1000_phy_ife)
1867 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1868 hw->mac.ops.led_off(hw);
1869 hw->mac.ops.cleanup_led(hw);
1870 break;
1871
1872 case ETHTOOL_ID_ON:
1873 hw->mac.ops.led_on(hw);
1874 break;
1875
1876 case ETHTOOL_ID_OFF:
1877 hw->mac.ops.led_off(hw);
1878 break;
1879 }
1880 return 0;
1881}
1882
1883static int e1000_get_coalesce(struct net_device *netdev,
1884 struct ethtool_coalesce *ec)
1885{
1886 struct e1000_adapter *adapter = netdev_priv(netdev);
1887
1888 if (adapter->itr_setting <= 4)
1889 ec->rx_coalesce_usecs = adapter->itr_setting;
1890 else
1891 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1892
1893 return 0;
1894}
1895
1896static int e1000_set_coalesce(struct net_device *netdev,
1897 struct ethtool_coalesce *ec)
1898{
1899 struct e1000_adapter *adapter = netdev_priv(netdev);
1900 struct e1000_hw *hw = &adapter->hw;
1901
1902 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1903 ((ec->rx_coalesce_usecs > 4) &&
1904 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1905 (ec->rx_coalesce_usecs == 2))
1906 return -EINVAL;
1907
1908 if (ec->rx_coalesce_usecs == 4) {
1909 adapter->itr = adapter->itr_setting = 4;
1910 } else if (ec->rx_coalesce_usecs <= 3) {
1911 adapter->itr = 20000;
1912 adapter->itr_setting = ec->rx_coalesce_usecs;
1913 } else {
1914 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1915 adapter->itr_setting = adapter->itr & ~3;
1916 }
1917
1918 if (adapter->itr_setting != 0)
1919 ew32(ITR, 1000000000 / (adapter->itr * 256));
1920 else
1921 ew32(ITR, 0);
1922
1923 return 0;
1924}
1925
1926static int e1000_nway_reset(struct net_device *netdev)
1927{
1928 struct e1000_adapter *adapter = netdev_priv(netdev);
1929
1930 if (!netif_running(netdev))
1931 return -EAGAIN;
1932
1933 if (!adapter->hw.mac.autoneg)
1934 return -EINVAL;
1935
1936 e1000e_reinit_locked(adapter);
1937
1938 return 0;
1939}
1940
1941static void e1000_get_ethtool_stats(struct net_device *netdev,
1942 struct ethtool_stats *stats,
1943 u64 *data)
1944{
1945 struct e1000_adapter *adapter = netdev_priv(netdev);
1946 struct rtnl_link_stats64 net_stats;
1947 int i;
1948 char *p = NULL;
1949
1950 e1000e_get_stats64(netdev, &net_stats);
1951 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1952 switch (e1000_gstrings_stats[i].type) {
1953 case NETDEV_STATS:
1954 p = (char *) &net_stats +
1955 e1000_gstrings_stats[i].stat_offset;
1956 break;
1957 case E1000_STATS:
1958 p = (char *) adapter +
1959 e1000_gstrings_stats[i].stat_offset;
1960 break;
1961 default:
1962 data[i] = 0;
1963 continue;
1964 }
1965
1966 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1967 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1968 }
1969}
1970
1971static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1972 u8 *data)
1973{
1974 u8 *p = data;
1975 int i;
1976
1977 switch (stringset) {
1978 case ETH_SS_TEST:
1979 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1980 break;
1981 case ETH_SS_STATS:
1982 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1983 memcpy(p, e1000_gstrings_stats[i].stat_string,
1984 ETH_GSTRING_LEN);
1985 p += ETH_GSTRING_LEN;
1986 }
1987 break;
1988 }
1989}
1990
1991static int e1000_get_rxnfc(struct net_device *netdev,
1992 struct ethtool_rxnfc *info, u32 *rule_locs)
1993{
1994 info->data = 0;
1995
1996 switch (info->cmd) {
1997 case ETHTOOL_GRXFH: {
1998 struct e1000_adapter *adapter = netdev_priv(netdev);
1999 struct e1000_hw *hw = &adapter->hw;
2000 u32 mrqc = er32(MRQC);
2001
2002 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2003 return 0;
2004
2005 switch (info->flow_type) {
2006 case TCP_V4_FLOW:
2007 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2008 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2009 /* fall through */
2010 case UDP_V4_FLOW:
2011 case SCTP_V4_FLOW:
2012 case AH_ESP_V4_FLOW:
2013 case IPV4_FLOW:
2014 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2015 info->data |= RXH_IP_SRC | RXH_IP_DST;
2016 break;
2017 case TCP_V6_FLOW:
2018 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2019 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2020 /* fall through */
2021 case UDP_V6_FLOW:
2022 case SCTP_V6_FLOW:
2023 case AH_ESP_V6_FLOW:
2024 case IPV6_FLOW:
2025 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2026 info->data |= RXH_IP_SRC | RXH_IP_DST;
2027 break;
2028 default:
2029 break;
2030 }
2031 return 0;
2032 }
2033 default:
2034 return -EOPNOTSUPP;
2035 }
2036}
2037
2038static const struct ethtool_ops e1000_ethtool_ops = {
2039 .get_settings = e1000_get_settings,
2040 .set_settings = e1000_set_settings,
2041 .get_drvinfo = e1000_get_drvinfo,
2042 .get_regs_len = e1000_get_regs_len,
2043 .get_regs = e1000_get_regs,
2044 .get_wol = e1000_get_wol,
2045 .set_wol = e1000_set_wol,
2046 .get_msglevel = e1000_get_msglevel,
2047 .set_msglevel = e1000_set_msglevel,
2048 .nway_reset = e1000_nway_reset,
2049 .get_link = ethtool_op_get_link,
2050 .get_eeprom_len = e1000_get_eeprom_len,
2051 .get_eeprom = e1000_get_eeprom,
2052 .set_eeprom = e1000_set_eeprom,
2053 .get_ringparam = e1000_get_ringparam,
2054 .set_ringparam = e1000_set_ringparam,
2055 .get_pauseparam = e1000_get_pauseparam,
2056 .set_pauseparam = e1000_set_pauseparam,
2057 .self_test = e1000_diag_test,
2058 .get_strings = e1000_get_strings,
2059 .set_phys_id = e1000_set_phys_id,
2060 .get_ethtool_stats = e1000_get_ethtool_stats,
2061 .get_sset_count = e1000e_get_sset_count,
2062 .get_coalesce = e1000_get_coalesce,
2063 .set_coalesce = e1000_set_coalesce,
2064 .get_rxnfc = e1000_get_rxnfc,
2065};
2066
2067void e1000e_set_ethtool_ops(struct net_device *netdev)
2068{
2069 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2070}
1/* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22/* ethtool support for e1000 */
23
24#include <linux/netdevice.h>
25#include <linux/interrupt.h>
26#include <linux/ethtool.h>
27#include <linux/pci.h>
28#include <linux/slab.h>
29#include <linux/delay.h>
30#include <linux/vmalloc.h>
31#include <linux/pm_runtime.h>
32
33#include "e1000.h"
34
35enum { NETDEV_STATS, E1000_STATS };
36
37struct e1000_stats {
38 char stat_string[ETH_GSTRING_LEN];
39 int type;
40 int sizeof_stat;
41 int stat_offset;
42};
43
44#define E1000_STAT(str, m) { \
45 .stat_string = str, \
46 .type = E1000_STATS, \
47 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
48 .stat_offset = offsetof(struct e1000_adapter, m) }
49#define E1000_NETDEV_STAT(str, m) { \
50 .stat_string = str, \
51 .type = NETDEV_STATS, \
52 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
53 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
54
55static const struct e1000_stats e1000_gstrings_stats[] = {
56 E1000_STAT("rx_packets", stats.gprc),
57 E1000_STAT("tx_packets", stats.gptc),
58 E1000_STAT("rx_bytes", stats.gorc),
59 E1000_STAT("tx_bytes", stats.gotc),
60 E1000_STAT("rx_broadcast", stats.bprc),
61 E1000_STAT("tx_broadcast", stats.bptc),
62 E1000_STAT("rx_multicast", stats.mprc),
63 E1000_STAT("tx_multicast", stats.mptc),
64 E1000_NETDEV_STAT("rx_errors", rx_errors),
65 E1000_NETDEV_STAT("tx_errors", tx_errors),
66 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
67 E1000_STAT("multicast", stats.mprc),
68 E1000_STAT("collisions", stats.colc),
69 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
70 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
71 E1000_STAT("rx_crc_errors", stats.crcerrs),
72 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
73 E1000_STAT("rx_no_buffer_count", stats.rnbc),
74 E1000_STAT("rx_missed_errors", stats.mpc),
75 E1000_STAT("tx_aborted_errors", stats.ecol),
76 E1000_STAT("tx_carrier_errors", stats.tncrs),
77 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
78 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
79 E1000_STAT("tx_window_errors", stats.latecol),
80 E1000_STAT("tx_abort_late_coll", stats.latecol),
81 E1000_STAT("tx_deferred_ok", stats.dc),
82 E1000_STAT("tx_single_coll_ok", stats.scc),
83 E1000_STAT("tx_multi_coll_ok", stats.mcc),
84 E1000_STAT("tx_timeout_count", tx_timeout_count),
85 E1000_STAT("tx_restart_queue", restart_queue),
86 E1000_STAT("rx_long_length_errors", stats.roc),
87 E1000_STAT("rx_short_length_errors", stats.ruc),
88 E1000_STAT("rx_align_errors", stats.algnerrc),
89 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
90 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
91 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
92 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
93 E1000_STAT("tx_flow_control_xon", stats.xontxc),
94 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
95 E1000_STAT("rx_csum_offload_good", hw_csum_good),
96 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
97 E1000_STAT("rx_header_split", rx_hdr_split),
98 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
99 E1000_STAT("tx_smbus", stats.mgptc),
100 E1000_STAT("rx_smbus", stats.mgprc),
101 E1000_STAT("dropped_smbus", stats.mgpdc),
102 E1000_STAT("rx_dma_failed", rx_dma_failed),
103 E1000_STAT("tx_dma_failed", tx_dma_failed),
104 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
105 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
106 E1000_STAT("corr_ecc_errors", corr_errors),
107 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
108};
109
110#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
111#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
112static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
113 "Register test (offline)", "Eeprom test (offline)",
114 "Interrupt test (offline)", "Loopback test (offline)",
115 "Link test (on/offline)"
116};
117
118#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
119
120static int e1000_get_settings(struct net_device *netdev,
121 struct ethtool_cmd *ecmd)
122{
123 struct e1000_adapter *adapter = netdev_priv(netdev);
124 struct e1000_hw *hw = &adapter->hw;
125 u32 speed;
126
127 if (hw->phy.media_type == e1000_media_type_copper) {
128 ecmd->supported = (SUPPORTED_10baseT_Half |
129 SUPPORTED_10baseT_Full |
130 SUPPORTED_100baseT_Half |
131 SUPPORTED_100baseT_Full |
132 SUPPORTED_1000baseT_Full |
133 SUPPORTED_Autoneg |
134 SUPPORTED_TP);
135 if (hw->phy.type == e1000_phy_ife)
136 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
137 ecmd->advertising = ADVERTISED_TP;
138
139 if (hw->mac.autoneg == 1) {
140 ecmd->advertising |= ADVERTISED_Autoneg;
141 /* the e1000 autoneg seems to match ethtool nicely */
142 ecmd->advertising |= hw->phy.autoneg_advertised;
143 }
144
145 ecmd->port = PORT_TP;
146 ecmd->phy_address = hw->phy.addr;
147 ecmd->transceiver = XCVR_INTERNAL;
148
149 } else {
150 ecmd->supported = (SUPPORTED_1000baseT_Full |
151 SUPPORTED_FIBRE |
152 SUPPORTED_Autoneg);
153
154 ecmd->advertising = (ADVERTISED_1000baseT_Full |
155 ADVERTISED_FIBRE |
156 ADVERTISED_Autoneg);
157
158 ecmd->port = PORT_FIBRE;
159 ecmd->transceiver = XCVR_EXTERNAL;
160 }
161
162 speed = SPEED_UNKNOWN;
163 ecmd->duplex = DUPLEX_UNKNOWN;
164
165 if (netif_running(netdev)) {
166 if (netif_carrier_ok(netdev)) {
167 speed = adapter->link_speed;
168 ecmd->duplex = adapter->link_duplex - 1;
169 }
170 } else if (!pm_runtime_suspended(netdev->dev.parent)) {
171 u32 status = er32(STATUS);
172
173 if (status & E1000_STATUS_LU) {
174 if (status & E1000_STATUS_SPEED_1000)
175 speed = SPEED_1000;
176 else if (status & E1000_STATUS_SPEED_100)
177 speed = SPEED_100;
178 else
179 speed = SPEED_10;
180
181 if (status & E1000_STATUS_FD)
182 ecmd->duplex = DUPLEX_FULL;
183 else
184 ecmd->duplex = DUPLEX_HALF;
185 }
186 }
187
188 ethtool_cmd_speed_set(ecmd, speed);
189 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
190 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
191
192 /* MDI-X => 2; MDI =>1; Invalid =>0 */
193 if ((hw->phy.media_type == e1000_media_type_copper) &&
194 netif_carrier_ok(netdev))
195 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
196 else
197 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
198
199 if (hw->phy.mdix == AUTO_ALL_MODES)
200 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
201 else
202 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
203
204 if (hw->phy.media_type != e1000_media_type_copper)
205 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
206
207 return 0;
208}
209
210static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
211{
212 struct e1000_mac_info *mac = &adapter->hw.mac;
213
214 mac->autoneg = 0;
215
216 /* Make sure dplx is at most 1 bit and lsb of speed is not set
217 * for the switch() below to work
218 */
219 if ((spd & 1) || (dplx & ~1))
220 goto err_inval;
221
222 /* Fiber NICs only allow 1000 gbps Full duplex */
223 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
224 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
225 goto err_inval;
226 }
227
228 switch (spd + dplx) {
229 case SPEED_10 + DUPLEX_HALF:
230 mac->forced_speed_duplex = ADVERTISE_10_HALF;
231 break;
232 case SPEED_10 + DUPLEX_FULL:
233 mac->forced_speed_duplex = ADVERTISE_10_FULL;
234 break;
235 case SPEED_100 + DUPLEX_HALF:
236 mac->forced_speed_duplex = ADVERTISE_100_HALF;
237 break;
238 case SPEED_100 + DUPLEX_FULL:
239 mac->forced_speed_duplex = ADVERTISE_100_FULL;
240 break;
241 case SPEED_1000 + DUPLEX_FULL:
242 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
243 mac->autoneg = 1;
244 adapter->hw.phy.autoneg_advertised =
245 ADVERTISE_1000_FULL;
246 } else {
247 mac->forced_speed_duplex = ADVERTISE_1000_FULL;
248 }
249 break;
250 case SPEED_1000 + DUPLEX_HALF: /* not supported */
251 default:
252 goto err_inval;
253 }
254
255 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
256 adapter->hw.phy.mdix = AUTO_ALL_MODES;
257
258 return 0;
259
260err_inval:
261 e_err("Unsupported Speed/Duplex configuration\n");
262 return -EINVAL;
263}
264
265static int e1000_set_settings(struct net_device *netdev,
266 struct ethtool_cmd *ecmd)
267{
268 struct e1000_adapter *adapter = netdev_priv(netdev);
269 struct e1000_hw *hw = &adapter->hw;
270 int ret_val = 0;
271
272 pm_runtime_get_sync(netdev->dev.parent);
273
274 /* When SoL/IDER sessions are active, autoneg/speed/duplex
275 * cannot be changed
276 */
277 if (hw->phy.ops.check_reset_block &&
278 hw->phy.ops.check_reset_block(hw)) {
279 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
280 ret_val = -EINVAL;
281 goto out;
282 }
283
284 /* MDI setting is only allowed when autoneg enabled because
285 * some hardware doesn't allow MDI setting when speed or
286 * duplex is forced.
287 */
288 if (ecmd->eth_tp_mdix_ctrl) {
289 if (hw->phy.media_type != e1000_media_type_copper) {
290 ret_val = -EOPNOTSUPP;
291 goto out;
292 }
293
294 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
295 (ecmd->autoneg != AUTONEG_ENABLE)) {
296 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
297 ret_val = -EINVAL;
298 goto out;
299 }
300 }
301
302 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
303 usleep_range(1000, 2000);
304
305 if (ecmd->autoneg == AUTONEG_ENABLE) {
306 hw->mac.autoneg = 1;
307 if (hw->phy.media_type == e1000_media_type_fiber)
308 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
309 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
310 else
311 hw->phy.autoneg_advertised = ecmd->advertising |
312 ADVERTISED_TP | ADVERTISED_Autoneg;
313 ecmd->advertising = hw->phy.autoneg_advertised;
314 if (adapter->fc_autoneg)
315 hw->fc.requested_mode = e1000_fc_default;
316 } else {
317 u32 speed = ethtool_cmd_speed(ecmd);
318 /* calling this overrides forced MDI setting */
319 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
320 ret_val = -EINVAL;
321 goto out;
322 }
323 }
324
325 /* MDI-X => 2; MDI => 1; Auto => 3 */
326 if (ecmd->eth_tp_mdix_ctrl) {
327 /* fix up the value for auto (3 => 0) as zero is mapped
328 * internally to auto
329 */
330 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
331 hw->phy.mdix = AUTO_ALL_MODES;
332 else
333 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
334 }
335
336 /* reset the link */
337 if (netif_running(adapter->netdev)) {
338 e1000e_down(adapter, true);
339 e1000e_up(adapter);
340 } else {
341 e1000e_reset(adapter);
342 }
343
344out:
345 pm_runtime_put_sync(netdev->dev.parent);
346 clear_bit(__E1000_RESETTING, &adapter->state);
347 return ret_val;
348}
349
350static void e1000_get_pauseparam(struct net_device *netdev,
351 struct ethtool_pauseparam *pause)
352{
353 struct e1000_adapter *adapter = netdev_priv(netdev);
354 struct e1000_hw *hw = &adapter->hw;
355
356 pause->autoneg =
357 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
358
359 if (hw->fc.current_mode == e1000_fc_rx_pause) {
360 pause->rx_pause = 1;
361 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
362 pause->tx_pause = 1;
363 } else if (hw->fc.current_mode == e1000_fc_full) {
364 pause->rx_pause = 1;
365 pause->tx_pause = 1;
366 }
367}
368
369static int e1000_set_pauseparam(struct net_device *netdev,
370 struct ethtool_pauseparam *pause)
371{
372 struct e1000_adapter *adapter = netdev_priv(netdev);
373 struct e1000_hw *hw = &adapter->hw;
374 int retval = 0;
375
376 adapter->fc_autoneg = pause->autoneg;
377
378 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
379 usleep_range(1000, 2000);
380
381 pm_runtime_get_sync(netdev->dev.parent);
382
383 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
384 hw->fc.requested_mode = e1000_fc_default;
385 if (netif_running(adapter->netdev)) {
386 e1000e_down(adapter, true);
387 e1000e_up(adapter);
388 } else {
389 e1000e_reset(adapter);
390 }
391 } else {
392 if (pause->rx_pause && pause->tx_pause)
393 hw->fc.requested_mode = e1000_fc_full;
394 else if (pause->rx_pause && !pause->tx_pause)
395 hw->fc.requested_mode = e1000_fc_rx_pause;
396 else if (!pause->rx_pause && pause->tx_pause)
397 hw->fc.requested_mode = e1000_fc_tx_pause;
398 else if (!pause->rx_pause && !pause->tx_pause)
399 hw->fc.requested_mode = e1000_fc_none;
400
401 hw->fc.current_mode = hw->fc.requested_mode;
402
403 if (hw->phy.media_type == e1000_media_type_fiber) {
404 retval = hw->mac.ops.setup_link(hw);
405 /* implicit goto out */
406 } else {
407 retval = e1000e_force_mac_fc(hw);
408 if (retval)
409 goto out;
410 e1000e_set_fc_watermarks(hw);
411 }
412 }
413
414out:
415 pm_runtime_put_sync(netdev->dev.parent);
416 clear_bit(__E1000_RESETTING, &adapter->state);
417 return retval;
418}
419
420static u32 e1000_get_msglevel(struct net_device *netdev)
421{
422 struct e1000_adapter *adapter = netdev_priv(netdev);
423 return adapter->msg_enable;
424}
425
426static void e1000_set_msglevel(struct net_device *netdev, u32 data)
427{
428 struct e1000_adapter *adapter = netdev_priv(netdev);
429 adapter->msg_enable = data;
430}
431
432static int e1000_get_regs_len(struct net_device __always_unused *netdev)
433{
434#define E1000_REGS_LEN 32 /* overestimate */
435 return E1000_REGS_LEN * sizeof(u32);
436}
437
438static void e1000_get_regs(struct net_device *netdev,
439 struct ethtool_regs *regs, void *p)
440{
441 struct e1000_adapter *adapter = netdev_priv(netdev);
442 struct e1000_hw *hw = &adapter->hw;
443 u32 *regs_buff = p;
444 u16 phy_data;
445
446 pm_runtime_get_sync(netdev->dev.parent);
447
448 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
449
450 regs->version = (1u << 24) |
451 (adapter->pdev->revision << 16) |
452 adapter->pdev->device;
453
454 regs_buff[0] = er32(CTRL);
455 regs_buff[1] = er32(STATUS);
456
457 regs_buff[2] = er32(RCTL);
458 regs_buff[3] = er32(RDLEN(0));
459 regs_buff[4] = er32(RDH(0));
460 regs_buff[5] = er32(RDT(0));
461 regs_buff[6] = er32(RDTR);
462
463 regs_buff[7] = er32(TCTL);
464 regs_buff[8] = er32(TDLEN(0));
465 regs_buff[9] = er32(TDH(0));
466 regs_buff[10] = er32(TDT(0));
467 regs_buff[11] = er32(TIDV);
468
469 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
470
471 /* ethtool doesn't use anything past this point, so all this
472 * code is likely legacy junk for apps that may or may not exist
473 */
474 if (hw->phy.type == e1000_phy_m88) {
475 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
476 regs_buff[13] = (u32)phy_data; /* cable length */
477 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
478 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
479 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
480 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
481 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
482 regs_buff[18] = regs_buff[13]; /* cable polarity */
483 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
484 regs_buff[20] = regs_buff[17]; /* polarity correction */
485 /* phy receive errors */
486 regs_buff[22] = adapter->phy_stats.receive_errors;
487 regs_buff[23] = regs_buff[13]; /* mdix mode */
488 }
489 regs_buff[21] = 0; /* was idle_errors */
490 e1e_rphy(hw, MII_STAT1000, &phy_data);
491 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
492 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
493
494 pm_runtime_put_sync(netdev->dev.parent);
495}
496
497static int e1000_get_eeprom_len(struct net_device *netdev)
498{
499 struct e1000_adapter *adapter = netdev_priv(netdev);
500 return adapter->hw.nvm.word_size * 2;
501}
502
503static int e1000_get_eeprom(struct net_device *netdev,
504 struct ethtool_eeprom *eeprom, u8 *bytes)
505{
506 struct e1000_adapter *adapter = netdev_priv(netdev);
507 struct e1000_hw *hw = &adapter->hw;
508 u16 *eeprom_buff;
509 int first_word;
510 int last_word;
511 int ret_val = 0;
512 u16 i;
513
514 if (eeprom->len == 0)
515 return -EINVAL;
516
517 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
518
519 first_word = eeprom->offset >> 1;
520 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
521
522 eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
523 GFP_KERNEL);
524 if (!eeprom_buff)
525 return -ENOMEM;
526
527 pm_runtime_get_sync(netdev->dev.parent);
528
529 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
530 ret_val = e1000_read_nvm(hw, first_word,
531 last_word - first_word + 1,
532 eeprom_buff);
533 } else {
534 for (i = 0; i < last_word - first_word + 1; i++) {
535 ret_val = e1000_read_nvm(hw, first_word + i, 1,
536 &eeprom_buff[i]);
537 if (ret_val)
538 break;
539 }
540 }
541
542 pm_runtime_put_sync(netdev->dev.parent);
543
544 if (ret_val) {
545 /* a read error occurred, throw away the result */
546 memset(eeprom_buff, 0xff, sizeof(u16) *
547 (last_word - first_word + 1));
548 } else {
549 /* Device's eeprom is always little-endian, word addressable */
550 for (i = 0; i < last_word - first_word + 1; i++)
551 le16_to_cpus(&eeprom_buff[i]);
552 }
553
554 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
555 kfree(eeprom_buff);
556
557 return ret_val;
558}
559
560static int e1000_set_eeprom(struct net_device *netdev,
561 struct ethtool_eeprom *eeprom, u8 *bytes)
562{
563 struct e1000_adapter *adapter = netdev_priv(netdev);
564 struct e1000_hw *hw = &adapter->hw;
565 u16 *eeprom_buff;
566 void *ptr;
567 int max_len;
568 int first_word;
569 int last_word;
570 int ret_val = 0;
571 u16 i;
572
573 if (eeprom->len == 0)
574 return -EOPNOTSUPP;
575
576 if (eeprom->magic !=
577 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
578 return -EFAULT;
579
580 if (adapter->flags & FLAG_READ_ONLY_NVM)
581 return -EINVAL;
582
583 max_len = hw->nvm.word_size * 2;
584
585 first_word = eeprom->offset >> 1;
586 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
587 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
588 if (!eeprom_buff)
589 return -ENOMEM;
590
591 ptr = (void *)eeprom_buff;
592
593 pm_runtime_get_sync(netdev->dev.parent);
594
595 if (eeprom->offset & 1) {
596 /* need read/modify/write of first changed EEPROM word */
597 /* only the second byte of the word is being modified */
598 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
599 ptr++;
600 }
601 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
602 /* need read/modify/write of last changed EEPROM word */
603 /* only the first byte of the word is being modified */
604 ret_val = e1000_read_nvm(hw, last_word, 1,
605 &eeprom_buff[last_word - first_word]);
606
607 if (ret_val)
608 goto out;
609
610 /* Device's eeprom is always little-endian, word addressable */
611 for (i = 0; i < last_word - first_word + 1; i++)
612 le16_to_cpus(&eeprom_buff[i]);
613
614 memcpy(ptr, bytes, eeprom->len);
615
616 for (i = 0; i < last_word - first_word + 1; i++)
617 cpu_to_le16s(&eeprom_buff[i]);
618
619 ret_val = e1000_write_nvm(hw, first_word,
620 last_word - first_word + 1, eeprom_buff);
621
622 if (ret_val)
623 goto out;
624
625 /* Update the checksum over the first part of the EEPROM if needed
626 * and flush shadow RAM for applicable controllers
627 */
628 if ((first_word <= NVM_CHECKSUM_REG) ||
629 (hw->mac.type == e1000_82583) ||
630 (hw->mac.type == e1000_82574) ||
631 (hw->mac.type == e1000_82573))
632 ret_val = e1000e_update_nvm_checksum(hw);
633
634out:
635 pm_runtime_put_sync(netdev->dev.parent);
636 kfree(eeprom_buff);
637 return ret_val;
638}
639
640static void e1000_get_drvinfo(struct net_device *netdev,
641 struct ethtool_drvinfo *drvinfo)
642{
643 struct e1000_adapter *adapter = netdev_priv(netdev);
644
645 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
646 strlcpy(drvinfo->version, e1000e_driver_version,
647 sizeof(drvinfo->version));
648
649 /* EEPROM image version # is reported as firmware version # for
650 * PCI-E controllers
651 */
652 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
653 "%d.%d-%d",
654 (adapter->eeprom_vers & 0xF000) >> 12,
655 (adapter->eeprom_vers & 0x0FF0) >> 4,
656 (adapter->eeprom_vers & 0x000F));
657
658 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
659 sizeof(drvinfo->bus_info));
660}
661
662static void e1000_get_ringparam(struct net_device *netdev,
663 struct ethtool_ringparam *ring)
664{
665 struct e1000_adapter *adapter = netdev_priv(netdev);
666
667 ring->rx_max_pending = E1000_MAX_RXD;
668 ring->tx_max_pending = E1000_MAX_TXD;
669 ring->rx_pending = adapter->rx_ring_count;
670 ring->tx_pending = adapter->tx_ring_count;
671}
672
673static int e1000_set_ringparam(struct net_device *netdev,
674 struct ethtool_ringparam *ring)
675{
676 struct e1000_adapter *adapter = netdev_priv(netdev);
677 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
678 int err = 0, size = sizeof(struct e1000_ring);
679 bool set_tx = false, set_rx = false;
680 u16 new_rx_count, new_tx_count;
681
682 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
683 return -EINVAL;
684
685 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
686 E1000_MAX_RXD);
687 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
688
689 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
690 E1000_MAX_TXD);
691 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
692
693 if ((new_tx_count == adapter->tx_ring_count) &&
694 (new_rx_count == adapter->rx_ring_count))
695 /* nothing to do */
696 return 0;
697
698 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
699 usleep_range(1000, 2000);
700
701 if (!netif_running(adapter->netdev)) {
702 /* Set counts now and allocate resources during open() */
703 adapter->tx_ring->count = new_tx_count;
704 adapter->rx_ring->count = new_rx_count;
705 adapter->tx_ring_count = new_tx_count;
706 adapter->rx_ring_count = new_rx_count;
707 goto clear_reset;
708 }
709
710 set_tx = (new_tx_count != adapter->tx_ring_count);
711 set_rx = (new_rx_count != adapter->rx_ring_count);
712
713 /* Allocate temporary storage for ring updates */
714 if (set_tx) {
715 temp_tx = vmalloc(size);
716 if (!temp_tx) {
717 err = -ENOMEM;
718 goto free_temp;
719 }
720 }
721 if (set_rx) {
722 temp_rx = vmalloc(size);
723 if (!temp_rx) {
724 err = -ENOMEM;
725 goto free_temp;
726 }
727 }
728
729 pm_runtime_get_sync(netdev->dev.parent);
730
731 e1000e_down(adapter, true);
732
733 /* We can't just free everything and then setup again, because the
734 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
735 * structs. First, attempt to allocate new resources...
736 */
737 if (set_tx) {
738 memcpy(temp_tx, adapter->tx_ring, size);
739 temp_tx->count = new_tx_count;
740 err = e1000e_setup_tx_resources(temp_tx);
741 if (err)
742 goto err_setup;
743 }
744 if (set_rx) {
745 memcpy(temp_rx, adapter->rx_ring, size);
746 temp_rx->count = new_rx_count;
747 err = e1000e_setup_rx_resources(temp_rx);
748 if (err)
749 goto err_setup_rx;
750 }
751
752 /* ...then free the old resources and copy back any new ring data */
753 if (set_tx) {
754 e1000e_free_tx_resources(adapter->tx_ring);
755 memcpy(adapter->tx_ring, temp_tx, size);
756 adapter->tx_ring_count = new_tx_count;
757 }
758 if (set_rx) {
759 e1000e_free_rx_resources(adapter->rx_ring);
760 memcpy(adapter->rx_ring, temp_rx, size);
761 adapter->rx_ring_count = new_rx_count;
762 }
763
764err_setup_rx:
765 if (err && set_tx)
766 e1000e_free_tx_resources(temp_tx);
767err_setup:
768 e1000e_up(adapter);
769 pm_runtime_put_sync(netdev->dev.parent);
770free_temp:
771 vfree(temp_tx);
772 vfree(temp_rx);
773clear_reset:
774 clear_bit(__E1000_RESETTING, &adapter->state);
775 return err;
776}
777
778static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
779 int reg, int offset, u32 mask, u32 write)
780{
781 u32 pat, val;
782 static const u32 test[] = {
783 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
784 };
785 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
786 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
787 (test[pat] & write));
788 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
789 if (val != (test[pat] & write & mask)) {
790 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
791 reg + (offset << 2), val,
792 (test[pat] & write & mask));
793 *data = reg;
794 return true;
795 }
796 }
797 return false;
798}
799
800static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
801 int reg, u32 mask, u32 write)
802{
803 u32 val;
804
805 __ew32(&adapter->hw, reg, write & mask);
806 val = __er32(&adapter->hw, reg);
807 if ((write & mask) != (val & mask)) {
808 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
809 reg, (val & mask), (write & mask));
810 *data = reg;
811 return true;
812 }
813 return false;
814}
815
816#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
817 do { \
818 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
819 return 1; \
820 } while (0)
821#define REG_PATTERN_TEST(reg, mask, write) \
822 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
823
824#define REG_SET_AND_CHECK(reg, mask, write) \
825 do { \
826 if (reg_set_and_check(adapter, data, reg, mask, write)) \
827 return 1; \
828 } while (0)
829
830static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
831{
832 struct e1000_hw *hw = &adapter->hw;
833 struct e1000_mac_info *mac = &adapter->hw.mac;
834 u32 value;
835 u32 before;
836 u32 after;
837 u32 i;
838 u32 toggle;
839 u32 mask;
840 u32 wlock_mac = 0;
841
842 /* The status register is Read Only, so a write should fail.
843 * Some bits that get toggled are ignored. There are several bits
844 * on newer hardware that are r/w.
845 */
846 switch (mac->type) {
847 case e1000_82571:
848 case e1000_82572:
849 case e1000_80003es2lan:
850 toggle = 0x7FFFF3FF;
851 break;
852 default:
853 toggle = 0x7FFFF033;
854 break;
855 }
856
857 before = er32(STATUS);
858 value = (er32(STATUS) & toggle);
859 ew32(STATUS, toggle);
860 after = er32(STATUS) & toggle;
861 if (value != after) {
862 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
863 after, value);
864 *data = 1;
865 return 1;
866 }
867 /* restore previous status */
868 ew32(STATUS, before);
869
870 if (!(adapter->flags & FLAG_IS_ICH)) {
871 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
872 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
873 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
874 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
875 }
876
877 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
878 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
879 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
880 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
881 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
882 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
883 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
884 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
885 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
886 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
887
888 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
889
890 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
891 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
892 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
893
894 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
895 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
896 if (!(adapter->flags & FLAG_IS_ICH))
897 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
898 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
899 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
900 mask = 0x8003FFFF;
901 switch (mac->type) {
902 case e1000_ich10lan:
903 case e1000_pchlan:
904 case e1000_pch2lan:
905 case e1000_pch_lpt:
906 case e1000_pch_spt:
907 mask |= BIT(18);
908 break;
909 default:
910 break;
911 }
912
913 if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt))
914 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
915 E1000_FWSM_WLOCK_MAC_SHIFT;
916
917 for (i = 0; i < mac->rar_entry_count; i++) {
918 if ((mac->type == e1000_pch_lpt) ||
919 (mac->type == e1000_pch_spt)) {
920 /* Cannot test write-protected SHRAL[n] registers */
921 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
922 continue;
923
924 /* SHRAH[9] different than the others */
925 if (i == 10)
926 mask |= BIT(30);
927 else
928 mask &= ~BIT(30);
929 }
930 if (mac->type == e1000_pch2lan) {
931 /* SHRAH[0,1,2] different than previous */
932 if (i == 1)
933 mask &= 0xFFF4FFFF;
934 /* SHRAH[3] different than SHRAH[0,1,2] */
935 if (i == 4)
936 mask |= BIT(30);
937 /* RAR[1-6] owned by management engine - skipping */
938 if (i > 0)
939 i += 6;
940 }
941
942 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
943 0xFFFFFFFF);
944 /* reset index to actual value */
945 if ((mac->type == e1000_pch2lan) && (i > 6))
946 i -= 6;
947 }
948
949 for (i = 0; i < mac->mta_reg_count; i++)
950 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
951
952 *data = 0;
953
954 return 0;
955}
956
957static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
958{
959 u16 temp;
960 u16 checksum = 0;
961 u16 i;
962
963 *data = 0;
964 /* Read and add up the contents of the EEPROM */
965 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
966 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
967 *data = 1;
968 return *data;
969 }
970 checksum += temp;
971 }
972
973 /* If Checksum is not Correct return error else test passed */
974 if ((checksum != (u16)NVM_SUM) && !(*data))
975 *data = 2;
976
977 return *data;
978}
979
980static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
981{
982 struct net_device *netdev = (struct net_device *)data;
983 struct e1000_adapter *adapter = netdev_priv(netdev);
984 struct e1000_hw *hw = &adapter->hw;
985
986 adapter->test_icr |= er32(ICR);
987
988 return IRQ_HANDLED;
989}
990
991static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
992{
993 struct net_device *netdev = adapter->netdev;
994 struct e1000_hw *hw = &adapter->hw;
995 u32 mask;
996 u32 shared_int = 1;
997 u32 irq = adapter->pdev->irq;
998 int i;
999 int ret_val = 0;
1000 int int_mode = E1000E_INT_MODE_LEGACY;
1001
1002 *data = 0;
1003
1004 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1005 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1006 int_mode = adapter->int_mode;
1007 e1000e_reset_interrupt_capability(adapter);
1008 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1009 e1000e_set_interrupt_capability(adapter);
1010 }
1011 /* Hook up test interrupt handler just for this test */
1012 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1013 netdev)) {
1014 shared_int = 0;
1015 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1016 netdev)) {
1017 *data = 1;
1018 ret_val = -1;
1019 goto out;
1020 }
1021 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1022
1023 /* Disable all the interrupts */
1024 ew32(IMC, 0xFFFFFFFF);
1025 e1e_flush();
1026 usleep_range(10000, 20000);
1027
1028 /* Test each interrupt */
1029 for (i = 0; i < 10; i++) {
1030 /* Interrupt to test */
1031 mask = BIT(i);
1032
1033 if (adapter->flags & FLAG_IS_ICH) {
1034 switch (mask) {
1035 case E1000_ICR_RXSEQ:
1036 continue;
1037 case 0x00000100:
1038 if (adapter->hw.mac.type == e1000_ich8lan ||
1039 adapter->hw.mac.type == e1000_ich9lan)
1040 continue;
1041 break;
1042 default:
1043 break;
1044 }
1045 }
1046
1047 if (!shared_int) {
1048 /* Disable the interrupt to be reported in
1049 * the cause register and then force the same
1050 * interrupt and see if one gets posted. If
1051 * an interrupt was posted to the bus, the
1052 * test failed.
1053 */
1054 adapter->test_icr = 0;
1055 ew32(IMC, mask);
1056 ew32(ICS, mask);
1057 e1e_flush();
1058 usleep_range(10000, 20000);
1059
1060 if (adapter->test_icr & mask) {
1061 *data = 3;
1062 break;
1063 }
1064 }
1065
1066 /* Enable the interrupt to be reported in
1067 * the cause register and then force the same
1068 * interrupt and see if one gets posted. If
1069 * an interrupt was not posted to the bus, the
1070 * test failed.
1071 */
1072 adapter->test_icr = 0;
1073 ew32(IMS, mask);
1074 ew32(ICS, mask);
1075 e1e_flush();
1076 usleep_range(10000, 20000);
1077
1078 if (!(adapter->test_icr & mask)) {
1079 *data = 4;
1080 break;
1081 }
1082
1083 if (!shared_int) {
1084 /* Disable the other interrupts to be reported in
1085 * the cause register and then force the other
1086 * interrupts and see if any get posted. If
1087 * an interrupt was posted to the bus, the
1088 * test failed.
1089 */
1090 adapter->test_icr = 0;
1091 ew32(IMC, ~mask & 0x00007FFF);
1092 ew32(ICS, ~mask & 0x00007FFF);
1093 e1e_flush();
1094 usleep_range(10000, 20000);
1095
1096 if (adapter->test_icr) {
1097 *data = 5;
1098 break;
1099 }
1100 }
1101 }
1102
1103 /* Disable all the interrupts */
1104 ew32(IMC, 0xFFFFFFFF);
1105 e1e_flush();
1106 usleep_range(10000, 20000);
1107
1108 /* Unhook test interrupt handler */
1109 free_irq(irq, netdev);
1110
1111out:
1112 if (int_mode == E1000E_INT_MODE_MSIX) {
1113 e1000e_reset_interrupt_capability(adapter);
1114 adapter->int_mode = int_mode;
1115 e1000e_set_interrupt_capability(adapter);
1116 }
1117
1118 return ret_val;
1119}
1120
1121static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1122{
1123 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1124 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1125 struct pci_dev *pdev = adapter->pdev;
1126 struct e1000_buffer *buffer_info;
1127 int i;
1128
1129 if (tx_ring->desc && tx_ring->buffer_info) {
1130 for (i = 0; i < tx_ring->count; i++) {
1131 buffer_info = &tx_ring->buffer_info[i];
1132
1133 if (buffer_info->dma)
1134 dma_unmap_single(&pdev->dev,
1135 buffer_info->dma,
1136 buffer_info->length,
1137 DMA_TO_DEVICE);
1138 if (buffer_info->skb)
1139 dev_kfree_skb(buffer_info->skb);
1140 }
1141 }
1142
1143 if (rx_ring->desc && rx_ring->buffer_info) {
1144 for (i = 0; i < rx_ring->count; i++) {
1145 buffer_info = &rx_ring->buffer_info[i];
1146
1147 if (buffer_info->dma)
1148 dma_unmap_single(&pdev->dev,
1149 buffer_info->dma,
1150 2048, DMA_FROM_DEVICE);
1151 if (buffer_info->skb)
1152 dev_kfree_skb(buffer_info->skb);
1153 }
1154 }
1155
1156 if (tx_ring->desc) {
1157 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1158 tx_ring->dma);
1159 tx_ring->desc = NULL;
1160 }
1161 if (rx_ring->desc) {
1162 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1163 rx_ring->dma);
1164 rx_ring->desc = NULL;
1165 }
1166
1167 kfree(tx_ring->buffer_info);
1168 tx_ring->buffer_info = NULL;
1169 kfree(rx_ring->buffer_info);
1170 rx_ring->buffer_info = NULL;
1171}
1172
1173static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1174{
1175 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1176 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1177 struct pci_dev *pdev = adapter->pdev;
1178 struct e1000_hw *hw = &adapter->hw;
1179 u32 rctl;
1180 int i;
1181 int ret_val;
1182
1183 /* Setup Tx descriptor ring and Tx buffers */
1184
1185 if (!tx_ring->count)
1186 tx_ring->count = E1000_DEFAULT_TXD;
1187
1188 tx_ring->buffer_info = kcalloc(tx_ring->count,
1189 sizeof(struct e1000_buffer), GFP_KERNEL);
1190 if (!tx_ring->buffer_info) {
1191 ret_val = 1;
1192 goto err_nomem;
1193 }
1194
1195 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1196 tx_ring->size = ALIGN(tx_ring->size, 4096);
1197 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1198 &tx_ring->dma, GFP_KERNEL);
1199 if (!tx_ring->desc) {
1200 ret_val = 2;
1201 goto err_nomem;
1202 }
1203 tx_ring->next_to_use = 0;
1204 tx_ring->next_to_clean = 0;
1205
1206 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1207 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1208 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1209 ew32(TDH(0), 0);
1210 ew32(TDT(0), 0);
1211 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1212 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1213 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1214
1215 for (i = 0; i < tx_ring->count; i++) {
1216 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1217 struct sk_buff *skb;
1218 unsigned int skb_size = 1024;
1219
1220 skb = alloc_skb(skb_size, GFP_KERNEL);
1221 if (!skb) {
1222 ret_val = 3;
1223 goto err_nomem;
1224 }
1225 skb_put(skb, skb_size);
1226 tx_ring->buffer_info[i].skb = skb;
1227 tx_ring->buffer_info[i].length = skb->len;
1228 tx_ring->buffer_info[i].dma =
1229 dma_map_single(&pdev->dev, skb->data, skb->len,
1230 DMA_TO_DEVICE);
1231 if (dma_mapping_error(&pdev->dev,
1232 tx_ring->buffer_info[i].dma)) {
1233 ret_val = 4;
1234 goto err_nomem;
1235 }
1236 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1237 tx_desc->lower.data = cpu_to_le32(skb->len);
1238 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1239 E1000_TXD_CMD_IFCS |
1240 E1000_TXD_CMD_RS);
1241 tx_desc->upper.data = 0;
1242 }
1243
1244 /* Setup Rx descriptor ring and Rx buffers */
1245
1246 if (!rx_ring->count)
1247 rx_ring->count = E1000_DEFAULT_RXD;
1248
1249 rx_ring->buffer_info = kcalloc(rx_ring->count,
1250 sizeof(struct e1000_buffer), GFP_KERNEL);
1251 if (!rx_ring->buffer_info) {
1252 ret_val = 5;
1253 goto err_nomem;
1254 }
1255
1256 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1257 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1258 &rx_ring->dma, GFP_KERNEL);
1259 if (!rx_ring->desc) {
1260 ret_val = 6;
1261 goto err_nomem;
1262 }
1263 rx_ring->next_to_use = 0;
1264 rx_ring->next_to_clean = 0;
1265
1266 rctl = er32(RCTL);
1267 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1268 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1269 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1270 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1271 ew32(RDLEN(0), rx_ring->size);
1272 ew32(RDH(0), 0);
1273 ew32(RDT(0), 0);
1274 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1275 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1276 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1277 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1278 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1279 ew32(RCTL, rctl);
1280
1281 for (i = 0; i < rx_ring->count; i++) {
1282 union e1000_rx_desc_extended *rx_desc;
1283 struct sk_buff *skb;
1284
1285 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1286 if (!skb) {
1287 ret_val = 7;
1288 goto err_nomem;
1289 }
1290 skb_reserve(skb, NET_IP_ALIGN);
1291 rx_ring->buffer_info[i].skb = skb;
1292 rx_ring->buffer_info[i].dma =
1293 dma_map_single(&pdev->dev, skb->data, 2048,
1294 DMA_FROM_DEVICE);
1295 if (dma_mapping_error(&pdev->dev,
1296 rx_ring->buffer_info[i].dma)) {
1297 ret_val = 8;
1298 goto err_nomem;
1299 }
1300 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1301 rx_desc->read.buffer_addr =
1302 cpu_to_le64(rx_ring->buffer_info[i].dma);
1303 memset(skb->data, 0x00, skb->len);
1304 }
1305
1306 return 0;
1307
1308err_nomem:
1309 e1000_free_desc_rings(adapter);
1310 return ret_val;
1311}
1312
1313static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1314{
1315 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1316 e1e_wphy(&adapter->hw, 29, 0x001F);
1317 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1318 e1e_wphy(&adapter->hw, 29, 0x001A);
1319 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1320}
1321
1322static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1323{
1324 struct e1000_hw *hw = &adapter->hw;
1325 u32 ctrl_reg = 0;
1326 u16 phy_reg = 0;
1327 s32 ret_val = 0;
1328
1329 hw->mac.autoneg = 0;
1330
1331 if (hw->phy.type == e1000_phy_ife) {
1332 /* force 100, set loopback */
1333 e1e_wphy(hw, MII_BMCR, 0x6100);
1334
1335 /* Now set up the MAC to the same speed/duplex as the PHY. */
1336 ctrl_reg = er32(CTRL);
1337 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1338 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1339 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1340 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1341 E1000_CTRL_FD); /* Force Duplex to FULL */
1342
1343 ew32(CTRL, ctrl_reg);
1344 e1e_flush();
1345 usleep_range(500, 1000);
1346
1347 return 0;
1348 }
1349
1350 /* Specific PHY configuration for loopback */
1351 switch (hw->phy.type) {
1352 case e1000_phy_m88:
1353 /* Auto-MDI/MDIX Off */
1354 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1355 /* reset to update Auto-MDI/MDIX */
1356 e1e_wphy(hw, MII_BMCR, 0x9140);
1357 /* autoneg off */
1358 e1e_wphy(hw, MII_BMCR, 0x8140);
1359 break;
1360 case e1000_phy_gg82563:
1361 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1362 break;
1363 case e1000_phy_bm:
1364 /* Set Default MAC Interface speed to 1GB */
1365 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1366 phy_reg &= ~0x0007;
1367 phy_reg |= 0x006;
1368 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1369 /* Assert SW reset for above settings to take effect */
1370 hw->phy.ops.commit(hw);
1371 usleep_range(1000, 2000);
1372 /* Force Full Duplex */
1373 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1374 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1375 /* Set Link Up (in force link) */
1376 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1377 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1378 /* Force Link */
1379 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1380 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1381 /* Set Early Link Enable */
1382 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1383 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1384 break;
1385 case e1000_phy_82577:
1386 case e1000_phy_82578:
1387 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1388 ret_val = hw->phy.ops.acquire(hw);
1389 if (ret_val) {
1390 e_err("Cannot setup 1Gbps loopback.\n");
1391 return ret_val;
1392 }
1393 e1000_configure_k1_ich8lan(hw, false);
1394 hw->phy.ops.release(hw);
1395 break;
1396 case e1000_phy_82579:
1397 /* Disable PHY energy detect power down */
1398 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1399 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1400 /* Disable full chip energy detect */
1401 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1402 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1403 /* Enable loopback on the PHY */
1404 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1405 break;
1406 default:
1407 break;
1408 }
1409
1410 /* force 1000, set loopback */
1411 e1e_wphy(hw, MII_BMCR, 0x4140);
1412 msleep(250);
1413
1414 /* Now set up the MAC to the same speed/duplex as the PHY. */
1415 ctrl_reg = er32(CTRL);
1416 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1417 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1418 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1419 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1420 E1000_CTRL_FD); /* Force Duplex to FULL */
1421
1422 if (adapter->flags & FLAG_IS_ICH)
1423 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1424
1425 if (hw->phy.media_type == e1000_media_type_copper &&
1426 hw->phy.type == e1000_phy_m88) {
1427 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1428 } else {
1429 /* Set the ILOS bit on the fiber Nic if half duplex link is
1430 * detected.
1431 */
1432 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1433 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1434 }
1435
1436 ew32(CTRL, ctrl_reg);
1437
1438 /* Disable the receiver on the PHY so when a cable is plugged in, the
1439 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1440 */
1441 if (hw->phy.type == e1000_phy_m88)
1442 e1000_phy_disable_receiver(adapter);
1443
1444 usleep_range(500, 1000);
1445
1446 return 0;
1447}
1448
1449static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1450{
1451 struct e1000_hw *hw = &adapter->hw;
1452 u32 ctrl = er32(CTRL);
1453 int link;
1454
1455 /* special requirements for 82571/82572 fiber adapters */
1456
1457 /* jump through hoops to make sure link is up because serdes
1458 * link is hardwired up
1459 */
1460 ctrl |= E1000_CTRL_SLU;
1461 ew32(CTRL, ctrl);
1462
1463 /* disable autoneg */
1464 ctrl = er32(TXCW);
1465 ctrl &= ~BIT(31);
1466 ew32(TXCW, ctrl);
1467
1468 link = (er32(STATUS) & E1000_STATUS_LU);
1469
1470 if (!link) {
1471 /* set invert loss of signal */
1472 ctrl = er32(CTRL);
1473 ctrl |= E1000_CTRL_ILOS;
1474 ew32(CTRL, ctrl);
1475 }
1476
1477 /* special write to serdes control register to enable SerDes analog
1478 * loopback
1479 */
1480 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1481 e1e_flush();
1482 usleep_range(10000, 20000);
1483
1484 return 0;
1485}
1486
1487/* only call this for fiber/serdes connections to es2lan */
1488static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1489{
1490 struct e1000_hw *hw = &adapter->hw;
1491 u32 ctrlext = er32(CTRL_EXT);
1492 u32 ctrl = er32(CTRL);
1493
1494 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1495 * on mac_type 80003es2lan)
1496 */
1497 adapter->tx_fifo_head = ctrlext;
1498
1499 /* clear the serdes mode bits, putting the device into mac loopback */
1500 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1501 ew32(CTRL_EXT, ctrlext);
1502
1503 /* force speed to 1000/FD, link up */
1504 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1505 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1506 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1507 ew32(CTRL, ctrl);
1508
1509 /* set mac loopback */
1510 ctrl = er32(RCTL);
1511 ctrl |= E1000_RCTL_LBM_MAC;
1512 ew32(RCTL, ctrl);
1513
1514 /* set testing mode parameters (no need to reset later) */
1515#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1516#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1517 ew32(KMRNCTRLSTA,
1518 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1519
1520 return 0;
1521}
1522
1523static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1524{
1525 struct e1000_hw *hw = &adapter->hw;
1526 u32 rctl, fext_nvm11, tarc0;
1527
1528 if (hw->mac.type == e1000_pch_spt) {
1529 fext_nvm11 = er32(FEXTNVM11);
1530 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1531 ew32(FEXTNVM11, fext_nvm11);
1532 tarc0 = er32(TARC(0));
1533 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1534 tarc0 &= 0xcfffffff;
1535 /* set bit 29 (value of MULR requests is now 2) */
1536 tarc0 |= 0x20000000;
1537 ew32(TARC(0), tarc0);
1538 }
1539 if (hw->phy.media_type == e1000_media_type_fiber ||
1540 hw->phy.media_type == e1000_media_type_internal_serdes) {
1541 switch (hw->mac.type) {
1542 case e1000_80003es2lan:
1543 return e1000_set_es2lan_mac_loopback(adapter);
1544 case e1000_82571:
1545 case e1000_82572:
1546 return e1000_set_82571_fiber_loopback(adapter);
1547 default:
1548 rctl = er32(RCTL);
1549 rctl |= E1000_RCTL_LBM_TCVR;
1550 ew32(RCTL, rctl);
1551 return 0;
1552 }
1553 } else if (hw->phy.media_type == e1000_media_type_copper) {
1554 return e1000_integrated_phy_loopback(adapter);
1555 }
1556
1557 return 7;
1558}
1559
1560static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1561{
1562 struct e1000_hw *hw = &adapter->hw;
1563 u32 rctl, fext_nvm11, tarc0;
1564 u16 phy_reg;
1565
1566 rctl = er32(RCTL);
1567 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1568 ew32(RCTL, rctl);
1569
1570 switch (hw->mac.type) {
1571 case e1000_pch_spt:
1572 fext_nvm11 = er32(FEXTNVM11);
1573 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1574 ew32(FEXTNVM11, fext_nvm11);
1575 tarc0 = er32(TARC(0));
1576 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1577 /* set bit 29 (value of MULR requests is now 0) */
1578 tarc0 &= 0xcfffffff;
1579 ew32(TARC(0), tarc0);
1580 /* fall through */
1581 case e1000_80003es2lan:
1582 if (hw->phy.media_type == e1000_media_type_fiber ||
1583 hw->phy.media_type == e1000_media_type_internal_serdes) {
1584 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1585 ew32(CTRL_EXT, adapter->tx_fifo_head);
1586 adapter->tx_fifo_head = 0;
1587 }
1588 /* fall through */
1589 case e1000_82571:
1590 case e1000_82572:
1591 if (hw->phy.media_type == e1000_media_type_fiber ||
1592 hw->phy.media_type == e1000_media_type_internal_serdes) {
1593 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1594 e1e_flush();
1595 usleep_range(10000, 20000);
1596 break;
1597 }
1598 /* Fall Through */
1599 default:
1600 hw->mac.autoneg = 1;
1601 if (hw->phy.type == e1000_phy_gg82563)
1602 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1603 e1e_rphy(hw, MII_BMCR, &phy_reg);
1604 if (phy_reg & BMCR_LOOPBACK) {
1605 phy_reg &= ~BMCR_LOOPBACK;
1606 e1e_wphy(hw, MII_BMCR, phy_reg);
1607 if (hw->phy.ops.commit)
1608 hw->phy.ops.commit(hw);
1609 }
1610 break;
1611 }
1612}
1613
1614static void e1000_create_lbtest_frame(struct sk_buff *skb,
1615 unsigned int frame_size)
1616{
1617 memset(skb->data, 0xFF, frame_size);
1618 frame_size &= ~1;
1619 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1620 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1621 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1622}
1623
1624static int e1000_check_lbtest_frame(struct sk_buff *skb,
1625 unsigned int frame_size)
1626{
1627 frame_size &= ~1;
1628 if (*(skb->data + 3) == 0xFF)
1629 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1630 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1631 return 0;
1632 return 13;
1633}
1634
1635static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1636{
1637 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1638 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1639 struct pci_dev *pdev = adapter->pdev;
1640 struct e1000_hw *hw = &adapter->hw;
1641 struct e1000_buffer *buffer_info;
1642 int i, j, k, l;
1643 int lc;
1644 int good_cnt;
1645 int ret_val = 0;
1646 unsigned long time;
1647
1648 ew32(RDT(0), rx_ring->count - 1);
1649
1650 /* Calculate the loop count based on the largest descriptor ring
1651 * The idea is to wrap the largest ring a number of times using 64
1652 * send/receive pairs during each loop
1653 */
1654
1655 if (rx_ring->count <= tx_ring->count)
1656 lc = ((tx_ring->count / 64) * 2) + 1;
1657 else
1658 lc = ((rx_ring->count / 64) * 2) + 1;
1659
1660 k = 0;
1661 l = 0;
1662 /* loop count loop */
1663 for (j = 0; j <= lc; j++) {
1664 /* send the packets */
1665 for (i = 0; i < 64; i++) {
1666 buffer_info = &tx_ring->buffer_info[k];
1667
1668 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1669 dma_sync_single_for_device(&pdev->dev,
1670 buffer_info->dma,
1671 buffer_info->length,
1672 DMA_TO_DEVICE);
1673 k++;
1674 if (k == tx_ring->count)
1675 k = 0;
1676 }
1677 ew32(TDT(0), k);
1678 e1e_flush();
1679 msleep(200);
1680 time = jiffies; /* set the start time for the receive */
1681 good_cnt = 0;
1682 /* receive the sent packets */
1683 do {
1684 buffer_info = &rx_ring->buffer_info[l];
1685
1686 dma_sync_single_for_cpu(&pdev->dev,
1687 buffer_info->dma, 2048,
1688 DMA_FROM_DEVICE);
1689
1690 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1691 1024);
1692 if (!ret_val)
1693 good_cnt++;
1694 l++;
1695 if (l == rx_ring->count)
1696 l = 0;
1697 /* time + 20 msecs (200 msecs on 2.4) is more than
1698 * enough time to complete the receives, if it's
1699 * exceeded, break and error off
1700 */
1701 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1702 if (good_cnt != 64) {
1703 ret_val = 13; /* ret_val is the same as mis-compare */
1704 break;
1705 }
1706 if (time_after(jiffies, time + 20)) {
1707 ret_val = 14; /* error code for time out error */
1708 break;
1709 }
1710 }
1711 return ret_val;
1712}
1713
1714static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1715{
1716 struct e1000_hw *hw = &adapter->hw;
1717
1718 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1719 if (hw->phy.ops.check_reset_block &&
1720 hw->phy.ops.check_reset_block(hw)) {
1721 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1722 *data = 0;
1723 goto out;
1724 }
1725
1726 *data = e1000_setup_desc_rings(adapter);
1727 if (*data)
1728 goto out;
1729
1730 *data = e1000_setup_loopback_test(adapter);
1731 if (*data)
1732 goto err_loopback;
1733
1734 *data = e1000_run_loopback_test(adapter);
1735 e1000_loopback_cleanup(adapter);
1736
1737err_loopback:
1738 e1000_free_desc_rings(adapter);
1739out:
1740 return *data;
1741}
1742
1743static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1744{
1745 struct e1000_hw *hw = &adapter->hw;
1746
1747 *data = 0;
1748 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1749 int i = 0;
1750
1751 hw->mac.serdes_has_link = false;
1752
1753 /* On some blade server designs, link establishment
1754 * could take as long as 2-3 minutes
1755 */
1756 do {
1757 hw->mac.ops.check_for_link(hw);
1758 if (hw->mac.serdes_has_link)
1759 return *data;
1760 msleep(20);
1761 } while (i++ < 3750);
1762
1763 *data = 1;
1764 } else {
1765 hw->mac.ops.check_for_link(hw);
1766 if (hw->mac.autoneg)
1767 /* On some Phy/switch combinations, link establishment
1768 * can take a few seconds more than expected.
1769 */
1770 msleep_interruptible(5000);
1771
1772 if (!(er32(STATUS) & E1000_STATUS_LU))
1773 *data = 1;
1774 }
1775 return *data;
1776}
1777
1778static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1779 int sset)
1780{
1781 switch (sset) {
1782 case ETH_SS_TEST:
1783 return E1000_TEST_LEN;
1784 case ETH_SS_STATS:
1785 return E1000_STATS_LEN;
1786 default:
1787 return -EOPNOTSUPP;
1788 }
1789}
1790
1791static void e1000_diag_test(struct net_device *netdev,
1792 struct ethtool_test *eth_test, u64 *data)
1793{
1794 struct e1000_adapter *adapter = netdev_priv(netdev);
1795 u16 autoneg_advertised;
1796 u8 forced_speed_duplex;
1797 u8 autoneg;
1798 bool if_running = netif_running(netdev);
1799
1800 pm_runtime_get_sync(netdev->dev.parent);
1801
1802 set_bit(__E1000_TESTING, &adapter->state);
1803
1804 if (!if_running) {
1805 /* Get control of and reset hardware */
1806 if (adapter->flags & FLAG_HAS_AMT)
1807 e1000e_get_hw_control(adapter);
1808
1809 e1000e_power_up_phy(adapter);
1810
1811 adapter->hw.phy.autoneg_wait_to_complete = 1;
1812 e1000e_reset(adapter);
1813 adapter->hw.phy.autoneg_wait_to_complete = 0;
1814 }
1815
1816 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1817 /* Offline tests */
1818
1819 /* save speed, duplex, autoneg settings */
1820 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1821 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1822 autoneg = adapter->hw.mac.autoneg;
1823
1824 e_info("offline testing starting\n");
1825
1826 if (if_running)
1827 /* indicate we're in test mode */
1828 e1000e_close(netdev);
1829
1830 if (e1000_reg_test(adapter, &data[0]))
1831 eth_test->flags |= ETH_TEST_FL_FAILED;
1832
1833 e1000e_reset(adapter);
1834 if (e1000_eeprom_test(adapter, &data[1]))
1835 eth_test->flags |= ETH_TEST_FL_FAILED;
1836
1837 e1000e_reset(adapter);
1838 if (e1000_intr_test(adapter, &data[2]))
1839 eth_test->flags |= ETH_TEST_FL_FAILED;
1840
1841 e1000e_reset(adapter);
1842 if (e1000_loopback_test(adapter, &data[3]))
1843 eth_test->flags |= ETH_TEST_FL_FAILED;
1844
1845 /* force this routine to wait until autoneg complete/timeout */
1846 adapter->hw.phy.autoneg_wait_to_complete = 1;
1847 e1000e_reset(adapter);
1848 adapter->hw.phy.autoneg_wait_to_complete = 0;
1849
1850 if (e1000_link_test(adapter, &data[4]))
1851 eth_test->flags |= ETH_TEST_FL_FAILED;
1852
1853 /* restore speed, duplex, autoneg settings */
1854 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1855 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1856 adapter->hw.mac.autoneg = autoneg;
1857 e1000e_reset(adapter);
1858
1859 clear_bit(__E1000_TESTING, &adapter->state);
1860 if (if_running)
1861 e1000e_open(netdev);
1862 } else {
1863 /* Online tests */
1864
1865 e_info("online testing starting\n");
1866
1867 /* register, eeprom, intr and loopback tests not run online */
1868 data[0] = 0;
1869 data[1] = 0;
1870 data[2] = 0;
1871 data[3] = 0;
1872
1873 if (e1000_link_test(adapter, &data[4]))
1874 eth_test->flags |= ETH_TEST_FL_FAILED;
1875
1876 clear_bit(__E1000_TESTING, &adapter->state);
1877 }
1878
1879 if (!if_running) {
1880 e1000e_reset(adapter);
1881
1882 if (adapter->flags & FLAG_HAS_AMT)
1883 e1000e_release_hw_control(adapter);
1884 }
1885
1886 msleep_interruptible(4 * 1000);
1887
1888 pm_runtime_put_sync(netdev->dev.parent);
1889}
1890
1891static void e1000_get_wol(struct net_device *netdev,
1892 struct ethtool_wolinfo *wol)
1893{
1894 struct e1000_adapter *adapter = netdev_priv(netdev);
1895
1896 wol->supported = 0;
1897 wol->wolopts = 0;
1898
1899 if (!(adapter->flags & FLAG_HAS_WOL) ||
1900 !device_can_wakeup(&adapter->pdev->dev))
1901 return;
1902
1903 wol->supported = WAKE_UCAST | WAKE_MCAST |
1904 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1905
1906 /* apply any specific unsupported masks here */
1907 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1908 wol->supported &= ~WAKE_UCAST;
1909
1910 if (adapter->wol & E1000_WUFC_EX)
1911 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1912 }
1913
1914 if (adapter->wol & E1000_WUFC_EX)
1915 wol->wolopts |= WAKE_UCAST;
1916 if (adapter->wol & E1000_WUFC_MC)
1917 wol->wolopts |= WAKE_MCAST;
1918 if (adapter->wol & E1000_WUFC_BC)
1919 wol->wolopts |= WAKE_BCAST;
1920 if (adapter->wol & E1000_WUFC_MAG)
1921 wol->wolopts |= WAKE_MAGIC;
1922 if (adapter->wol & E1000_WUFC_LNKC)
1923 wol->wolopts |= WAKE_PHY;
1924}
1925
1926static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1927{
1928 struct e1000_adapter *adapter = netdev_priv(netdev);
1929
1930 if (!(adapter->flags & FLAG_HAS_WOL) ||
1931 !device_can_wakeup(&adapter->pdev->dev) ||
1932 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1933 WAKE_MAGIC | WAKE_PHY)))
1934 return -EOPNOTSUPP;
1935
1936 /* these settings will always override what we currently have */
1937 adapter->wol = 0;
1938
1939 if (wol->wolopts & WAKE_UCAST)
1940 adapter->wol |= E1000_WUFC_EX;
1941 if (wol->wolopts & WAKE_MCAST)
1942 adapter->wol |= E1000_WUFC_MC;
1943 if (wol->wolopts & WAKE_BCAST)
1944 adapter->wol |= E1000_WUFC_BC;
1945 if (wol->wolopts & WAKE_MAGIC)
1946 adapter->wol |= E1000_WUFC_MAG;
1947 if (wol->wolopts & WAKE_PHY)
1948 adapter->wol |= E1000_WUFC_LNKC;
1949
1950 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1951
1952 return 0;
1953}
1954
1955static int e1000_set_phys_id(struct net_device *netdev,
1956 enum ethtool_phys_id_state state)
1957{
1958 struct e1000_adapter *adapter = netdev_priv(netdev);
1959 struct e1000_hw *hw = &adapter->hw;
1960
1961 switch (state) {
1962 case ETHTOOL_ID_ACTIVE:
1963 pm_runtime_get_sync(netdev->dev.parent);
1964
1965 if (!hw->mac.ops.blink_led)
1966 return 2; /* cycle on/off twice per second */
1967
1968 hw->mac.ops.blink_led(hw);
1969 break;
1970
1971 case ETHTOOL_ID_INACTIVE:
1972 if (hw->phy.type == e1000_phy_ife)
1973 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1974 hw->mac.ops.led_off(hw);
1975 hw->mac.ops.cleanup_led(hw);
1976 pm_runtime_put_sync(netdev->dev.parent);
1977 break;
1978
1979 case ETHTOOL_ID_ON:
1980 hw->mac.ops.led_on(hw);
1981 break;
1982
1983 case ETHTOOL_ID_OFF:
1984 hw->mac.ops.led_off(hw);
1985 break;
1986 }
1987
1988 return 0;
1989}
1990
1991static int e1000_get_coalesce(struct net_device *netdev,
1992 struct ethtool_coalesce *ec)
1993{
1994 struct e1000_adapter *adapter = netdev_priv(netdev);
1995
1996 if (adapter->itr_setting <= 4)
1997 ec->rx_coalesce_usecs = adapter->itr_setting;
1998 else
1999 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2000
2001 return 0;
2002}
2003
2004static int e1000_set_coalesce(struct net_device *netdev,
2005 struct ethtool_coalesce *ec)
2006{
2007 struct e1000_adapter *adapter = netdev_priv(netdev);
2008
2009 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2010 ((ec->rx_coalesce_usecs > 4) &&
2011 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2012 (ec->rx_coalesce_usecs == 2))
2013 return -EINVAL;
2014
2015 if (ec->rx_coalesce_usecs == 4) {
2016 adapter->itr_setting = 4;
2017 adapter->itr = adapter->itr_setting;
2018 } else if (ec->rx_coalesce_usecs <= 3) {
2019 adapter->itr = 20000;
2020 adapter->itr_setting = ec->rx_coalesce_usecs;
2021 } else {
2022 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2023 adapter->itr_setting = adapter->itr & ~3;
2024 }
2025
2026 pm_runtime_get_sync(netdev->dev.parent);
2027
2028 if (adapter->itr_setting != 0)
2029 e1000e_write_itr(adapter, adapter->itr);
2030 else
2031 e1000e_write_itr(adapter, 0);
2032
2033 pm_runtime_put_sync(netdev->dev.parent);
2034
2035 return 0;
2036}
2037
2038static int e1000_nway_reset(struct net_device *netdev)
2039{
2040 struct e1000_adapter *adapter = netdev_priv(netdev);
2041
2042 if (!netif_running(netdev))
2043 return -EAGAIN;
2044
2045 if (!adapter->hw.mac.autoneg)
2046 return -EINVAL;
2047
2048 pm_runtime_get_sync(netdev->dev.parent);
2049 e1000e_reinit_locked(adapter);
2050 pm_runtime_put_sync(netdev->dev.parent);
2051
2052 return 0;
2053}
2054
2055static void e1000_get_ethtool_stats(struct net_device *netdev,
2056 struct ethtool_stats __always_unused *stats,
2057 u64 *data)
2058{
2059 struct e1000_adapter *adapter = netdev_priv(netdev);
2060 struct rtnl_link_stats64 net_stats;
2061 int i;
2062 char *p = NULL;
2063
2064 pm_runtime_get_sync(netdev->dev.parent);
2065
2066 e1000e_get_stats64(netdev, &net_stats);
2067
2068 pm_runtime_put_sync(netdev->dev.parent);
2069
2070 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2071 switch (e1000_gstrings_stats[i].type) {
2072 case NETDEV_STATS:
2073 p = (char *)&net_stats +
2074 e1000_gstrings_stats[i].stat_offset;
2075 break;
2076 case E1000_STATS:
2077 p = (char *)adapter +
2078 e1000_gstrings_stats[i].stat_offset;
2079 break;
2080 default:
2081 data[i] = 0;
2082 continue;
2083 }
2084
2085 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2086 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2087 }
2088}
2089
2090static void e1000_get_strings(struct net_device __always_unused *netdev,
2091 u32 stringset, u8 *data)
2092{
2093 u8 *p = data;
2094 int i;
2095
2096 switch (stringset) {
2097 case ETH_SS_TEST:
2098 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2099 break;
2100 case ETH_SS_STATS:
2101 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2102 memcpy(p, e1000_gstrings_stats[i].stat_string,
2103 ETH_GSTRING_LEN);
2104 p += ETH_GSTRING_LEN;
2105 }
2106 break;
2107 }
2108}
2109
2110static int e1000_get_rxnfc(struct net_device *netdev,
2111 struct ethtool_rxnfc *info,
2112 u32 __always_unused *rule_locs)
2113{
2114 info->data = 0;
2115
2116 switch (info->cmd) {
2117 case ETHTOOL_GRXFH: {
2118 struct e1000_adapter *adapter = netdev_priv(netdev);
2119 struct e1000_hw *hw = &adapter->hw;
2120 u32 mrqc;
2121
2122 pm_runtime_get_sync(netdev->dev.parent);
2123 mrqc = er32(MRQC);
2124 pm_runtime_put_sync(netdev->dev.parent);
2125
2126 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2127 return 0;
2128
2129 switch (info->flow_type) {
2130 case TCP_V4_FLOW:
2131 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2132 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2133 /* fall through */
2134 case UDP_V4_FLOW:
2135 case SCTP_V4_FLOW:
2136 case AH_ESP_V4_FLOW:
2137 case IPV4_FLOW:
2138 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2139 info->data |= RXH_IP_SRC | RXH_IP_DST;
2140 break;
2141 case TCP_V6_FLOW:
2142 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2143 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2144 /* fall through */
2145 case UDP_V6_FLOW:
2146 case SCTP_V6_FLOW:
2147 case AH_ESP_V6_FLOW:
2148 case IPV6_FLOW:
2149 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2150 info->data |= RXH_IP_SRC | RXH_IP_DST;
2151 break;
2152 default:
2153 break;
2154 }
2155 return 0;
2156 }
2157 default:
2158 return -EOPNOTSUPP;
2159 }
2160}
2161
2162static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2163{
2164 struct e1000_adapter *adapter = netdev_priv(netdev);
2165 struct e1000_hw *hw = &adapter->hw;
2166 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2167 u32 ret_val;
2168
2169 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2170 return -EOPNOTSUPP;
2171
2172 switch (hw->phy.type) {
2173 case e1000_phy_82579:
2174 cap_addr = I82579_EEE_CAPABILITY;
2175 lpa_addr = I82579_EEE_LP_ABILITY;
2176 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2177 break;
2178 case e1000_phy_i217:
2179 cap_addr = I217_EEE_CAPABILITY;
2180 lpa_addr = I217_EEE_LP_ABILITY;
2181 pcs_stat_addr = I217_EEE_PCS_STATUS;
2182 break;
2183 default:
2184 return -EOPNOTSUPP;
2185 }
2186
2187 pm_runtime_get_sync(netdev->dev.parent);
2188
2189 ret_val = hw->phy.ops.acquire(hw);
2190 if (ret_val) {
2191 pm_runtime_put_sync(netdev->dev.parent);
2192 return -EBUSY;
2193 }
2194
2195 /* EEE Capability */
2196 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2197 if (ret_val)
2198 goto release;
2199 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2200
2201 /* EEE Advertised */
2202 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2203
2204 /* EEE Link Partner Advertised */
2205 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2206 if (ret_val)
2207 goto release;
2208 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2209
2210 /* EEE PCS Status */
2211 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2212 if (ret_val)
2213 goto release;
2214 if (hw->phy.type == e1000_phy_82579)
2215 phy_data <<= 8;
2216
2217 /* Result of the EEE auto negotiation - there is no register that
2218 * has the status of the EEE negotiation so do a best-guess based
2219 * on whether Tx or Rx LPI indications have been received.
2220 */
2221 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2222 edata->eee_active = true;
2223
2224 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2225 edata->tx_lpi_enabled = true;
2226 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2227
2228release:
2229 hw->phy.ops.release(hw);
2230 if (ret_val)
2231 ret_val = -ENODATA;
2232
2233 pm_runtime_put_sync(netdev->dev.parent);
2234
2235 return ret_val;
2236}
2237
2238static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2239{
2240 struct e1000_adapter *adapter = netdev_priv(netdev);
2241 struct e1000_hw *hw = &adapter->hw;
2242 struct ethtool_eee eee_curr;
2243 s32 ret_val;
2244
2245 ret_val = e1000e_get_eee(netdev, &eee_curr);
2246 if (ret_val)
2247 return ret_val;
2248
2249 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2250 e_err("Setting EEE tx-lpi is not supported\n");
2251 return -EINVAL;
2252 }
2253
2254 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2255 e_err("Setting EEE Tx LPI timer is not supported\n");
2256 return -EINVAL;
2257 }
2258
2259 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2260 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2261 return -EINVAL;
2262 }
2263
2264 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2265
2266 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2267
2268 pm_runtime_get_sync(netdev->dev.parent);
2269
2270 /* reset the link */
2271 if (netif_running(netdev))
2272 e1000e_reinit_locked(adapter);
2273 else
2274 e1000e_reset(adapter);
2275
2276 pm_runtime_put_sync(netdev->dev.parent);
2277
2278 return 0;
2279}
2280
2281static int e1000e_get_ts_info(struct net_device *netdev,
2282 struct ethtool_ts_info *info)
2283{
2284 struct e1000_adapter *adapter = netdev_priv(netdev);
2285
2286 ethtool_op_get_ts_info(netdev, info);
2287
2288 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2289 return 0;
2290
2291 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2292 SOF_TIMESTAMPING_RX_HARDWARE |
2293 SOF_TIMESTAMPING_RAW_HARDWARE);
2294
2295 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2296
2297 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2298 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2299 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2300 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2301 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2302 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2303 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2304 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2305 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2306 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2307 BIT(HWTSTAMP_FILTER_ALL));
2308
2309 if (adapter->ptp_clock)
2310 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2311
2312 return 0;
2313}
2314
2315static const struct ethtool_ops e1000_ethtool_ops = {
2316 .get_settings = e1000_get_settings,
2317 .set_settings = e1000_set_settings,
2318 .get_drvinfo = e1000_get_drvinfo,
2319 .get_regs_len = e1000_get_regs_len,
2320 .get_regs = e1000_get_regs,
2321 .get_wol = e1000_get_wol,
2322 .set_wol = e1000_set_wol,
2323 .get_msglevel = e1000_get_msglevel,
2324 .set_msglevel = e1000_set_msglevel,
2325 .nway_reset = e1000_nway_reset,
2326 .get_link = ethtool_op_get_link,
2327 .get_eeprom_len = e1000_get_eeprom_len,
2328 .get_eeprom = e1000_get_eeprom,
2329 .set_eeprom = e1000_set_eeprom,
2330 .get_ringparam = e1000_get_ringparam,
2331 .set_ringparam = e1000_set_ringparam,
2332 .get_pauseparam = e1000_get_pauseparam,
2333 .set_pauseparam = e1000_set_pauseparam,
2334 .self_test = e1000_diag_test,
2335 .get_strings = e1000_get_strings,
2336 .set_phys_id = e1000_set_phys_id,
2337 .get_ethtool_stats = e1000_get_ethtool_stats,
2338 .get_sset_count = e1000e_get_sset_count,
2339 .get_coalesce = e1000_get_coalesce,
2340 .set_coalesce = e1000_set_coalesce,
2341 .get_rxnfc = e1000_get_rxnfc,
2342 .get_ts_info = e1000e_get_ts_info,
2343 .get_eee = e1000e_get_eee,
2344 .set_eee = e1000e_set_eee,
2345};
2346
2347void e1000e_set_ethtool_ops(struct net_device *netdev)
2348{
2349 netdev->ethtool_ops = &e1000_ethtool_ops;
2350}